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Summary: The problem of revealing the electrical conductivity profile of a layered earth from
geomagnetic induction data is solved using a modified version of the method of GEL’FAND and
LeviTan, originally devised for the solution of inverse Sturm-Liouville problems. The inver-
sion procedure is applied to empirical dafa, which previously have been interpreted by a differ-
ent method. — Since extensive use is made of the analytic properties of the response function
in the complex frequency plane, these properties and related features of the response function
are discussed at some length in an introductory section. Further it is shown that the inverse
problem for a spherical earth can be transformed to the simpler problem for a flat earth and a
uniform inducing field.

Zusammenfassung: Fiir die Umkehraufgabe der erdmagnstischen Tiefensondierung fiir hori-
zontal geschichtete Leiter wird cine exakte Losung angegeben, Es handelt sich dabei um eine
modifizierte Fassung der Methode von GeL’FanD und LEviTan zur Umkehrung Sturm-Liou-
villescher Eigenwertaufgaben. Als Anwendungsbeispiel wird das Umkehrverfahren auf experi-
mentelle Daten angewendet, die zuvor bereits nach einer anderen Methode interpretiert wor-
den waren. — Das Umkechrverfahren macht wesenflich von den analytischen Eigenschaften
der Beobachtungsdaten in der komplexen Frequenzebene Gebrauch. Deshalb werden in einem
einleitenden Abschnitt ausfiihrlich diese Eigenscheften und ihre Konsequenzen behandelt,
Ferner wird gezeigt, da sich die Umkehranfgabe fiir eine kugelf6rmige Erde aof den cin-
facheren Fall giner ebenen Erde mit einem homogenen induzierenden Feld reduzieren 14B8t.

1. Intreduction

Geomagnetic induction data are generally interprefed by assuming an electrical
conductivity mode! with several free parameters, which in turn are adjusted to the
data either by curve fitting or by analytic methods, However, if the conductivity
changes with depth only, direct inversion without recourse to medel calculations
becomes possible. This inverse problem has been solved first by SiEsErT [1964], and
in a slightly modified version by Ceragv [1966], both using the WBK-approximation.
The shortcoming of their method is that the whole conductivity profile is recovered
only from the asymptotic behaviour of the response function for high frequencies.
Therefore highly precise data atre required in this frequency range, whereas the valuable
information of the low frequency pari is not exhaunsted. However, by giving an algo-
_— \
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rithm it was implicitly shown that the conductivity distribution can be inferred
uniquely from the response function. The question of uniqueness has been freated
explicifly by Ticuonov [1965], and more recently by Bamey [1970], who formulated
an integral constraint in the frequency domain, from which the conductivity profile
can be deduced uniguely.

The present paper is concerned with an alternative solution of the inverse problem,
which is essentially a moedified version of the method of GeL'ranND & LeviTAN
[1951a, b] for the solution of the inverse Sturm-Liouville problem. The Gel’fand-
Levitan procedure has found much attention in connection with the inverse problem
in quantum-mechanical scattering theory (cf. the review article of FAppeev [1963]),
and has guite recently been applied by Joanson & SMyrie [1971] to reveal the con-
ductivily distribution in the lower mantle, assuming a knowiedge of the time constants,
which govern the diffusion of magneiic fields from the core-mantle boundary upwards.
Although JoamsoN & SMYLIE and the present author refer to the same sources, their
approaches differ significantly both in the information assumed and in the method.

At a first glance a direct inversion procedure appears to be very attractive, since it
is less biased by preconceived models than parameter adjustment techniques. Tn
practice, however, it loses much of its appeal by the fact that the inverse problem of
geomagnetic induction belongs to the large class of improperly posed problems
[STrRACHDV 1969, ANDERSSEN 1970], where small changes in the data can cause large
changes in the results. Due to the inherent scatter of the data a result obtained by
direct inversion represents just one element of the set of feasible solutions, and cannot
deserve more attention than any other feasible solution obtained by different means.
Often approximate methods are fully adequate to the quality of the data. A quite
simple but powerful approximate solution of this kind has been proposed by
ScumuckEr [1970, p. 69].

Despite the proviso mentioned above, a treatment of the inverse problem of geo-
magnetic induction appears to be justified by the fact that it is one of the rare geo-
physical inverse problems, which allows an exact solution. Moreover, in the course of
this study some general properties of the response function can be derived, which are
of interest for any inversion procedure. Since these results are not well known (al-
though the underlying theory is essentially the theory of ordinary linear second order
differential equations), Secs. 2 and 3 contain a detailed investigation of these prop-
erties. The inversion procedure itself is described in Secs. 4 and 5, and is illustrated
by examples in Secs, 6 and 7.

2. Properties of the response fumetion

For simplicity, only a flat earth and a uniform inducing magnetic field are con-
sidered here. Effects of a non-uniform magnetic field and the curvature of the earth
are afterwards taken info account by simple transformations (cf. Sec. 3). As a basic
limitation the (isotropic) electrical conductivity o is assumed to vary with depth z only
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(z positive downwards). Neglecting the displacement current, assuming vacuum
permeability and a harmonic time factor e throughout, the complex amplitudes
E(z, w) and H (z, w) of the horizontal electric and magnetic field (in y and x di-
rection, respectively) are interconnected by

H'(z,)=0(z) E(z,m), (2.1)
E'(z, wy=iou, H(z, o), (2.2)

SI-units being used. The prime always denotes differentiation with respect to the
(first) argument, Elimination of H leads to

E"(z, w)=iwp,c(z) E(z, m). (2.3)
The response function ¢ (w) is defined as

EQ,0)  E(0w)
F0,0)  iougHO,o0)

c(w)=— (2.4)

Its relation to the apparent resistivity g, of magnetotellurics [CaGNIARD 1953] is

g (@)=aptqle (). (2.5)

Let zy be the greatest depth to which the electromagnetic field can penetrate, i. e.

m {CO, if there is no perfect conductor (2'6)

else the depth of the perfect conductor’
Then the problem to be solved may be stated as follows:
Given ¢ () in 0 << w << o0, wanted o (2) in 0 < z << zZy,.

In principle the necessary information can be reduced, since ¢ (@) turns out to be an
analytic function, which is completely specified by its values in an arbitrary small
interval,

Some properties of the response function ¢ (w) are now listed for later reference.

a) Analytic properties in the complex frequency plane

The response function ¢ {(w) is zero-free and analytic in the whele w-plane except
on the positive imaginary axis. Here it has either an infinite series of interlacing simple
poles and zeros, or a finite number (which may be null) of poles and zeros and two
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branch points (one at = +{w), according whether the integral

lim zj\/?t)dt 2.7

29zm O

converges or not. The same applies to the normalized electric field E (z, w)/E (0, w).
A possible perfect conductor at z=z,, is not to be included in (2.7).

The proofs follow from general theorems on second order linear differential
equations (e.g. TrrcHMArRSH 1962) and are only indicated here. Lef wy (z, ) and
wg {z, w) be two solutions of (2.3) with the initial conditions

w (0, )=1, w0,0)=0, w,(0,w)=0, w,(0,w)=1. (2.8)
Since their Wronskian
wy(z2)wh(2)—w,y(2)wi(z)=1 (2.9

does not vanish, the solutions are linearly independent for all z, and the actual
solution F is a linear combination of them:

E(z, 0)/E(0,)=w, (z,m)—w, (z, @)/c (w). (2.10)

Away from the positive imaginary w-axis E (zm, @) is a constant, which differs from
zero only, if o (z) decreases for z-—+ co faster than z 2. Since in this case wj (z, w)
tends to infinity, Eq. (2.10) yvields for any conductivity profile

e(@)=lim Y22 (2.11)

Ty, Wy (27 Cl))
The nature of the singularities of ¢ {(w)} can be investigated as follows, The solutions
wy and wg are entire functions of w, i.e. they are free of singularities in the finite
w-plane (e.g. [TrrcAMARCH 1962], p. 6). Multiply the differential equation (2.3} for
E=wy, m=1, 2, by the complex-conjugate solution w*,, integrate over z, and obtain
after integration by parts (on using (2.8))

wi{(z)w,(z)= j'{lw,’,,(t)[z+ ioper (1) |wa (02} de, m=1,2. (2.12)
0

Hence, all zeros of wy and wy lie on the positive imaginary w-axis, where they consti-
tute the poles and zeros of the meéromorphic function

c(z, 0}=w,(z, w){w, (z, ®), (2.13)
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which is the response function for the case that the conductivity at depths greater than
z is replaced by a perfect conductor at depth z. On the positive imaginary axis put
w=id, 2>0. Denote the n-th zero of wy (z, i) by Amn and OwpfGA by wWy,. Then
multiply on one hand (2.3) for E=w,,, by Wy, differentiate on the other hand (2.3)
with respect to A and multiply by wyy, integrate the difference over z, and obtain after
integration by parts (on using (2.8) and the fact that wyy, {z, i) is real)

wm (29 i)"um) : w}’!l (Za I.’:"m'n) = _[ HoC (I) W,::; (t’ i)"nm) dt = 0 3
4]

or in virtue of (2.9)
Wi (2,141, )/wa (2, 12,0 <0, iy (2,140 w, (2,id;,)=>0. (2.14)

Since Wi (2, iAmn) does not vanish, the zeros are simple. Further it is easily deduced
from (2.14) that between two successive zeros of wy there must be an odd number of
zeros of wa, and vice versa. Hence, the zeros interlace.

The distance A, between two successive zeros of wy or we is for large »# asymptoti-
cally given by

AL, =2n[n/i(2)]?, J(z)=;f\/',uoa(t)dt

(e.g. Morse & FrsueacH 1953, p. 739). Therefore, the density of poles and zeros
increases when z is enhanced, and the analytic behaviour of

c{w)=lim c(z, w) {2.15)

==t zm

depends on the behaviour of J(z) for z— zg. If J(z) remains finite, there is an
infinite series of poles and zeros; if J (2) diverges the isolated poles and zeros beyond
a certain limit point merge into a branch cut from that point to w=+icc, whereas
below the lower branch point a finite number of poles and zeros may subsist. — The
analytic properties of E (z, w)/E (0, w) follow from the properties of ¢ (w) and (2.10).

Poles and branch cut of ¢ (&) define the discrete and continuous spectrum of decay
constants of freely decaying horizontally uniform current systems within the con-
ductor. This is a consequence of (2,4) and the fact that the associated magnetic field,
which cannot be observed outside the conductor [Pricg 19501, has to vanish at z=0.

Twao examples will Hllustrate the preceding resulis. First consider the uniform half-
space with o (z)=aq. Let

k=\fiwpes, .
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Then wi=cosh &z, wa=k—1sinh kz, both being entire functions of w, since their
power series representations contain only ¢ven powers of k. The poles and zeros of
¢ (z, )=k Ltanh &z lie at

. 2 ; 2
— 4
wl,,=—L(2n ! —n—) and w,,= L (nﬂ) , n=1,2..
Uolq 2z HoOg\ Z

For z— oo they cluster at w= +/0, which gets a branch point of ¢=%-1. The other
branch point is w=7co.

Next consider the conductivity profile

a{z)=06o{1-2bz+(b*—a*z%}7%, 4>0 (2.16)

treated by WemeLT {1970, p. 30]. For b =» 0 there is a monotone increase of o, getting
infinite at zy= 1{(a+ &), and

c(@)=(b+/a* kD), k=.fiop,o, (2.17)

The singularities of ¢ are two branch points at @ = ia%frpopand w=7co, For —a<h <0
the conductivity first decreases to a minimum, and then increases to infinity, Again
¢ is given by (2.17), but now an additional pole at =1 {a®— b%)[upoy occurs. Finally
let b« —q. Then there is a monotone decrease of conductivity, J {z) remains finite
for z— o, and

c(@)=[b—./a’ +k* coth {\/1 + k*/a*arccoth (b/a)}] "

has an infinite series of poles and zeros (but no branch points!).

In Sec. 5 and Appendix A a representation of the response function in terms of its
singularities is required. If J (z;,) is finite, ¢ () is a meromorphic function with simple
poles at w =i, and permits by the Mittag-Leffler theorem (e.g. MoRSE & FesHpACH
1953, p. 383) an expansion in partial fractions:

¢(w)= Z 31 s 4,0, 2,,>0. (2.18)
This representation is justified due to

ap= lim lim (’liu"' iw)c (Z (IJ)— — Wz (Zrm Ialn)jwl (zm! 1’11::)> 0

T 0 iAay
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{on using (2.14) and (2.15Y), and A1, =0 #2), a,=0 (1) for n— w0 (cf. Morse & Fesu-
BACH 1953, p. 739). In the general case (2.18) must be replaced by

© g () dl

c(m)=0 Atiw

, a()=0, (2.19)

where a () is & generalized function to include both the discrete and the continuous
part of the spectrum. (Alternatively Stieltjes integral notation would be appropriate.)
The non-decreasing function fa (%) 42 is known as the spectral function.

b) Symmetry relation for ¢ (w)
¢ {w) satisfies

e(—oM=c*(o), (2.20)

i.e. it takes comjugate values ai two points symmetric to the axis of imaginaries.
Eq. (2.20) follows with (2.11) from the fact that w#,, (z, @) and wy, (z, —w*), m=1, 2,
satisfy the same differential equations and initial conditions. Hence, they are identical.

¢) Limiting values for large and small frequencies

For large frequencies

c(w)=k_k#%a’(0)/a(0)k_2+0(k_3), w—c0, kX=ionuo(0), (2.21)

which may be obtained by a WBK-approximation (e.g. KAMKE 1959, p. 138, SIEBERT
1964), and for small frequencies

lim ¢{w)=z,,, (2.22)

w—=0
following from (2.11) with w1 =1, wag=z.

d} Dispersion relations

Because of the analytic properties of ¢ (@), its real and imaginary pari are not
independent functions of frequency. Let wy be a point in the upper w-plane and C be
a closed contour consisting of the real axis and a large semicircle in the lower half-
plane. Then

1 e(@w)do
i £ o' —wy

0,
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since the integrand is analytic in C. Due to (2.21) the large semicircle does not con-
tribute, and the contour can be confined to the real axis., Here put w'=x and let
wp=w+/c {w real, ¢ > 0) tend to the real axis, Then

1P e(x)dx 1 "Pe(x)dx
O_EETO;IE_Lxuwﬁie_c(w){_ﬁ_j; x—w’ (2.23)
where
. e
o mapre U

has been used. f denotes the Cauchy principal value. Let for real frequencies
c()=glw)—-ih(w), (2.24)

where in virtue of (2.20) g (—w)=g (w), A (—w)= —h (w). Hence, a separation of
(2.23) in its real and imaginary part yields

_1PR()dx 2 xh(x)dx

n _Jcm X—@w n (i,: xr—w?’ (2.253)

g(w)

h ()= _%Tmz _27op()dx

2o x—w ny X — (2.25b)

Relations of this kind, occurring in many branches of physics, are well known as
dispersion relations. They are a consequence of the causality requirement (e. g. LANDAU
& LIFscHITZ 1966/67, v. 3 § 129, v, 5 § 125, v. 8 § 62 and 67; BaiLEy 1970; WEDELT
1970, p. 23). Relations corresponding to (2.25a, b) also exist for modulus and phase
of ¢ (w). Since ¢ is free of zeros in the lower half-plane, the function

log {/i®p107 (0) ¢ (&)}

is analytic there and vanishes for [co|—> > duee to (2.21), Put
¢(@)=le(w)|e” ¥ (2.26)

and assume w > 0. Then the relation corresponding to (2.25b) is

W)=~ 2 Flog (oo @) le () r oy,

.
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or introducing the apparent resistivity gq (o) by (2.5):

v =52 Flogla.Wleod 7z (227)

where gp=1/c (0), By (2.27) the phase of experimental data can be deduced from the
apparent resistivity, which is often better accessible. There exists a sirnple approximate
version of (2.27). Integration by parts yields

n 1 Tdlogo,(x) w—Xx
A CASAEN dx=
(@) 4 2my dx lo w+x *
_L"“dlogg,,(x)' - dj
2my dlogx wt+x| x’

or since x1log (e —x)/(w +x)| almost behaves like a d-function
w(T)~-{1+dlog e, (T)/dlog T}, (2.28)

where T is the period, and the resuit

dx 14 1—¢t\ds n’

Ea m(m)? 3

has been applied. Since double-logarithmic plots of gg (7"} are used, a first approxi-
mation of the phase can immediately be obtained from the slope of the sounding
curve, Fig. 1 gives two examples.

jloglw_x
0

@+ X

It should be noted that relations corresponding to (2.25a, b} exist for all realizable
linear systems, whereas relations between modultus and phase can be given only for
the restricted class of transfer functions, which are free of zeros in the lower frequency
plane (minimal phase systems).

e) Inequalities

Let @ > 0 and define an operator D by

Df=wdf/do=df{dlogw=—df{dlogT. (2.29)
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Fig. 1: Two examples for the determination of the phase from the g4-curve using the approxi-
mation (2.28). The angle ¢ =90°—w is the phase angle between eleciric and magnetic
field,

Then (recalling the definition (2.24)) the following inequalities apply:

g=>0, h=0, (2.30a,b)
Dg=0, {2.31)
0<—Dle=]e, {(2.32a,b)
[De|<h, |c+Dcl=g, (2.33a,b)

iD%|<h, le+2Dc+D%|<g. (2.34a,b)
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Alternatively these constraints can be expressed in terms of apparent resistivity oq

(cf. (2.5)) and phase p (cf. (2.26)). For example (2.30a, b}, (2.32a, b), (2.33a, b) then
read: :

0<p=<=nf2, (2.30a,b)’
_Qaé}jgnsgas (2.323.,]3)’
i— (1-Dg,fe.)*+Dy)* <sin’y, (2.33ay
(14 Dg o)+ (D <cos’. (2335

Hence, (2.33) implies (2.32). (The quantity —Dgg/¢s is the slope of the sounding
curve gy (T in a double-logarithmic plot.)

The proofs of (2.30)—(2.34) follow almost immediately from the representation
(2.19). Together with additional constraints they are given in Appendix A. If experi-
mental data do not fit these inequalitics, some of the underlying assumptions on
conductivity and external field are definitely wrong. In this case we are able to compute
a set of “‘corrected™ data, which satisfy the inequalities thereby deviating least (in a
given norm) from the original data. This leads to a problem in convex programming,
which is easily solved by the cutting-pfane method (e.g. CorrAaTz & WETTERLING
1971, p. 124). An example is given in Fig. 2. The original data, response values for
the first four Sq-harmonics, were obtained by SCEMUCKER [1971, private communica-
tion] as an average for South East Europe. — Derivatives were determined from the

T T 3 —rt ]
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Fig. 2: An example for the optimal correction of experimental data, which do not satisfy the
constraints (2,33 a, b) everywhere. Input data and corrected data are connected by full
and dashed lines, respectively. CPD means “cycles per day”.
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slope of a parabola through three successive points, and the least squares norm for
the relative deviations has been used. Any interpretation of the original data g and h
can give o better fit than that indicated by the broken lines. The application of the
above constraints, which were obtained for a flat earth and a uniform external field,
to problems with spherical symmetry is justified due to the resuolts of Sec. 3.

[) Computation of the response function

When the conductivity is recovered by any inversion scheme, the response function
¢ {w) has to be computed for check with the input data. This can be done by (2.11),
where wy and ws are obtained by numerical integration of (2.3) with the initial values
from (2.8). The integration has to proceed downward until the ratio wa/w; tends to a
limit. For real frequencies the moduli of w3 and wa steadily increase with depth, since

& (z @) =2Re (Wi (z.0)¥i(z.0)), m=12

is positive in virtue of (2.12). Let f/=wa/w1. Then /' =172, using (2.9). Hence, (2.11)
can be replaced by

¢ ()= j" dz

I viGe (2.35)

Thus only wi is required. An alternative method has been proposed by EckarpT
[1568], who reduced (2.3) to a Riccati equation, which was solved by upward integra-
tion with an arbitrary initial value at a sufficiently deep starting point, The fastest
method, however, is the approximation of the conductivity profile by a set of homo-
geneous layers, for which ¢ (&) can be computed by well-known recurrence formulae.

g) Physical meaning of the real part of ¢ {w)

The real part g () of the response function admits a simple physical interpretation.
Let

j(z,w)=0(z) E(z, w) (2.36)
be the density of the induced currents. Then

Zm Zm

Ji(z,0)dz=H(0,®), | zj(z,m)dz=—;E(0,a}),
0 0 Iy

which is easily verified by partial integration on using (2.36}, (2.1), and (2.2). Hence,
taking the phase of # (0, w) as reference phase and applying (2.4),

g(w}=z£"zRe {j(z, w)}dz] (j} Re{j(z, )} dz.
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Thus, in a mechanical analogy, the positive length g () can be interpreted as the
depth of the “‘centre of gravity™ of the in-phase induced current system. Tn accordance
with well established ideas regarding the induction process, g’ (@) < 0 (Eq. 2.31)
shows that the mean depth of the current system increases if the frequency is diminish-
ed. Limiting values are g (e2)=0 and g ({@)=zn (cf. (2.21) and (2.22)). The present
interpretation of g (w) is basic for the inversion procedure of Scumucker [1970, p. 69].

3. Arbifrary external field and spherical earth

So far only a uniform inducing field and a flat earth have been considered. Retaining
the assumption that the conductivity shall vary with depth only, the electric field
vector E remains a tangential solenoidal vector for any solencidal inducing field and
for both a flat and a spherical earth [LAHIRI & Price 1939, Prick 1950, YUKUTAKE
1967, EckarDpT 1968]. E satisfies

AE (1, 1= o o E (1), 3.1)

where r is the vector of position. Its representation as a superposition of the particular
solutions of (3.1) is

a) for a flat earth:

+ o
E(r,0)=][[a(x w)w(z,zx, w)xgrad{'® " Y dy, dx,dw,
(3.2a)
b) for a spherical earth:
=] +n .
E(r, )= j do ¥ Y al(o)w, ()P xgrad {Py(cosf)e' ™ 0} (3.21b)
n=1m=-—n

Here x=:,% 1+, is the horizontal wave vector, >:=]/m the wave number, & the
colatitude, @ the longitude, P™, the associated Legendre function, and £, §, 2, # unit
vectors in the direction of increasing x, ¥, z, . The functions a (%, @) and a™y (w)
represent the spectral density of the inducing field in the space and time domain. The
response of the conductor to the corresponding harmonics is described by w (z, w, %)
and wy, (r, w), which satisfy

w" (2, 0, x)= {2 + iwpeo (2)} w(z, @, x) (3.3a)
and

! () ) = {n(n+1)

+ iepigo (1 )} w, (1, m). (3.3b)
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‘The response functions

w0050 4d ()= 4 B®)

C(w)z _W’ (0= w, %) W:, (R, (J'J)

(3.4a,b)

(R being the radius of the earth) can be obtained after harmonic analysis— both in
space and time—of the electromagnetic field at the surface of the earth on three
different ways:

1. from the ratio of orthogonal tangential electric and magnetic field components,
2. from the ratio of normal and tangential magnetic field components,
3. from the ratio of mnternal and external parts of the magnetic field.

Moreover, there is the possibility to determine the response function from the ratio
of the vertical gradient of a horizontal magnetic ficld component just beneath the
surface to the component at the surface [Mever 1966

The inverse problem is reduced to the inverse problem for a flat earth and a uniform
external field by the transformations

. 1 N gfu_Qn-I-lg

Z=x " tanhxz z R(2n+1)f(g)’
W(Z, )=w(z, w)/coshxz W{Z, o)=w,(r, o)f (9, (3.5a,b)
6(2)=0(z)-cosh® (xz) (B =a() (),

where p=r/R and f(g)={(n+1) o=+ ng®t1}}2 n+1). They tl'a.nsform (3.2a, b) into
W' (2, 0)=iwp,{(E)W(Z, ),

which is (2.3) for a flat earth and a uniform external field, and do not affect the
response functions, i.e,

—w(0, )W (0, w)=—w(0, w)w (0, w)=w, (R, ®)/w. (R, w).

Hence, any ¢ (w) produced by an external field with wave number » or spherical
harmonic of degree # (where = and » are assumed to be independent of w) can first
be interpreted by a uniform field and a flat earth, and the resnlting profile & (£) is then
transformed into the true distribution by

o(z)=cosh™* %z & (" tanh xz), (3.6a)

NP (o Bl S
a(=f"*(o) J(Rm). (3.6b)
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The physical basis of the preceding transformations is the fact that damping by a
perfect conductor and geometrical attenuation are equivalent, enter into the response
function in the same way, and cannot be separated without additional information.
Consider for illustration a perfect conductor at z=z,, and an inducing field with wave
number x. Then ¢ (w)=2x 1 tanh »xz,, = cg—const., for the solutions wi and ws of
(3.3a) are cosh =z and »~1 sinh %z, Hence, given a response function ¢ (w)=cg, it can
be interpreted by a perfect conductor at z, ="t tanh™' zcy with 0 <2 < 1/ce. In
the Hmit %#=0, ¢ (@) is explained by a uniform external field and a perfect conductor
at zy =cp, whereas in the limit 2=1/¢p there is only geometrical attenuation and no
perfect conductor.

Consequently, the profile & (Z) for a uniform field always includes a perfect con-
ductor, which is lowered, when passing by (3.6a) to the profile & (2), thereby replacing
electromagnetic damping fully or in part by geometrical damping. Interpretation of a
response function ¢ () by external fields with wave number » or degree s is subject
to the restriction

c(M<x ! or c(O)<Rjn+1), 3.7

a consequence of (3.4a, b) and the fact that the relevant solutions of (3.3a, b) in the
limit w— 0 are given by ¢ *= and »*1 (provided that there is no perfect conductor). —
The transformations (3.5) are special cases of a more general class, which is given in
Appendix B.

4. Solution of the inverse problem

In this section it is shown, how the conductivity profile ¢ (z) can be deduced from
the response function ¢ (w). The adopted procedure is essentially based on the method
of GEL'FAND & LEVITAN [195]1a, b] for the solution of the inverse Sturm-Liouville
problem. The special needs of the inverse geomagnetic induction problem, however,
introduce substantial modifications of the original approach.

Let o () have discontinuities only in its derivatives. Then by the substitutions

w—k=fiop,o(0), 4.1
2= (o Ol )1, 4.2)
E(z,0)=f (x, k)=3/a (2){s (D) E(z, 0)/E(0, w), (4.3)

o (z}—u(x) =i/ a(z)la(0) {4.4)
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the differential equation (2.3) is transformed into

Fix k) ={k*+V ()} f (x, k), {4.5)
where

V(x)=u"(x)fu{x) (4.6)
The new variabie & has the dimension of 4 reciprocal length. Choose that branch of
(4.1), which maps the upper sheet of the w-plage into the right haif of the k-plane.
Then the positive and negative w-axis is mapped into the bisectors of the first snd

fourth quadrant, respectively. Since ¢ () and E (z, w}/E(0, w) are analytic outside
the positive imaginary w-axis (cf. Sec. 2), the quantities

e(l)=c(w) 4.7

and f'(x, &) are analytic to the right of e imaginary f-axis, With respect to {4.1) the
symmetry relation (2.20) now reads

¢ (k¥)=c*(k), (4.8)

i.e. symmelry about the real k-axis.

Let £+ (x, k) and £ (x, k) be two solutions of {4.5) with initial conditions

FeQB)=1, fi0,k)=u0)+k. (4.9)

These functions can be represented by
+x
fe( )=+ [ A(x,1)e**ds, (4.10)
—X

where 4 is real and independent of k. This representation is justified as follows:
Insert f3, say, into (4.5), integrate the term

2+:vc it _+x d?. o
| A(x,Hedi= ] A(x,t)Pe dr,

occurring at the right-hand side of (4.5), two times by parts, and use the identity

94
ox

G |

= i.\'_ o1

d
—aA(x, +x}.

=t
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The final result is

- d — d
kx kx
e {Z—JA(JC, x)ﬁ I (x)}—l—e *—IA(JC, —x)+

+x aZA aZA ur
+L{W_a_x2—1/(x)i4}e de=0. (4.11)

Since A (x, 1) shali be independent of £, each of the three terms in (4.11) vanishes
separately, The second initial condition of (4.9) yields

A0, O):% u' {0).

Hence, A4 is subject to the conditions

62 2

Shofevina, (412)
Alx, x)=%{u'(0)+'f V(t)dr}, (4.13)
Alx, —x)=%u'(0), (4.14)

which determine A uniquely, if «(x) is given, since the solation of the hyperbolic
equation (4.12), whose characteristics are the lines .v 4 r=const., is completely speci~
fied by its values on a pair of intersecting characteristics [here x—7=0 (4.13) and
x+4=0 (4.14)]. If £ instead of £ is used, the same conditions are obtained., Hence,
the kernels for £ and f- are identical, A4 (x, ) vanishes for |r| > x; its domain of
definition is illustrated in Fig. 3.

The kernel A4 is the link between the data ¢ (k) and the unknown function o (z).
The relation between 4 and ¢ is quite simple. First it is seen from (4.5), (4.6), (4.4),
and {4.9) that in the limit & — 0 the functions # and [y satisfy identical differential
equations and initial ¢conditions. Hence,

w(x)=limf, (x,k)=1+ +ij(x, £ de. (4.15)
k=0 —X
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Al -x} = —u(u)

Fig. 3: Definition of the function A (x, y).

Then in virtue of (4.2) and (4.4) the expression of o (2) in terms of i {x} leads to the
parameter representation

()= (0u(x), {4.16)
z:]:u_z(x)dx. (4.17)
0

A second solution of (4.6) is g (x}=u (x) - z (x) with g (0)=0 and g’ (0)=1. Hence,
the depth z is alternatively determined by

k +x
Z=ii-auf+ (x’zklzuéc)(x ) { + IA(x, t)tdt}/u (x). {4.172)

Eq. (4.17a) has the advantage that only r (x) is needed instead of all values of 1 with
argitments less than x, as in (4.17).

The relation between A4 (x, 1) and ¢ (k) is more complicated and leads to an integral
equation, The representation of f by £ and /- yields

ke (K) £, k) =1 (x, k)= b (k) { fa G, ) +1— (0, )}, (4.18)

where

b(k):%{l—kc(k)}, (4.19)
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and the initial conditions (4.9) and the result
(0, k)=E' (0, w){E (0, ) +u’ (O=—1/c(B)+u (D)

have been applied. Insertion of {4.10) into (4.18) leads to

ke () (e k) —e ™= | A(x, e dr b (k) e )

-X

—b{k) j Al D (e +e ) dt. (4.20)

< x, and integrate over & along the line k=e¢,

Now nwliiply (4.20) by e*?
& > 0, The result is abbreviated as

=1 +1,+1,, (4.21)

where fi to Iy denote the integrals resulting from the four terms of (4.20). Their
values are determined as follows.

Ii: For k— < the asymptotic representation of fis

fx, k)—expl kx+ jV(t)dx+0(k"')}

provided that o (z) is continuous [KAMKE 1959, p. 138]. Hence, the integrand
behaves like exp { —k (x — )}, and because of |y| < x the contour can be closed by
a large semicircle in the right half-plane without affecting the vahie of the integral,
In the interior the integrand is anaiytic. Hence,

1,=0.

Iz: The two-sided Laplace transform

+ oo E+ion
g)= | Ge™dr, G@):QLﬂ, [ gl)edi (4.22)

yields immediately

I,=A(x,y).
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In the sequel the “frequency” function & (k), which is computed from the data, is
replaced by the “position” function

Y} T
SR

gtico

B(x)=% [ bl dk. o (a23)

E= lw
Eqs. (4.19) and (4.8) imply & (k*)=5b* (k). Hence, B (x} is real. Moreover,
B(x)=0 for x<0, (4.24)

since in this case the contour can be closed by a large semicircle in the right half
of the k-plane, and the integral is analytic in its interior. —From (4.19), (2.21),
(4.4), and (4.2} follows

b(k):%u’(O) KOk (4.25)

~for k- oo, Hence;

B(+0)=%u’(0).

Consequently, B is in general discontinuous across x=0. The calculation of B (x}
turns out to be the crucial step in practical applications, Since experimental data
are known only on the bisectors lc:lk| exp (+ inf4) and a deformation of the

.. gontour in (4.23) in direction to the bisectors is not possible, Eq. (4.23) involves

analytic continuation of the data in direction to the singularities on the imaginary

k-axis and in, the left half-plane, which is an unstable process. Practicable methods

I:

are discussed in Sec. 5. — The provisional result is
IS =-B (x + y) 3

since the term containing ¢ *% would give — B {—x +»), which vanishes in virtue
of [y| < x and (4.24).

The convolution theorem for the two-sided Laplace transform
1 &+ e +o

- | e1(R g (k)e” dk= I G (NG (y—nydr

8 ico

(using the notation of (4.22)) yields at once
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4=~ Sx_A(fn_r) {By+0+B(y—-}ds,

since A (x, 1)=0 for |¢| < x.

Hence, (4.21) reads explicitly

AG)=BEAN+ [ A ) BO+D+BO-0}r, i<z, (4.26)

which is a linear integral equation for A (x, ¥). The variable x enters as a parameter
only, the proper variables are y and 7. Eg. (4.26) has to be solved for all x, e.g. by
decomposition into a linear system on using Gauss® integration method. When A4 is
found, the conductivity profile is obtained from (4.15)—(4.17a). - :

Since the splution of the inverse geomagnetic induction problem is known to be
unigue [TicHONOV 1965, BAILEY 1970], the uniqueness of a solution of {(4.26) will not
be proved here.

Finally it should be mentioned that an alternative integral equation could have been
obtained by introducing in (4.18) instead of & (k) the function

o A=ke(®) . _ L e |
J(k)—m with R(x)—ma__[iwr(k)e dk, &>0, (4.27)
leading to
A, Y)=Rx+3)+ | Al R+, (4.28)
-y

which is formally simpler than (4.26). However, the formulation in-terms of B (x) is
preferred here, since the determination of B (x) has computational advantages, as will
become apparent in the next section. Moreover, numerical experiments have shown
that, given exact values of R (x) and B (x), the results obtained from (4.26) were
slightly better than those from (4.28). ‘

So far no physical meaning can be attributed to the somewhat abstract functions A4,
B, and R. Only if the physical sifuation is changed a simple interpretation of Band R
is possible, Consider a non-absorbing elastic medium with wave velocity

v(2)=v0-/a (O)fo (2)

in z =0, where vg is arbitrary, and assume that a unit d-impulse is released at time
=0 at z= +0, propagating downwards. Then the reflected amplitude recorded at
z={0 between ¢ and s+ ds is voR (ver) df or voB (pyt) dr, according whether the wave
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velocity in z < 0 is op or infinite, In the former case there is no reflection at z=0,
whereas in the latter case the impulse is multiply reflected at the surface (reflection
coefficient —1). This is illustrated by the discontinuity model o (z)=ap, 0 < z < 4,
o (z)=01, z > d (which, however, is not tractable by the present inversion procedure,
of. [WeIDELT 1970], p. 66). Then

R(x)=18(x—2d), B(x)=- i (—re)'d(x—2nd),
where i
=1—\/0'm’0'1

-
1+\/00;’°’1

is the reflection coeflicient at z=d.

5. Computation of B (x)

When B (x) is known the solution of the integral equation (4.26) presents almost no
numerical difficulties. The realty difficult step in the solution of the inverse problem is
the computation of B (x) from the data b (k). Two practicable methods are described
in this section ; neither, however, turns out to be completely satisfactory.

a) The inversion of (4.23) yields
b(k)=J B(x)e *dx, (5.1)
0

i.e. a Laplace intepral equation, which can be solved using the values of & (4) on the
ling Jo=] k| ete/* (cf. [TircrmAaRsH 1948], p. 316). Let

s=a-+it

bfa a pew complex variable, multiply (5.1) by &k~#/I" (1 — ), and integrate along the line
k=|k]| ei~/+. The resulting left-hand integral

oeinld

M(s)= i bk dk (5.2)

1
F'{l—s)

exists in 0 < ¢ < 1, since the integrand is O (k%) for k— Oand O (k—¢H) for k— o=,
a consequence of (4.25). In the resulting right-hand integral the order of integration
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can be changed. Hence, on using the result
meir/d4

[ k™™™ dk=x""T(1-5)

0

and the Mellin transform

D:.! .ﬁ 1 F+ion s
ge)=J G(x)x""'dx, Gx)=5 - § gls)x ds,
0 a i
the solution of (5.1) is
] Ftim
B(x)*z— _] M(s)x *ds, (5.3)

where ¢=1/2 is taken, although any value in 0 < ¢ << 1 is permitted. Deforming the
contour in (5.2) to the positivc real axis it is seen that M (%)= M *(s). Hence, B (x}
is real. Eq. (5.2) is suitable for = < 0, since if leads to a dectease e~ =l*l/4 of ¢ for
T — — oo, whereas M (¢ + #7) for T > 0is obtained either from M (¢ + ity =M*(oc—iT)
or by rotating the line of integration through —x=/2.

A comment on (5.2) and (5.3) is necessary. In (3.3) M (s) is required for large imagi-
nary argument z, for which 1/1'(1 —5) in (5.2) is O {exp (= |z|/2}}. This exponential
increase is cancelled in theory by the integral in (5.2), which is O{exp(*ﬂclﬂ /2)}, as
becomes evident, when the line of integration in (5.2) is rotated through +azf4 for
T << 0and —3=x/4 for T > 0, using the fact that b (k) is regular for Re k& > 0. Experi-
mental data—in particular, if they are not very smooth—will not always lead to a
b (k), which is regular for Re k > 0. Hence, in practical applications the possible
exponential increase of M (s5) for |7| -~ o, which prevents the convergence of (5.3),
must be replaced by a suitable decrease. This method is not without bias, bat it enables
the interpretation of data, which do not correspond to any conductivity profile.

b) An alternative approach takes into account particular properties of the response
funetion. Introduce into (2.19) the new variable

#=+/1o0 (0) A

and let g () =mpa (A). Then (2.19) reads

=2 JERL, gz, (5.4)
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For a uniform half-space g () =1, for any other profile g () — 1 for g — . The
expression of B (x) in terms of g (z0) is

1
T

B()= [ (1—g(0} cos s, (5.5)

which is easily verified by solving (5.5) for g (), inserting the result into (5.4), changing
the order of integration, and integrating over g The resulling equation agrees with
(5.1).

When g () is known, the determination of B (x) from (5.5) presents no difficulty.
Hence, the actual problem in the inversion procedure is the solution of the integral
equation (5.4). The decomposition of (5.4) into linear equations leads to a system,
which is badly ill-conditioned. But much of the non-uniqueness of its solution is
removed, when it is taken into account that the unknown function g (x) must be real
and non-negutive. A linear system of equations with linear ¢onstraints can be solved
by quadratic programming technidues, ¢. g by the method of Wolfe [CoLLatz &
WETTERLING 1971]. Quadratic programming has been proved uscful already in the
solution of the inverse problem of geoelectrical sounding [Kunerz & Rocror 1970],
where in fact the same properties of the spectral function are used to advantage
(although in a different context).

6. An analytical example

In this secfion the inversion procedure is summarized by a simple analytical exam-
ple. The general operations are listed on the left-hand side of Table 1, the correspond-
ing outcome is given on the right-hand side. /1 and f; denote the ordinary and modified
Bessel function of the first order, respectively. Tn applications the inversion ends up
with the parameter representation for ¢ and z; in this analytical example after elimi-
nation of the parameter x a closed expression for ¢ (z) can be obtained. The dependence
of the conductivity profile on the wave number x» of the inducing field is given in the
last line. For »#=0 there is a perfect conductor at z=1/a, whereas for the largest wave
number x=a (c¢f. Eq. (3.7)) the conductivity is uniform.—The function g (u) (cf.
FEgs. (5.4) and (5.5)) is

0 for O<p<a and pf\fu’—a® for p>a.

7. Inversion of experimental data

The inversion procedure has been applied to a sounding curve obtained by WiEsE
[1965] at Uckermiinde (53°45° N, 14°04' E). The data cover the broad period range
from 50 sec to 24 h. The disadvantage of the data is the fact that the station is situated
in the region of the BW-siriking North German conductivity anomaly leading to a
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Table 1
c(k) =1/Ja*+k*, a=0
1 1 2

b(k):i{l—fcc(k)} :7{1—74\/0 +k%}
1+s

M ()= mjmb(k)k *dk e HF( 2 )

YT “2\2

)

Res=—; Ims<0; M{)=M*({*) for Ims>0

NIP—‘-

B(x):zi ij’ M(s)x""ds =%J1 {ax)

x>0; B(x)=0 for x<0

Solve the integral equation {4.26)

4Gy =BG+ | A0 {BO+D+BO-D}dl, l<x:

A(x,y) - \/"2” —= (e Y=y
u (x)=l++IxA(x, f)ds =coshax
& (2)fo (0)=u*(x) =cosh* ax

Tu2(0yds
z=4% . =a 'tanhax

{x+ [ A(x, I)tdt}/u (x)
a (z)/o (0) =(1—-a*2")7?
a,(z)=cosh™ #xz-¢ (% ' tanh xz) = (0) {cosh® xz —(a/x)*sinh® %z} >

D<xc(®=<1 O=xja<l .




282 P. WeEmELT -

[ ] L IR T T [T

aml Uckermiinde

EE\'.'

[ L | PR B TP PP | L i
10 [LEle] 1000 10000 sec —= T
‘: T T 1= T T T T T LI R o

Fig. 4: Input data (top) and reconstruction of phase by {2.27) (bottom).

pronounced directivity in the apparent resistivity (cf. Figs. 12 and 13 in the paper of
WIESE), Since the electric field component parallel to the strike is less influenced by the
anomaly than the perpendicular component, the gg-curves computed from Egw and
Hxs will give the most reliable results when interpreted as the sounding curve of a
laterally uniform: earth. The data are shown in Fig. 4 (top).

WIEsE has also determined the phases, which are compared in Fig. 4 (bottom) with
those computed from gq by (2.27). The phase curves are in qualitative agreement, but
there is a systematical phase shift. The reconstructed phase is used for the following
inversion. The results of it are shown in Fig. 5 (centre), where they are compared with
the results of Fourmier [1968], who interpreted the same data by a five-layer model
postulating a low-resistivity layer in the upper mantle as magnetotelluric evidence for
the low-velocity layer of seismic waves. The gg-curves corresponding to the two
resistivity profiles are given at the bottom of Fig. 5.

The present example clearly displays the lack of unigueness of the magneiotelluric
method, when a poor conductor, which is electrodynamically little effective, is embed-
ded between two good conductors. To fit the data the resistivity of the poor conductor
has to be beyond a certain limit, but can be almost arbitrary otherwise. In the present
case the sounding curve essentially fixes only three parameters of the resistivity profile:
The horizontal part for short periods specifies the surface resistivity, the 45-degree

Fig. 5: Results of the inversion compared with those of FOURNIER. ’
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Fig. 6: The dependence of the resistivity profile on the wave number of the external field.
(The depth of the perfect conductor for x=20 is slightly less than 300 km.)

ascent for intermediate periods determines the integrated conductivity = of the surface
layers. Here, approximately,

log g,(T)=log T—log (2 mjyt?). (7.12)
The 45-degree descent for long periods stipulates the depth zy, of a perfect conductor:
log 0,(T)= —log T+log (2myyz2), T 0. (7.1b)

The integrated conductivity as determined from the gg-curve is 1=3.5- 102 QL in
agreement with FournNiER’s result and close to =3.8 - 108 {31 of the continuous
model (integrated as far as the resistivity maximum).

Finally the dependence of the resistivity profile on the wave number » {cf. Sec. 3)
is illustrated in Fig. 6. There is an appreciable influence only, if 1/ is slightly greater
than z; = 300 km, corresponding to a wave length of approximately 2000 k. The
natural inducing ficlds probably have a much greater wave length [ScrMUcKER 1970,
p. 921
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8. Conclusion

The procedure given in this paper is a practicable way to solve the inverse problem
of geomagnetic induction. The results of the Previous section, however, cast serious
doubts on the usefu]ness of this method. Tt just results a smooth resistivity curve com-
patible'with the data whlch may be far from other feasible resistivity profites postulated
for physical reasons. Bésides, the procedure is rather awkward and needs precise data
over a broad frequency range. Hence, it appears that the best way to handle geo-
magnetic induction data is still to interpret them by a set of homogeneous layers and
to introduce, if necessary, further preconcéived model assumptions. The merit of the
proposed method, however, is that it offers some insight into the nature of the inverse
problem.

'The real problem in the inversion of geomagnetic induction data is not the method of
obtaining a feasible resistivity profile, but the method of finding a reliable estimate of
the accuracy and resolving power of the results when the errors of the data are taken
into account. A first step in this direction has.been done recently by PArKER [1970].
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Appendix A

Proofs of the inequalities given in Sec. 2

For simplicity f]/a dz is assuimed to be finite. Then according to (2.18) ¢ () can be
1epresented as
R/

Lll )
c(m)="=zl i >0 b0 (A1)

The following results, however, apply to the general case (2.19) as well.
Assume @ > 0. Then separatwn of (Al) into real and imaginary parts leads 1mmed1-
ately to {2 30a, b) Now" ]et

ZZ

n—l

RIS

bSRh'T‘V )

2)2 > k=0, 1,23, (A2)
T s

where all s are non-negative, Then with the operator D, defined by (2.29),

L

so=2g+Dg, - ‘§y=h+Dh,

5y =5 ~Dg, . ' sy=h—Dh. A3
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The inequality of Schwarz yieids

.2 2
$1=50%2, 52558183,

@A

from which (2.33) is obtained after inserting (A3) and rearranging the terms. Eq. (2.31)

follows directly from (A3), and (2.32) is a consequence of (2.5} and

1
—|el D]e| = —EDM =505, +285+2 52 (55, —sH)=

2 2 2 2
=|c"|—sg—257—55; —(5183—53).
For inequalities involving derivatives up to the second order let

- allb:_kwk
WP L nrteyr K0

Again ail tz are non-negative, Tt is easily verified that

to=8g+6Dg+D?g, H=3h+4Dh+D,
= —2Dg—D%g, ;= h D%,
f,= —2Dg+D?g, ts=3h—4Dh+D%h.

The following seven inequalities apply:

tot, —1120,

fola— 1t t3 2>t 13— 1220,
tols— Lty =ty —1,14(=0),
Tits— ity =tt,—1220,
tats—122>0.

(A5)

(A6)

Four of them are an immediate consequence of Schwarz’s inequality, the remaining
follow from the fact that f (%)== tep—x 7% is a convex function (i.e. /* =>0) implying
Fle+1)—F (k) = f(k)—f{k—1). Insertion of (A5) into (A6) leads to seven strong but
involved inequalities. From these the simple, but rather weak constraints (2.34a, b

are derived by linear combination:

4(h* = |D%e|’)=(t;3— 1) +2 (1,14 — 13)+ (1515 — 1) 20,
4(g” —|e+2De+ D) =(tot, — 13+ 2(# 113~ )+ (1, — 12) 20 .

(A7)
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In (A4), (A6), and (A7) (or (2.33) and (2.34)) equality holds over the full frequency
range if {and only if} the sum (A1) consists of one term only. For real conductors the
number of terms is always infinite, but in the degenerate case of the thin sheet approxi-
mation of PrIcE [1949] one single term occurs for the model consisting of a thin sheet
of integrated conductivity T at z=0 and a perfect conductor at depth z=zy yielding

- Zm
¢(o)= 14 fopgtz,
Appendix B

Conductivity transformations

The transformations given in Sec. 3 are special cases of a more general class, which
is stated in this appendix. Let w (z) be a solution of (3.3a), 1. e.

w" (2)={x* +iope (2)} w(z), (B1)
and let f(z) be a solution of
S (@)= f(2). (B2)

Then the two types of transformations

Typel Typell

4 :ff‘z(r)dt z =ff2(t)cr(t)dt,
Q 0

w(D=w(z)/f(z) wH{(F)=w(2)/f(2),

§(z)=r*()e(2) #2) =f Do (D)

reduce (B1) to
W (E)=ioped () w(2), (B3)

where the new response function ¢ {w) is given by

E(w)= {{f Z(0)fe (@) + fO)f (0} for Typel
{F2(Ofc(@)+FOF @} iope)  for Typell.,

The invariant of all transformations is the differential VE dz.
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The transformations of See. 3, leaving c (w) unchanged, belong to Type I with
FO=1,f (=0, i e f(z}=coshxz If the constant »2 in (BI) and {B2) is replaced by
any function of z, the same formulae apply. Hence, after the appropriate change of the

" independent variable, the function f(¢) used in (3.5b) for a spherical earth is the sofu-
tion of f* ()= 2n (n+1) f (@) with £ (1)=1, I’ (1}=0.

The transformations of Type 11 reverse the conductivity profile replacing well con-
ducting regions by poor conductors, and vice versa. If f* (0)=0 and f (0)21/]/(70),
then & (k) ={ke ()}, k=Viawpo (0), and the reflection coefficient » (&), Eq. (4.27),
only reverses sigit, Moreover, the transformations of Type Tl form the basis for the well-
known duality relations of magnetotelluric sounding curves (e. g. [SRIvasTAvVA] 1967).
Also the relations (2.30a, b}, (2.324a, b), (2.334a, b), and (7.1a, b) are dual. One rela-
tion of each pair can be derived from the other by a transformation of Type IL
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