
GEOPHYSICS, VOL. 55, NO. 12 (DECEMBER IWO): P. 1613-1624, IO FIGS,, I TABLE 

Occam’s inversion to generate smooth, two-dimensional models 
from magnetotelluric data 

C. deGroot-Hedlin* and S. Constable* 

ABSTRACT 

Magnetotelluric (MT) data are inverted for smooth 
2-D models using an extension of the existing I-D 
algorithm, Occam’s inversion. Since an MT data set 
consists of a finite number of imprecise data, an 
infinity of solutions to the inverse problem exists. 
Fitting field or synthetic electromagnetic data as 
closely as possible results in theoretical models with a 
maximum amount of roughness, or structure. How- 
ever, by relaxing the misfit criterion only a small 
amount, models which are maximally smooth may be 
generated. Smooth models are less likely to result in 
overinterpretation of the data and reflect the true 
resolving power of the MT method. The models are 
composed of a large number of rectangular prisms, 

each having a constant conductivity. A priori informa- 
tion, in the form of boundary locations only or both 
boundary locations and conductivity, may be in- 
cluded, providing a powerful tool for improving the 
resolving power of the data. Joint inversion of TE and 
TM synthetic data generated from known models 
allows comparison of smooth models with the true 
structure. In most cases, smoothed versions of the 
true structure may be recovered in 12-16 iterations. 
However, resistive features with a size comparable to 
depth of burial are poorly resolved. Real MT data 
present problems of non-Gaussian data errors, the 
breakdown of the two-dimensionality assumption and 
the large number of data in broadband soundings: 
nevertheless, real data can be inverted using the 
algorithm. 

INTRODUCTION 

It is well known that magnetotelluric (MT) inversion with 
a finite data set is nonunique and therefore an infinite number 
of conductivity structures exist which fit the data, if any 
exist at all. Despite this, a common approach to fitting a 
two-dimensional (2-D) MT data set is to construct a cross- 
section of the area based on prior geological knowledge and 
then to solve for the conductivities by least-squares inver- 
sion (Jupp and Vozoff, 1977) or by a trial-and-error forward 
modelling method (EMSLAB group, 1988). These solutions 
are highly dependent upon the model parameterization and 
the prior assumptions about the geology. Finding a model 
based on an assumed geological structure which has an 
adequate fit to the data may tempt one to believe that 
features appearing in the model are necessary rather than 
merely consistent with the data and one might argue that in 

using this method little is learned independently from the MT 
data about structure in the Earth. 

A more objective approach is to solve for model structure 
by overparameterizing the model; that is, dividing the model 
into more blocks than there are degrees of freedom in the 
data, and then solving for the conductivities. However, 
while underparameterizing the model may suppress signifi- 
cant structure, overparameterizing the model and conduct- 
ing a least-squares inversion will lead to unstable solutions 
which contain large oscillations. In the extreme case, the 
least-squares best-fitting model possesses structure which is 
rougher than is physically possible (e.g., Parker, 1980). 
Imposing a smoothness constraint on the model may stabi- 
lize the solution (Rodi et al., 1984; Sasaki, 1989), but unless 
the smoothest model is explicitly sought, features may still 
appear which are not required by the data. 

The approach presented in this paper is to find models 
fitting the data which are extreme in the sense of having the 
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minimum possible structure. A tenet of modern science 
known as Occam’s razor is followed: a simple solution is 
preferable to one which is unnecessarily complicated. The 
approach closely follows that of Constable et al. (1987) for 
1-D EM inversion in that the smoothest possible model is 
sought at a given level of misfit for an overparameterized 
model. Although these models are not necessarily closer to 
the truth than any other models which fit the data, they give 
lower bounds on the amount of structure required. It is then 
likely that the true Earth is at least as rough as the models. 
Also, smooth models give an indication of the resolving 
power of the EM method, since the data cannot distinguish 
between these models and those which incorporate sharper 
conductivity contrasts. 

THE MODEL MESHES 

For a 2-D model the earth is parameterized by means of a 
grid of rectangular prisms, each having a uniform conduc- 
tivity. The grid is terminated laterally by uniform layers and 
below by prisms elongated with depth. This grid is referred 
to as the regularization mesh. The individual blocks are 
made smaller than the data resolution length so that the 
locations of the block boundaries do not affect the final 
model. To perform the forward calculations required by the 
inversion scheme, a finite-element code described by Wan- 
namaker et al. (1987) is used. This program uses a rectangu- 
lar array of nodes to perform the finite-element calculations, 
which is called the finite-element mesh (see Figure I). The 
finite-element mesh must contain at least the regularization 
mesh as a subset since there must be a node at every 
conductivity boundary. In normal practice. many nodes 
would be used across a conductivity boundary to ensure that 
the EM fields are computed correctly. However, the regu- 
larization mesh contains a much larger number of conduc- 
tivity regions than is normally used for 2-D models based on 
assumed geologic structures, and so using several nodes for 
each conductivity element would be computationally expen- 
sive. The smooth inversion scheme will prevent large con- 
ductivity contrasts from appearing in the model, and several 

FIG. I.The model is defined by the regularization mesh, 
which has a distinct conductivity value for each block. The 
forward computations require a finite element mesh which 
must at least include the boundaries defined by the regular- 
ization mesh, but for greater accuracy may include more 
nodes than this, especially near the surface and the edge and 
lower boundaries, 

inversions have been conducted using no more nodes than 
defined by the regularization mesh. However, it is usually 
desirable to insert more nodes within the regularization mesh 
to maintain accuracy in the forward code, especially at the 
edges of the grid. 

To maintain accuracy of the forward code, the spacing 
between nodes is taken to be approximately one-third of a 
skin depth. where the skin depth (6) in a region of resistivity 
p (CL . m) is given in meters by 

6 = 5QOflf 

and J’is the frequency (Hz). The EM fields in a half-space 
decrease exponentially with depth, so the usual practice in 
MT surveys is to logarithmically space the frequencies at 
which the responses are calculated. Various depth scalings 
for I-D smooth inversion were investigated by Smith and 
Booker (198X). and it is not surprising that a logarithmic 
depth scaling was found to fit the data most uniformly. 
Accordingly, a logarithmic depth scale is used for the node 
spacings and block sizes. The ideal depth scale is, of course, 
structure dependent and cannot be determined a priori for 
any real data. 

Both the regularization and finite-element meshes remain 
fixed between iterations in this inversion method. To deter- 
mine the sizes of the resistivity blocks, an estimate of the 
resistivity is made based on a I-D inversion of the TE mode 
and inspection of the pu curves. Since the inversion mini- 
mizes the model structure, the initial determination of the 
block sizes is not a critical step. The data generally require 
little conductivity contrast between the blocks, so it is not 
essential to have a fine grid in order to represent the models, 
and an excessively tine grid is, of course, no problem. 

THE INVERSION METHOD 

To suppress model structure not required by the data, the 
model roughness must be minimized. For a 2-D structure 
with x in the direction of the strike axis a measure of the 
model roughness may be given by 

where m is the vector of model parameters, $r is a rough- 
ening matrix which differences the model parameters of 
laterally adjacent prisms, and 9; is a roughening matrix 
which differences the model parameters of vertically adja- 
cent prisms. This is the expression for a first derivative 
roughness penalty. The penalty for the second derivative 
roughness is given by 

R, = llgtrnil’ + Ilalrni12. (2) 

Since the model grid is terminated by uniform layers at the 
sides and uniform blocks below, first derivative smoothing 
best matches the boundary conditions imposed by the for- 
ward code. Therefore only the R, roughness penalty will be 
discussed. The vertical scale of the prisms is exponentially 
increased as a function of depth in order to coincide with the 
loss of resolving power; this is equivalent to increasing the 
penalty for roughness as a function of depth. The horizontal 
block boundaries and node spacings in the forward code 
extend to depth and are constrained by the requirement of 
having a fine mesh near the surface. Since the block widths 

Downloaded 15 May 2010 to 95.176.68.210. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/

1614 deGroot-Hedlin and Constable 

minimum possible structure. A tenet of modern science 
known as Occam's razor is followed: a simple solution is 
preferable to one which is unnecessarily complicated. The 
approach closely follows that of Constable et al. (1987) for 
J-D EM inversion in that the smoothest possible model is 
sought at a given level of misfit for an overparameterized 
model. Although these models are not necessarily closer to 
the truth than any other models which fit the data, they give 
lower bounds on the amount of structure required. It is then 
likely that the true Earth is at least as rough as the models. 
Also, smooth models give an indication of the resolving 
power of the EM method, since the data cannot distinguish 
between these models and those which incorporate sharper 
conductivity contrasts. 

THE MODEL MESHES 

For a 2-D model the earth is parameterized by means of a 
grid of rectangular prisms, each having a uniform conduc
tivity. The grid is terminated laterally by uniform layers and 
below by prisms elongated with depth. This grid is referred 
to as the regularization mesh. The individual blocks are 
made smaller than the data resolution length so that the 
locations of the block boundaries do not affect the final 
model. To perform the forward calculations required by the 
inversion scheme, a finite-element code described by Wan
namaker et al. (1987) is used. This program uses a rectangu
lar array of nodes to perform the finite-element calculations, 
which is called the finite-element mesh (see Figure I). The 
finite-element mesh must contain at least the regularization 
mesh as a subset since there must be a node at every 
conductivity boundary. In normal practice. many nodes 
would be used across a conductivity boundary to ensure that 
the EM fields are computed correctly. However, the regu
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FIG. I. The model is defined by the regularization mesh, 
which has a distinct conductivity value for each block. The 
forward computations require a finite element mesh which 
must at least include the boundaries defined by the regular
ization mesh, but for greater accuracy may include more 
nodes than this, especially near the surface and the edge and 
lower boundaries. 

inversions have been conducted using no more nodes than 
defined by the regularization mesh. However, it is usually 
desirable to insert more nodes within the regularization mesh 
to maintain accuracy in the forward code, especially at the 
edges of the grid. 

To maintain accuracy of the forward code, the spacing 
between nodes is taken to be approximately one-third of a 
skin depth. where the skin depth (8) in a region of resistivity 
p (n . m) is given in meters by 

8 = 500ylPif 

and f is the frequency (Hz). The EM fields in a half-space 
decrease exponentially with depth, so the usual practice in 
MT surveys is to logarithmically space the frequencies at 
which the responses are calculated. Various depth scalings 
for J-D smooth inversion were investigated by Smith and 
Booker (1988), and it is not surprising that a logarithmic 
depth scaling was found to fit the data most uniformly. 
Accordingly, a logarithmic depth scale is used for the node 
spacings and block sizes. The ideal depth scale is, of course, 
structure dependent and cannot be determined a priori for 
any real data. 

Both the regularization and finite-element meshes remain 
fixed between iterations in this inversion method. To deter
mine the sizes of the resistivity blocks, an estimate of the 
resistivity is made based on a l-D inversion of the TE mode 
and inspection of the p" curves. Since the inversion mini
mizes the model structure, the initial determination of the 
block sizes is not a critical step. The data generally require 
little conductivity contrast between the blocks, so it is not 
essential to have a fine grid in order to represent the models, 
and an excessively fine grid is, of course, no problem. 

THE INVERSION METHOD 

To suppress model structure not required by the data, the 
model roughness must be minimized. For a 2-D structure 
with x in the direction of the strike axis a measure of the 
model roughness may be given by 

(I) 

where m is the vector of model parameters, ily is a rough
ening matrix which differences the model parameters of 
laterally adjacent prisms, and ilz is a roughening matrix 
which differences the model parameters of vertically adja
cent prisms. This is the expression for a first derivative 
roughness penalty. The penalty for the second derivative 
roughness is given by 

(2) 

Since the model grid is terminated by uniform layers at the 
sides and uniform blocks below, first derivative smoothing 
best matches the boundary conditions imposed by the for
ward code. Therefore only the R I roughness penalty will be 
discussed. The vertical scale of the prisms is exponentially 
increased as a function of depth in order to coincide with the 
loss of resolving power; this is equivalent to increasing the 
penalty for roughness as a function of depth. The horizontal 
block boundaries and node spacings in the forward code 
extend to depth and are constrained by the requirement of 
having a fine mesh near the surface. Since the block widths 
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remain constant, the horizontal damping factors in the 
roughening matrix are adjusted to ensure that resolved 
features are not elongated in the vertical direction. That is, 
as the vertical scale of the prisms increases, a greater penalty 
must be given to differences in model parameters between 
laterally adjacent blocks. 

Suppose the grid consists of a total of N elements, with p 
elements in the horizontal direction, each having width h, 
and t elements in the vertical direction having widths 71,, i = 

1, 2, . . . , P. Numbering the elements from left to right 
starting at the top left element, the N x N vertical roughen- 
ing matrix 3, is given by 

I 

0 - 

0 . 

0 . 

0 I 0 

. . 0 I 

I 

!, 

where I, is a p x N matrix of zeroes. There are p - I zeroes 
between the entries in the rows of 3,. Thus 9; acts to 
difference the model parameters between vertically adjacent 
blocks. The N x N horizontal roughening matrix 3,. is given 

by 

[ 

a?., 0 

a,., 
* . . 

0 a,., 
where a,.; is the p x p horizontal roughening matrix for layer 
i, given by 

_ 
7,; Ii1 7,; Ii1 

_ 
71; lh l,i III 0 

.[ 1 ??.i = 
*.. (5) 

0 - lli ih 7li lh 

. . . 0 

Thus 3,; differences the model parameters between laterally 
adjacent blocks in layer i, basing the penalty for differences 
on the depth-to-width ratio of the blocks in that layer. 

If the data are represented by dj, j = I, 2, . . . , M, and one 
assumes that each of the data sets has known variances oj, 
a model’s ability to fit the data can be quantified using the 
two-norm measure, 

where F[m] are nonlinear forward functionals acting upon 
the discretized model m to produce a model response and W 
is the M x A4 diagonal weighting matrix 

W = diag {lint, l/u2. e.1 I/u,~}. (7) 

The smoothest model is sought subject to the criterion that 
it fit the data to a statistically reasonable tolerance. If it is 
assumed that the noise is uncorrelated and due to a zero- 
mean Gaussian process, then X’ is chi-squared distributed 
with an expected value X$ equal to M, the number of 
independent data. That is, a model with an rms misfit of I is 
sought. The expected value is the best guess at the X’ of the 
real Earth response. To be more conservative, one could 
choose to fit to 95 percent, or even 99 percent confidence 
limits, but since a larger number of data are used, there 
would be little difference in the resulting model. For exam- 
ple, for the 21@300 data items used in the examples, fitting 
to 95 percent confidence limits would require an rms error of 
I. I5 and fitting to 99 percent would require an rms error of 
I .2. The models generated for 95 and 99 percent confidence 
limits would not be substantially different, and the use of the 
expected value does not require significantly more structure 
than the use of more conservative statistics. Furthermore, it 
is unusual to have field data with e~~o~.s (not data) known 
accurately to within 15%. and so these arguments can only 
provide guidelines. 

To solve the minimization problem, a Lagrange multiplier 
formulation is used and a stationary point is found for the 
unconstrained functional 

U[m] = 119, ml/’ + llaZrnll’ + tC’{IIWd - \?iF(m)ll’ ~ A’:}, 

(8) 

where km’ is the Lagrange multiplier. This formulation 
resembles the regularization approach developed by 
Tihonov (1963a. b). It is common practice in regularization 
problems (e.g., Sasaki, 1989) to set the value of the Lagrange 
multiplier in advance and then solve for the model that best 
fits the data. However. this requires a priori knowledge of 
the model roughness and ignores the possibility of overfitting 
the data. Therefore, it is better to solve for a model that fits 
the data to within an acceptable tolerance. It is generally 
observed that as the tolerance is reduced, the model gets 
rougher. 

The functional U is minimized at points where the gradient 
with respect to the model is zero. Since the data functionals 
are nonlinear, the functional U is linearized and solved 
iteratively. For a starting model ml, the first two terms of a 
Taylor expansion give the following approximation 

F[mt + Al = FIrnIl+ JIA, (9) 

where li is the Jacobean matrix, or an M x N matrix of 
partial derivatives of F[m,] with respect to the model 
parameters, and 

A = mz -ml (IO) 

is a small perturbation about a starting model. If these 
expressions are substituted back into equation (9), then the 
expression is obtained: 
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where J..L - 1 is the Lagrange multiplier. This formulation 
resembles the regularization approach developed by 
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the data to within an acceptable tolerance. It is generally 
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The functional U is minimized at points where the gradient 
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expression is obtained: 

U= IIil,m211 2 + IIilzm2f + J..L -1{IIWd l - WJlm2f -xi:} 
(11 ) 

where 



1616 deGroot-Hedlin and Constable 

d, =d-F[ml]+Jlml. (12) 

Note that U is now linear about m2. Differentiating with 
respect to mz to find the model which minimizes U gives an 
iterative sequence for finding models; 

A univariate search is conducted along p at each iteration to 
find a model that minimizes the misfit to the data until the 
desired tolerance is obtained. The use of 1-D optimization at 
each iteration to choose the Lagrange multiplier is described 
in Constable et al. (1987), but it is instructive to extend their 
description and present the diagrams shown in Figure 2. An 
MT data set which may be.fit conveniently with a I-D model 
of only two layers is used. Fixing the thickness of the first 
layer and parameterizing in terms of the logs of the resistiv- 
ities presents a problem that may be represented by contour 
diagrams of misfit versus the two parameters. 

The inversion was started using a half-space of 1000 n m 
and proceeded for four iterations before it converged. The 
upper frame of Figure 2 shows the whole arena for the 
inversion, while the lower frame is an enlargement of the 
region log (p) t.? = [-0.5, 1.51. The diagonal line on both 
frames is the set of maximally smooth models (i.e., pI = p2) 
that includes the starting model (the triangle in the upper 
frame). The model chosen at the first iteration is shown in 
both frames as a circle. The solid line drawn to contain this 
point defines the set of all possible models attainable at the 
first iteration as the Lagrange multiplier sweeps from zero to 
infinity. Infinite Lagrange multipliers place all the weight on 
the smoothness condition, ignoring the fit to the data, and so 
the resulting perfectly smooth model lies on the diagonal, at 
about (0.6, 0.6) in this case. The other endpoint of the line 
corresponds to a Lagrange multiplier of zero, where all effort 
is made to fit the data regardless of model structure; this is 
the least-squares, or Gauss, step. 

The starting model is well outside the region where 
linearization is a reasonable approximation (the roughly 
parabolic bowl in the lower frame), and the Gauss step is 
further from the solution than the starting point. The objec- 
tive misfit was chosen to be 0.7, which cannot be achieved 
on the first iteration, so the algorithm chooses the model 
with the minimum misfit of I .6. From this model, the second 
iteration can obtain the desired misfit (the model shown by 
the diamond). When the set of possible models intercepts the 
contour of desired misfit at two points, the intercept with the 
larger Lagrange multiplier corresponds to the smoother 
model. From now on the algorithm stays on the contour of 
desired misfit and moves to the point closest to the set of 
maximally smooth models. This is accomplished by iteration 
3 (the asterisk), and verified by iteration 4, which does not 
change the model any further. Note that models 3 and 4 are 
close enough to the actual least-squares best fit that now the 
Gauss step does indeed yield its least-squares model. 

Nearly all I-D and many 2-D inversions are well behaved, 
converging with 8 to 12 forward calculations per iteration for 
the univariate optimization, with no modification to the steps 
required. However, occasionally the set of possible models 
does not include one with a lower misfit than the last model, 
or. once the desired misfit is acheived, one smoother than 

the last. This is due to a breakdown of the local linearity 
assumption or errors in the calculation of response functions 
and derivatives. The usual approach to safeguarding itera- 
tive least-squares solutions is to cut back the step size along 
the direction of the original step, by successively trying 
models with a step length of, say. l/2, l/4, l/8 . . . of the 
original. Rather than using this approach, in keeping with the 

-2 0 2 4 6 8 10 12 14 

‘eq,o Pl 

FE. 2. Contours of the rms misfit in the log,Opt-log,Op~ 
plane. The lower frame is an enlargement of the area 
containing the minimum in the upper frame. The diagonal 
line on both frames is the set of maximally smooth models 
(i.e., pt = p?). The starting model is shown by the triangle, 
the result of the first iteration by the circle, the second by the 
diamond, and the third and fourth both plot where the 
asterisk lies. The solid lines containing the models at each 
iteration show the sets of models attainable at each iteration 
as the Lagrange multiplier sweeps from zero to infinity. 
Infinite Lagrange multipliers correspond to Draconian 
smoothing and lie on the diagonal lines. Zero Lagrange 
multipliers correspond to the least-squares or Gauss steps, at 
the end points away from the diagonal. 
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(12) 

Note that U is now linear about ml' Differentiating with 
respect to m2 to find the model which minimizes U gives an 
iterative sequence for finding models; 

mi+ I = [/LW;'i!y + il;i!;) + ('Y~i)T'Y~irl('Y~i)T'Ydl' 
. (13) 

A univariate search is conducted along /L at each iteration to 
find a model that minimizes the misfit to the data until the 
desired tolerance is obtained. The use of I-D optimization at 
each iteration to choose the Lagrange multiplier is described 
in Constable et al. (1987), but it is instructive to extend their 
description and present the diagrams shown in Figure 2. An 
MT data set which may be.fit conveniently with a I-D model 
of only two layers is used. Fixing the thickness of the first 
layer and parameterizing in terms of the logs of the resistiv
ities presents a problem that may be represented by contour 
diagrams of misfit versus the two parameters. 

The inversion was started using a half-space of 1000 !1 . m 
and proceeded for four iterations before it converged. The 
upper frame of Figure 2 shows the whole arena for the 
inversion, while the lower frame is an enlargement of the 
region log (P)1.2 = [-0.5, 1.5]. The diagonal line on both 
frames is the set of maximally smooth models (i.e., PI = Pl) 
that includes the starting model (the triangle in the upper 
frame). The model chosen at the first iteration is shown in 
both frames as a circle. The solid line drawn to contain this 
point defines the set of all possible models attainable at the 
first iteration as the Lagrange mUltiplier sweeps from zero to 
infinity. Infinite Lagrange multipliers place all the weight on 
the smoothness condition, ignoring the fit to the data, and so 
the resulting perfectly smooth model lies on the diagonal, at 
about (0.6, 0.6) in this case. The other endpoint of the line 
corresponds to a Lagrange multiplier of zero, where all effort 
is made to fit the data regardless of model structure; this is 
the least-squares, or Gauss, step. 

The starting model is well outside the region where 
linearization is a reasonable approximation (the roughly 
parabolic bowl in the lower frame), and the Gauss step is 
further from the solution than the starting point. The objec
tive misfit was chosen to be 0.7, which cannot be achieved 
on the first iteration, so the algorithm chooses the model 
with the minimum misfit of 1.6. From this model, the second 
iteration can obtain the desired misfit (the model shown by 
the diamond). When the set of possible models intercepts the 
contour of desired misfit at two points. the intercept with the 
larger Lagrange multiplier corresponds to the smoother 
model. From now on the algorithm stays on the contour of 
desired misfit and moves to the point closest to the set of 
maximally smooth models. This is accomplished by iteration 
3 (the asterisk), and verified by iteration 4, which does not 
change the model any further. Note that models 3 and 4 are 
close enough to the actual least-squares best fit that now the 
Gauss step does indeed yield its least-squares model. 

Nearly all I-D and many 2-D inversions are well behaved, 
converging with 8 to 12 forward calculations per iteration for 
the univariate optimization. with no modification to the steps 
required. However, occasionally the set of possible models 
does not include one with a lower misfit than the last model. 
or. once the desired misfit is acheived, one smoother than 

the last. This is due to a breakdown of the local linearity 
assumption or errors in the calculation of response functions 
and derivatives. The usual approach to safeguarding itera
tive least-squares solutions is to cut back the step size along 
the direction of the original step, by successively trying 
models with a step length of, say, 112, 114. 1/8 ... of the 
original. Rather than using this approach. in keeping with the 
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FIG. 2. Contours of the rms misfit in the IOgIOPI-logIOP2 
plane. The lower frame is an enlargement of the area 
containing the minimum in the upper frame. The diagonal 
line on both frames is the set of maximally smooth models 
(i.e., PI = Pl)' The starting model is shown by the triangle. 
the result of the first iteration by the circle, the second by the 
diamond, and the third and fourth both plot where the 
asterisk lies. The solid lines containing the models at each 
iteration show the sets of models attainable at each iteration 
as the Lagrange mUltiplier sweeps from zero to infinity. 
Infinite Lagrange multipliers correspond to Draconian 
smoothing and lie on the diagonal lines. Zero Lagrange 
multipliers correspond to the least-squares or Gauss steps, at 
the end points away from the diagonal. 
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algorithm for the original step, a new set of models is defined 
as a function of the Lagrange multiplier, each a distance of 
l/2 (or l/4, l/8, etc.) between the present model and the set 
of models which has failed to provide an adequate step. That 
is, if the current model is rn; and the models which would 
normally be defined by the Lagrange multiplier are F(~,L), 
then the new set of models is 

G(F) = (1 - a)mi + OF(P), 

where u is one for a normal step and is successively halved 
until an adequate step is found. 

A flow chart indicating the steps used in the smooth 
inversion is shown in Figure 3. The method is completely 
general and may be applied to any nonlinear inverse prob- 
lem. An accurate method of computing the forward problem 
and Jacobean matrix is essential to the implementation of the 
inversion scheme. The finite-element code for 2-D MT 
modeling, described in Wannamaker et al. (1987), is used 

Generate or input a starting 
model (usually a l&space). 

I 
Construct a roughenI% matlx. a, for the 

problem: 1 D or ZD, 1 st or 2nd dernatlve, wllh 

qr without allowed ,umps In 0; compute aTa 

Compute F(m),J. ~2 for the current model 

computing the corraspondlng model. 

the larger mtercept 01 

x’(h) Wh the required x2 

increase even though last 
lteratlon achwed 

Compute stepsne and save model 

b) reqwed mlsflt obtained and 
i) 

0 stop 

FIG. 3. A simplified flow chart of the inversion algorithm. 

here. The derivatives, found using a method described in 
Oristaglio and Worthington (1980), are also computed in this 
code. 

EXAMPLES FOR SYNTHETIC DATA 

In the 2-D problem the electric and magnetic fields decou- 
ple into two modes: (1) the TE mode consisting of E,, the 
component of the field parallel to the strike direction x, as 
well as BY and Bz, the perpendicular components of the 
magnetic field; and (2) the TM mode consisting of B,, Ey , 
and E,. Based on forward modeling results, Wannamaker et 
al. (1984) argued that the response for a centrally located 
profile across an elongate 3-D body agrees with the TM 
response for a 2-D body with identical cross-section. They 
concluded that the 2-D interpretation of TE data anywhere in 
a 3-D setting or TM data near the edge of a 3-D anomaly 
would be erroneous because of the existence of current 
gathering. However, in the synthetic examples considered, 
the approximation to two dimensions is exact and the TE 
and TM modes are simultaneously inverted. 

The smooth inversion method is first applied to a conduc- 
tivity structure that consists of resistive and conductive 
prisms (2000 0 m and 5 0 m, respectively) embedded in 
a 100 R . m half-space. Data for both the TE and TM modes 
were generated at seven stations spaced at 10 km intervals, 
at eight periods ranging from 2.5 to 320 s. Figure 4a shows 
the model used to calculate the synthetic data. To simulate 
good quality, noisy data, two percent Gaussian noise was 
added to the data prior to inversion. The model is discretized 
into 392 resistivity blocks, with 14 rows of 28 blocks. A 
30 s1 . m half-space was used as the starting model for the 
inversion. 

Convergence was attained after 14 iterations, with one 
more iteration to verify convergence, yielding the model 
shown in Figure 4b. The parameters for the inversion in 
Figure 4b are given in Table 1 and the weighted residuals for 
every third station are shown in Figure 5. A resistivity 
contrast of a factor of 54 between the background and the 
conductive block is reached in the model, an overshoot of 
the original contrast of 20. However, a resistivity contrast of 
only 2.2 between the resistive block and the background was 
needed in order to fit the data. From the weighted residuals 
(Figure 5), it can be seen that the stations above the resistive 
structure are not underfit, so the lack of resolution for the 
resistive block is not an artifact of the inversion method. 

Some authors (Oldenberg, 1988; Smith and Booker, 1990) 
have suggested that, due to charge buildup on the sides of 
structures with conductivity contrasts, TM data are more 
sensitive to resistive structure than are TE data, suggesting 
that a TM-only inversion would yield better lateral resolu- 
tion than a mixed inversion. To test this, separate TE and 
TM inversions for the model shown in Figure 4a indicate 
that, while the resistive structure is imaged better for TM 
only than for TE only, the maximum resistivity contrast for 
the resistive block in the TM-only inversion is 1.7, and so the 
lateral resolution is in fact worse for TM-only than for the 
joint TE-TM inversion. Since the TM responses are spatially 
narrower than the TE responses, the number of stations was 
increased to one station every 5 km and data with 2 percent 
Gaussian noise were generated at the same frequencies as 
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algorithm for the original step, a new set of models is defined 
as a function of the Lagrange multiplier, each a distance of 
1/2 (or 1/4, 1/8, etc.) between the present model and the set 
of models which has failed to provide an adequate step. That 
is, if the current model is m; and the models which would 
normally be defined by the Lagrange mUltiplier are F(f1), 
then the new set of models is 

where a is one for a normal step and is successively halved 
until an adequate step is found. 

A flow chart indicating the steps used in the smooth 
inversion is shown in Figure 3. The method is completely 
general and may be applied to any nonlinear inverse prob
lem. An accurate method of computing the forward problem 
and Jacobean matrix is essential to the implementation of the 
inversion scheme. The finite-element code for 2-D MT 
modeling, described in Wannamaker et at. (1987), is used 
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from previous 
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FIG. 3. A simplified flow chart of the inversion algorithm. 

here. The derivatives, found using a method described in 
Oristaglio and Worthington (1980), are also computed in this 
code. 

EXAMPLES FOR SYNTHETIC DATA 

In the 2-D problem the electric and magnetic fields decou
ple into two modes: (1) the TE mode consisting of E t , the 
component of the field parallel to the strike direction x, as 
well as Bv and B z, the perpendicular components of the 
magnetic field; and (2) the TM mode consisting of Bp Ey , 

and Ez . Based on forward modeling results, Wannamaker et 
al. (1984) argued that the response for a centrally located 
profile across an elongate 3-D body agrees with the TM 
response for a 2-D body with identical cross-section. They 
concluded that the 2-D interpretation ofTE data anywhere in 
a 3-D setting or TM data near the edge of a 3-D anomaly 
would be erroneous because of the existence of current 
gathering. However, in the synthetic examples considered, 
the approximation to two dimensions is exact and the TE 
and TM modes are simultaneously inverted. 

The smooth inversion method is first applied to a conduc
tivity structure that consists of resistive and conductive 
prisms (2000 n . m and 5 11 . m, respectively) embedded in 
a 100 n . m half-space. Data for both the TE and TM modes 
were generated at seven stations spaced at to km intervals, 
at eight periods ranging from 2.5 to 320 s. Figure 4a shows 
the model used to calculate the synthetic data. To simulate 
good quality, noisy data, two percent Gaussian noise was 
added to the data prior to inversion. The model is discretized 
into 392 resistivity blocks, with 14 rows of 28 blocks. A 
30 n . m half-space was used as the starting model for the 
inversion. 

Convergence was attained after 14 iterations, with one 
more iteration to verify convergence, yielding the model 
shown in Figure 4b. The parameters for the inversion in 
Figure 4b are given in Table 1 and the weighted residuals for 
every third station are shown in Figure 5. A resistivity 
contrast of a factor of 54 between the background and the 
conductive block is reached in the model, an overshoot of 
the original contrast of 20. However, a resistivity contrast of 
only 2.2 between the resistive block and the background was 
needed in order to fit the data. From the weighted residuals 
(Figure 5), it can be seen that the stations above the resistive 
structure are not underfit, so the lack of resolution for the 
resistive block is not an artifact of the inversion method. 

Some authors (Oldenberg, 1988; Smith and Booker, 1990) 
have suggested that, due to charge buildup on the sides of 
structures with conductivity contrasts, TM data are more 
sensitive to resistive structure than are TE data, suggesting 
that a TM-only inversion would yield better lateral resolu
tion than a mixed inversion. To test this, separate TE and 
TM inversions for the model shown in Figure 4a indicate 
that, while the resistive structure is imaged better for TM 
only than for TE only, the maximum resistivity contrast for 
the resistive block in the TM-only inversion is 1.7, and so the 
lateral resolution is in fact worse for TM-only than for the 
joint TE-TM inversion. Since the TM responses are spatially 
narrower than the TE responses, the number of stations was 
increased to one station every 5 km and data with 2 percent 
Gaussian noise were generated at the same frequencies as 



1618 deGroot-Hedlin and Constable 

before. Subsequent TM-only inversion showed only a slight 
improvement over the previous TM inversion for stations 
every 10 km, with the resistivity contrast for the resistive 
block increased to 1.8. It may be concluded that resistive 
structures whose size is comparable to the depth of burial 
can be only poorly resolved with MT data. 

Smith and Booker (1988) discuss the use of Spearman’s 
statistic to rule out systematic bias in fit as a function of 
frequency. Trends in the data residuals might indicate that 
(1) the assumption about the dimensionality of the region is 
incorrect, (2) the data errors are incorrectly estimated, or (3) 
there is a systematic bias in the inversion method. For 
synthetic data, the first two possibilities obviously can be 
ruled out. Smith and Booker call a fit in which the residuals 
are evenly distributed over all frequencies “white” and 
discuss how overfitting any particular frequency band im- 
plies that noise is being fit while underfitting data in a 
frequency band leads to the loss of significant structure. The 
plots in Figure 5 show that the weighted residuals in the 
model responses are essentially uncorrelated with frequency 
and TE and TM modes are fit equally well. Thus it appears 
that using exponential depth scaling and horizontal weight- 

FIG. 5. Normalized residuals for the model shown in Figure 
4 for the middle and end stations. The circles and squares 
indicate the TE and TM residuals, respectively, as a function 
of period. 

FIG. 4. (a) The model used to generate the data for the inversion. It consists of a high-conductivity block (5 R * m) 
and a low-conductivity block (2000 R - m in a 100 R. m) half-space. Two percent Gaussian noise was added to the 
data prior to inversion. (b) The results of the inversion after 14 iterations. 
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before. Subsequent TM-only inversion showed only a slight 
improvement over the previous TM inversion for stations 
every 10 km, with the resistivity contrast for the resistive 
block increased to 1.8. It may be concluded that resistive 
structures whose size is comparable to the depth of burial 
can be only poorly resolved with MT data. 

Smith and Booker (1988) discuss the use of Spearman's 
statistic to rule out systematic bias in fit as a function of 
frequency. Trends in the data residuals might indicate that 
(I) the assumption about the dimensionality of the region is 
incorrect, (2) the data errors are incorrectly estimated, or (3) 
there is a systematic bias in the inversion method. For 
synthetic data, the first two possibilities obviously can be 
ruled out. Smith and Booker call a fit in which the residuals 
are evenly distributed over all frequencies "white" and 
discuss how overfitting any particular frequency band im
plies that noise is being fit while underfitting data in a 
frequency band leads to the loss of significant structure. The 
plots in Figure 5 show that the weighted residuals in the 
model responses are essentially uncorrelated with frequency 
and TE and TM modes are fit equally well. Thus it appears 
that using exponential depth scaling and horizontal weight-
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4 for the middle and end stations. The circles and squares 
indicate the TE and TM residuals, respectively, as a function 
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FIG. 4. (a) The model used to generate the data for the inversion. It consists of a high-conductivity block (5 n . m) 
and a low-conductivity block (2000 n . m in a 100 n . m) half-space. Two percent Gaussian noise was added to the 
data prior to inversion. (b) The results of the inversion after 14 iterations. 
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ing factors effectively eliminates preferentially fitting subsets 
of the data. 

The CPU time used for for the model in Figure 4a was 
approximately 11 hours per iteration on a Mac II computer 
and required 6.4Mb of memory. On a CRAY X-MP the time
per iteration is about 2 minutes. Approximately 80 percent of 
the CPU time is spent on partial derivatives, the forward 
calculations use about I5 percent of the time with the 
remaining 5 percent for the inversion code. As shown in 
Table 1, about seven forward calculations are required for 
each iteration. Since each forward calculation is 30 times 
faster than doing the partial derivatives for the whole model, 
completing a number of forward calculations to find the 
minimum in U at each iteration is an efficient means of 
convergence. As the model size grows, the matrix inversion 
will begin to dominate the CPU time This would be espe- 
cially true if the size of the inversion were increased by 
adding stations (rather than frequencies), which would add 

Table 1. Parameters for the inversion shown in Figure 4. 
Asterisks indicate that the step size was reduced to ensure 
convergence. The number of forward calculations performed 
at each iteration is given by N. 

Iteration rms 

23.1 
17.1 
12.0 
6.56 
4.02 
2.68 
2.23 
1.33 
1.28 
1.058 
1.055 
1.01 
1.00 
1.00 
1.00 
1.00 

R Step size 

7E 
1 x ‘10-s 

503 
644 

.52 99.1 
2.85 22.7 
4.75 3.39 
5.48 2.45 
7.41 3.02 
6.67 0.59 
7.58 0.52 
7.48 0.20 
7.96 0.24 
7.43 0.06 
7.10 0.11 
7.05 .016 
7.03 9.8 x lO-4 

loglo N 

1.16 7 

8.81 3.21 t: 

2.21 2.21 2 
2.21 
1.59 4 
1.75 
1.35 : 
1.35 
1.15 Z 
1.50 14 
1.53 7 
1.57 
1.58 :: 

very little to the forward model calculations but burden the 
inversion. Cholesky decomposition is used, which is not the 
fastest method of inverting a positive definite symmetric 
matrix but is very stable. 

It is possible that a number of minima in the functional U 
exist, leading to cases in which the final model depends upon 
the starting model. This cannot be ruled out on the basis of 
trial and error using different starting models because there 
always may be some other, untried, starting model which 
could lead to a different solution. If convergence to the same 
model is obtained starting from a very rough model and 
starting from a homogeneous half-space, one would have 
more confidence that the globally smoothest model had been 
found. According to the objectives of this inversion scheme, 
any unnecessary structure should be smoothed out of any 
model fitting the data. To test the approach, the true model 
was used as a starting point and after six iterations the same 
model as before was attained. 

A priori information about the location of discontinuities is 
a powerful tool in resolving structure. If it is known where 
sharp discontinuities in resistivity exist (e.g., the base of a 
sedimentary basin as determined by seismic information), 
then the penalty for roughness at those boundaries may be 
removed by zeroing the entries in the roughening matrices 
which correspond to the sharp boundaries. It should be 
stressed that structure may still appear at locations other 
than the known boundaries. As an example of this tech- 
nique, the penalty for structure at the outside boundaries of 
each zone was removed in the model containing high- and 
low-resistivity zones. The model after three iterations in an 
inversion of the same data as before is shown in Figure 6. 
The initial model is very nearly recovered and the resistive 
zone is now well-defined. Because insertion of a sharp 
boundary changes the resolving power so dramatically, 
caution must be exercised when using this technique. Incor- 
rect placement of boundaries may produce misleading re- 
sults. 

The next example shows the result of inverting data 
generated by a conductive sill (5 R . m) terminating short of 
an equally conducting body and embedded in a more resis- 
tive (100 n . m) host as shown in Figure 7a. A geologic 

FIG. 6. The maximally smooth model produced when the penalty for structure at known discontinuities is removed. 
The model discretization and data used for the inversion were the same as for the inversion in Figure 4. 
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ing factors effectively eliminates preferentially fitting subsets 
of the data. 

The CPU time used for for the model in Figure 4a was 
approximately 11 hours per iteration on a Mac II computer 
and required 6.4Mb of memory. On a CRA Y X-MP the time 
per iteration is about 2 minutes. Approximately 80 percent of 
the CPU time is spent on partial derivatives, the forward 
calculations use about 15 percent of the time, with the 
remaining 5 percent for the inversion code. As shown in 
Table 1, about seven forward calculations are required for 
each iteration. Since each forward calculation is 30 times 
faster than doing the partial derivatives for the whole model, 
completing a number of forward calculations to find the 
minimum in U at each iteration is an efficient means of 
convergence. As the model size grows, the matrix inversion 
will begin to dominate the CPU time. This would be espe
cially true if the size of the inversion were increased by 
adding stations (rather than frequencies), which would add 

Table 1. Parameters for the inversion shown in Figure 4. 
Asterisks indicate that the step size was reduced to ensure 
convergence. The number of forward calculations performed 
at each iteration is given by N. 

Iteration rms R Step size 10glO(f,L) N 

0 23.1 0.0 
1 17.1 75.7 503 1.16 7 
2 12.0 1 x 10-8 644 8.81 10 
3 6.56 .52 99.1 3.21 10 
4 4.02 2.85 22.7 2.21 6 
5 2.68 4.75 3.39 2.21 6 
6 2.23 5.48 2.45 2.21 6 
7 1.33 7.41 3.02 1.59 7 
8 1.28 6.67 0.59 1.75 7 
9 1.058 7.58 0.52 1.35 6 

10 1.055 7.48 0.20 1.35 7 
11 1.01 7.96 0.24 1.15 6 
12* 1.00 7.43 0.06 1.50 14 
13 1.00 7.10 0.11 1.53 7 
14 1.00 7.05 .016 1.57 7 
15 1.00 7.03 9.8 x 10-4 1.58 7 

km ·30 ·:10 -/0 o 

very little to the forward model calculations but burden the 
inversion. Cholesky decomposition is used, which is not the 
fastest method of inverting a positive definite symmetric 
matrix but is very stable. 

It is possible that a number of minima in the functional U 
exist, leading to cases in which the final model depends upon 
the starting model. This cannot be ruled out on the basis of 
trial and error using different starting models because there 
always may be some other, untried, starting model which 
could lead to a different solution. If convergence to the same 
model is obtained starting from a very rough model and 
starting from a homogeneous half-space, one would have 
more confidence that the globally smoothest model had been 
found. According to the objectives of this inversion scheme, 
any unnecessary structure should be smoothed out of any 
model fitting the data. To test the approach, the true model 
was used as a starting point and after six iterations the same 
model as before was attained. 

A priori information about the location of discontinuities is 
a powerful tool in resolving structure. If it is known where 
sharp discontinuities in resistivity exist (e.g., the base of a 
sedimentary basin as determined by seismic information), 
then the penalty for roughness at those boundaries may be 
removed by zeroing the entries in the roughening matrices 
which correspond to the sharp boundaries. It should be 
stressed that structure may still appear at locations other 
than the known boundaries. As an example of this tech
nique, the penalty for structure at the outside boundaries of 
each zone was removed in the model containing high- and 
low-resistivity zones. The model after three iterations in an 
inversion of the same data as before is shown in Figure 6. 
The initial model is very nearly recovered and the resistive 
zone is now well-defined. Because insertion of a sharp 
boundary changes the resolving power so dramatically, 
caution must be exercised when using this technique. Incor
rect placement of boundaries may produce misleading re
sults. 

The next example shows the result of inverting data 
generated by a conductive sill (5 n . m) terminating short of 
an equally conducting body and embedded in a more resis
tive (100 n . m) host as shown in Figure 7a. A geologic 
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FIG. 6. The maximally smooth model produced when the penalty for structure at known discontinuities is removed. 
The model discretization and data used for the inversion were the same as for the inversion in Figure 4. 
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analog of this example might be a conductive subducting slab 
terminating short of a conductive basement. A structure of 
this type may cause difficulty in approximate inversion 
techniques since, for some stations, the data are more 
strongly dependent upon the conductivity of the blocks in 
the resistive gap than on the blocks directly beneath the 
station. Seven stations were placed at a spacing of 10 km, 
and both TE and TM mode responses were calculated at 
each site for nine periods ranging from 4.5 s to 2128 s. Two 
percent Gaussian noise was added to the data set prior to 
inversion and a 50 R * m half-space was used as the starting 
model for the inversion. 

Convergence to the model shown in Figure 7b was at- 
tained at the thirteenth iteration. The high-resistivity blocks 
near - 10 km and + 10 km could be caused by fitting noise or 
instabilities in the forward model. These effects are not seen 
in the previous example (Figure 4), and it is concluded that 
these may be due to Gibb’s phenomenon. That is, in trying to 
fit a smooth model to a feature exhibiting sharp discontinu- 
ities an overshoot in the fit is obtained. Such behavior is very 
common in 1-D model studies. Inspection of the weighted 

residuals (not shown here) again indicates that there is no 
systematic bias in the fit. The model is still quite rough at a 
depth of 10 km, which indicates that the result is somewhat 
dependent upon the model parameterization but a finer grid 
of blocks would result in a smoother model. The resistive 
region separating the conductive areas is well resolved, 
indicating that the inversion algorithm is robust to a high 
degree of nonuniformity in the Jacobean matrix. This simple 
example suggests that a resistive gap between two conduct- 
ing areas may be resolvable using 2-D MT data. 

A priori information about the conductivity of a given area 
may also improve the ability to resolve structure in the 
remainder of the model. For example, if the shape and 
conductivity of a given structure are known, then one may 
include this information in the model and invert for the 
remainder of the model. Such a situation may arise if data 
are gathered near a coastline, where the conductivity and 
bathymetry are well known, or if the data are collected over 
a sedimentary basin in which the layer thicknesses and 
resistivities are known from seismic studies and well-logging 
information. As an example of this technique, data were 

FIG. 7. (a) The model used to generate the data for the inversion consists of a conductive ledge terminating short 
of a conducting body. (b) The model obtained after inversion. 
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analog of this example might be a conductive subducting slab 
terminating short of a conductive basement. A structure of 
this type may cause difficulty in approximate inversion 
techniques since, for some stations, the data are more 
strongly dependent upon the conductivity of the blocks in 
the resistive gap than on the blocks directly beneath the 
station. Seven stations were placed at a spacing of 10 km, 
and both TE and TM mode responses were calculated at 
each site for nine periods ranging from 4.5 s to 2128 s. Two 
percent Gaussian noise was added to the data set prior to 
inversion and a 50 n . m half-space was used as the starting 
model for the inversion. 

Convergence to the model shown in Figure 7b was at
tained at the thirteenth iteration. The high-resistivity blocks 
near -10 km and + 10 km could be caused by fitting noise or 
instabilities in the forward model. These effects are not seen 
in the previous example (Figure 4), and it is concluded that 
these may be due to Gibb's phenomenon. That is, in trying to 
fit a smooth model to a feature exhibiting sharp discontinu
ities an overshoot in the fit is obtained. Such behavior is very 
common in \-D model studies. Inspection of the weighted 
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residuals (not shown here) again indicates that there is no 
systematic bias in the fit. The model is still quite rough at a 
depth of 10 km, which indicates that the result is somewhat 
dependent upon the model parameterization but a finer grid 
of blocks would result in a smoother model. The resistive 
region separating the conductive areas is well resolved, 
indicating that the inversion algorithm is robust to a high 
degree of nonuniformity in the Jacobean matrix. This simple 
example suggests that a resistive gap between two conduct
ing areas may be resolvable using 2-D MT data. 

A priori information about the conductivity of a given area 
may also improve the ability to resolve structure in the 
remainder of the model. For example, if the shape and 
conductivity of a given structure are known, then one may 
include this information in the model and invert for the 
remainder of the model. Such a situation may arise if data 
are gathered near a coastline, where the conductivity and 
bathymetry are well known, or if the data are collected over 
a sedimentary basin in which the layer thicknesses and 
resistivities are known from seismic studies and well-logging 
information. As an example of this technique, data were 
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FIG. 7. (a) The model used to generate the data for the inversion consists of a conductive ledge terminating short 
of a conducting body. (b) The model obtained after inversion. 
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generated from the model shown in Figure 8a. The model 
represents a sedimentary basin consisting of three layers 
having resistivities of 80, 200, and 50 R . m from top to 
bottom. Below the sedimentary basin is an anticlinal struc- 
ture having a resistivity of 50 s2 . m surrounding a structure 
having a resistivity of 500 R . m. These structures are 
embedded in a half-space having a resistivity of 1000 R . m. 
The data, with five percent Gaussian noise added, were 
generated at eight periods ranging from 0.01 to 33 s at 11 
stations placed 2 km apart. 

The data were inverted twice, once with the resistivity of 
the sedimentary basin held fixed and once with no a priori 
information. A 100 fi . m half-space was used for the starting 
model in the second inversion while the known resistivities 
of the sedimentary basin were embedded in a 100 fi . m 

half-space for the starting model in the first inversion. 
Convergence to the model shown in Figure 8b was attained 
after 10 iterations for the case where the resistivity of the 
sedimentary basin is known; convergence to the model 
shown in Figure 8c was attained after 14 iterations. The 
sedimentary basin shows up very poorly in the case where 
the known structure is not included in the model. There is a 
marginal improvement in the resolution of the anticlinal 
structure in the case where the known conductivity of the 
sedimentary basin is included. 

INVERSION OF FIELD DATA 

The 2-D inversion of field data introduces problems asso- 
ciated with computation and breakdown of assumptions 

FIG. 8. (a) The model used to generate the data for the inversion represents a sedimentary basin over an anticlinal 
structure. (b) The model obtained when the conductivity of the sedimentary basin is held fixed. (c) The model 
obtained for the case of no a priori information. 
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generated from the model shown in Figure 8a. The model 
represents a sedimentary basin consisting of three layers 
having resistivities of SO, 200, and 50 11 . m from top to 
bottom. Below the sedimentary basin is an anticlinal struc
ture having a resistivity of 5011 . m surrounding a structure 
having a resistivity of 500 11 . m. These structures are 
embedded in a half-space having a resistivity of 1000 11 . m. 
The data, with five percent Gaussian noise added , were 
generated at eight periods ranging from 0.01 to 33 s at II 
stations placed 2 km apart. 

The data were inverted twice, once with the resistivity of 
the sedimentary basin held fixed and once with no a priori 
information . A 10011 . m half-space was used for the starting 
model in the second inversion while the known resistivities 
of the sedimentary basin were embedded in a 100 11 . m 
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half-space for the starting model in the first inversion. 
Convergence to the model shown in Figure Sb was attained 
after 10 iterations for the case where the resistivity of the 
sedimentary basin is known ; convergence to the model 
shown in Figure Sc was attained after 14 iterations. The 
sedimentary basin shows up very poorly in the case where 
the known structure is not included in the model. There is a 
marginal improvement in the resolution of the anticlinal 
structure in the case where the known conductivity of the 
sedimentary basin is included . 

INVERSION OF FIELD DATA 

The 2-D inversion of field data introduces problems asso
ciated with computation and breakdown of assumptions 
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FIG . S. (a) The model used to generate the data for the inversion represents a sedimentary basin over an anticlinal 
structure . (b) The model obtained when the conductivity of the sedimentary basin is held fixed. (c) The model 
obtained for the case of no a priori information. 
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about dimensionality and noise. Computational difficulties 
include: (1) the amount of memory required for handling 
broadband data amount due to the amount of data, and (2) 
the large variation of skin depths involved. The skin depth of 
the highest frequencies require the resistivity blocks to be 
very small near the surface while the lower frequencies 
require the model to extend to large depths. Since the block 
widths propagate to depth, a very large mesh is required for 
the inversion. Another problem is that inversion of 2-D data 
is much slower than the 1-D case. Since the required time for 
the forward calculation increases linearly with the number of 
frequencies used, if the original data are oversampled in 
frequency, the computation time can be reduced by using a 
subset of the data for the initial iterations and adding more 
data as convergence is attained. 

The nature of the noise and noise estimates also presents 
difficulties. The two-norm measure assumes Gaussian errors 
in the data and is not robust to the presence of outliers which 
result from non-Gaussian noise. Also, if the actual structure 
is 3-D, then the data may be very accurate and still not 
correspond to any 2-D solution. The question of existence of 
a solution for any 1-D MT data set has been solved (Parker, 
1980; Parker and Whaler, 1981). However, there is not as yet 
a way of knowing whether any 2-D structure will fit a given 
data set, or, if so, what the minimum possible misfit would 
be. 

A subset of the COPROD data, provided by Alan Jones 
of the Geological Survey of Canada, was used as an example 
for the inversion of field data. These data were collected 
over the central plains anomaly in the province of Saskatch- 
ewan, Canada, and have been corrected for static shift 
(Jones, 1988). The survey line was east-west, with receiver 
spacings of approximately IO km. The TE and TM responses 
appear quite uniform over the high frequencies up to 4 s 
(Jones and Savage, 1986), suggesting that the surface struc- 
ture is 1-D to a first approximation. At lower frequencies the 
TE and TM responses diverge, indicating higher dimensional 
structure at greater depth. For this reason, four of the lower 

frequencies were chosen at 20 stations at the eastern end of 
the survey area as a subset for inversion. Since regional 
structure was the target for interpretation, relatively large 
blocks having widths of IO km were used and stations 
exhibiting large conductivity contrasts with its neighbours 
were eliminated. The inversion presented here is meant only 
to show the application of the 2-D MT inversion to real data 
and does not represent a full interpretation of the COPROD 
data set (to follow in a subsequent paper). 

If it can be assumed that the Earth structure is largely 2-D 
in this area, 3-D structure will appear in the data as noise. 
Some of the data used in the inversion had very small errors 
which the authors felt were unrealistic for the 2-D approxi- 
mation, so the minimum error was increased to 10 percent. 
Starting with a half-space of 100 R . m, convergence to an 
rms misfit of 1.0 was acheived after 28 iterations. The 
resulting model is shown in Figure 9. Two conductivity 
anomalies which have been identified in previous work 
(Jones and Craven, 1989) are indicated here: (1) the North 
American Central Plains (NACP) anomaly below the center 
of the array at a depth of 6-25 km, and (2) the shallower 
Thompson Belt anomaly to the east of the survey area. The 
NACP anomaly appears to be very discontinuous, possibly 
due to static shifts remaining in the data, which often have 
the effect of introducing vertical structure (Jones, 1988). This 
suggests that one might be able to remove static shift by 
introducing a shift parameter at each station and simulta- 
neously solving for the smoothest model. 

The data and model responses are plotted as a function of 
station location in Figure 10. A non-Gaussian error distribu- 
tion would be manifested as non-Gaussian residuals; how- 
ever, a Kolmogorov-Smirnoff test on the residuals cannot 
exclude the Gaussian hypothesis with any significant confi- 
dence. This indicates that the misfit is not likely due to 3-D 
structure, since in that event large outliers in the residuals 
would be expected. Since the inversion algorithm, which 
performs well on 1-D and 2-D synthetic data, could not 

FIG. 9. Inversion of a subset of the COPRODZ data with minimum 10 percent error. Two known anomalies are 
defined, the NACP anomaly at the center of the survey line and the Thompson Belt anomaly indicated at the left 
of the model. A linear depth scale is used here to more clearly indicate the geologic structure. 
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about dimensionality and noise. Computational difficulties 
include: (1) the amount of memory required for handling 
broadband data amount due to the amount of data, and (2) 
the large variation of skin depths involved. The skin depth of 
the highest frequencies require the resistivity blocks to be 
very small near the surface while the lower frequencies 
require the model to extend to large depths. Since the block 
widths propagate to depth, a very large mesh is required for 
the inversion. Another problem is that inversion of 2-D data 
is much slower than the I-D case. Since the required time for 
the forward calculation increases linearly with the number of 
frequencies used, if the original data are oversampled in 
frequency, the computation time can be reduced by using a 
subset of the data for the initial iterations and adding more 
data as convergence is attained. 

The nature of the noise and noise estimates also presents 
difficulties. The two-norm measure assumes Gaussian errors 
in the data and is not robust to the presence of outliers which 
result from non-Gaussian noise. Also, if the actual structure 
is 3-D, then the data may be very accurate and still not 
correspond to any 2-D solution. The question of existence of 
a solution for any I-D MT data set has been solved (Parker, 
1980; Parker and Whaler, 1981). However, there is not as yet 
a way of knowing whether any 2-D structure will fit a given 
data set, or, if so, what the minimum possible misfit would 
be. 

A subset of the COPROD2 data, provided by Alan Jones 
of the Geological Survey of Canada, was used as an example 
for the inversion of field data. These data were collected 
over the central plains anomaly in the province of Saskatch
ewan, Canada, and have been corrected for static shift 
(Jones, 1988). The survey line was east-west, with receiver 
spacings of approximately 10 km. The TE and TM responses 
appear quite uniform over the high frequencies up to 4 s 
(Jones and Savage, 1986), suggesting that the surface struc
ture is I-D to a first approximation. At lower frequencies the 
TE and TM responses diverge, indicating higher dimensional 
structure at greater depth. For this reason, four of the lower 

frequencies were chosen at 20 stations at the eastern end of 
the survey area as a subset for inversion. Since regional 
structure was the target for interpretation, relatively large 
blocks having widths of 10 km were used and stations 
exhibiting large conductivity contrasts with its neighbours 
were eliminated. The inversion presented here is meant only 
to show the application of the 2-D MT inversion to real data 
and does not represent a full interpretation of the COPROD2 
data set (to follow in a subsequent paper). 

If it can be assumed that the Earth structure is largely 2-D 
in this area, 3-D structure will appear in the data as noise. 
Some of the data used in the inversion had very small errors 
which the authors felt were unrealistic for the 2-D approxi
mation, so the minimum error was increased to 10 percent. 
Starting with a half-space of 100 n . m, convergence to an 
rms misfit of 1.0 was acheived after 28 iterations. The 
resulting model is shown in Figure 9. Two conductivity 
anomalies which have been identified in previous work 
(Jones and Craven, 1989) are indicated here: (1) the North 
American Central Plains (NACP) anomaly below the center 
of the array at a depth of 6-25 km, and (2) the shallower 
Thompson Belt anomaly to the east of the survey area. The 
NACP anomaly appears to be very discontinuous, possibly 
due to static shifts remaining in the data, which often have 
the effect of introducing vertical structure (Jones, 1988). This 
suggests that one might be able to remove static shift by 
introducing a shift parameter at each station and simulta
neously solving for the smoothest model. 

The data and model responses are plotted as a function of 
station location in Figure 10. A non-Gaussian error distribu
tion would be manifested as non-Gaussian residuals; how
ever, a Kolmogorov-Smirnoff test on the residuals cannot 
exclude the Gaussian hypothesis with any significant confi
dence. This indicates that the misfit is not likely due to 3-D 
structure, since in that event large outliers in the residuals 
would be expected. Since the inversion algorithm, which 
performs well on I-D and 2-D synthetic data, could not 

FIG. 9. Inversion of a subset of the COPROD2 data with minimum 10 percent error. Two known anomalies are 
defined, the NACP anomaly at the center of the survey line and the Thompson Belt anomaly indicated at the left 
of the model. A linear depth scale is used here to more clearly indicate the geologic structure. 
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achieve a misfit of rms = 1 with the original data set, 
enlarging the errors in the data may be justified. 

DISCUSSION AND SUMMARY 

We emphasize that there is no guarantee that a 2-D model 
exists which adequately fits a given data set. The issues of 
existence and adequate fit depend on the choice of model 
dimension and parameterization and on the reliability of data 
errors. The model complexity must be adequate to represent 
the real complexity of the Earth, and the data errors must be 
well estimated. The number of dimensions of the model must 
be at least as large as the regionally significant dimensional- 
ity of the Earth. In the context of this paper. it is assumed 
that the Earth may be adequately represented by a 2-D 
model. There undoubtedly exists 3-D structure, but a 2-D 
model is adequate as long as the expression of this structure 
is within the estimated data error. It is obvious that the 
concept of an adequate fit depends greatly on the data errors. 
If the data errors are systematically underestimated, then it 
will be difficult or impossible to find a model which fits the 
data adequately. If the random scatter in the data exceeds 
the effect of 3-D structure, then 2-D modeling will allow one 
to fit the data, so long as the data errors have not been 
underestimated. 

An MT inversion algorithm was developed to solve for the 
smoothest 2-D model fitting a given data set. The resistivities 

FIG. IO. Data and model responses plotted as a function of 
station location. The circles and squares indicate the TE and 
TM data, respectively, while the solid and dashed lines 
respectively indicate the TE and TM responses. Negative 
TM phases are plotted. 

of a large number of blocks are determined iteratively, with 
convergence generally being attained in IO to 20 iterations. 
While it cannot be proven that a global minimum in model 
roughness has been reached, tests on a simple model indi- 
cate convergence to the same solution is reached from both 
a starting model which is rough and from a half-space 
starting model. Unlike most regularized inversion algo- 
rithms, the value of the trade-off parameter between data 
misfit and model roughness is not determined in advance. 
This gives greater flexibility in fitting the data to a statisti- 
cally reasonable tolerance while simultaneously keeping the 
roughness to a minimum. 

There is some similarity between this method and that of 
Smith and Booker (1990). Note, however, that these authors 
make several approximations in order to realize large im- 
provements in computation time A comparison of the 
resistive block model (Figure 4) suggests that their approx- 
imations result in models which are slightly rougher than 
necessary. although the models are generally in good agree- 
ment. However, even if the approximate methods were to 
yield identical results, the more exact method needs to be 
available before confidence in the faster algorithm is possi- 
ble. The reader should bear in mind that the models com- 
pared to date are very simple. In fact, Smith and Booker 
(1990) do not present inversions of real data and, have 
restricted themselves to inverting for simple prismatic struc- 
tures. 

Although computationally expensive, the algorithm pre- 
sented here is versatile, allowing extension to methods other 
than MT, such as resistivity, and incorporation of varying 
levels of a priori information. The most objective initial 
approach to using this method is, of course, to include no a 
priori information, allowing one to obtain an idea of the 
resolving power of the data. If the location of sharp discon- 
tinuities in resistivity is known, the penalty for roughness at 
the boundaries may be removed. Finally, if both the resis- 
tivity and boundary locations are known in advance, these 
may he specified and will not be updated in further itera- 
tions. Because the addition of incorrect a priori information 
produces misleading results, care must be used when incor- 
porating “known” structure. 
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achieve a misfit of rms = I with the original data set, 
enlarging the errors in the data may be justified. 

DISCUSSION AND SUMMARY 

We emphasize that there is no guarantee that a 2-D model 
exists which adequately fits a given data set. The issues of 
existence and adequate fit depend on the choice of model 
dimension and parameterization and on the reliability of data 
errors. The model complexity must be adequate to represent 
the real complexity of the Earth, and the dataerrommustbe 
well estimated. The number of dimensions of the model must 
be at least as large as the regionally significant dimensional
ity of the Earth. In the context of this paper. it is assumed 
that the Earth may be adequately represented by a 2-D 
model. There undoubtedly exists 3-D structure, but a 2-D 
model is adequate as long as the expression of this structure 
is within the estimated data error. It is obvious that the 
concept of an adequate fit depends greatly on the data errors. 
If the data errors are systematically underestimated, then it 
will be difficult or impossible to find a model which fits the 
data adequately. If the random scatter in the data exceeds 
the effect of 3-D structure, then 2-D modeling will allow one 
to fit the data, so long as the data errors have not been 
underestimated. 

An MT inversion algorithm was developed to solve for the 
smoothest 2-D model fitting a given data set. The resistivities 
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of a large number of blocks are determined iteratively, with 
convergence generally being attained in 10 to 20 iterations. 
While it cannot be proven that a global minimum in model 
roughness has been reached, tests on a simple model indi
cate convergenee to the same solution is reached from both 
a starting model which is rough and from a half-space 
starting model. Unlike most regularized inversion algo
rithms, the value of the trade-off parameter between data 
misfit and model roughness is not determined in advance. 
This gives greater flexibility in fitting the data to a statisti
cally reasonable tolerance while simultaneously keeping the 
roughness to a minimum. 

There is some similarity between this method and that of 
Smith and Booker (1990). Note, however, that these authors 
make several approximations in order to realize large im
provements in computation time. A comparison of the 
resistive block model (Figure 4) suggests that their approx
imations result in models which are slightly rougher than 
necessary. although the models are generally in good agree
ment. However, even if the approximate methods were to 
yield identical results, the more exact method needs to be 
available hefore confidence in the faster algorithm is possi
ble. The reader should bear in mind that the models com
pared to datc are very simple. In fact, Smith and Booker 
(1990) do not present inversions of real data and have 
restricted themselves to inverting for simple prismatic struc
tures. 

Although computationally expensive, the algorithm pre
sented here is versatile, allowing extension to methods other 
than MT, such as resistivity, and incorporation of varying 
levels of a priori information. The most objective initial 
approach to using this method is, of course, to include no a 
priori information, allowing one to obtain an idea of the 
resolving power of the data. If the location of sharp discon
tinuities in resistivity is known, the penalty for roughness at 
the boundaries may be removed. Finally, if both the resis
tivity and boundary locations are known in advance, these 
may he specified and will not he updated in further itera
tions. Because the addition of incorrect a priori information 
produces misleading results, care must be used when incor
porating "known" structure. 
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