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Abstract. The treatment of electromagnetic induction in three-dimensional 
structures is simplified by converting Maxwell's equations to a linear inhomo­
geneous vector integral equation over the domain where the electrical conduc­
tivity deviates from a horizontally layered structure. An algorithm for the cal­
culation of the (tensor) kernel is given. The integral equation is solved either by 
an iterative method or by matrix inversion. In an application the complete 
electromagnetic surface field of a simple conductivity anomaly and induction 
arrow maps are given. The gradual transition from three to two dimensions is 
investigated for a particular model. 

Key words: Electromagnetic Induction - Electrical Conductivity - Conduc­
tivity Anomalies. 

1. Introduction 

Numerical solutions of the three-dimensional modelling problem of 
electromagnetic induction are only scarcely encountered in the current 
literature (e.g. Jones and Pascoe, 1972; Lines and Jones, 1973). This is 
not due to mathematical difficulties, but results from the fact that the usual 
reduction of Maxwell's equations to finite differences, including into the 
domain under consideration the air half-space, requires large computer 
storage and is time consuming as well. 

A reduction of computer time and storage is achieved by applying 
surface and volume integral techniques based on Green's tensor. Consider 
for example an anomalous three-dimensional conductivity structure of 
finite extent embedded in a normal conductivity structure consisting of a 
horizontally stratified half-space. Then given an external source field, 
Maxwell's equations have to be solved under the condition of vanishing 
anomalous field at infinity. At least three approaches to a numerical solution 
of this problem are possible. Approach A is to choose a basic domain 
(including the air layer) as large as possible and to solve within this domain 
Maxwell's equations by finite differences, subject either to the now only 
approximate boundary condition of zero anomalous field or to a more 
refined impedance boundary condition (Fig. 1, top). This is the approach 
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Fig. 1. The three different choices of a basic domain (boundary hatched) for 
model calculations 

of Jones and co-workers. A first reduction of the basic domain is achieved 
by considering only the ano1nalous slab which contains the conductivity 
anomaly (Fig. 1, centre). \Vithin this slab, Maxwell's equations are 
solved by finite differences as before, but now all field values outside the 
anomalous slab are expressed by a surface integral in terms of the 
tangential component of the anomalous electric field at the horizontal 
boundaries of the slab. At the vertical boundaries of the anomalous slab 
approximate boundary conditions analogous to those of approach A are 
applied. This is approach B. A modified version of it for two dimensions 
is used by Schmucker (1971). In approach C the basic domain is reduced 
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still further by deriving from Maxwell's equations by a Green's tensor an 
integral equation for the electric field involving volume integrals only over 
the anon1alous field vector within the anomalous domain (Fig. 1, bottom). 
The boundary conditions are incorporated in the kernel of the integral 
equation, and hence are satisfied automatically by the solution. This method 
has been applied in two dimensions by Hohmann (1972) and has been for­
mulated in three dimensions by Raiche (1974), 

From approach A to C the gradual reduction of the basic domain must 
be paid by increasing expenses for calculating the required kernels. Approach 
C is of particular advantage if the anomalous domain is small. If the domain 
extends appreciably in horizontal direction (e.g. different conductivities 
at the left and the right of the anomalous slab), approach B is appropriate. 
Approach A can be avoided in any case. 

This paper presents a short outline of approach B and a detailed de­
scription of approach C, thereby reformulating the method of Raiche (1974) 
in a slightly different way. The basic equations are stated in Sec. 2, general 
formulae for Green's tensor for an earth \Vith an arbitrary number of layers 
are given in Sec. 3, and a few numerical problems encountered in applying 
approach C are treated in Sec. 4. The final Sec. 5 presents some results. 

2. Green's Tensor £4pproaches to the j}fode!!ing Problem 

2.1. Definitions, Basic Equations 

r denotes the position vector and x, y, z (z positive downwards) are 
cartesian coordinates, which for the sake of convenience are sometimes 
also denoted by x 1, x 2, x 3• Let the conductor with conductivity a(1·) 
occupy the half-space z > 0. Neglecting the displacement current, assuming 
vacuum permeability and a harmonic time factor eimt throughout, the com­
plex amplitudes E and Hof the electric and magnetic field vector are related 

by 

curl H(r) = a(r) E(r) + j,(1•), (2.1) 

curl E(r) = - iw,uoH(r), (2.2) 

or combined 

curl 2E(1-) + k 2(1·) E(1·) = -iwµojh·), (2.3) 

SI units being used . .ie(r) is the current density of the external source field, 
curl 2 = curl curl, and 

k'(r) = iwµoa(r). (2.4) 
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Split a(r) i?to a nor:nal and anomalous part, the former consisting 
of a set of horizontal uruform layers. (For simplicity, within the earth all 
layer conductivities are assumed to be non-zero.) Hence, 

a= an+ aa, k 2 = k;\ + k;, E =En+ Ea, (2.5) 

En being defined as the solution of 

curl 2En(r) + k;;(r) En(1·) = -iwµ 0j,(r), (2.6) 

vanishing for z --+-oo. Methods for the computation of En are well-known 
(e.g. Schmucker, 1970; Weaver, 1970). 

2.2. The Volume Integral Method (Approach C) 

From (2.3), (2.5), and (2.6) follows 

curl 2Ea(r) + k;(r) E 0(r) = - k;(r)E(r). 

Let G;(roJr), i = 1,2,3, be the solution of 

(2.7) 

curl 2G;(roJr) + k;.(r) G;(1·0Jr) =Xi b(r-1'o), (2.8) 

vanishing at infinity. In (2.8) and in the sequel, "denotes a unit vector. 
M.ultiply (2.8) by E0(1·) and (2.7) by G;(r0 J1·) and integrate the difference 
with respect to j' over the whole space. Green's vector theorem (e.g. 
Morse and Feshbach, 1953, p. 1768) 

f {U ·curl 2V-V ·curl 'U}d• 

=Hn XV)· curl U-(ii x U) · curl V}dA, (2.9) 

where dr is a volume element, dA a surface element, and 11 the outward 
normal vector, yields 

Ea;(ro) = - f k; Gi(1·0Jr) · E(1·)dr, i = 1,2,3, (2.10) 

sine~ Ea and. Gi va~sh at infinity. After combining all three components 
and introducing E instead of Ea, the vector integral equation 

E(ro) = En(ro) - f k~(r) <fi(roJr) · E(r)dr (2.11) 
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is obtained. Here G5 is the Green's tensor (using dyadic notation) 

3 3 

<fi(roJ1·) = ::>.: x, Gi(roJr) = ::>.: G,1(•·0Jr) x, X1. (2.12) 
i=l i, j=l 

The tensor elements Gii admit a simple physical interpretation: 
Gij(rojr) is thej-th electric field component of an oscillating electric dipole 
of unit moment pointing in Xi-direction, placed in the normal conductivity 
structure at ro; the point of observation is 'I'. Note that the first index and 
argument refer to the source, the second index and argument to the ob­
server. Because of the fundamental reciprocity in electromagnetism, 
observer and source parameters are interchangeable, i.e. 

(2.13) 

For a proof replace in (2.8) r by r', write an analogous equation for 
Gj(r!1·1

), multiply cross-wise by G1 and Gi, integrate the difference with 
respect tor' over the whole space, and obtain (2.13) on using (2.9). Due to 
(2.13), (2.11) is alternatively written 

E(ro) = En(•·o) - f k!(r) E(r) · <fi(rJro)dr. (2.14) 

Eq. (2.11) or (2.14) is a vector Fredholm integral equation of the 
second kind for the electric field E. The kernel (}) and inhomogeneous 
term En depend only on the normal conductivity structure. The domain 
of integration is the anomalous domain. To determine the kernel(}) replace 
first the conductivity within the anomalous domain by its normal values. 
Then place at each point of the domain two mutually perpendicular hori­
zontal dipoles and one vertical dipole and calculate the resulting vector 
fields at each point of this domain. At a first glance the work involved 
appears to be prohibitive, but it is sharply reduced by the reciprocity (2.13) 
and the isotropy of the normal conductor in horizontal direction. In partic­
ular, only one horizontal dipole is required. Since the kernels are inde­
pendent of O'a and En, the same kernels apply if the conductivity within 
the anomalous domain is changed and/or the external field is altered (e.g. 
different polarization). 

In the simplest, though physically not very interesting case of a uniform 
whole space with conductivity a0 the tensor elements are simply 

k&G,1(r0Jr) = (k&b;1-a2fax, ax1)e-k0Rf(4:rr:R) (2.15) 

= {(1 +u+u')b,1- (3 +3u+u•) (x;-xw) (x1-x10)/R2}e-u/(4nR3) 
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(e.g. Morse and Feshbach, 1953, p. 1781). Here, R=/r-r0 /, k5=iwµ 0a0, 

u=koR, and fJij 1s the Kronecker symbol. For a uniform half-space the 
elements are given in the appendix. A method for calculating the elements 
for an arbitrary number of layers is presented in Sec. 3. 

The integral equation (2.11) or (2.14) is decomposed into a set of 
linear equations, which are solved either by iterative techniques or bv 
matr~ in~ersion. Suggestions for the use of either of these techniqu;s 
are given in Sec. 4. \Xlhen the electric field within the anomaly is known, 
a seco~d set of kernels is required, which transform the field via (2.11) or 
(2.14) into the surface field. The kernels for the magnetic field are obtained 
by considering the curl of (2.11) or (2.14) with respect to r 0• 

2.3. The Surface Integral Method (Approach BJ 

Let the anomalous slab be confined to the depth range z 1 < z < z 2• 

Approach B is to solve within the anomalous slab the inhomoo-eneous 
b 

equation 

curl 2Ea (r) + k2(r) Ea(r) = -k~(r) En(r) (2.16) 

(from (2.3), (2.5), and (2.6)) subject to two homogeneous boundary condi­
~ons at z=z1 and z=z2, which involve Un for z <z1 and z>z2 respec­
tively, and account for the vanishing anomalous field for z-+ ±co. When 
(2.16) is solved by finite differences, the discretization involves also the 
field values one grid point width above and below the anomalous slab. 
The surface integral method is simply to express these values by a surface 
i~tegral in terms of the tangential component of Ea at z 1 and z 2, respec­
tively. 

Let V1 and V2 be the half-spaces z<z1 and z>z2, respectively, 
and let Sm, m= 1,2, be the planes Z=Zm· Let Gi(m)(rofi·), r 0 E Vm,1' E VmU 
Sm, be a s~lution of 

(2.17) 

(i = 1,2,3; m = 1,2) satisfying for r ESm the boundary condition 

~ G(m)( I z X , ro r) = 0. (2.18) 

In V1 and V2, Ea is a solution of 

curl 'Ea(r) + k;(r) E 0 (r) = 0. (2.19) 
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Multiply (2.19) by Gfm>, (2.17) by Ea, integrate the difference with 
respect to i· over 'f/m, and obtain on using (2.9), (2.18) and Ea -+0 for r-+ oo 

Ea,(ro) = (-1)m f {z X Ea(r)} ·curl Glml(ro/•') dA, 
Sm 

r 0 EV m, or in tensor notation 

Ea(lo) = (-1)m f curl (fj<ml(ro/•·) {z XEa(r)} dA, 
Sm 

where curl <l)(m) = 2 ;i:,i curl G}m). 

(2.20) 

This is the required mapping, which admits the representation of the 
field values outside the anomalous layer in terms of the boundary values 
of the (continuous) tangential component of Ea. 

A physical interpretation of Green's vector G~m) (rolr) subject to (2.18) 
is as follows: Reflect the normal conductivity structure for z <z1 and z >z2 
at the planes z=z1 and z=z2 respectively, place a unit dipole in Xi­
direction at r0 E Vm and an image dipole at rQ =ro +2 (zm-Zo)Z, the 
moment being the opposite for the two horizontal dipoles and the same 
for the vertical dipole. Then the tangential component of G}m) vanishes 

at z=Zm· 
Hence, if V m is a uniform half-space, G}m) is constructed from the 

whole space formula (2.15). Eq. (2.20) tben reads 

Eax(ro) = /zo-zm/ f F(R)Eax(r)dA, (2.21 a) 

Sm 

Eay(ro) = /zo-zm/ f F(R)Eay(r)dA, (2.21 b) 

Sm 

Bairo) = (-lr f F(R){(x-xo)Eax(r) + (y-yo)Eav(r)}dA, (2.21c) 
Sm 

where R= lr-rol, k~ =iwµoao, and 

1 d F(R) = - -·· _ (e-koR/R) = (1 +koR)e-koR/(2nR3). 
2nR dR 

Eqs. (2.21 a-c) contain as important subcase the condition at the air­

earth interface (z1=0, ko = 0). 
Because of the limited range of the kernels, in applications of the 

surface integral only a small portion of Sm is considered. For Bax and Bay 
the contribution of the region nearest to ro is most important. Assuming 
Bax and Bay to be constant within a small disc of radius e centered perpen­
dicularly over r 0 , the weight from (2.21a,b) is simply 

,-•oi _ c !c/V ,12 + e 'Je-•o' ''+'', 
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where }. = /zm-zol is the vertical grid point \vidth. Under the same con­
ditions the disc does not contribute to Eaz· 

At the vertical boundaries of the anomalous layer the condition Ea= O 
might be a very crude approximation, in particular for a small grid. Here, 
an impedance boundary condition for the tangential component Eat of 
the anomalous electric field, 

kEat = 11 X curl Ea, 

n = oun.vard normal, k2(r) =iwµoCJ('I"), performs substantially better 
(Jones, 1964, p. 325). 

3. Computation of Green's Tensor 

Consider a normal conductivity structure consistincr of a non-con­
ducting air half-space (index 0) and M uniform condu~ting layers with 
conductivities t1m, v1=1,2, ... , M, all different from zero. Let the inter­
faces be placed at the depths h1=0, h2, .•• , h1vr. To calculate Green's 
tensor for approach C, two mutually perpendicular horizontal electric 
dipoles and one vertical electric dipole of unit moment have to be placed 
at each point, which will be occupied by the anomalous domain, and the 
three components of each resulting field have to be determined for each 
interior point of the domain. Because of the horizontal isotropy, in practice 
one horizontal dipole is sufficient. 

The calculation of dipole source fields within a layered structure is a 
classical problem (e.g. Sommerfeld, 1935; Wait, 1970). In the applications 
C:· g. electr~magnetic sounding, antenna theory), however, only the posi­
tion ?f a dipole above and on the structure is of interest. Largely referring 
to the above studies, only the modifications due to the position of the 
dipole within the structure are stated. 

Let the dipole with moment in xi-direction be placed in the µ-th layer 
at 1·0, and let arcro]'.r) be the resulting field in them-th layer at point '1'. 

The continuity of the tangential components of the electric and matrnetic 
Eeld at inlerfaces leads to the conditions v 

z x (G'('- 1-G'(') = 0, z x curl (G'!'-1-G'(') = 0, 
(3.1) 

z = hm, m = 1, .. . ,M. 

Gi is represented with the aid of a Hertz vector l'&i: 

Gf(t•olrJ = k;, n'!'(1·) - grad div n'!'(r), (3.2) 

\\-·here k~ = iwµoam and nr satisfies 

(3.3) 
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For the sequel a cylindrical co-ordinate system (r,<fa,z) is adopted and 
the dipole is placed at r=O, z=zo. The vertical and horizontal dipole 

require different treatment. 

a) Vertical Dipole 

n~ has a vertical component only, 

(3.4) 

where n'Zi satisfies 

(3.5) 

Eq. (3.1) implies the boundary conditions 

m-1 m O iJ ( m-1 m) 0 h 
l'.1m-17l'.zz - 1'.1m7l'.zz = , - 71'.zz - nzz = , Z = m· oz 

(3.6) 

The general solution of circular symmetry of the homogeneous version 

of (3.5) can be built up from terms of the form 

with ho= O; s is the constant of separation and Jo the zero order Bessel 
function of the first kind. The plus and minus sign denote upward and 
downward travelling waves, respectively. The solution of (3.5) for a uni­

form whole-space with a= aµ is 

ro 

--2- - e~aµlz-zol ]o(sr)ds, 1 ~ s 
4nkµ IXµ 

R = lr-rol· (3.8) 

0 

Now let for 0 <::: m < Af 

ro 

n;; = J (P1;. + P;.) Jo ds, 
0 

h P± {yoA;,f;,, z<zo 
were m= +r± · 

Y1vrBm1-:m, z;::::zo 
(3.9) 

A~, B;.., yo and y 111 are also functions of s; yo and YM being so adjusted 
that Ari =Bir=1. The absence of doT.vngoing waves for z<O and up­
going waves for z>zo, if zo is in the M-th layer, yields AO =B!r=O. 
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Starting with Ab= 1, AO =0, the boundary conditions imply for 
1 < m ~ µ the recurrence relations 

A ± (am-I 1Xm-l) + + m = ~--- ± -- gm-I Am-1 
Gm 1Xm. 

+ ( O'm-1 am-1) - ---- =f ---- gm-1 Am-1, 
CJm CXm , 

(3.10) 

where 

± 1 
gm = _ e±am(hm+1-hm) v1 o M 1 2 ' = , ... , - . (3.11) 

Similarly starting with Bt =0, Bi,,= 1, Eq. (3.6) yields for M-12m 
;;:::: µ the backv;rard recurrence relations 

B ± _ ( O'm+l , iXm+l) 'I' B+ + m - ---- :t:: ---- gm m-1-I 
Gin IX1n ( _"m+l =t= am+l) gi;, B;;,+l · (3.12) 

Om OCm 

In the case ,u = M no recurrence is required for B~. Having computed 
A! and B! via (3.10) and (3.12), y 0 and YM are determined from 

( r B- - ( + + + -s Yo-"'µ - YM µ)fµ zo) = (YM Bµ-yo Aµ)fµ (zo) = --- -
2
-. (3.13) 

4no::µkµ 

The first equality results from (3.9) for z =Zo, the second from the fact 
that the difference in the up going ( downgoing) waves for z > zo and z < zo 
is due to the primary excitation, given by (3.8). Hence, 

where J! = J! (zo) and 

B-f- + + 
µ µ + B,,f,,_ 

LI (A,B) 

A -. + + - µJµ +Aµfµ 
LI (A,B) 

(3.14) 

(3.15) 

When n;; is determined, the tensor elements Gzx, Gzy, Gzz are cal­
culated via (3.4) from (3.2). The field in z ~ 0 is simply 

00 
0 

G, = - grad (f yo e" ]osds) 
0 

(3.16) 
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fl) Horizontal Dipole 

Let the dipole be directed along the x-axis. The Hertz vector has t\vo 
components now: 

(3.17) 

From (3.3) follow the differential equations 

LI n'i;; = k~ n~x - O('r-1·0)/k~, Ll n':z = k~ n~. (3.18a,b) 

Eq. (3.1) yields lour boundary conditions at z=hm: 

a m-1 m) 0 Tz (am-1 nx,r - O'm nxx = , (3.19a,b) 

m-1 m O d' ( m-1 m) 0 O"m-1 nxz - Um nxz = , lV nx - nx = · (3.19c, d) 

Condition (3.19d) couples 7exx and nxz· - Particular solutions of the 
homogeneous versions of (3.18 a, b) are 

j'/;,(z) ]n(sr) cos 11<p and j'/;,(z) ]n(sr) sin n<f , 

where Jn is then-th order Bessel function andf;..isgiven by (3.7b). Since 
the excitation is expressed by (3.8), Jo is appropriate for nxx· Condition 
(3.19d) then shows that]1 cos</J is the correct choice for nxz (</J reckoned 
positive fron1 the x-axis in direction to the y-axis). Let for 0 < m::;:; M 

2 m co + _ ± (OoC~j~, z<zo 0 km nxx = f (Qm + Qm)]ods, where Qm = ± ± . (3.2 ) 
o OMDmfm, z~zo 

Then the determination of C~, D~, bo, and 01w is quite similar to that 
of A~, B~, y 0 , and y1w, respectively. Th~s the b~undary conditions 
(3.19a,b) yield for l<m~µ starting with Co=l, Co =0: 

± ( am-1) + + ( "m-1) - c-Cm = 1 ± --;;;;-- gm-1 Cm-1 + 1 =f ~ gm-1 m-1, (3.21) 

and starting with Dt=O, Di,,=1 for M-1>m2µ: 

± ( °'m+l) ~ + ( - °'m+l) 'I'D-Dm = 1 ± -;;;:- gm Dm+l + 1-+----;;;;:- gm m+l· (3.22) 
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Again, there is no recurrence required forµ= M. The unknowns bo 
and OM are determined similarly to (3.13) and (3.14): 

o s (D+f+ + D-f-) 0 = -4c-n_a_µ_L1~( Ceo-, D) µ µ µ µ ' 

OM= -4naµ:(C,D) cc:;;+ c:J,J, 
(3.23) 

where J! = f!(zo), and the Ll-symbol is defined in (3.15). The computation 
of nxz is slightly more complicated. Let 

where 
(3.24) 

Since at each interface four new coefficients are introduced, whereas 
there are only the two boundary conditions (3.19 c, d), two additional 
conditions are imposed by equating at each interface the coefficients of eo 
and Oo (or eM and OM) separately, thus obtaining four pairs of decoupled 
recurrence relations (using (3.21 and (3.22) to remove C~-l and D~): 

E~ = (
1 f3m-I) + E+ ( f3m-I) - -± ~ gm-I m-I + 1 =f f!m - gm-I Em-I, (3.25) 

F ± (1 f3m-I) + r>4- ( /3m-I) - _ m = ± --p;,,- gm-I r'm-I + 1 =f --/3m gm-I Fm-I 

s ( Clm ) + -± ---- 1 - ---- (Cm +Cm), 
2a.m Gm-1 

(3.26) 

G~= (1 f3m+I) 'F + ( ± /3m - gm Gm+I + 1 =f (3.27) 

H~= (1 f3m+I) 'F H+ (l _ f!m+I) 'F ,~ ± ~ gm m+I + + ·~ gmrzm+l 

s ( <Jm ) 'F + _ ± - 1 - -- gm (Dm+I + Dm+I), 
1Xm Gm+l 

(3.28) 

where fJm=rxm/am. 
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To determine ea and e1u-, Eq. (3.24) is considered at z =zo. Since nxz 
has no singularity, upward and downward travelling waves agree. Hence, 

or 

eo E'/; + oo F! =SM c;; +OM II',:, 

eo = {L1(F, G) oo + L1(G, H) oM} / L1(G, E), 

BM= {L1(F, E) oo + L1(E, H) OM} I L1(G, E). 

(3.29a) 

(3.29b) 

So far, the starting values for the recurrence (3.25)-(3.28) have not been 
specified. Since in the last layer there is no upward travelling wave 
belo\V the source, 

(3.30 a) 

is a correct choice of the initial values of (3.27) and (3.28). For the air layer, 
a. corresponding choice of Et= 1, EQ = FQ =Ft= 0 would be appro­
priate, if the air had non-zero conductivity. In the case of ao = 0, (3.25) 
and (3.26) break down. As a remede recurrence has to start at m = 2 and 
the coefficients for JJJ = 1 must be specified. Assume for the moment that 
the air half-space is slightly conducting, i.e. k5 + 0. Whereas nx is only an 
auxiliary function, the quantities k5n2 and div:n:2, entering in (3.2), have 
a physical meaning and must be finite for z<O. Let 

00 

k5 n°xz = f Eo esz ]1 cos cfa ds. 
0 

Then div nZ is finite if (Bo-Oo)/k5 is finite for ao -+0. Hence, Eo = Oo. 
Satisfying the boundary condition (3.19c) at z=O by equating the coef­
ficients of e0 and oo separately, yields E1 +Bi =0, F1 +Fi =1. Speci­
fying e0 as the amplitude of the upward propagating wave in the first 
layer, the final starting values 

E1 = -1, Bi = 1, F1 = 1, Fi = 0 (3.30b) 

are obtained. This completes the treatment of the horizontal dipole. 
Now, on using (3.2), (3.9), (3.20), and (3.24) all tensor elements can be 

given explicitly. Let 

UI =~{Qi; +Q;;;}]ods+ kl-;-~ {s(Qi;. +Q;;;)-am(Ri;.-R;;;)}]rds, 

0 0 

U2 = - k! ~ {s(Qi;. +Q;;;)-am(Ri;.-R;;;)}],sds, 

0 
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'° 
Us=- f {P;:. + P;,}]os2ds, 

0 

'° 
U4 =-f {P;:.-P;,}ficxmsds, 

0 

where U1 = Ui(zo, z, r), i = 1, ... , 4. Then 

G~ =Ur+ U2 cos2¢, c: = G~ = U 2 sin¢ cosef>, c;~ = U 1 + U 2 sin2¢ 

G~=U4 cos<fo, G~=U4 sinef>, c;:=U3. 

The missing elements c::, G~i can also be expressed by Q and R 
terms, or simpler on using the reciprocity (2.13), as 

G~ =-U4(z, zo, r) cos¢, er:; =-U4 (z, zo, r) sinef;. 

The sign is reversed, since the interchange of source and receiver changes 
¢ by n. The nine elements of Q) can be expressed in terms of the four auxil­
iary functions U1 to U4. For i = 1, 2, 3 reciprocity requires Ui(z 0, z, r) = 
Ui(z, zo, r). Hence, these functions have to be determined for z<zo only. 

The tensor elements which transform the electric field within the 
anomalous domain into the surface field, become particularly simple. Eqs. 
(3.19d) and (3.20) yield 

00 

ki div ,.g = .f {2 °'l eo - (a1 +s)6o} e" Ji cosef; ds. 
0 

Hence, defining 
00 00 

Vi=\ 6o]ods +-;_ r {(s+cx1)60-2cx1eo}]1ds, J k1r J 
0 0 

00 

00 

Vs= -fyo]os2ds, 
0 

00 

V4 = f yo fr s2 ds, 
0 

00 00 

Vs=\ 60]1ds + ~ \ {(s+cx1) bo-2oc1eo}]rsds, 
._; k1 .1 
0 0 

(3.31) 

where Vi= Vi(zo, r), Eq. (3.2) yields as tensor elements for z =-0: 

Ggx = Vi+ V2 cos2ef;, Ggy = V2 sinef; cos¢, 

GZy = Vi + V 2 sin2<f>, 

G~11 = V4 sing), 

0 Gxz = Vs cos¢ 

GZ, = Vs sin¢ 

G~z =Va. 
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In z < 0, the electric field of a dipole in x-direction (say), 

Gg =I 6o(x]o + z]r cos¢) e" ds- grad div ,,g, 
0 

99 

(3.32) 

where divng is given by (3.31), can be split uniquely into a toroidal part 
T (purely tangential) and a poloidal part S, 

Gg = T + S, T =curl(£ 'PT), S =grad 'PS. (3.33) 

The poloidal part is due to surface charges at z = 0. Since the z-com­
ponent of the first term of (3.32) is poloidal per definition, 'PS and 'PT are 
given by 

00 

1jJS = f 80 s-1 ]1 cos¢ esz ds~ div n~, 
0 

00 

'PT = f 60 ,-1 fr sin¢ e" ds. (3.34) 
0 

The electric field of a vertical dipole is purely poloidal in z< 0 (cf. 
(3.16)). When the kernels for the toroidal part are calculated by (3.33) and 
(3.34), the electric surface field obtained by (2.14) is easily decomposed foto 
its poloidal and toroidal part. For an elongated anomaly and a toroidal 
external electric field, the resulting anomalous field is either almost toroidal 
or poloidal, according whether the external field is parallel or perpendicular 
to the strike. 

In z< 0 only the toroidal part of the surface electric field gives rise to 
a magnetic field. Let J!f (ro Ir), i = 1, 2, be the magnetic field at r due to a 
horizontal dipole in Xi-direction at ro. Then from (2.2) 

iwµ 0 J?f(ro [r) = - curl Gf(ro [r), i = 1,2. 

Defining 
00 00 

iwµo W1 = ~ 60 

0 

(:r]r-]o) sds, iwµo W2 = ~ oof,sds, 

0 

iwµo Ws = - ~ oofr s ds, 

the magnetic field kernels are 

pg,= - W2 sinef; cos¢, pg"= W1 + W2 cos2¢, pg,= Ws sin¢, 

PZx = - W1 - W2 sin"¢, PZy = W2 sin¢ cos¢, PZ, = - Ws cosef;. 

Hence the determination of the electric and magnetic surface field 
requires the tabulation of eight additional functions (V1 to Vs and W1 
to W3), all functions of zo and r. The range of r depends on the surface 
domain, where the anomalous field is to be evaluated. 
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4. Numerical Considerations 

The integral equation (2.11) or (2.14) is solved by the simple approx­
imate approach of Hohmann (1971). It consists in decomposing the 
anomalous domain into a set of equal rectangular cells, assuming a constant 
electric field within each cell. For N cells results a linear system of 3 N 
equations and unknowns. The coefficients are essentially the tensor kernels 
integrated with respect to source coordinates (Eq. (2.14)) or observer 
coordinates (Eq. (2.11)) over a cell. Care must be exercised in evaluating 
the contribution of the singular cell and of its neighbourhood. In general, 
the most important contribution arises from the primary excitation in 
direction of its moment. Let the dimensions of a cell be Ax, }.y, Az, and let 

GJ'x ~ (k2 - 8'/8x2) e-kRj(4n k2R) 

be the excitation in x-direction. For an approximate evaluation, the singular 
cell Cs is replaced in the Erst term by a sphere of the same volume and in 
the second term by a circular cylinder with axis in x-direction, length Ax 
and cross-section J.y · }.z. It results 

k2 f G:i'x dr ~ ,-1cR1 - (R1/R 2) ,-kR2 - (1 +kR3) ,-kR3 + 1, 
Cs 

where R1~J.x/2, R~~;\~/4+AyA,jn, R~~3 AxAy1,/(4n). 

For sym1netry reasons, there is no contribution from cry and cg2 , 

The integrals over the adjacent cells can be effected in a similar way. In the 
numerical evaluation of the kernels given in Sec. 3, the integration with 
respect to z is easily included by adding in the integrand the factor 

2 sinh (aµ ;\,/2)/aµ, 

by v;rhich exp ( ± rxµ,Z 0) is multiplied when integrated over the thickness 
of the cell centered at z o-

The system of equations is solved either iteratively (e.g. by means of the 
Gau.G-Seidel method) or by matrix inversion. Because of the large storage 
requi;red, the latter method is attractive only for small anomalous domains. 
It is of great advantage to exploit all symmetries. For structures with two 
vertical symmetry planes, the number of unknowns is reduced to almost 
25~~' and hence, the storage for matrix inversion is only 1/16 of the original 
storage. For iterative methods, both the computer time for one iteration 
and the number of iterations is reduced. 

The Gau.G-Seidel iterative scheme converges only for moderate con­
ductivity contrasts. In numerical experiments it was found that a good 
convergence can be obtained for conductivity contrasts up to 1: 100 only; 
En was used as initial guess for E. If for higher contrasts matrix inversion 
is not possible, the best remede might be to apply the powerful method of 
shifting the spectrum as described by Hutson et al. (1972, 1973). 

-
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Fig. 2. Induction arrow maps for two different configurations of the anomalous 
domain (top). Vectorial addition of the arrow of the left structure and of a 
similar structure rotated through 90° (bottom). Only arrows longer than one half 

of the length of an artO\V head are shown 

5. Results 

The feasibility of the integral equation approach has been tested for 
simple cases. Some of the results are presented below. A complete and 
concise presentation of the anomalous field vectors for a three-dimensional 
model poses a difficult problem. For a quasiuniform external field, 24 
displays of a function over a two-dimensional array are required to give a 
complete description of the in-phase and out-of-phase part of the electric 
and magnetic field vector for the t\vo mutually perpendicular polarizations 
of the external field. Four of these displays (in-phase and out-of-phase 
part of f-Iz for both polarizations) can be combined to yield an induction 
arrow map. Examples of such maps are shown in the upper half of Fig. 2 
for two different configurations of the anomalous domain. The bodies of 
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Fig. 3. In-phase and out-of-phase part of the anomalous electric field vector for 
a uniform external field in x-direction serving as reference field. The associated 
normal magnetic field points in y-direction. A rectangular anomalous domain, 
50 km X 25 km X 10 km of (! = 1Q m, embedded in a uniform half-space with 
f} = 10Q m just below the surface is chosen. The period of the inducing field is 

120 sec 

e = 1 Qm are 10 km thick and are placed immediately below the surface 
of a unif.orm substratum of e = 10 Qm. In-phase and out-of-phase arrows 
are marked by black and white heads, respectively. Only arrows longer 
than one half of the arrow head are shown. It has been proved by Siebert 
(1971) that the induction arrows for a complex structure, consisting of two 
elongated, mutually perpendicular anomalies can be obtained approximately 
by vectorial superposition of the individual arrows. Along this line, the 
lower map of Fig. 2 has been obtained by adding to the arro\Vs of the left 
map the arrows of the same structure, rotated through 90°. Since mutual 
induction is neglected, the induction effect is slightly overestimated. 

The complete set of 24 displays for a different high conducting intrusion 
is illustrated in Figs. 3-6. The plots are thought to provide a qualitative 
idea of the fields, although quantitative results can be extracted by a some-
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Fig. 4. The anomalous magnetic field of the model described in the caption to 
Fig. 3. The normal magnetic field serves as reference field 

what awkward procedure. The disturbing body is decomposed into cubes 
with 5 km edges. There are 10, 5, and 2 cubes in x,y, z-direction, respec­
tively. The complete surface field has been evaluated on a 18 x 13 grid. 
On a UNIV AC 1108 computer the determination of all kernels took 70 sec, 
the solution of the integral equation and the evaluation of the surface field 
required additional 50 sec for each polarization, the GauB-Seidel iterative 
scheme being convergent after 10 iterations. 

In all subsequent figures, only the anomalous fields are shown. The 
modulus of the corresponding normal field serves as reference. Fig. 3 
presents the electric field for a uniform external electric field in x-direction. 
The associated normal magnetic field points in y-direction. Within the 
good conductor, the Ex-component breaks down. It exhibits a discon­
tinuity at the front and rear surface since the normal component of the 
current density is continuous there. The By-component differs appreciably 
from zero only near the corners. The signs are easily understood using the 
idea of the electric currents being sucked into the good conductor. The 
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Fig. 5. In-phase and out-of-phase part of the anomalous electric field vector for 
a uniform external field in -y-direction associated with a normal maanetic field 

in x-direction. The same anomalous domain and period as in Fig. 3 

magnitude of the Ez-component is of the order of Ex. Its origin are 
surface charges: negative charges at the front bending the current lines 
towards the surface and positive charges at the rear reflecting the lines 
from the surface. Fig. 4 shows the corresponding magnetic field. The signs 
are understood using the idea of magnetic field lines expelled from the 
good conductor. 

Figs. 5 and 6 display the electric and maanetic field for an external 
. b 

m~gnetic field in x-direction associated with an electric field in -y-direction. 
W~th the. pr:sent choice of the dimensions of the disturbing body, 
this polar12at1on resembles the two-dimensional H-polarization, i.e. the 
anomalous magnetic field vanishes if the anomaly is extended to infinity at 
both ends. In the san1e limit the former polarization deO"enerates into the 
E-polarization case. 

0 

After decomposing the kernels G~ and G~ according to (3.33) and (3.34), 
the poloidal and toroidal part of the electric surface field can be obtained 
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Fig. 6. The anomalous magnetic field vector of the model of Fig. 5 

separately. For the Ex and By component of Fig. 3 this is done in Figs. 
7a and 7b. 

Finally, the transition from three to two dimensions has been investigat­
ed for a particular model. Fig. 8 illustrates that on a central profile a two­
dimensional description is adequate if the length of the disturbing body 
exceeds three times its width. 

6. Conclusion 

The integral equation technique based on Green's tensor turns out to 
be a useful tool in treating three-dimensional induction problems. 

It is suitable for small anomalous domains, and here it is of particular 
advantage if the anomalous field is required for a set of different conductiv­
ities within the anomalous domain and/or different external fields, for 
the time consuming computation of the pertinent kernels has to be carried 
out once only. Work is still necessary to develop effective iterative methods 
if the conductivity contrast is large (> 100: 1). For large anomalous do­
mains, a finite difference technique combined with a surface integral 
boundary condition appears to be the most promising approach. 
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Appendix 

The Tensor Elements for a Uniform Half-Space 

For a uniform half-space with O'n(z) = a0 these ele1nents have already 
~een given by Raiche (1974) in terms of integrals. However, all integra­
tions can be carried out explicitly. Using source coordinates x 0 , y

0
, zo 

and the abbreviations. 

2 
R± = (x-xo)' + (y-y0)2 + (z ± z0)2, 

g± =exp (-koR±)/(4nR±), X±= g- ± g+, k5 = iwµoao, 

/3 = x--(o/oz)(Io( ~ ko[R+-z-zo]) ·Ko(~ k 0[R++z+zo])) /(Zn), 

where Io and f(o are modified Bessel functions of order zero, first and second 
kind, it results for z, zo > 0 

k 2 2 
o Gxx = (ko - o2/ox 2)(3 + (o 2/oz') (a+- (3), 

k5 Gxy = k5 Gyx = - (o'/o x oy)(3, 

k5 Gx, = - (o 2/o x oz)x+, 

k5 Gyy = (k5 - o2/oy')/3 + (o'/oz') (a+- [3), 
2 ko Gy, = - (o2/oyoz) x+, 

k5 Gn = - (o'/ozox)c<-, 
2 

ko G,v = - (o'/ozoy)x-, 

k5 G,, = (k5- o'/oz')x-. 

The vertical co1nponents Gxz, Gyz, Gzz, vanishing for z -+ + 0, tend 
for z -+-0 to the limiting values 

k5 Gx, =-(o2/ox ozo)y, k5 G., =-(o'/oyozo)y, 

k! G" = c__ (a2;az5)y, 

where 

y = (o/ozo)(Io (~ ko[Ro-zo]) ·Ko C k 0 [R 0 +zo]))/(2n), 

R5 = (x-xo) 2 + (Y-Yo) 2 + z5. 

Since in applications an integration over the source or observer coordi­
nates (Eqs. (2.14) and (2.11), respectively) is involved, most of the above 
differentiations need not to be carried out. (Use o/ox=-o/ox0, o/oy= 
-o/oyo, and e.g. oa:-/oz=-oa:+/oz0 , ox+/oz=-o"-/oz0.) 
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