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INTRODUCTION

Magnetovariational sounding occupies a particular
place among methods using the magnetotelluric field
because with a decrease in frequency it is freed from
perturbation effects of near-surface heterogeneities and
supplies reliable information on deep geoelectric struc-
tures (in distinction from magnetotelluric sounding,
with its static shift of the apparent resistance, distorting
information on deep structures). In the literature, we
encounter reports on successful magnetovariational
studies performed in Pomerania and Fennoscandia
[Varentsov, 2007; Varentsov et al., 2005; Paiunpaa et al.,
2002], the Andes [Soyer and Brasse, 2001], the Casca-
dia subduction zone [Vanyan et al., 2002], and the Tien
Shan [Sokolova et al., 2007]. These works are stimulat-
ing further development of the magnetovariational
method. This paper answers this challenge of the times
and is devoted to new methods of analysis of magneto-
variational response functions.

MAGNETOVARIATIONAL RESPONSE 
FUNCTIONS

The magnetovariational response functions are
derived from the model of a layered horizontally heteroge-
neous Earth excited by a plane electromagnetic wave inci-
dent vertically onto the flat Earth’s surface [Parkinson,
1959; Wiese, 1962; Berdichevsky, 1968; Schmucker,
1970; Berdichevsky and Dmitriev, 2002, 2008; Varentsov,
2007]. We use the right Cartesian coordinate system with
horizontal 

 

x

 

 and 

 

y

 

 axes and the 

 

z

 

 axis directed downward.
The magnetic field 

 

H

 

 is considered as the sum of the nor-
mal horizontally polarized field 

 

H

 

N

 

 observed in the
absence of horizontal geoelectric heterogeneity and the
anomalous field 

 

H

 

A

 

 arising under the action of horizontal
geoelectric heterogeneity:

 

H

 

 = 

 

H

 

N

 

 + 

 

H

 

A

 

, (1)

 

where

 

(2)

 

The anomalous magnetic field is defined as the con-
volution of the Green’s magnetic tensor with the excess
current propagating in the horizontally heterogeneous
Earth.

The following response functions are used in mag-
netovariational sounding.

 

The Wiese–Parkinson

 

 

 

tipper [W]

 

. This response
function goes back to the definitions of Parkinson [Par-
kinson, 1959] and Wiese [Wiese, 1962]. The Wiese–
Parkinson 

 

1

 

 × 

 

2

 

 matrix 

 

[

 

W

 

] 

 

transforms the horizontal
magnetic field 
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τ
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 observed at a field station 

 

O
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 into

the vertical component 
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z
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) = (
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 of the anomalous
magnetic field 
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A
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 observed at the same station:
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τ
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), (3)

 

where

 

 (4)

 

The norm of the Wiese–Parkinson matrix

 

(5)

 

is invariant with respect to the rotation of the system
(

 

xy

 

) about the 

 

z

 

 axis. It is minimal over the middle of a
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zone of lower or higher resistance and reaches a maxi-
mum over the edges of this zone.

The matrix [

 

W

 

] is generally represented in the form
of the complex vector 

 

W

 

 resolved into components 

 

W

 

 = 

 

W

 

zx

 

1

 

x

 

 + 

 

W

 

zy

 

1

 

y

 

. (6)

 

where 

 

1

 

x

 

 and 

 

1

 

y

 

 are unit vectors.
The real Re
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 = 
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W

 

zx

 

1

 

x

 

 + 
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W

 

zy

 

1

 

y

 

 and imaginary
Im

 

W

 

 = 

 

Im

 

W

 

zx

 

1

 

x

 

 + 

 

Im

 

W

 

zy

 

1

 

y

 

 parts of the vector 

 

W

 

 are
referred to as the 

 

Wiese–Parkinson induction arrows

 

.
Real induction arrows possess a noteworthy property:
in the understanding of Wiese, they are directed away
from the zone of lower resistance toward that of higher
resistance.

 

The horizontal magnetic tensor [M]

 

. This magne-
tovariational response function was proposed by Ber-
dichevsky as a magnetic analogue of the Doll tensor
used in the method of telluric currents [Berdichevsky,
1968]. The tensor [

 

M

 

] with a 2 × 2 matrix transforms

the normal magnetic field  observed at a distant
basis (reference) station B(rB) into the horizontal mag-
netic field Hτ observed at a field station O(r):

(7)

where

(8)

The norm of the matrix [M] is defined as

(9)

The norm [||M||] is invariant with respect to the rotation
of the system (xy) about the z axis. In the case of the

horizontally homogeneous Earth, we have ||M|| = .

The zones with ||M|| >  correlate with lower resis-

tance structures, and the zones with ||M|| <  correlate
with higher resistance structures.

The magnetic disturbance tensor [S]. Schmucker
introduced this tensor in a monograph devoted to the
analysis of geomagnetic variations [Schmucker, 1970].
It is often referred to as the Schmucker tensor. The
Schmucker tensor with a 3 × 2 matrix transforms the

normal magnetic field  observed at a distant basis
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(reference) station B(rB) into the anomalous magnetic
field HA observed at a field station O(r):

(10)

where

(11)

The matrix of the Schmucker tensor can be divided
into two matrices: a 2 × 2 matrix forming the Sch-
mucker horizontal tensor [Sτ] and a 1 × 2 matrix form-
ing the Schmucker tipper [Sz].

The Schmucker horizontal tensor [Sτ] transforms

the normal magnetic field  observed at the basis
(reference) station B(rB) into the anomalous magnetic

field observed at the field station O(r):

(12)

where

(13)

Schmucker defined the tensor [Sτ] by the two hori-
zontal magnetic disturbance vectors
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which are images of the normal unit fields HN(x) = 1x and
HN(y) = 1y linearly polarized along, respectively, the x
and y axes. The real and imaginary vectors

(15)

form magnetic disturbance arrows. These vectors
turned by π/2 yield an illustrative qualitative pattern of
the spread of active and reactive anomalous (excess)
currents.

The invariant norm of the Schmucker tensor is
determined as

(16)

The Schmucker tipper [Sz] transforms the normal

magnetic field  observed at the distant basis (refer-
ence) station B(rB) into the vertical component Hz(r) =

(r) of the anomalous magnetic field HA observed at
the field station O(r):

(17)

where

(18)

The invariant norm of the Schmucker tipper is
defined as

(19)

By analogy with (6), the matrix [Sz] is represented in
the form of a complex vector

Sz = Szx1x + Szy1y. (20)

The real ReSz = ReSzx1x + ReSzy1y and imaginary
ImSz = ImSzx1x + ImSzy1y parts of the vector Sz form the
Schmucker induction arrows. In the Wiese agreement,
the real Schmucker induction arrows are directed away
from the zone of lower resistance toward that of higher
resistance.

The tensors [Sτ] and [M] and the tippers [Sz]and [W]
are connected through the simple relations

(21)
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where

For a 2D model striking along the 

 

x

 

 axis, we have

 

 (22)

 

Here real and imaginary induction arrows are per-
pendicular to the model strike.

MAGNETIC DISTURBANCE ELLIPSES

The magnetic disturbance vectors (arrows) Re

 

p

 

, 

 

Im

 

p

 

and Re

 

q

 

, 

 

Im

 

q

 

 defined according to (14) and (15) char-
acterize anomalies of the horizontal components of the
anomalous magnetic field corresponding to the normal
unit field polarized linearly along the 

 

x

 

 and 

 

y

 

 axes. Evi-
dently, the value and orientation of the disturbance vec-
tors depends on an arbitrary choice of a reference sys-
tem. This indeterminacy can be easily eliminated by the
reconstruction of the magnetic disturbance vectors and
their incorporation into 

 

magnetic disturbance ellipses

 

,
which are an analogue of the Doll telluric ellipses [Ber-
dichevsky, 1968; Fujiwara and Toh, 1996]. The mag-
netic disturbance ellipses are invariant with respect to
the rotation of the system (

 

x

 

, 

 

y

 

).
Now we will show how to construct the magnetic

disturbance ellipses. We introduce the following nota-
tion:

 

(23)

 

where the components 

 

X

 

 and 

 

Y

 

 of the normal field at the
basis point and the components 

 

U

 

 and 

 

V

 

 of the anoma-
lous field at the observation point are real quantities. In
this notation, the real part of the horizontal Schmucker
tensor transforms the plane (

 

XY

 

) into the plane (

 

UV

 

):
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 = 1 lying in the
plane (
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) transforms into the real magnetic distur-
bance ellipse
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lying in the plane (
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). This transformation is exempli-

fied in Fig. 1. Here the vectors of real magnetic distur-
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bance Rep and Req are the conjugated radii of the
ellipse and are the transforms of the conjugated radii 1x
and 1y of the unit circle. We see that the disturbance
ellipse determining the dependence of the horizontal
magnetic anomalies on the direction reflects the “mag-
netic anisotropy” significantly better than the distur-
bance vectors. The major and minor axes of the ellipse
give an idea of the maximum and minimum strength of
the horizontal magnetic anomalies. Moreover, the
major axis of the ellipse turned by an angle of 90° char-

acterizes the direction and intensity of the maximum
anomalous current.

The canonical equation of the real ellipse of a mag-
netic disturbance has the form

 (26)

where

(27)

are the major and minor semiaxes of the ellipse. The slope of the major axis of the ellipse is determined as

(28)

We have a = b = c = 0 for a 2D model striking along
the x axis, and, consequently, A = d = ReSyy, B = 0, and
α = π/2. Here the real magnetic disturbance ellipse
degenerates into a segment of a straight line oriented
along the y axis, i.e., normally to the model strike.

The imaginary magnetic disturbance ellipse related
to the vectors Imp and Imq is constructed analogously.
To do this, it is sufficient to substitute

a = ImSxx, b = ImSxy, c = ImSyx, d = ImSyy, (29)

into (27) and (28).
As an example we consider the magnetic distur-

bance ellipses obtained for the model of a 3D graben
whose length is three times larger than its width. This
model is shown in Fig. 2. Here the transverse conduc-
tance of sediments varies from 5 S outside the graben to
100 S within it. Maps of the major and minor axes of
real and imaginary ellipses over the fourth quadrant of
the graben and in its vicinity are shown in Fig. 3. Note
two remarkable features of these maps: (1) the major
axes of the ellipses “flow around” the lateral flanks of
the graben and (2) they are directed perpendicularly to
the graben strike in its central part. The maps showing
the major axes of the ellipses turned by 90°, which char-
acterize the direction and intensity of the maximum
anomalous current (Fig. 4), clarify the physical mean-
ing of these features. The effect of the channeling of
currents is clearly seen here: active and reactive anom-
alous currents flow into the graben and concentrate
along its strike.

PROPERTIES OF 2D MAGNETOVARIATIONAL 
RESPONSE FUNCTIONS

Figure 5 shows layered geoelectric models of the
tectonosphere including a three-layer sedimentary
cover ( , two-layer crust

( ), and two-layer mantle ( ).
These models contain infinitely long 2D structures rep-
resented by prisms P1, P2, and P3 of various strike. The
angles of strike α' , α'', and α''' are counted clockwise
from the x axis. Prism P1 of width w' and resistivity ρ' is
included in the high-resistance mantle (layer ). It
imitates a low-resistance asthenolith. Prism P2 of width
w'' and resistivity ρ'' is included in the high-resistance
consolidated Earth’s crust (layer ). It imitates a low-
resistance graphitization zone. Prism P3 of width w'''
and resistivity ρ''' is included in the low-resistance sed-
imentary cover (layer ). It imitates a high-resistance
horst. Thus, we have 2D models {P1}, {P2}, and {P3}
and their 3D superpositions {P1P2} and {P1P2P3}.

Figure 6 plots the pseudotopography of the norms of
the tippers and horizontal magnetic tensors ||W||, ||Sz||
and ||M||, ||Sτ|| calculated for the model {P1P2P3} from
formulas (5), (19) and (9), (16). This 3D many-tier
model demonstrates a number of important properties
of the magnetovariational response functions.

Considering the pseudotopography of the norms
||W||, ||Sz|| and ||M||, ||Sτ||, we identify periods T = 0.1, 20,
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100, and 1000 s at which individual structures domi-
nate. Thus, the pseudoterrains ||W||, ||Sz|| and ||M||, ||Sτ||
reflect a “pure” 2D effect of the horst P3 at T = 0.1 s.
This near-surface effect attenuates with a frequency
decrease, giving way to deep effects. The 2D effect of
the graphitization zone P2 becomes distinct at periods T
= 20–100 s, with the effect of the horst vanishing and
that of the asthenolith being more or less weak. Finally,
we have a powerful 2D effect of the asthenolith and a
vanishing effect of the graphitization zone at the period
T = 10000. Each structure has its place in the period
scale. One gets the impression that the “structure super-
position principle” acts here: because galvanic and
inductive coupling are weak, the additive effect of the
structures is approximately equal to the sum of the
effects of each structure.

The following properties of the magnetovariational
response function are seen on the pseudotopography
maps.

1. The strike of the pseudotopographies ||W||, ||Sz||
and ||M||, ||Sτ|| nearly coincides with the strike of the
anomaly-forming structures at periods of the domina-
tion of some 2D structure or other.

2. Returning to periods T = 20–100 s, we see that, at
T = 20 s, the pseudotopographies ||M||, ||Sτ|| of horizon-
tal magnetic tensors clearly reflect the crustal graphiti-
zation zone P2. At the same time, indications of the
asthenolith P1 are seen on the pseudotopographies ||W||,
||Sz|| of the tippers together with the dominating graphi-
tization zone P2. Discernible indications of the asthenolith
arise on the psedotopographies ||M||, ||Sτ|| at T = 100 s and
these indications become quite significant on the
pseudotopographies ||W||, ||Sz||. Evidently, the tippers
have a higher sensitivity to deep structures.

3. At low frequencies (T = 100–10000 s), the shape
of the pseudotopographies ||M||, ||Sτ|| of the horizontal
magnetic tensors is smooth and is typical of diffused
fields; they consist of a single range rising over the mid-
dle of the structure, with its slopes extending far outside
the structure. At the same time, the pseudotopographies
||W||, ||Sz|| of the tippers consist of two parallel ranges
rising over the structure edges. A deep valley lying over
the middle of the structure separates these ranges. We
can say that the tippers yield the “vertical projection” of
the structure edges on the Earth’s surface. The structure
width is determined here with a sufficient accuracy.
Evidently, the tippers, reflecting the asymmetry of
excess currents, resolve horizontal variations in the
deep conduction considerably better than the horizontal
magnetic tensors.

4. The pseudotopographies ||W||, ||Sz|| of the Wiese–
Parkinson and Schmucker tippers are close to each
other. This is accounted for by the fact that the horizon-
tal components of the anomalous magnetic field in the
study model are significantly smaller than the normal
magnetic field.

DECOMPOSITION OF THE 
MAGNETOVARIATIONAL RESPONSE 

FUNCTIONS

We suppose in the preceding part of the paper that
the structure superposition principle acts in the many-
tier model including three 2D structures (the mantle
asthenolith P1, crustal graphitization zone P2, and horst
P3), i.e., the additive magnetovariational effect of all the
three structures is approximately equal to the sum of the
partial effects of each structure. Now we will evaluate
the accuracy of such an approximation for weak con-
ductive and inductive coupling between the structures.
We will consider three problems of decomposition of
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Fig. 1. The magnetic disturbance vectors Rep and Imp are
the conjugated radii of the magnetic disturbance ellipse.
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the magnetovariational response functions provided that
the interaction between structures is sufficiently weak and
differences in their strikes are sufficiently great.

The first problem is to decompose the magnetovari-
ational response functions in the model {P1P2P3} con-
taining three 2D structures P1, P2, and P3. These struc-
tures shown in Fig. 5 are identified with the asthenolith,
graphitization zone, and horst. This problem is formu-
lated as follows. The matrix [Sτ] of the Schmucker hor-
izontal tensor determining the additive effect of the 2D
structures P1, P2, and P3 is obtained from synchronous
magnetovariational observations. The matrix [Sτ] is
taken as initial. It is necessary to obtain (a) the partial
matrix  determining the effect of the structure P1
in the absence of the structures P2 and P3, (b) the partial
matrix  determining the effect of the structure P2

in the absence of the structures P1 and P3, and (c) the
partial matrix  determining the effect of the struc-
ture P3 in the absence of the structures P1 and P2. The
problem is solved in several stages.

Sτ'[ ],

Sτ''[ ],

Sτ'''[ ],

At the first stage, the pseudotopographies of  ||Sτ|| are
constructed and the angles of strike α', α'', and α''' of,
respectively, the structures P1, P2, and P3 counted from
the x axis of the measuring coordinate system (xy) are
determined. Then partial coordinate systems (x'y', x''y''),
and (x'''y''') are introduced with the x', x'', and x''' axes
directed along the strike of the respective structures.
According to (22), we have in these coordinates

 (30)

At the second stage, the measuring coordinate sys-
tem (xy) is turned by an angle of α' and brought into
coincidence with the partial coordinate system (x'y').

Sτ'[ ] 0 0

0 Sτ'
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,= =
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0 0
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Fig. 3. Maps showing the major and minor axes of the mag-
netic disturbance ellipses over quadrant IV of the graben
and its neighborhood, T = 10 s: (a) real ellipse; (b) imagi-
nary ellipse.
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bance ellipses turned by 90°, which characterize the direc-
tion and intensity of the maximum anomalous current in the
graben and its neighborhood, T = 10 s: (a) real ellipse;
(b) imaginary ellipse.
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The angles of strike of the structures P1, P2, and P3 are
defined in the turned coordinate system (xy) as

(31)

and matrices [St] and  take the form

β ' α ' α '– 0, β '' α '' α ',–== =

β ''' α ''' α ',–=

Sτ'[ ], Sτ''[ ], Sτ'''[ ]

Sτ[ ] Sxx Sxy

Syx Syy

, Sτ' β '( )[ ] 0 0

0 Sτ'
,= =

(32)

At the final stage, we neglect the interaction
between the structures and assume that the additive
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10 Ω m,  = 0.1 km;  = 1000 Ω m,  = 0.9 km;  = 100 Ω m,  = 2 km; Earth’s crust:  = 1000 Ω m;  = 3 km;  =

1000 Ω m,  = 44 km; mantle:  = 1000 Ω m,  = 50 km;  = 20 Ω m,  = ∞. Structure parameters: P1 – α' = 0, w' = 300 km,

ρ' = 5 Ω m; P2 – α'' = 135°, w'' = 100 km, ρ'' = 6 Ω m; P3 – α''' = 90°, w''' = 32 km, ρ'' = 1000 Ω m.

ρ1'

h1' ρ1'' h1'' ρ1''' h1''' ρ2' h2' ρ2''
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Fig. 6. The pseudotopographies of the norms ||W||, ||Sz|| and ||M||, ||Sτ|| of the tipper and horizontal magnetic tensor matrices in the
model {P1P2P3} shown in Fig. 5.

magnetic anomaly  is equal to the sum of the partial

magnetic anomalies  and  In this

approximation,

Hτ
A

Hτ
A( ) ', Hτ

A( ) '', Hτ
A( ) '''.

(33)Hτ
A Hτ

A( ) ' Hτ
A( ) '' Hτ

A( ) '''+ +=

=  Sτ' β '( )[ ]HN Sτ'' β ''( )[ ]HN Sτ''' β '''( )[ ]HN+ +

=  Sτ' β '( )[ ] Sτ'' β ''( )[ ] Sτ''' β '''( )[ ]+ +{ }HN S̃τ[ ]HN ,=
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where with regard for (32)

(34)

Equating the symmetric matrix  to the initial
matrix [Sτ], we obtain the overdetermined system of
four incompatible equations in three unknowns

and 

(35)

Applying the principle of least squares, we reduce
this system of conditional equations to a system of three
normal equations. We have in the matrix form

(36)

where

Solving the normal equations, we obtain

(37)

Substituting (37) into (32), we determine the partial

matrices , and , the sum  of which
approaches the initial matrix [Sτ].

Figure 7 demonstrates the decomposition of the
magnetovariational functions in the model {P1P2P3}
shown in Fig. 5. Here the initial matrix [Sτ] is decom-
posed into three partial matrices , and 
We see that in a wide range of periods T (0.1–1000 s) the
pseudotopographies , and  of the partial

matrices , and  obtained via the
decomposition of the initial matrix [Sτ] are close to the

pseudotopographies , and  of the partial

matrices , and  obtained for the mod-
els {P1}, {P2}, and {P3} by direct calculations. This evi-
dences the sufficient accuracy of the decomposition.
We conclude that the pseudotopography of the norm of
each of the partial matrices  and 
reflects the dominating effect of the corresponding
anomaly-forming structure. Thus, the inversion of the
3D matrices [Sτ] may be reduced to three independent
inversions of the 2D matrices , and .

The second problem is to decompose the magneto-
variational response functions in the model {P1P2} con-
taining two 2D structures P1 and P2 imitating the
asthenolith and crustal graphitization zone. The sec-
ond problem is formulated as follows. The matrices [Sτ]
and [Sz] of the Schmucker horizontal tensor and Sch-
mucker tipper determining the additive effects of the
2D structures P1 and P2 are obtained from synchronous
magnetovariational observations. The matrices [Sτ] and
[Sz] are considered as initial. It is necessary to obtain (a)
the partial matrices  and  determining the
effect of the structure P1 in the absence of the structure
P2 and (b) the partial matrices  and  deter-
mining the effect of the structure P2 in the absence of
the structure P1. The method of computation in the sec-
ond problem is the same as in the first problem.

At the first stage, the pseudotopographies ||Sτ|| and
||Sz|| are constructed and the angles of strike α' and α'' of
the structures P1 and P2 counted from the x axis of the

S̃τ[ ] Sτ' β '( )[ ] Sτ'' β ''( )[ ] Sτ''' β '''( )[ ]+ +=

=  
β ''2 Sτ''sin β '''2 Sτ'''sin+ β '' β ''Sτ''cossin– β '''sin β '''Sτ'''cos–

β '' β ''Sτ''cossin– β '''sin β '''Sτ'''cos– S ' β ''2 Sτ''cos β '''2 Sτ'''cos+ +
.

S̃τ[ ]

Sτ' , Sτ'', Sτ''':

Sτ'' β ''2sin Sτ''' β '''2sin+ Sxx,=

Sτ'' β '' β ''cossin Sτ''' β '''sin β '''cos+ Sxy,–=

Sτ'' β '' β ''cossin Sτ''' β '''sin β '''cos+ Syx,–=

S ' Sτ'' β ''2cos Sτ''' β '''2cos+ + Syy.=

1 k l

k 1 m

l m 1

Sτ'

Sτ''

Sτ'''

A

B

C

,=

k β ''2 Acos Syy= =

l β '''2cos=

B Sxx β ''2sin Sxy Syx+( ) β '' β ''cossin Syy β ''2cos+–=

m β ''' β ''–( )2cos=

C Sxx β '''2sin Sxy Syx+( )–=

× β ''' β '''cossin Syy β '''2 .cos+

Sτ'
A m2 1–( ) B k lm–( ) C l km–( )+ +

k2 l2 m2 2klm– 1–+ +
-------------------------------------------------------------------------------------,=

Sτ''
A k lm–( ) B l2 1–( ) C m kl–( )+ +

k2 l2 m2 2klm– 1–+ +
----------------------------------------------------------------------------------,=

Sτ'''
A l km–( ) B m kl–( ) C k2 1–( )+ +

k2 l2 m2 2klm– 1–+ +
-----------------------------------------------------------------------------------.=

Sτ'[ ], Sτ''[ ] Sτ'''[ ], S̃τ[ ]

Sτ'[ ], Sτ''[ ], Sτ'''[ ].

Sτ' , Sτ'' Sτ'''

Sτ'[ ], Sτ''[ ] Sτ'''[ ],

Sτ' , Sτ'' Sτ'''

Sτ'[ ], Sτ''[ ] Sτ'''[ ],

Sτ'[ ], Sτ''[ ] Sτ'''[ ]

Sτ'[ ], Sτ''[ ] Sτ'''[ ].

Sτ'[ ] Sz'[ ]

Sτ''[ ] Sz''[ ],
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Fig. 7. The decomposition of the initial matrix [Sτ] of the Schmucker horizontal magnetic tensor into three partial matrices

 and  in the model {P1P2P3} shown in Fig. 5.Sτ'[ ], Sτ''[ ] Sτ'''[ ]
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measuring coordinate system (xy) are obtained in favor-
able frequency intervals. Then we introduce the partial
coordinate systems (x'y') and (x''y'') with the axes x' and
x'' directed along the strike of the respective structures.
According to (22), we have in these coordinates

(38)

At the second stage, we turn the measuring coordi-
nate system (xy) by an angle of α' and bring it into coin-
cidence with the partial coordinate system (x'y'). The
angles of strike of the structures P1 and P2 are defined
in the turned coordinate system as

β' = α' – α' = 0 β'' = α'' – α', (39)

and the matrices [Sτ],  and  and [Sz], 

and  take the form

(40)

At the final stage, we neglect the interaction
between the structures and assume that the additive

magnetic anomalies  and Hz =  are equal to the

sums of the partial magnetic anomalies (

and  In this approximation,

(41)

and

 (42)

Sτ'[ ] 0 0

0 Sτ'
, Sτ''[ ] 0 0

0 Sτ''
,==

Sz'[ ] 0 Sz'[ ], Sz''[ ] 0 Sz''[ ],==

Sτ'[ ], Sτ''[ ] Sz'[ ],

Sz''[ ]

Sτ[ ] Sxx Sxy

Syx Syy

,=

Sτ'[ ] 0 0

0 Sτ'
,=

Sτ''[ ] Sτ''
β ''2sin β '' β ''cossin–

β '' β ''cossin– β ''2cos
,=

Sz[ ] Szx Szy
, Sz'[ ] 0 Sz' ,= =

Sz''[ ] Sz'' β ''sin– β ''cos .=

Hτ
A Hz

A

Hτ
A( ) ', Hτ

A( ) ''

Hz' ,Hz''.

Hτ
A Hτ

A( ) ' Hτ
A( ) ''+ Sτ'[ ]HN Sτ''[ ]HN+= =

=  Sτ'[ ] Sτ''[ ]+{ }HN S̃τ[ ]HN=

Hz Hz' Hz''+ Sz'[ ]HN Sz''[ ]HN+= =

=  Sz'[ ] Sz''[ ]+{ }HN S̃z[ ]HN ,=

where with regard for (39)

(43)

and

(44)

Equating the matrices  and  to the initial
matrices [Sτ] and [Sz], we obtain equations ensuring
decomposition of the Schmucker horizontal tensor and
the Schmucker tipper.

We begin with decomposition of the Schmucker
horizontal tensor [Sτ]. In this problem,

(45)

whence we obtain the overdetermined system of four
incompatible equations in two unknowns  and 

(46)

We reduce this system with the method of least
squares to a system of two normal equations. We have
in the matrix form

(47)

where

Solving the normal equations, we obtain

 (48)

S̃τ[ ] Sτ'[ ] Sτ''[ ]+=

=  
Sτ'' β ''2sin Sτ'' β '' β ''cossin–

Sτ'' β '' β ''cossin– Sτ'' Sτ'' β ''2cos+

S̃z[ ] Sz'[ ] Sz''[ ]+ Sz'' β ''Sz'sin– + Sz'' β ''cos .= =

S̃τ[ ] S̃z[ ]

Sxx Sxy

Syx Syy

Sτ'' β ''2sin Sτ'' β '' β ''cossin–

Sτ'' β '' β ''cossin– Sτ' Sτ'' β ''2cos+
,=

Sτ' Sτ'':

Sτ'' β ''2sin Sxx,=

Sτ'' β '' β ''cossin Sxy,–=

Sτ'' β '' β ''cossin Syx,–=

Sτ' Sτ'' β ''2cos+ Syy.=

1 k

k 1

Sτ'

Sτ''

A

B
,=

k β ''2 Acos Syy= =

B Sxx β ''2 Sxy Syx+( ) β '' β ''cossin Syy β ''2 .cos+–sin=

Sτ'
A– Bk+

k2 1–
---------------------= , Sτ''

Ak B–

k2 1–
----------------.=
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Substitution of (48) into (40) yields the partial
matrices  and  the sum of which approaches
the initial matrix [Sτ]:

(49)

We now turn to the decomposition of the Schmucker
tipper [Sz]. In this problem,

(50)

whence we obtain a system of two linear equations in
two unknowns  and 

(51)

Solving these equations, we have

(52)

Substitution of (52) into (40) yields the partial
matrices

(53)

whose sum  is equal to the initial matrix [Sz].
Let us return to the model {P1P2} shown in Fig. 5.

Let the initial matrices [Sτ] and [Sz] be given in this
model. The decomposition of matrices [Sτ] and [Sz] into
the partial matrices  and  is shown
in Figs. 8 and 9. Here, in the range of periods í = 100–
10000 s, the pseudotopographies of the matrices

] and  obtained in the model
{P1P2} with (49) and (53) are close to the pseudotopog-

raphies of the matrices  and 
obtained in the models {P1} and {P2} by direct calcula-
tions. This evidences a sufficient accuracy of the
decomposition. We conclude that the pseudotopogra-
phy of the norm of each of the partial matrices

 and  reflects the dominating
effect of the corresponding anomaly-forming structure.
Thus, the inversion of the 3D matrices [Sτ] and [Sz] may
be reduced to independent inversions of the 2D matri-
ces  and 

An analogous result may be obtained directly with
the Schmucker induction arrows ReSz and ImSz, which

Sτ'[ ] Sτ''[ ],

Sτ'[ ] A– Bk+

k2 1–
--------------------- 0 0

0 1
,=

Sτ''[ ] Ak B–

k2 1–
---------------- β ''2sin β '' β ''cossin–

β '' β ''cossin– β ''2cos
.=

Szx Szy Sz''– β ''sin Sz' Sz'' β ''cos+ ,=

Sz' Sz'':

Sz'' β ''sin Szx,–=

Sz' Sz'' β ''cos+ Szy.=

Sz' Szx β ''cot Szy, Sz''+ Szx/ β ''.sin–= =

Sz'[ ] 0 Szx β ''cot Szy+ ,=

Sz''[ ] Szx Szx β ''cot– ,=

S̃z[ ]

Sτ'[ ], Sτ''[ ] Sz'[ ], Sz''[ ]

Sτ'[ ], Sτ''[ ] Sz'[ ], Sz''[ ],

Sτ'[ ], Sτ''[ ] Sz'[ ], Sz''[ ]

Sτ'[ ], Sτ''[ ] Sz'[ ], Sz''[ ]

Sτ'[ ], Sτ''[ ] Sz'[ ], Sz''[ ].

allow one to determine the strike of the anomaly-form-
ing structures P1 and P2 in favorable frequency inter-
vals. If β'' = α'' – α' is given, the initial real and imagi-
nary induction arrows ReSz and ImSz decompose into
the sum of the partial induction arrows Re Im  and
Re Im  directed along the y and y'' axes, i.e., per-
pendicularly to the strike of the structures P1 and P2.
According to (51) and (52),

(54)

where

 

This method may be effective in the case of an irreg-
ular observation network hampering the construction of
the magnetovariational pseudotopographies.

It is noteworthy that the decomposition of the Sch-
mucker horizontal magnetic tensor in the second prob-
lem is reduced to the solution of an overdetermined sys-
tem of equations, which allows one to incorporate the
angles of strike of the structures P1 and P2 into the set
of unknowns. This complicates the problem solution
(the equations become nonlinear), but may increase its
efficiency.

The third problem is to separate local and regional
magnetovariational effects. The methods of decompo-
sition of the magnetovariational response functions [Sτ]
and [Sz] considered in the second problem can be
adapted easily to the third problem, whose goal is to
separate effects of local and regional structures. Ideas
developed in [Zhang et al., 1993; Ritter and Banks,
1998] underlie the third magnetovariational problem.

In order to demonstrate the third problem, we will
consider the model proposed by Ledo [2006]. The Ledo
model contains a regional 2D high-resistance structure
PR imitating a bulge in the crystalline basement and a
local 3D low-resistance structure PL imitating a graph-
itization zone (Fig. 10). The local structure PL extends
horizontally for a finite length and admits a quasi-2D
approximation. The angles of strike of the structures PR
and PL are equal, respectively, to βR = 0 and βL = 135°.
In the Ledo-I model, the local structure PL pierces the
basement bulge PR and penetrates into the sedimentary
series, while, in the Ledo-II model, this structure is
located in the sedimentary series far from the basement
bulge PR.

Sz' , Sz'

Sz'', Sz'',

ReSz ReSz' ReSz'',+=

ImSz ImSz' ImSz'',+=

ReSz ReSzx1x ReSzy1y,+=

ImSz ImSzx1x ImSzy1y,+=

ReSz' ReSzx β ''cot ReSzy+( )1y ReSz'1y,= =

ImSz' ImSzx β ''cot ImSzy+( )1y ImSz'1y,= =

ReSz'' ReSzx1x ReSzx β ''1ycot– ReSz''1y'',= =

ImSz'' ImSzx1x ImSzx β ''1ycot– ImSz''1y''.= =
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Initial matrix    [Sτ] Decomposition into partial matrices [Sτ], [Sτ]' ''
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Fig. 8. The decomposition of the initial matrix [Sτ] of the Schmucker horizontal magnetic tensor into two partial matrices  and

 in the model {P1P2} shown in Fig. 5.
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Initial matrix [Sz] Decomposition into partial matrices [Sz] and [Sz]' ''
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Fig. 9. The decomposition of the initial matrix [Sz] of the Schmucker tipper into two partial matrices  and  in the model
{P1P2} shown in Fig. 5.

Sz'[ ] Sz''[ ]

In the case of the Ledo model, the third problem is
solved according to the same scheme and in the same
succession as the second problem. The angles of strike

βR, βL are determined using the pseudotopographies of
the norms of the Schmucker horizontal magnetic tensor
and the Schmucker tipper or using the Schmucker
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induction arrows. The decomposition of the magnetic
tensor and the tipper is performed by formulas (45)–
(49) and (50)–(53). Formula (54) is used for the decom-
position of the induction arrows. The following change
of superscripts is performed in all these formulas:

β''  βL.

The separation of the local and regional effects in
the Ledo-I model is shown in Figs. 11 and 12. Here, the
local structure PL is in contact with the regional struc-
ture PR. It seems evident that, in this case, the structures
should interact more or less strongly, violating the prin-
ciple of independent superposition. The accuracy of
decomposition of the magnetovariational response
functions should decrease.

Figure 11 illustrates the decomposition of the Sch-
mucker horizontal magnetic tensor [Sτ] performed by
formulas (46)–(49) for periods T = 1, 10, and 100 s. We
will compare the pseudotopographies of the norms of

the partial matrices  and  obtained by the
decomposition of the initial matrix [Sτ] with those of

the norms of the partial matrices  and 
obtained via direct calculations in the models PR and PL.
In the entire range of periods, traces of the local struc-
ture recognizable on the pseudotopography of the
regional matrix  are not found on the pseudoto-

pography of the matrix  At the same time, the

Sτ' Sτ
R, Sτ'' Sτ

L, Sz' Sz
R, Sz'' Sz

L,

Sτ
R[ ] Sτ

L[ ]

Sτ
R[ ] Sτ

L[ ],

Sτ
R[ ]

Sτ
R[ ].

pseudotopography of the local matrix  virtually

duplicates the pseudotopography of the matrix 
Note that the defects of the matrix  are easily elim-
inated by smoothing the components of the tensor 
on profiles directed along the regional strike.

We now pass to Fig. 12, illustrating the decomposi-
tion of the Schmucker tipper performed by formulas
(50)–(53) for periods T = 1, 10, and 100 s. Let us com-
pare the pseudotopography of the norms of the partial

matrices  and  obtained through decomposi-
tion of the initial matrix [Sz] with those of the norms of

the matrices  and  obtained through direct
calculations in the models PR and PL. We see that the
decomposition accuracy becomes considerably worse.
The traces of the local structure distorting the pseudot-
opography of the regional matrix  become sharper,
while the side closing clearly seen in the pseudotopog-
raphy of the matrix  at T = 1 s is not found in the

pseudotopography of the local matrix  

The separation of the local and regional effects in
the Ledo-II model is shown in Figs. 13 and 14. Here,
the local structure PL is far from the regional structure
PR. In this case, the interaction between the local and
regional structures weakens and the principle of inde-
pendent superposition ensures a sufficiently high accu-
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Initial matrix [Sτ] Decomposition into partial matrices [Sτ ] and [Sτ]R

||Sτ ||R ||Sτ ||L

||Sτ||

T = 1 s

0.2

0
20

0

–20 –20

0

20

T = 10 s

T = 100 s

||Sτ ||L–

||Sτ||
||Sτ ||L

||Sτ||

L

||Sτ ||R

||Sτ ||R–

||Sτ ||L–||Sτ ||R–

||Sτ ||R– ||Sτ ||L–

||Sτ ||L||Sτ ||R

0.1
0

20
0

–20 –20

0

20

0.1
0

20
0

–20
–20

0

20

0.2

0
20

0

–20 –20

0

20

0.1
0

20
0

–20 –20

0

20

0.2

0
20

0
–20 –20

0

20

0.2

0
20

0
–20

–20

0

20

0.2

0
20

0
–20

–20

0

20

0.1
0

20
0

–20
–20

0

20

0.2

0
20

0

–20 –20

0

20

0.2

0
20

0
–20 –20

0

20

0.2

0
20

0
–20 –20

0

20

0.2

0
20

0
–20

–20

0
20

0.2

0
20

0
–20 –20

0

20

0.2

0
20

0
–20 –20

0

20

0.4

0.4

0.4

Fig. 11. The decomposition of the initial matrix [Sτ] of the Schmucker horizontal magnetic tensor into two partial matrices 

and  in the Ledo-I model {PRPL} shown in Fig. 10.
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Initial matrix [Sz] Decomposition into partial matrices [Sz] and [Sz]R
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Initial matrix [Sτ] Decomposition into partial matrices [Sτ ] and [Sτ]R
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Fig. 13. The decomposition of the initial matrix [Sτ] of the Schmucker horizontal magnetic tensor into two partial matrices 

and  in the Ledo-II model {PRPL} shown in Fig. 10.
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Initial matrix [Sz] Decomposition into partial matrices [Sz ] and [Sz]
R
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Fig. 14. The   decomposition   of  the initial matrix [Sz] of the Schmucker tipper into two partial matrices  and  in the

Ledo-II model {PRPL} shown in Fig. 10.
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racy of decomposition of the horizontal magnetic ten-
sor [Sτ] and tipper [Sz].

Generalizing the results of the analysis of the Ledo-
I and Ledo-II models, we note that local and regional
magnetovariational effects are best separated using the
Schmucker magnetic tensor. If the target of magnetova-
riational sounding is a horizontally extended local
structure, decomposition of the horizontal magnetic
tensor allows one to eliminate the effects of 2D struc-
tures of the regional background.

Note that, in the first, second, and third problems,
we may use relations (21) and join the decompositions
of the horizontal magnetic tensor [Sτ] and tipper [Sz] to
the decompositions of the horizontal magnetic tensor
[M] and tipper [W].

CONCLUSIONS

From the results obtained in this paper, we conclude
that magnetovariational sounding opens new
approaches to the interpretation of geoelectric data.
This path allows one to increase the sounding resolu-
tion, and inversions focused on certain structures
become possible.
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