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The Inverse Problem of Geomagnetic Induction 

P. WEIDELT, Gottingen1) 

Eingegangen am 24. Marz 1972 

Summary: The problem of revealing the electrical conductivity profile of a layered earth from 
geomagnetic induction data is solved using a modified version of the method of GEL'FAND and 
LEVITAN, originally devised for the solution of inverse Sturm-LiouviIIe problems. The inver­
sion procedure is applied to empirical data, which previously have been interpreted by a differ­
ent method. - Since extensive use is made of the analytic properties of the response function 
in the complex frequency plane, these properties and related features of the response function 
are discussed at some length in an introductory section. Further it is shown that the inverse 
problem for a spherical earth can be transformed to the simpler problem for a fiat earth and a 
uniform inducing field. 

Zusammenfassllng: Flir die Umkehraufgabe der erdmagnetischen Tiefensondierung flir hori­
zontal geschichtete Leiter wird eine exakte Losung angegeben. Es handelt sich dabei urn eine 
modifizierte Fassung der Methode von GEL'FAND und LEVITAN zur Umkehrung Sturm-Liou­
villescher Eigenwertaufgaben. Als Anwendungsbeispiel wird das Umkehrverfahren auf experi­
mentelle Daten angewendet, die zuvor bereits nach einer anderen Methode interpretiert wor­
den waren. - Das Umkehrverfahren macht wesentlich von den analytischen Eigenschaften 
der Beobachtungsdaten in der komplexen Frequenzebene Gebrauch. Deshalb werden in einem 
einleitenden Abschnitt ausflihrlich diese Eigenschaften und ihrc Konsequenzen behandelt. 
Ferner wird gezeigt, daB sich die Umkehraufgabe fUr eine kugelformige Erde auf den ein­
facheren Fall einer ebenen Erde mit einem homogenen induzierenden Feld reduzieren laBt. 

1. Introduction 

Geomagnetic induction data are generally interpreted by assuming an electrical 
model with several free parameters, which in turn are adjusted to the 

either by curve fitting or by analytic methods. However, if the conductivity 
with depth only, direct inversion without recourse to model calculations 
possible. This inverse problem has been solved first by SIEBERT [1964], and 

a slightly modified version by CETAEV [1966], both using the WBK-approximation. 
shortcoming of their method is that the whole conductivity profile is recovered 
from the asymptotic behaviour of the response function for high frequencies. 

'hp,rpf/wP highly precise data are required in this frequency range, whereas the valuable 
,t'"""",",ti",,., of the low frequency part is not exhausted. However, by giving an algo-
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rithm it was implicitly shown that the conductivity distribution can be inferred 
uniquely from the response function. The question of uniqueness has been treated 
explicitly by 'I)CHONOV [1965], and more recently by BAILEY [1970], who formulated 
an integral constraint in the frequency domain, from which the conductivity profile 
can be deduced uniquely. 

The present paper is concerned with an alternative solution of the inverse problem, 
which is essentially a modified version of the method of GEL'FAND & LEVITAN 
[1951 a, b] for the solution of the inverse Sturm-Liouville problem. The Gel'fand­
Levitan procedure has found much attention in connection with the inverse problem 
in quantum-mechanical scattering theory (cf. the review article of FADDEEv [1963]), 
and has quite recently been applied by JOHNSON & SMYLIE [1971] to reveal the con­
ductivity distribution in the lower mantle, assuming a knowledge of the time constants, 
which govern the diffusion of magnetic fields from the core-mantle boundary upwards. 
Although JOHNSON & SMYLIE and the present author refer to the same sources, their 
approaches differ significantly both in the information assumed and in the method. 

At a first glance a direct inversion procedure appears to be very attractive, since it 
is less biased by preconceived models than parameter adjustment techniques. In 
practice, however, it loses much of its appeal by the fact that the inverse problem of 
geomagnetic induction belongs to the large class of improperly posed problems 
[STRACHOV 1969, ANDERssEN 1970], where small changes in the data can ~ause large 
changes in the results. Due to the inherent scatter of the data a result obtained by 
direct inversion represents just one element of the set of feasible solutions, and cannot 
deserve more attention than any other feasible solution obtained by different means. 
Often approximate methods are fully adequate to the quality of the data. A quite 
simple but powerful approximate solution of this kind has been proposed by 
SCHMUCKER [1970, p. 69]. 

Despite the proviso mentioned above, a treatment of the inverse problem of geo­
magnetic induction appears to be justified by the fact that it is one of the rare geo­
physical inverse problems, which allows an exact solution. Moreover, in the course of 
this study some general properties of the response function can be derived, which are 
of interest for any inversion procedure. Since these results are not well known (al~ 
though the underlying theory is essentially the theory of ordinary linear second order 
differential equations), Secs. 2 and 3 contain a detailed investigation of these prop: 
erties. The inversion procedure itself is described in Secs. 4 and 5, and is illustrated 
by examples in Secs. 6 and 7. 

2. Properties of the response function 

For simplicity, only a flat earth and a uniform inducing magnetic field are 
sidered here. Effects of a non-uniform magnetic field and the curvature of the 
are afterwards taken into account by simple transformations (cf. Sec. 3). As a 
limitation the (isotropic) electrical conductivity (J is assumed to vary with depth Z 

The Inverse Problem of Geomagnetic Induction 
259 

(Z positive downwards). Neglectin th . 
permeability and a harmonl'c t' "g e dl~placement current, assuming vacuum 
E( Ime lactor e+ uot thr h 

~, w) and H (z, w) of the horizontal electric a oug out, ~he complex amplitudes 
rectlOn, respectively) are interconnected by nd magnetic field (in y and x di-

H'(z,w)=u(z) E(z,w), 

E' (z, w) = iW/-lo H (z, w), 
(2.1) 

(2.2) 
SI-units being used The' I 
(fir ) . pnme a ways denotes d'ff, '. 

st argument. Elimination of H leads to I erentIatlOn with respect to the 

E" (z, w) = iW/-lou (z) E (z, w). 

The response function C (w) is defined as 
(2.3) 

c(W)= E(O,w) _ E(O,w) 
E' (0, w) - - iW/-lo H(O, w) . (2.4) 

Its relation to the apparent resistivity of m .. 
ea agnetotelluncs [CAGNIARD 1953J is 

{la (w) = W/-lo /c(W)I2. 

Let Zrn be the greatest depth to which th I . 
(2.5) 

e e ectromagnetlc field can penetrate, i. e. 

zm=f 00, if there is no perfect conductor 

t else the depth of the perfect conductor' (2.6) 

Then the problem to be solved may be stated as follows: 

C (w) in 0 < w < 00 wanted (J ( ). 0 
' Z ID :s;; Z < Zrn. 

principle the necessary information can be redu . 
function, which is completely specified b ce~, Slllce C (~) turns ~ut to be an 

y ItS values III an arbitrary small 

Some properties of the response function () . 
C ware now hsted for later reference. 

. Analytic properties in the COln'Piexfire l 
. quency pane 
The response function (). 
th ". C W IS zero-free and analytic' th 

e positive Imaginary axis Her 't h' . III e whole w-plane except 
d . e I as either an Illfinit . f . 

an zeros, or a finite number (wh' h e senes 0 Illterlacing simple 
IC may be nUll) of poles and zeros and two 
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branch points (one at 0) = + i co), according whether the integral 

Z 

Hm J ,Ja(t)dt (2.7) 
z-4Zm 0 

converges or not. The same applies to the normalized electric field E (z, co)! E (0, co). 

A possible perfect conductor at Z=Zm is not to be included in (2.7). 
The proofs follow from general theorems on second order linear differential 

equations (e.g. TITCHMARSH 1962) and are only indicated here. Let Wl (z, co) and 
W2 (z, 0) be two solutions of (2.3) with the initial conditions 

Wl (0, w)= 1, w~ (0, w)=O, W2 (0, w)=O, w~ (0, w)= 1. (2.8) 

Since their Wronskian 

(2.9) 

does not vanish, the solutions are linearly independent for all z, and the actual 

solution E is a linear combination of them: 

E(z, w)/E(O, W)=Wl (z, W)-W2 (z, w)/c(w). (2.10) 

Away from the positive imaginary co-axis E (zm, co) is a constant, which differs from 
zero only, if a (z) decreases for z -'+ co faster than Z-2. Since in this case Wl (z, co) 
tends to infinity, Eq. (2.10) yields for any conductivity profile 

() 1
. W2(Z,W) 

c w = lm . 
z->zm W1 (z,w) 

(2.11) 

The nature ofthe singularities of c (0) can be investigated as follows. The solutions 
Wl and W2 are entire functions of 0), i. e. they are free of singularities in the finite 
co-plane (e.g. [TITCHMARCH 1962], p. 6). Multiply the differential equation (2.3) for 
E= Wm, m= 1,2, by the complex-conjugate solution w*m, integrate over z, and obtain 

after integration by parts (on using (2.8» 

Z 

W:'(z) W:n(z) = J {lw~(t)12+iw,uoa(t) Iw",(t)1
2
}dt, m= 1, 2. (2.12) 

o 

Hence, all zeros of Wl and W2 lie on the positive imaginary O)-axis, where they consti­
tute the poles and zeros of the meromorphic function 

c(z, W)=W2 (z, w)/w 1 (z, w), (2.13) 
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w~ich is the response function for the case that the conductivity at depths greater than 
z IS ~eplaced by a perfect conductor at depth z. On the positive imaginary axis put 
0) = l~', }, > O. Denote the n-th zero of Wm (z, iA) by Amn and oWm/OA by Wm. Then 
m~ltJPly on one hand (2.3) for E= Wm by wm, differentiate on the other hand (2.3) 
WIth respect to A and multiply by Wm, integrate the difference over z and obtain after 
integration by parts (on using (2.8) and the fact that Wm (z, iAmn) is 'real) 

Z 

w'" (z, iA",n)· w:n (z, iAmn) = J ,uoa (t) w;' (t, iAmn) dt>O, 
o 

or in virtue of (2.9) 

(2.14) 

Since wm (z, iAmn) does not vanish, the zeros are simple. Further it is easily deduced 
from (2.14) that between two successive zeros of Wl there must be an odd number of 
zeros of W2, and vice versa. Hence, the zeros interlace. 

The distance ~An between two successive zeros of Wl or W2 is for large n asymptoti­
cally given by 

z 

~An =2 n [nlJ (z)Y, J (z)= J,J ,uoa(t) dt 
. 0 

(e.g. MORSE & FEsHBAcH 1953, p.739). Therefore, the density of poles and zeros 
increases when z is enhanced, and the analytic behaviour of . 

c (w)= lim c (z, w) (2.15) 
:;:-+Zm 

depends on the behaviour of J (z) for z -+ Zm. If J (z) remains finite there is an 
infinite series of poles and zeros; if J (z) diverges the isolated poles and ~eros beyond 
a certain limit point merge into a branch cut from that point to 0) = + i co, whereas 
below the lower branch point a finite number of poles and zeros may subsist. - The 
analytic properties of E (z, 0»/ E (0, 0) follow from the properties of c (0) and (2.10). 

Poles and branch cut of c (0) define the discrete and continuous spectrum of decay 
constants of freely decaying horizontally uniform current systems within the con­
du~tor. This is a consequence of (2.4) and the fact that the associated magnetic field, 
whIch cannot be observed outside the conductor [PRICE 1950], has to vanish at z=O. 

Two examples will illustrate the preceding results. First consider the uniform half­
space with a (z)=ao. Let 
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Then Wl = cosh kz, W2 = k-1 sinh kz, both being entire functions of m, since their 
power series representations contain only even powers of k. The poles and zeros of 
c (z, m)=k-1 tanh kz lie at 

i ( n)2 and w2n=-- n- , 
flo(]'o Z 

n=1,2, ... 

For z-+ 00 they cluster at m= +iO, which gets a branch point of c=k-1. The other 
branch point is m = i 00. 

Next consider the conductivity profile 

(2.16) 

treated by WEIDELT [1970, p. 30]. For b 2: 0 there is a monotone increase of a, getting 
infinite at zm=I/(a+b), and 

c(w)=(b+ la2+k2)-1, k 1-·---y =-y lWflo(]'o· (2.17) 

The singularities of c are two branch points at m=ia2/floao and m=i w. For -a <b <0 
the conductivity first decreases to a minimum, and then increases to infinity. Again 
c is given by (2.17), but now an additional pole at m = i (a2 - b2)/floao occurs. Finally 
let b < -a. Then there is a monotone decrease of conductivity, J (z) remains finite 
for z-+ 00, and 

c(w)= [b -~ a2 + k 2 coth {~1 + k2/a 2 arccoth (b/a)}r 1 

has an infinite series of poles and zeros (but no branch points !). 

In Sec. 5 and Appendix A a representation of the response function in terms of its 
singularities is required. If J (zm) is finite, c (m) is a meromorphic function with simple 
poles at m=iAln and permits by the Mittag-Leffler theorem (e.g. MORSE & FESHBACH 
1953, p. 383) an expansion in partial fractions: 

(2.18) 

This representation is justified due to 

an= lim lim (Aln+iw)c(z,w)= -W2 (zm' iA1n)/Wl (zm' iA1n»0 
Z-4Zm (O-+i.itln 
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(on using (2.14) and (2.15», and Aln=O (n2), an=O (1) for n-+ 00 (cf. MORSE& FESH­
BACH 1953, p. 739). In the general case (2.18) must be replaced by 

( )
= OOSa(A)dA 

c w ,., 
o A+lW 

a(A)2:0, (2.19) 

where a (A) is a generalized function to include both the discrete and the continuous 
part of the spectrum. (Alternatively Stieltjes integral notation would be appropriate.) 
The non-decreasing function f a (A) dA is known as the spectral function. 

b) Symmetry relation for c (m) 

c (m) satisfies 

c(-W*)=c*(W) , (2.20) 

i.e. it takes conjugate values at two points symmetric to the axis of imaginaries. 
Eq. (2.20) follows with (2.11) from the fact that w*m (z, m) and Wm (z, -m*), m= 1,2, 
satisfy the same differential equations and initial conditions. Hence, they are identical. 

c) Limiting values for large and small frequencies 

For large frequencies 

(2.21) 

which may be obtained by a WBK-approximation (e.g. KAMKE 1959, p. 138, SIEBERT 

1964), and for small frequencies 

lim c(w)=zm' (2.22) 
0)-+0 

following from (2.11) with Wl = 1, W2=Z. 

d) Dispersion relations 

Because of the analytic properties of c (m), its real and imaginary part are not 
independent functions of frequency. Let mo be a point in the upper m-plane and Cbe 
a closed contour consisting of the real axis and a large semicircle in the lower half­

plane. Then 
1 c(w')dw' -d, =0, 
nlc w -Wo 
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since the integrand is analytic in C. Due to (2.21) the large semicircle does not con­
tribute, and the contour can be confined to the real axis. Here put w' =x and let 
Wo = w + is (w real, s > 0) tend to the real axis. Then 

where 

0
= I' ~ +Soo c(x)dx 

Im . . 
£--++onz-oo x-m-IS 

() 
1 +fOOc(x)dx 

cm +- --­
ni -00 x-m' 

I
. 1 S 
Im - 2 2 

£--++0 n (x-m) +S 
b(x-m) 

has been used. f denotes the Cauchy principal value. Let for real frequencies 

e (m)= gem) - ih (m), 

(2.23) 

(2.24) 

where in virtue of (2.20) g ( - w) = g (w), h ( - w) = - h (w). Hence, a separation of 
(2.23) in its real and imaginary part yields 

g(m)=~ +r h (x) dx ~ f x\(x)d:, 
n -00 x-m n 0 x -m 

(2.25 a) 

h(m)= -~ +r g(x)dx = -~ f m~(x)~x. 
n -00 x-m n 0 x -m 

(2.25 b) 

Relations of this kind, occurring in many branches of physics, are well known as 
dispersion relations. They are a consequence of the causality requirement (e. g. LANDAU 
& LIFSCHITZ 1966/67, V. 3 § 129, v. 5 § 125, v. 8 § 62 and 67; BAILEY 1970; WEIDELT 
1970, p. 23). Relations corresponding to (2.25a, b) also exist for modulus and phase 
of e (w). Since e is free of zeros in the lower half-plane, the function 

log fJ im/loO' (0) e ( m)} 

is analytic there and vanishes for Iwl~ C/) due to (2.21). Put 

e(m)= le(m)1 e-ilp(<t» (2.26) 

arid assume w > O. Then the relation corresponding to (2.25 b) is 

n 2m oo ~ 
1p(m)=-4 -- flog {,JX/loO' (0) Ic(x)l} 2 2' 

n 0 x -m 
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or introducing the apparent resistivity ea (w) by (2.5): 

. n moo dx 
1p(m)=-4 --n flog{Qa(X)/QO} 2 2' 

o X -w 
(2.27) 

where eo = 1/0' (0). By (2.27) the phase of experimental data can be deduced from the 
apparent resistivity, which is often better accessible. There exists a simple approximate 
version of (2.27). Integration by parts yields 

or since X-I log l(w-x)/(w+x)1 almost behaves like a a-function 

(2.28) 

where T is the period, and the result 

has been applied. Since double-logarithmic plots of ea (T) are used, a first approxi­
mation of the phase can immediately be obtained from the slope of the sounding 
curve. Fig. 1 gives two examples. 

It should be rioted that relations corresponding to (2.25a, b) exist for all realizable 
linear systems, whereas relations between modulus and phase can be given only for 
the restricted class of transfer functions, which are free of zeros in the lower frequency 
plane (minimal phase systems). 

e) Inequalities 

Let w > 0 and define an operator D by 

DJ =mdJ/dm=dJ/dlogm= -df/dlog T. (2.29) 
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Fig. 1: Two examples for the determination of the phase fro'm the (?a"curve using the approxi­
mation (2.28). The angle rp=90o--'IjJ is the phase angle between electric and magnetic 
field. 

Then (recalling the definition (2.24)) the following inequalities apply: 

g~O, h~O, 

Dg::O;;O, 

0::0;; -D lel ::o;;lel, 

IDel::o;;h, le+Del::O;;g, 

ID2el::o;;h, le+2De+D2el::o;;g. 

(2.30 a, b) 

(2.31) 

(2.32a, b) 

(2.33 a, b) 

(2.34 a, b) 
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Alternatively these constraints can be expressed in terms of apparent resistivity Qa 

(cf. (2.5)) and phase 1p (cf. (2.26)). For example (2.30a, b), (2.32a, b), (2.33 a, b) then 
read: 

O::O;;1p::O;;nj2, (2.30 a, b)' 

(2.32 a, b)' 

. (2.33 a)' 

(2.33 b)' 

Hence, (2.33) implies (2.32). (The quantity -- DQa/Qa is the slope of the sounding 
curve Qa (T) in it double-logarithmic plot.) 

The proofs of (2.30) -- (2.34) follow almost immediately from the representation 
(2.19). Together with additional constraints they are given in Appendix A. If experi­
mental' data do not fit these inequalities, some of the underlying assumptions on 
conductivity and external field are definitely wrong. In this case we are able to compute 
a set of "corrected" data, which satisfy the inequalities thereby deviating least (in a 
given norm) from the original data. This leads to a problem in convex programming, 
which is easily s9lved by the cutting-plane method (e.g. COLLATZ & WETTERLING 
1971, p. 124). An example is given in Fig. 2. The original data, response values for 
the first four Sq-harmonics, were obtained by SCHMUCKER [1971, private communica­
tion] as an average for South East Europe. -- Derivatives were determined from the 

600 
km 

500 

'00 

300 

200 

100 

-100 

-zoo ~ 
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Fig. 2: An example for the optimal correction of experimental data, which do not satisfy the 
constraints (2.33 a, 1:» everywhere. Input data and corrected data are connected by full 
and dashed lines, respectively. CPD means "cycles per day". 
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slope of a parabola through three successive points, and the least squares norm for 
the relative deviations has been used. Any interpretation of the original data g and h 
can give no better fit than that indicated by the broken lines. The application of the 
above constraints, which were obtained for a flat earth and a uniform external field, 
to problems with spherical symmetry is justified due to the results of Sec. 3. 

f) Computation of the response jimction 

When the conductivity is recovered by any inversion scheme, the response function 
c (co) has to be computed for check with the input data. This can be done by (2.11), 
where WI and W2 are obtained by numerical integration of (2.3) with the initial values 
from (2.8). The integration has to proceed downward until theTatio W2/WI tends to a 
limit. For real frequencies the moduli of WI and W2 steadily increase with depth, since 

is positive in virtue of (2.12). Let f= W2/Wl. Then f' = wC2, using (2.9). Hence, (2.11) 
can be replaced by 

Zm dz 
c(w)= I 2( ). o WI Z, W 

(2.35) 

Thus only WI is required. An alternative method has been proposed by ECKARDT 
[1968], who reduced (2.3) to a Riccati equation, which was solved by upward integra­
tion with an arbitrary initial value at a sufficiently deep starting point. The fastest 
method, however, is the approximation of the conductivity profile by a set of homo­
geneous layers, for which c (0;) can be computed by well-known recurrence formulae. 

g) Physical meaning of the real part of c (0;) 

The real part g (0;) of the response function admits a simple physical interpretation. 
Let 

j (z, w)=a(z) E (z, w) (2.36) 

be the density of the induced currents. Then 

Zm Zm 1 
I j(z,w)dz=H(O,w), I zj(z,w)dz= --. -E(O,w), 
o 0 IWJ-lo 

which is easily verified by partial integration on using (2.36), (2.1), and (2.2). Hence, 
taking the phase of H (0, co) as reference phase and applying (2.4), 

Zm Zm 

g(w)= I zRe{j(z,w)}dz/ I Re{j(z,w)}dz. 
o 0 
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Thus, in a mechanical analogy, the positive length g (co) can be interpreted as the 
depth of the "centre of gravity" of the incphase induced current system. In accordance 
with well established ideas regarding the induction process, g' (co) < 0 (Eq. 2.31) 
shows that the mean depth of the current system increases if the frequency is diminish­
ed. Limiting values are g (00)=0 and g (O)=zm (cf. (2.21) and (2.22». The present 
interpretation of g (co) is basic for the inversion procedure of SCHMUCKER [1970, p. 69]. 

3. Arbitrary external field a~d spherical earth 

So far only a uniform inducing field and a flat earth have been considered. Retaining 
the assumption that the conductivity shall vary with depth only, the electric field 
vector E remains a tangential solenoidal vector for any solenoidal inducing field and 
fOf both a flat and a spherical earth [LAHIRI & PRICE 1939, PRICE 1950, YUKUTAKE 
1967, ECKARDT 1968]. E satisfies 

(3.1) 

where r is the vect9f of position. Its representation as a superposition of the particular 
solutions of (3.1) is 

a) for a flat earth: 

+00 

E(r, t)= HI a ()(:, w) w(z, x, w) Z x grad {ei ('" drot)} dxxdxydw, 
-00 

(3.2 a) 
b) for a spherical earth: 

+00 00 +n 

E(r,t)= I dw L L a;;'(w)w,,(r,w)rxgrad{P;;'(cos8)ei(m<P+ wt
)}. (3.2 b) 

-00 n=1m=-n 

Here )(:=xxx+Xyy is the horizontal wave vector, x=y,,--:X the wave number, e the 
colatitude, qJ the longitude, pmn the associated Legendre function, and X, y, z, r unit 
vectors in the direction of increasing x, y, z, r. The functions a ()(:, co) and amn (co) 
represent the spectral density of the inducing field in the space and time domain. The 
response of the conductor to the corresponding harmonics is described by w (z, co, x) 
and Wn (r, co), which satisfy 

W" (z, w, x)= {x 2 + iWJ-loa(z)} w(z, w, x) (3.3a) 
and 

" ( ) {n (n + 1). ()} ( ) w" r, w =. ----;:z-+ IWJ-loa r W" r, w . (3.3b) 
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The response functions 

c (CO) = 

P. WEIDELT 

W(O, CO, u) and c(co)= + wn(R,co) 
w' (0, co, u) w' (R r.,) 11 ,UJ 

(3.4a, b) 

(R being the radius of the earth) can be obtained after harmonic analysis - both in 
space and time - of the electromagnetic field at the surface of the earth on three 
different ways: 

1. from the ratio of orthogonal tangential electric and magnetic field components, 

2. from the ratio of normal and tangential magnetic field components, 

3. from the ratio of internal and external parts of the magnetic field. 

Moreover, there is the possibility to determine the response function from the ratio 
of the vertical gradient of a horizontal magnetic field component just beneath the 
surface to the component at the surface [MEYER 1966]. 

The inverse problem is reduced to the inverse problem for a flat earth and a uniform 
external field by the transformations 

w(2', co)=w(z, co)/coshuz 

a (2') = a (z)' cosh4 (uz) 

_ Q-n_Qn+l: 

z=R(2n+l)f(Q)' 

w(Z', co) = wn (r, co)/f(Q) , 
a(2')=a(r)·f4(Q) , 

(3.5a, b) 

where e=rlR and f(e)={(n+ 1) e-n+nen+l}/(2 n+ 1). They transform (3.2a, b) into 

w" (2', co) = icoJ1oa(2') w (2', co), 

which is (2.3) for a flat earth and a uniform external field, and do not affect the 
response functions, i. e. 

-w(O, co)/w'(O, co) = -w(O, w)/w' (0, co)=wn(R, co)/w~(R, co). 

Hence, any c (w) produced by an external field with wave number x or spherical 
harmonic of degree n (where x and n are assumed to be independent of w) can first 
be interpreted by a uniform field and a flat earth, and the resulting profile a (2') is then 
transformed into the true distribution by 

a(z) =cosh -4 uz' a(u- 1 tanh uz), (3.6a) 

(3.6b) 
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The physical basis of the preceding transformations is the fact that damping by· a 
perfect conductor and geometrical attenuation are equivalent, enter into the response 
function in the same way, and cannot be separated without additional information. 
Consider for illustration .~ perfect conductor at Z = Zm and an inducing field with wave 
number x. Then c(w)=x-'Itanhxzm=co=const., for the solutions WI and W2 of 
(3.3a) are cosh xz and x-I sinh XZ. Hence, given a response function c (w) = co, it can 
be interpreted by a perfect conductor at Zm =x-I tanh-I xco with 0 :S x :S I/co. In 
the limit x = 0, c (w) is explained by a uniform external field and a perfect conductor 
at Zm = co, whereas in the limit x = 1 I Co there is only geometrical attenuation and no 
perfect conductor. 

Consequently, the profile a (2') for a uniform field always includes a perfect con­
ductor, which is lowered, when passing by (3.6a) to the profile (J (z), thereby replacing 
electromagnetic damping fully or in part by geometrical damping. Interpretation of a 
response function c (w) by external fields with wave number x or degree n is subject 
to the restriction 

c(0)::;;u- 1 or c(O)::;;R/(n+ 1), (3.7) 

a consequence of (3.4a, b) and the fact that the relevant solutions of (3.3a, b) in the 
limit w-'>- 0 are given by e-"Z and rn+1 (provided that there is no perfect conductor).­
The transformations (3.5) are special cases of a more general class, which is given in 
Appendix B. 

4. Solution of the inverse problem 

In this section it is shown, how the conductivity profile (J (z) can be deduced from 
the response function c (w). The adopted procedure is essentially based on the method 
of GEL'FAND & LEVITAN [1951 a, b] for the solution of the inverse Sturm-Liouville 
problem. The special needs of the inverse geomagnetic induction problem, however, 
introduce substantial modifications of the original approach. 

Let (J (z) have discontinuities only in its derivatives. Then by the substitutions 

Z 

z--+x = J .J a (t)/a (0) dt, 
o 

E (z, co)--+f(x, k)=~a(z)/a(O)E(z, co)/E(O, co), 

a (z)--+u (x) = ~ a(z)/a (0) 

(4.1) 

(4.2) 

(4.3) 

(4.4) 
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the differential equation (2.3) is transformed into 

f"(x,k)={e+ V(X)}f(x,k), (4.5) 
where 

V(x)=U" (X)ju (x) (4.6) 

The new variable k has the dimension of a reciprocal length. Choose that branch of 
(4.1), which maps the upper sheet of the w-plane into the right half of the k-plane. 
Then the positive and negative w-axis is mapped into the bisectors of the first and 
fourth quadrant, respectively. Since c (w) and E(z, w)/E(O, w) are analytic outside 
the positive imaginary w-axis (cf. Sec. 2), the quantities 

c(k)=c(w) (4.7) 

andf(x, k) are analytic to the right of the imaginary k-axis. With respect to (4.1) the 
symmetry relation (2.20) now reads 

c (k*)=c* (k), (4.8) 

i. e. symmetry about the real k-axis. 

Let f+ (x, k) and f- (x, k) be two solutions of (4.5) with initial conditions 

f± (0, k)= 1, f± (0, k)=u' (o)± k. (4.9) 

These functions can be represented by 

+X 

f±(x,k)=e±kX+ J A(x,t)e±ktdt, (4.10) 
-x 

where A is real and independent of k. This representation is justified as follows: 
Insert f+, say, into (4.5), integrate the term 

occurring at the right-hand side of (4.5), two times by parts, and use the identity 

OAI OAI d - +- =-A(x, +x). 
Ox t=±x - ot t=±x dx -
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The final result is 

(4.11) 

Since A (x, t) shall be independent of k, each of the three terms in (4.11) vanishes 
separately. The second initial condition of (4.9) yields 

A(O,O)= ~u'(O). 

Hence, A is subject to the conditions 

o2A o2A 
OXZ-otZ =V(x)A, 

A(x,x)= ~{U'(O)+lV(t)dt}, 

A(x, -x)= ~ u'(O), 

(4.12) 

(4.13) 

(4.14) 

which determine A uniquely, if u (x) is given, since the solution of the hyperbolic 
equation (4.12), whose characteristics are the lines x ± t=const., is completely speci­
fied by its values on a pair of intersecting characteristics [here x- (=0 (4.13) and 
x+ t=O (4.14)]. If f- instead of f+ is used, the same conditions are obtained. Hence, 
the kernels for f+ and f- are identical. A (x, t) vanishes for [t[ > x; its domain of 
definition is illustrated in Fig. 3 . 

. The kernel A is the link between the data c (k) and the unknown function () (z). 

The relation between A and () is quite simple. First it is seen from (4.5),' (4.6), (4.4), 
and (4.9) that in the limit k -'>- 0 the functions u and f± satisfy identical differential 
equations and initial conditions. Hence, , , 

+X 

u(x)=limf±(x,k)=1+ J A(x,t)dt. (4.15) 
k-+O -x 
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__ ~ ~_~=V(X)A 

I I 

A(x.··x) = t u'{o) 

Fig. 3: Definition of the function A (x, y). 

Then in virtue of (4.2) and (4.4) the expression of (J (z) in terms of u (x) leads to the 
parameter representation 

x 

z=Ju- 2 (x)dx. 
o 

(4.16) 

( 4.17) 

A second solution of (4.6) is g (x)=u (x), z (x) with g (0)=0 and g' (0)= 1. Hence, 
the depth z is alternatively determined by 

z=limf+(X,k)-f-(X,k)={X+ +{ A(x,t) tdt}/U (x). 
k->O 2 ku (x) -x 

(4.17a) 

Eq. (4.17 a) has the advantage that only II (x) is needed instead of all values of 11 with 
arguments less than x, as in (4.17). 

The relation between A (x, t) and c (k) is more complicated and leads to an integral 
equation. The representation of / by f+ and /- yields 

kc(k)f(x, k)=f- (x, k)- b (k) {J + (x, k)+ f _ (x, k)}, (4.18) 

where 

1 
b(k)=2 {1-kc(k)} , (4.19) 
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and the initial conditions (4.9) and the result 

f' (0, k)=E' (0, w)/E(O, w)+u' (0)= -l/c(k)+u' (0) 

have been applied. Insertion of (4.10) into (4.18) leads to 

x 

kc(k)f(x, k)- e- kx = J A (x, t) e- kt dt- b (k) (ekX + e- kX)_ 
-x 

x 

-b(k) J A(x,t)(/t+e-kt)dt. (4.20) 
-x 

Now multiply (4.20) by ekY/(2ni), /Y/ < x, and integrate over k along the line k=l3, 
13 > O. The result is abbreviated as 

(4.21) 

where h to 14 denote the integrals resulting from the four terms of (4.20). Their 
values are determined as follows. 

h: For k--+ CD the asymptotic representation of/is 

provided that (J (z) is continuous [KAMKE 1959, p. 138]. Hence, theintegrand 
behaves like exp {-k (x-y)}, and because of/y/ <x the contour can be Closed by 
a large semicirCle in the right half-plane without affecting the value of the integral. 
In the interior the integrand is analytic. Hence, 

h: The two-sided Laplace transform 

(4.22) 

yields immediately 

12=A(x,y). 
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la: In the sequel the "frequency" function b (k), which is computed from the data,is 
replaced by the "position" function 

1 ,+ioo 

B(x)=-2 . J b(k)ekxdk. 
1tl.- ioo 

(4.23) 

Eqs. (4.19) and (4.8) imply b (k*)=b* (k). Hence, B (x) is real. Moreover, 

B(x)=O for x<O, (4.24) 

since in this case the contour can be closed by a large semicircle in the right half 
of the k-plane, and the integral is analytic in its interior. - From (4.19), (2.21), 
(4.4), and (4.2) follows 

(4.25) 

for k-+ co. Hence,' 

B(+O)= ~ u'(O). 

Consequently, B is in general discontinuous across x=O. The calculation of B (x) 
turns out to be the crucial step in practical applications. Since experimental data 
are known only on the bisectors k=lkl exp (± in/4) and a deformation of the 
COl}tou.J,"jn (4.23) in direction to the bisectors is not possible, Eq. (4.23) involves 
analytic: continuation of the data in direction to the singularities on the imaginary 

. k~a~is and in the left half-plane, which is an unstable process. Practicable methods 
are discussed in Sec. 5. - The provisional result is 

since the term containing e-kx would give - B ( - x + y), which vanishes in virtue 
of IYI < x and (4.24). 

14: The convolutipn theorem for the two~sided Laplace transform 

1 .+ioo ' +00 

21ti._L gl(k)g2(k)e
kY

dk=)00 G1 (t)G2(y-t)dt 

(using the notation of (4.22» yields at once 
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+x 

14= - J A(x, t){B(y+t)+B(y-t)}dt, 
-x 

since A (x, 1)=0 for It I < x. 

Hence, (4.21) reads explicitly 

+x 

A(x,y)=B(x+y)+ J A(x,t){B(y+t)+B(y-t)}dt, Iyl<x, (4.26) 
-x 

which is a linear integral equation for A (x, y). The variable x enters as a parameter 
only, the proper variables are y and t. Eq. (4.26) has to be solved for all x, e.g. by 
decomposition into a linear system on using Gauss' integration method. When A is 
found, the conductivity profile is obtained from (4.15)-(4.17a). 

Since the solution of the inverse geomagnetic induction problem is known to be 
unique [TICHONOY 1965, BAILEY 1970], the uniqueness of a solution of (4.26). will not 
be proved here. 

Finally it should be mentioned that an alternative integral equation could have been 
obtained by introducing in (4.18) instead of b (k) the function 

l-kc(k) . 1 dioo kx 

r(k)=l k (k) WIth R(x)=-2 . J r(k)e dk, 8>0, + C 1tl.-,,;c 
(4.27) 

leading to 
x 

A(x,y)=R(x+y)+ J A(x,t)R(y+t)dt, (4.28) 
-Y 

which is formally simpler than (4.26). However, the formulation in terms ofB(x) is 
preferred here, since the determination of B (x) has computational advantages, as will 
become apparent in the next section. Moreover, numerical experiments have shown 
that, given exact values of R (x) and B (x), the results obtained from (4.26) were 
slightly better than those from (4.28). 

So far no physical meaning can be attributed to the somewhat abstract functions A, 
B, and R. Only if the physical situation is changed a simple interpretation of Band R 
is possible. Consider a non-absorbing elastic medium with wave velocity 

v (z) = VD·) a (O)/a (z) 

in z ~ 0, where VD is arbitrary, and assume that a unit a-impulse is released at time 
1=0 at z= +0, propagating downwards. Then the reflected amplitude recorded at 
z=O between t and t+ dt is voR (vot) dt or voB (vot) dt, according whether the wave 
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velocity in z < 0 is Vo or infinite. In the former case there is no reflection at z=O, 
whereas in the latter case the impulse is multiply reflected at the surface (reflection 
coefficient -1). This is illustrated by the discontinuity model a (z)=ao, 0 :::;; z < d, 
a (z)=al, z > d (which, however, is not tractable by the present inversion procedure, 
cf. [WEIDELT 1970], p. 66). Then 

00 

R(x)=rob(x-2d), B(x)= - L (-ro),'b(x-2nd), 
n=1 

where 

is the reflection coefficient at z = d. 

5. Computation of B (x) 

When B (x) is known the solution of the integral equation (4.26) presents almost no 
numerical difficulties. The really difficult step in the solution of the inverse problem is 
the computation of B (x) from the data b (k). Two practicable methods are described 
in this section; neither, however, .turns out to be completely satisfactory. 

'a) The inversion of (4.23) yields 

00 

b(k)= J B(x)e-kXdx, (5.1) 
o 

i.e. a Laplace integral equation, which can be solved using the values of b (k) on the 
line k=lkl ei"/4 (ef. [TITCHMARSH 1948], p. 316). Let 

s=O"+ it" 

be a new complex variable, multiply (5.1) by k-sl r (1- s), and integrate along the line 
k = I k I ei1i/4 . The resulting left-hand integral 

1 
M(s) r(1-s) 

ooein j4 

(5.2) 

exists in 0 <: a < 1, since the integrand is 0 (k- S) for k ---7 0 and 0 (k- S- 1 ) for k ---7 0:', 

a consequence of (4.25). In the resulting right-hand integral the order of integration 
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can be changed. Hence, on using the result 

ooein/ 4 

J k-se-kxdk=xs-l r(l-s) 
o 

and the Mellin transform 

00 

g(s)= J G(x)xs- 1 dx, 
o 

1 G+ioo 

G(x)=-2 . J g(s)x-Sds, 
nlG-ioo 

the solution of (5.1) is 

1 -J:+ioo 

B(x)=-2 . S M(s)x-Sds, 
n1-J:-ioo 
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(5.3) 

where a= 1/2 is taken, although any value in 0 < a < 1 is permitted. Deforming the 
contour in (5.2) to the positive real axis it is seen that M (s*) = M* (s). Hence, B (x) 
is real. Eq. (5.2) is suitable for, < 0, since it leads to a declease e- "1<1/4 of k-s for 
,---7 - 00, whereas M (a + iT) for, > 0 is obtained eitherfrom M(a+ iT) = M*(a-i,) 
or by rotating the line of integration through -nI2. 

A comment on (5.2) and (5.3) is necessary. In (5.3) M (s) is required for large imagi­
nary argument " for which 1/ r (l-s) in (5.2) is 0 {exp (n 1'1/2)}. This exponential 
increase is cancelled in theory by the integral in (5.2), which is 0 {exp (-n 1,1/2)}, as 
becomes evident, when the line of integration in (5.2) is rotated through +n14 for 
, < 0 and - 3 nl4 for, > 0, using the fact that b (k) is regular for Re k > O. Experi­
mental data - in particular, if they are not very smooth - will not always lead to a 
b (k), which is regular for Re k > O. Hence, in practical applications. the possil?le 
exponential increase of M (s) for 1,1--+ er.::, which prevents the convergence of (5.3), 
must be replaced by a suitable decrease. This method is not without bias, but it enables 
the interpretation of data, which do not correspond to any conductivity profile. 

b) An alternative approach takes into account particular properties of the response 
function. Introduce into (2.19) the new variable 

and let g (f-l) =nf-la (Il). Then (2.19) reads 

(504) 
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For a uniform half-space g (ft) = 1, for any other profile g (fl,) -+ 1 for ft -+ ex:. The 
expression of B (x) in terms of g (ft) is 

1 00 

B(x)=- J {1-g(/l)}cos/lxd/l, 
n 0 

(5.5) 

which is easily verified by solving (5.5) for g (ft), inserting the result into (5.4), changing 
the order of integration, and integrating over ft. The resulting equation agrees with 
(5.1). 

When g (ft) is known, the determination of B (x) from (5.5) presents no difficulty. 
Hence, the actual problem in the inversion procedure is the solution of the integral 
equation (5.4). The decomposition of (5.4) into linear equations leads to a system, 
which is badly ill-conditioned. But much of the non-uniqueness of its solution is 
removed, when it is taken into account that the unknown function g (ft) must be real 
and non-negative. A linear system of equations with linear constraints can be solved 
by quadratic programming techniques, e. g. by the method of Wolfe [COLLATZ & 
WETTERLING 1971]. Quadratic programming has been proved useful already in the 
solution of the inverse problem of geoelectrical sounding [KUNETZ & ROCROI 1970], 
where in fact the same properties of the spectral function are used to advantage 
(although in a different context). 

6. An analytical example 

In this section the inversion procedure is summarized by a simple analytical exam­
ple. The general operations are listed on the left-hand side of Table 1, the correspond­
ing outcome is given on the right-hand side. It and h denote the ordinary and modified 
Bessel function of the first order, respectively. In applications the inversion ends up 
with the parameter representation for a and z; in this analytical example after elimi-. 
nation of the parameter x a closed expression for a (z) can be obtained. The dependence 
of the conductivity profile on the wave number ;It: of the inducing field is given in the 
last line. For ;It: = 0 there is a perfect conductor at z = 11a, whereas for the largest wave 
number ;It:=a (cf. Eq. (3.7)) the conductivity is uniform. -The function g (fl,) (cf. 
Eqs. (5.4) and (5.5)) is 

o for O~w~,a and /l/.J/l2-a2 for /l>a. 

7. Inversion of experimental data 

The inversion procedure has been applied to a sounding curve obtained by WIESE 
[1965] at Uckermlinde (53°45' N, 14°04' E). The data cover the broad period range 
from 50 sec to 24 h. The disadvantage of the data is the fact that the station is situated 
in the region of the EW-striking North German conductivity anomaly leading to a 
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c(k) 

1 
b(k)="2 {l-kc(k)} 

1 
M(s) r(1-s) 

Table 1 

=1/.Ja2+e, a;;:::O 

= ~ {1-k/..Ja 2+k2
} 

(1+S) 
=~(.!!:.-)l-Sr -2 

2 2 re;s) 
1 

Res="2; Ims<O; M(s)=M*(s*) for Ims>O 

1 t+ioo 
B(x)=-2 . J M(s)x-Sds 

n1t-ioo 

a =2/1 (a x) 

x>O; B(x)=O for x<O 

Solve the integral equation (4.26) 

+x 

A(x,y)=B(x+y)+ J A(x,t){B(y+t)+B(y-t)}dt, Iyl<x: 
-x 

A(x,y) 

+x 

u(x)=l+ J A(x,t)dt 
-x 

{

X 

Ju- 2(t)dt 

Z= {x+ 1: A(X,t)tdt}/U(X) 

a (z)/(J (0) 

(J,,(z)=cosh -4 uz· (J(u- 1 tanh uz) 

0~uc(0)~1 

a x + y I (a / x2 _ 2) 
2 /2 21 Y Y 

yx -y 

=coshax 

=cosh4 ax 

=a- 1 tanhax 

= (J(O) {COSh2 uz -(a/u)2sinh2 UZ}-2 

0~u/a~1 
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Fig. 4: Input data (top) and reconstruction of phase by (2.27) (bottom). 

pronounced directivity in the apparent resistivity (cf. Figs. 12 and 13 in the paper of 
WIESE). Since the electric field component parallel to the strike is less influenced by the 
anomaly than the perpendicular component, the ea-curves computed from EEW and 
HNS will give the most reliable results when interpreted as the sounding curve of a 
laterally uniform earth. The data are shown in Fig. 4 (top). 

WIESE has also determined the phases, which are compared in Fig. 4 (bottom) with 
those computed from ea by (2.27). The phase curves are in qualitative agreement, but 
there is a systematical phase shift. The reconstructed phase is used for the following 
inversion. The results of it are shown in Fig. 5 (centre), where they are compared with 
the results of FOURNIER [1968], who interpreted the same data by a five-layer model 
postulating a Iow-resistivity layer in the upper mantle as magnetotelluric evidence for 
the Iow-velocity layer of seismic waves. The ea-curves corresponding to the two 
resistivity profiles are given at the bottom of Fig. 5. 

The present example clearly displays the lack of uniqueness of the magnetotelluric 
method, when a poor conductor, which is electrodynamically little effective, is embed­
ded between two good conductors. To fit the data the resistivity of the poor conductor 
has to be beyond a certain limit, but can be almost arbitrary otherwise. In the present 
case the sounding curve essentially fixes only three parameters of the resistivity profile: 
The horizontal part for short periods specifies the surface resistivity, the 45-degree 

Fig. 5: Results of the inversion compared with those of FOURNIER. 
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Fig. 6: The dependence of the resistivity profile on the wave number 'of the external field. 
(The depth of the perfect conductor for % = 0 is slightly less than 300 km.) 

ascent for intermediate periods determines the integrated conductivity T cif the surface 
layers. Here, approximately, 

log ea (T) = log T -log (2 nt/o,2) . (7.1 a) 

The 45-degree descent for long periods stipulates the depth Zm of a perfect conductor: 

(7.1 h) 

The integrated conductivity as determined from the ea-curve is T = 3.5 . 103 0-1, in 
agreement with FOURNIER'S result and close to T = 3.8 . 103 0-1 of the continuous 
model (integrated as far as the resistivity maximum). 

Finally the dependence of the resistivity profile on the wave number 'X (cf. Sec. 3) 
is illustrated in Fig. 6. There is an appreciable influence only, if 1/% is slightly greater 
than Zm """ 300 km, corresponding to a wave length of approximately 2000 km. The 
natural inducing fields probably have a much greater wave length [SCHMUCKER 1970, 
p.92]. 
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8. Conclusion 

The procedure given in this paper is a practicable way to solve the inverse problem 
of 'geomagnetic induction. The results of the previous section, however, cast serious 
doubts on the usefulness of this method. It just results a smooth resistivity curve com­
patible:wlt1Fthe:d~ta, whiCh ~ay be far from other feasible resistivity profile~ postulated 
for physical reasons. Besides, the procedure is rather awkward and needs precise data 
over a broad frequency range. Hence, it appears that the best way to handle geo­
magnetic induction data is stilLt()interpret them by a set of homogeneous ll).yersand 
to introduce, if necessary, further preconceived model assumptions. The merit of the 
proposed method, however, is that it offers some insight into the nature of the inverse 
problem. 

The real problem incihe inversion of geomagnetic induction data is not the method of 
obtaining a feasible resistivity profile, but the method of finding a reliable estimate of 
the accuracy and resolving power of the results when the errors of the data are taken 
into account. A first step in this direction has been done recently by PARKER [1970]. 
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Appendix A 

Proofs of the inequalities given in Sec. 2 

For simplicity IY;;: dz is assumed to be finite. Then according to (2.18) c (w) can be 
represented as 

00 a 
c(w)= L -b n. , an>O, bn"C.O. 

n=1 n+ 1W 

The following results, however, apply to the general case (2.19) as well. 

(AI) 

Assume w ,2 O. Then separation of (AI) into real and imaginary parts leads immedi-
ateiy to(2.30a,b). N:ciwlet ' ' . 

.. _- : ,":", \ . ," . .-

where all Skare non-negative. Then with the operator D, defined by (2.29), 

so=2g+Dg, 
s 2 = ..'--. D:g; . 

SI =h+Dh;' 
s~:b h =.: Dh . 

'" 

(A2) 

(A3) 
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The inequality of Schwarz. yields 

(A 4) 

from which (2.33) is obtained after inserting (A3) and rearranging the terms. Eq. (2.31) 
follows directly from (A3), and (2.32) is a consequence of (2.5) and' _. 

-IcIDlcl= - ~ Dlczl=sosz+2s~+2s~+(sosz-si)= 
=lczl-s~-2si-S1S3 -(S1S3 -s~). 

For inequalities involving derivatives up to the second order let 

Again all tk are non-negative. It is easily verified that 

to=8 g+6Dg+DZg, 

t2 = -2Dg-D2g, 

t4 = -2Dg+D2g, 

The following seven inequalities apply: 

tot2-t~~0, 

tot4 - t1t3 ~t1t3 - t~ ~O, 

tots - tlt4~ t1t4 - t2t3 (~O), 

tIts - tzt4~ t2t4 - t~ ~O, 
t3ts-t~~0. 

tl =3 h+4Dh+Dzh, 

t3= h -Dzh, 

ts =3 h-4Dh+D2h. 

(A5) 

(A6) 

Four of them are an immediate consequence of Schwarz's inequality, the remaining 
follow from the fact that f(k) = t2p-k tk is a convex function (i. e. fft ;::::: 0) implying 
f(k+ 1)-f(k) ;::::: f(k) - f(k-I). Insertion of (AS) into (A6) leads to seven strong but 
involved inequalities. From these the simple, but rather weak constraints (2.34a, b) 
are derived by linear combination: 

4(h2 -ID2clz)=(t1t3 - t~)+2 (tZt4 -t;)+(t3t5 - t~)~O, 

4(g2 -lc+2 Dc+ D 2cl z)=(tot2 -ti)+2(tlt3 - t~)+(t2t4 - t~)~O. 
(A 7) 
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In (A4), (A6), and (A7) (or (2.33) and (2.34)) equality holds over the full frequency 
range if (and only if) the sum (AI) consists of one term only. For real conductors the 
number of terms is always infinite, but in the degenerate case of the thin sheet approxi­
mation of PRICE [1949] one single term occurs for the model consisting of a thin sheet 
of integrated conductivity. at z=o and a perfect conductor at depth Z=Zm yielding 

z 
c(w)= . m 

1 + lW/lO'LZm 

Appendix B 

Conductivity transformations 

The transformations given in Sec. 3 are special cases of a more general class, which 
is stated in this appendix. Let w (z) be a solution of (3.3 a), i. e. 

and let fez) be a solution of 

Then the two types of transformations 

Type I 

w(z)=w(z)/J(z) 

u(z)=/4(z)a(z) 

reduce (BI) to 

w" (z)=iw/lou(z) W (z), 

where the new response function c (w) is given by 

TypeIl 

z 

Z = J/2(t)a(t)dt, 
o 

w' (z)= w (z)/J(z) , 

O'(z) =1-4(z)a- 1(z) 

_ {{J2(0)/C (w) + I(O)!, (O)}-1 
c(W)= {J2(0)/C(W)+ I(O)!, (O)}/(iw/lo) 

for Type I 
for TypeU. 

The invariant of all transformations is the differentialY;;: dz. 

(B 1) 

(B2) 

. (B3) 
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The transformations of Sec. 3, leaving c (w) unchanged, belong to Type I with 

1(0)= 1,/' (0)=0, i. e.f(z) = cosh uz. If the constant u2 in (Bl) and (B2) is replaced by 

any function oCz, the same formulae apply. Hence, after the appropriate change of the 

independent variable, the functionf(e)·usedin (3.5b) for a spherical earth is the solu­

.tion off" (e) = e-:-2n (n+ l)f(e) withf(l) = 1, f' (1)=0. 

The transformations of Type II reverse the conductivity profile replacing well con­

ducting regions by poor conductors, and vice versa. If f' (0)=0 and f(O) = Ijjla (0), 

then kc (k)={kc (k)}-l, k=jliw/1oa (0), and the reflection coefficient r (k), Eq. (4.27), 

only reverses sign. Moreover, the transformations of Type II form the basis for the well­

known duality relations of magnetotelluric sounding curves (e. g. [SRIVASTAVA] 1967). 

Also the relations (2.30a, b), (2.32a, b), (2.33a, b), and (7.1 a, b) are dual. One rela­

tion of each pair can be derived from the other by a transformation of Type H. 
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