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Abstract. The treatment of electromagnetic induction in three-dimensional
“structures is simplified by converting Maxwell’s equations to a linear inhomo-
. gencous vector integral equation over the domain where the electtical conduc-
tivity deviates from a horizontally layered structure. An algorithm for the cal-

i culation of the (tensor) kernel is given. The integral equation is solved ecither by

an iterative method or by matrix inversion. In an application the compliete
electromagnetic sutface field of 2 simple conductivity anomaly and induction

Carrow maps are given. The gradual transition from three to two dimensions is

investigated for a particular model.

Key words: Electtomagnetic Induction — Electrical Conductivity — Conduc-

- tivity Anomalies.

1. Introduction

Numerical solutions of the three-dimensional modelling problem of
electromagnetic induction are only scarcely encountered in the current

literature {e.g. Jones and Pascoe, 1972; Lines and Jones, 1973). This is

not due to mathematical difficulties, but results from the fact that the usual

- reduction of Maxwell’s equations to finite differences, including into the
~domain under consideration the alr half-space, requires large computer
‘storage and is time consuming as well.

A reduction of computer time and storage is achieved by applying
-surface and volume integral techniques based on Green’s tensor. Consider

~for example an anomalous three-dimensional conductivity structure of
- finite extent embedded in a normal conductivity structure consisting of a

hotizontally stratified half-space. Then given an external source field,
Maxwell’s equations have to be solved under the condition of vanishing
anomalous field at infinity. At least three approaches to a numerical solution
of this problem are possible. Approach A is to choose a basic domain
(including the air layer) as large as possible and to solve within this domain
Maxwell’s equations by finite differences, subject either to the now only

“‘approxzimate boundary condition of zero anomalous field or to a more

_refined impedance boundary condition (Fig. 1, top). This is the approach
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Fig. 1. The three different choices of a basic domain (boundary hatched) for
model caleniations

of Jones and co-workers. A first reduction of the basic domain is achieved
by considering only the atnomalous slab which contains the conductivity
anomaly (Fig. .1, centre). Within this slab, Maxwell’s equations are
. solved by finite differences as befors, but now all field values cutside the
anomalous slab are exptressed by a surface integral in terms of the
tangential component of the anomalous electric field at the horizontal
boundaries of the slab. At the vertical boundaties of the anomalous slab
approximate boundary conditions analogous to those of approach A atre
applied. This is approach B. A modified version of it for two dimensions
is used by Schmucker (1971). Tn approach C the basic domain is reduced
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still further by deriving from Maxwell’s equations by a Green’s tensor an

“integral equation for the electric field involving volume integrals only over
" the anomalous field vector within the anomalous domain (Fig. 1, bottom).
The boundary conditions are incorporated in the kernel of the integral

equation, and hence are satisfied automaticaily by the solution. This method

- has been applied in two dimensions by Hohmann (1972) and has been for-
. mulated in three dimensions by Raiche (1974).

From approach A to C the gradual reduction of the basic domain must
be paid by increasing expenses for calculating the required kernels. Approach
Cis of particular advantage if the anomalous domain is small. If the domain
extends appreciably in horizontal direction (e.g. different conductivities
at the left and the right of the anomalous slab), approach B is appropriate.

"~ Approach A can be avoided in any case.

This paper presents a short outline of approach B and a detailed de-
scription of approach C, thereby reformulating the method of Raiche (1974)
in a slightly different way. The basic equations are stated in Sec. 2, general
formulae for Green’s tensor for an earth with an arbitrary number of layers
are given in Sec. 3, and a few numetical problems encountered in applying
approach C are treated in Sec. 4. The final Sec. 5 presents some results.

2. Green's Tenser Approaches to the Modelling Problem
2.1. Definitions, Basic Equations

¥ denotes the position vector and x, ¥, z (z positive downwards) are
cattesian coordinates, which for the sake of convenicace are sometimes
also denoted by xy, xg, x3. Let the conductor with conductivity o(r)
occupy the half-space z > 0. Neglecting the displacement current, assuming
vacuum permeability and a harmonic time factor ¢*@f throughout, the com-
plex amplitudes E and H of the electric and magnetic field vector are related
by

curt Hr) = o(r) E@) + jo), @1)
curl Br) = — imuoB(r), (2.2)

ot combined
corl 2%B(r) -+ &2() E(r) = — jopo jol1), (23)

SI units being used. §.(r) is the current density of the external source field,
curl? = cuzl curl, and

£2(r) = iwpoo(r). 2.4
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Split o(r) into a normal and anomalous part, the formet consisting

of a set of horizontal uniform layers. (For simplicity, within the earth all
layer conductivities are assumed to be non-zero.) Hence,

0 =0n+ Oay R2 =A% + 2 E=E, | E,, (2.5)

Ey being defined as the solution of
cutl 2E,(0) + ka(r) En(r) = — ioug folr), (2.6)
vanishing for z > co. Methods for the computation of B, are well-known

(e.g. Schmucker, 1970; Weaver, 1970).

2.2. The Volume Integral Method (Approach C)
From (2.3), (2.5), and (2.6) follows

cutl 2B, (r) + Aa(r) Bo(r) = — k2@)E(®). @.7)

Let Ghi(ro)r), 1=1,2,3, be the solution of
cutl 2G;(rolr) + En(r) Gilrolr) = & sr—wy), (2.8
vanis-hing at infinity. In (2.8) and in the sequel, "“denotes a unit vector.
Mulﬂply (2.8) by Ea(r) and (2.7) by G(ror) and integrate the difference
with tespect to # over the whole space. Green’s vector theotem (c.g.

Mortse and Feshbach, 1953, p. 1768)

J{U - corl 20—V - curl 20U }dr
= ${i X ) corl Ue(f X U) - curl TYdA, (2.9)

where Jr is a volume clement, 4.4 a surface element, and # the outward
normal vector, yields

Euire) = — [ kg Gulrolr) - B0, =123, (2.10)
since' By and G; vanish at infinity. After combining all three components
and introducing E instead of Hy, the vector integral equation

E(ro) = En(ro) — | £a(r) Giro|r) - E(r)de (2.11)
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s obtained, Here & is the Green’s tensot (using dyadic notation)
3 3
(5(7‘0[’!’ = Z Ef/'i Gi(’l"gl’l") = ) Z Gﬁ(’i‘o[’l") i‘; e’f?j.

i=1 1, §=1

(2.12)

: The tensor elements Gy admit a simple physical interpretation:

Gyj(rolr) is the j-th electric field component of an escillating electric dipole
of unit moment pointing in x;-direction, placed in the norma! conductivity
-structure at g; the point of observation is 7. Note that the first index and
argument refer to the source, the second index and atgument to the ob-
- server. Because of the fundamental reciprocity in electromagnetism,
~obsetver and soutce parameters are interchangeable, i.e.

Gy(rolr) = Gylrlwo). (2.13)

For a proof teplace in (2.8) » by ¢’, write an analogous equation for
Gy(rir"), multiply cross-wise by Gy and Gy, integrate the difference with
- respect to r* over the whole space, and obtain (2.13) on using (2.9). Due to
(2.13), (2.11) is alternatively written

E(re) = En(ro)— | ki@») E(r) - Grro)dr. (2.14)

Eq. (2.11) or (2.14) is a vector Fredholm integral equation of the
second kind for the electric field E. The kernel & and inhomogencous
term Ej, depend only on the normal conductivity structure, The domain
of integration is the anomalous domain. T'o determine the kernel (% teplace
first the conductivity within the anomalous domain by its normal values.
'Then place at each point of the domain two mutually perpendicular hori-
zontal dipoles and one vertical dipole and calculate the resulting vector
fields at each point of this domain. At a first glance the work involved
appears to be prohibitive, but it is shatply reduced by the reciprocity (2.13)
and the isotropy of the normal conductor in horizontal direction. In partic-
ular, only one horizontal dipole is required. Since the ketnels are inde-
pendent of ¢, and E,, the same kernels apply if the conductivity within
the anomalous domain is changed and/or the external field is altered (e. g.
different polarization).

In the simplest, though physically not very interesting case of a uniform
whole space with conductivity op the tensor elements are simply

E3Guyralr) = (Kody— 82/8x: dx;)ekoR|(4xR) (2.15)
= {(1 +#+#2)dy — B+ 3u+4?) (xci— x40} (x50} B2 Jev[(4n R3)
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(e.g. Morse and Feshbach, 1953, p. 1781). Hete, R = r—y|, kb =iougo,
#=RoR, and d; is the Kronecker symbol. For a uniform half-space the
elements are given in the appendix. A method for calculating the elements
for an arbittary number of layers is presented in Sec. 3.

The integral cquation (2.11) or (2.14) is decomposed into a set of
linear equations, which are solved eithet by iterative techniques or by
matrix nversion. Suggestions for the use of either of these techniques
are given in Sec. 4. When the electric field within the anomaly is known,
a second set of ketnels is requited, which transform the field via (2.11) or
(2.14) into the surface ficld. The ketnels for the magnetic field are obtained
by considering the cutl of (2.11) or (2.14) with respect to #¢.

2.3, The Surface Integral Method (Approach B)

Let the anomalous slab be confined to the depth range z; << 2 <C 2.

Approach B is to solve within the anomalous siab the inhomogeneous
equation

cutl 2By (¥) - £2(r) Eo(r) = — £a() Eq(r) (2.16)

{from (2.3), (2.5), and (2.6)) subject to two homogencous boundary condi-
tions at z =z; and z ==z, which involve g, for z << z; and 225 respec-
tively, and account for the vanishing anomalous field for z - -+ co, When
(2.16) is solved by finite differences, the discretization involves also the
field values one grid point width above and below the anomalous slab.
The surface integral method is simply to exptess these values by a surface
integral in terms of the tangential component of By at z; and zs, respec-
tively.

Tet 71 and /s be the half-spaces z<Cz; and z>>xg, respectively,
and let §i, m = 1,2, be the planes z =2y, Let Gy (rojr), 7o € Vip, 7 € Vv
S be a solution of

cutl 3G o) + ER@GE™ (rolr) = #:8(0—1) (2.17)
(==1,2,3; m=1,2) satislying for = €5y the boundaty condition
2 X G (rolr) = 0. (2.18)
In 77y and I, E; is a solution of

curl 2B, (r) + An(r) Eq() = 0. (2.19)
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Multiply (2.19) by G§™, (217) by Eq, integrate the difference with
tespect to * over Vi, and obtain on using (2.9), (2.18) and Ey -0 forr +co

Baro) = (1) [ {£ X Eo)} - col GV @rolp) dA,  (2.20)
Sm

0 € Vs, OF i tensor notation

Eo(To) = (—1y | curl Gemrolr) {2 X Ba(r)} dA,
Sm
where curl H = 3 &; curl Gi’”) .
B

This is the required mapping, which admits the tepresentation of the
Geld values outside the anomalous layer in terms of the boundary values
the (continuous) tangential component of Fg.
o A p(hysical inteipret:cion of Greew’s vector Gi™ (ro|r) subject to (2.18)
is as follows: Reflect the normal conductivity structure for z_< 1 and z = 2a
at the planes z==2; and z=23 respectively, place a unit dipole in -
ditection at 7p € Iy and an image dipole at ro=rg+2 (z2m—=20)%, the
moment being the opposite for the two hotizontal dipoles ar(lﬂ% the same
for the vertical dipole. Then the tangential component of &4 vanishes
=2y
* zHen::ne, if [V is a uniform half-space, GI™ is constructed from the
whole space formula (2.15). Eq. (2.20) then reads

Eaa(r) = |p0—2m| | FIR)Eaa®dA, 2.21a)
Sm

Euylre) = |ro—am| | FR)Ea)dA, (2.21b)
‘Sm

Eaelro) = (—1ym [ FR){(x—x0) Baalr) + (y—0) Bay@) 44, (2.21¢)
g .

me

where B = |T~T0|, kR =ioueoo, and
1 d

"~ 2aR dR

Bgs. (2.21a—c) contain as important subcase the condition at the air-
earth interface (#1==0, £p=0). o

Because of the limited range of the kernels, in applications of the
surface integral only a small pozrtion of Sp, is considcr.ed. For Egg and E_'MJ
the contribution of the region nearest to T is MOost important. Asgsuming
Egeand Fgy to be constant within a small disc of _radius o centered perpen-
diculaziy over 7o, the weight from (2.21a,b) is simply

e-koh — (A} A2+ 92‘)54(}1@?@2’

F(R) = (¢FoR|R) = (1 Ao R)e toB/(2mR3).
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where 2=z, —z| is the vertical grid point width. Undet the same con-
ditions the disc does not contribute to Egs.

At the vertical boundaries of the anomalous layer the condition £y =0
might be a very crude approximation, in particular for a small grid. Here,
an impedance boundary condition for the tangential component Eg; of
the anomalous electric field, '

EEy =% X cutl By,

fi=outward normal, &£2(r)=iwpeo(r), petforms substantially better
(Joaes, 1964, p. 325).

3. Computation of Greer's Tensor

Consider a normal conduetivity structure consisting of a non-con-
ducting air half-space (lodex 0) and A uniform conducting layers with
conductivities oy, w=1,2, ..., M, all different from zero. Let the intet-
faces be placed at the depths b1 =0, b3, ..., by To calculate Green’s
tensor for approach C, two mutually petpendicular hotizontal electric
dipoles and one vertical electric dipole of unit moment have to be placed
at each point, which will be occupied by the anomalous domain, and the
three components of each resulting field have to be determined for each
interior point of the domain. Because of the horizontal isotropy, in practice
one horizontal dipole is sufficient.

The ealculation of dipole soutce fields within a layered structure is a
classical problem (e. g. Sommerfeld, 1935; Wait, 1970). In the applications
(e.g. electromagnetic sounding, antenna theory), however, only the posi-
tion of a dipole @bove and on the structure is of interest. Largely referring
to the above studies, only the modifications due to the position of the
dipole within the structure are stated.

Let the dipeole with moment in >x-direction be placed in the g-th layer
at 1g, and let G (rplr) be the resulting field in the #-th layer at point 7.
The continuity of the tangential components of the electric and magneiic
field at interfaces leads to the conditions

£ X (G?il—G?) =0, # > cutl (G?—I—G?) =0,

(1)
= zbm,m: l,...,M.

G 1s represented with the aid of a Hertz vector a;:
QP (wolr) = A wl(F) — grad div af{r), (3.2)
where &5 =iomupony and 7} satisfies

Al (r) = ko 7l Xy — & Sr—ro) kL. (3.3)
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For the sequel a cylindrical co-ordinate system {r,$,2) is. adopted_ and
the dipole is placed at 7 =0, z=2g. The vertical and horizontal dipole

require different treatment.

) Vertical Dipole

7™ has a vertical component only,
m () = me(t)Z, (34)
where mzy satisfies
Arl(F) = ER7IYE) — O —1o)/km- (3.5)
Eq. (3.1) implies the boundary conditions

¢ -1
m—1 m m—1 _ my _—
Om—~17zz  — Tmilez = Oa — (Taz ﬂzz) 0, = By .

(3.6)

The general solution of circular symmetry of the homogeneous version
of (3.5) can be built up from terms of the form

f*,{z(z) Jols7), whete fﬁzﬂi%('z*hm), oy =;2+,é,2n, m=0,...,M (3.7Ta<)

with hgp=0; 5 is the constant of separation and Jo the zero order Bessel
function of the first kind. The plus and minus sign denote upwatd an.d
downward travelling waves, respectively. The solution of (3.5) for a uni-
form whole-space with ¢= gy is

[ee)
,f,’—_:;% — 1"1732 S . gaplzz0l Jo(sr)ds, R = [P—o. (3.8)
TRy, T ” oy

Now let for 0<lm<< M

’J/OA?vzzf?:n: <z

. (3.9
yarBim [ & 22 %0

7 == { (P + Pm) Jo ds, where P = l
)

Az, BE, yo and yp7 are also functions of 5 y0 and s being so adjusted
that Ag — Bar=1. The absence of downgoing waves for z%O arid up-
going waves for 22>z, if zq is in the Af-th layer, yields Ap == By =0,
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Starting with 47 =1, Ag =0, the boundary conditions imply for
1< <y the recurrence relations

4 Tip— Sy —
e (2

T e
. (3.10)
1 iy — -
+ (—m—-— + _ml) Lm—1 Am-1,
Om Xm
whete
= ! Lt (Fom1—F
gm—EgI B —Rn) | m=0,..., MM—1. (3.11)

Similarly starting with By =0, Bir—1, Eq. (3.6) vields for M—1>m
= u the backward recurrence relations N

+ Cm+l |, %mtl T _
B = (m e iia )gﬁ B?yl-n 4 (_ +1 - Ofm+1)£j; Bput1. (3.12)

Ty % Om tm

:kIn the (::base # == no recurrence is required for B Having computed
A, and B, via (3.10) and (3.12), yq and yur are determined from

(vo Ay —vu B,) fo (20) = (3 By —yo AN FE (z0) = .‘__f_z__ (3.13)

Amo, fe

i

The ﬁ_rst equality resuits from (3.9) for z = z,, the second from the fact
T:hat the difference in the upgoing (downgoing) waves for & >z and z < 2
is due to the primary excitation, given by (3.8). Hence,

s Bifu+Bify

Yo

" U i A(A4B) s
yYmM = — ! o - A;f;+A:f::- .
dnafl T AAB)
Wheref;f :f: {zo) and
MAB) = A4, B, — A, B (3.15)

When ;7 is determined, the tensor elements Cozy, Gay, Gy are cal-
culated via (3.4) from (3.2), The field in 2<C0 is simply

GZ = — grad ([ yo 5% Josds) (3.16)
1]
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" B) Horizontal Dipole

Let the dipole be directed along the x-axis. The Hertz vector has two
components now:

() = mpp(r) & + mhy (¥) £. (3.17)
From (3.3) follow the differential equations
A 7l o B2 2 — S —ro)jke, Amm = ke, (3.18a,b)

Eq. (3.1) yields four bouﬁdaty conditions at z=fy;:

O T+ — Oy g = 0, = (Omez 70 L — o i) = 0, (3.19a,b)
Ot Ty L oy = 0, div{al - m) = 0. (3.19¢,d)
Condition (3.19d) couples myy and . — Particular solutions of the

homogeneous vetsions of (3.18a,b) are

Fi(2) Jals?) cos g and fE(2) Julsr) sinwd
where /, is the n-th order Bessel function and f3 is given by (3.7b). Since
the excitation is expressed by (3.8), fo is appropriate for mg,. Condition
{3.19d) then shows that /1 cos¢ is the correct choice for 7y, (¢ reckoned
positive from the x-axis in direction to the y-axis). Let for 0<lm <M

+ {%ﬁ s 2 20 (320

AL AT — OF 1 Om)ods, where 05 = T
m Tz f')' (Nm ,Qm)]ﬂ 2} € Um 6MDEf?n, 2>z

Then the determination of Cf?;, Dfn, da, and dpy is quite similar to that
of A%, BE vo, and yar, respectively. Thus the boundary conditions
(3.19a,b) vield for 1< m << p starting with Ch=1, Cg =0:

CE (1i_f%ti)g$lc;1+-(1¢:“ml)galcﬁl,<120

Glyp i,

and starting with D=0, D=1 for M—1>m = u

Dy = (1 1 “””’**1.) 5 Dha1 + (1 T “m“) &5 Dpa1. (3.22)

Em o
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Again, there is no recutrence required for u= M. The unknowns do
and dpr ate determined similarly to (3.13) and (3.14):

J
T Anay AC, DY
F

dar = -
M Ane, A(C, D)

8 Dy fu + Do fa),

(3.23)

(Cafi + Cuf)s

wherte ﬁf = ff(zo), and the A-symbol is defined in (3.15). The computation
of 7y is slightly more complicated. Let

o
ki 7 = [ (R + Ro) J1 cosd d,
0

h -
where B {(EDE;JraO F) fo, 2 < 2p (3.24)
(emGm + 85HE) [, 22 20

Since at each interface four new coefficients are introduced, whereas
there are only the two bouadary conditions (3.19c, d), two additional
conditions are imposed by equating at each intetface the cocfficients of &9
and dg (or &3r and &py) separately, thus obtaining four pairs of decoupled
tecurrence relations (using (3.21 and (3.22) to remove Ch_q and D;tn)

. (1 4 ’3;‘“1) B+ (1 T 5%&) et Epr, (3.25)

mn m

e m

Py = (1 + %‘1) G-t Pt + (1 F ﬁgi) &n-1 P
(3.26)

T ) (Gt o,

-
2 Hin Tap—1

G;ﬁ — (1 £ %1) g% G;_Hl + (1 F _-Bm+l) gﬁ Grat1s (3.27)
B P

Hy, = (1 + ﬁgﬂ) G Hopa1 + (1 T ﬁgﬁl) i Hmia
i i

(3.28)

s G -
+= — (1 — = )gﬁ (D1 + Dpr1),

Oy Gm+1

where B = am/op,.
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- 'To determine gq and 23, Eq. (3.24) is consideted at z =zp. Since m,,
has no singularity, upward and downward travelling waves agree. Hence,

g0 By + do Fy = enr G + 6y F,
ot
o = {A(F, G) 80 + A(G, H) a} | A(G, E), (3.292)
ear = {A(F, B) 8p + A(E, H) 631} ] A(G, E). (3.29b)

So far, the starting values for the recurrence (3.25)—(3.28) have not been

- specified. Since in the last layer there is no upward travelling wave
 below the source,

Gu =1, Gl = Hig = Hy =0 (3.302)

+is a cozrect choice of the initial values of (3.27) and (3.28). For the air layer,
a corresponding choice of Eé:l, Fy = F§ = F¢ =0 would be appro-

priate, if the air had non-zero conductivity. In the case of ¢g==0, {3.25)

~-and (3.26) break down. As a remede recurrence has to statt at w =2 and

the coefficients for # =1 must be specified. Assume for the moment that
the air half-space is slightly conducting, i.e. ég# 0. Wheteas m, is only an
auxiliary function, the quantities kSmy and diva, entering in (3.2), have
a physical meaning and must be finite for <0, Let

[2al
&2 70 = [ Bp et Ji cosdds.
0

Then div rzg is finite if (50—50)//e3 is fmnite for oy > 0. Hence, #p=4dy.
Satistying the boundary condition (3.19¢) at =0 by equating the coef-
ficients of ey and 8, separately, yields Ei{ +Ef =0, Ff + Ff =1. Speci-
fying o as the amplitude of the upward propagating wave in the first
layer, the firal starting values

Ey =—1,Bf =1, FT =1, Ff =0 (3.30b)

are obtained. This completes the treatment of the horizontal dipole.
Now, on using (3.2), (3.9}, (3.20), and (3.24) all tensor elements can be
given explicitly. Let

o0 <]
_ 1 - _
Uy = S {Om + O} Jods + P?S {{( O + Om)— o Boy— R} J1 ds,
gi
0 0

[<8]
1 _ _
Uy = — ?—S (4G + O~ om(Biy — B} Ja 5,
¥
0
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fral

Us =— [ {P, + P} Jos2ds,
0

=3}

Us=—[{Pp— P} J1otmsds,
0

where Uy=Uj(zg, 2, 1), i==1, ..., 4. Then
Gz = U+ Us costd, Gy = Gye=Ul sing cosd, Goy =1 + Us sinZd
Grz = Uy cosd, Gy =Ul sing, Giz = Us.

The missing elements Ghs, Gis cani also be expressed by (J and R
terms, of simpler on using the reciprocity (2.13), as
Gz =—Ux(z, #g, 7) cos, Gys =—1Us(z, 20, ¥y sing.

The sign is reversed, since the interchange of source and receiver changes
¢ by 7. The nine elements of @& can be expressed in terms of the four auxil-
fary fuactions /3 to Uy For i=1, 2, 3 reciprocity requires Ui(zq, z, ) =
Uz, zg, r). Hence, these functions have to be determined for 2<Z x; only.

The tensor elements which transform the clecttic field within the
anomalous domaia into the surface field, become particularly simple. Eqs.

(3.19d) and (3.20} yield
£} div @y = Df {2 a1 0 — {1 + )80} 652 J1 cosd dr . (3.31)

Hence, defining

0o GO
1
Vi= S b0 Jods + <o S (ko) b0 —2 oy 00} /1 s,
0 ! o
o0
1
Vo= — £ g{(f—{—otl) 50——2“150}]21‘{-‘:
0
N ) og
Ve= — [yofostds, Vai=[9yo/ s%dr,
0
o @© ’
1
Voo \ dofudr+ iy | (Goran d0 =21 o) s,
o 1 ha
Fi] 0

where 17 = 1(z0, r), Eq. (3.2) vields as tensor elements for z=:—0:
Gop == Uy + Vg cos2g, Ggy = 179 sin¢ cos¢, Go =T cos¢
Gy = Goy, Gpy = V1 + Vasin®, Gl = Vs sing
GY = 174 cosd, Goy = Vi sing, Gy = 173,
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: Tn 2z <0, the electric field of a dipole in x-ditection (say),

G = | 8o(# Jo ++ 2 J1 cosg) e® ds — grad div a3, (3.32)
0

“where divag is given by (3.31), can be split uniquely into a toroidal part
T (putely tangential) and a poloidal part S,

Gl=T 18 T=cul(@yr), S=grad ps. (3.33)

The poloidal part is due to surface charges at 2=0. Since the z-com-
“ponent of the first term of (3.32) is poloidal per definition, g and yrare
“given by

: © w
s = | B 511 cosgh es? ds — div m, wr =) dost Jising eszds. (3.34)
- b g

" The electric field of a vertical dipole is putely poloidal in 3<C0 (cf.
(3.16)). When the kernels for the toroidal part are caleulated by (3.33) and
7(3.34), the electric surface field obtained by (2.14) is easily decomposed into
“its poloidal and toroidal part. For an eloagated anomaly and a totoidal
" external electric feld, the resuiting anomalous field is either almost toroidal
or poloidel, according whether the external field is parallel or perpendicular
“to the strike.

In z<< 0 only the toroidal part of the surface electric field gives rise to
-a magnetic field. Let F! (ro|r), =1, 2, be the magnetic field at  due to a
- hotizontal dipole in xy-direction at ry. Then from (2.Z)

iwug Fi(ro|#) = — curl Glro|r), i =1,2.
Defining
>0} =]
1
fCO‘LL() W]_ —_ S 50 (:;]1—*]0) .fd.f, iw/,Lo Wz = S (30]2 J'd.f,
0 0
I.LU;,L[] W3 :—Scso]lj‘d.f,

the magnetic field kernels are

ng = — Wy sing cosd, ng = W1 + W cos?¢, ng = Wy sing,
Fly = — Wy — Wasin®p, Fgy— W sing cosd, Fyz=— Wz cosp.
Hence, the determination of the electric and magnetic surface field
requires the tabulation of cight additional functions {7y to V5 and W

to ¥3), all functions of zg and r. The range of r depends on the sutface
domain, where the anomalous field is to be evaluated.
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4. Numerical Considerations

The integral equation (2.11) or (2.14) is solved by the simple approx-
imate approach of Hohmann (1971). It consists in decomposing the
anomalous domain into a set of equal rectangular cells, assuming a constant
electric ficld within each cell. For &V cells results 2 lincar system of 3 IV
equations and unknowns. The coefficients are essentially the tensor kernels
integrated with respect to source coordinates (Hq. (2.14)) or obscrver
coordinates {Eq. (2.11)) over a cell. Care must be exercised in evaluating
the contribution of the singular cell and of its neighbouthood. In general,
the most important coatribution arises from the primary excitation in
direction of its moment. Let the dimensions of a cell be Ay, Ay, Az, and let

GZy = (B — 82/9x2) ¢kR[(4n £2R)

be the excitation in x-ditection. For an approximate evaluation, the singular
cell Cg is replaced in the first term by a sphere of the same volume and in
the second term by a circular cylinder with axis in x-direction, length Az
and cross-section Ay - g It results

k2 [ Giedr =L — (Ry/Ry) e ™2 — (1 L ARg) ™83 1 1,
Cs

whete Ry = 74/2, RS = dafd+ hyhafm, R =3 iglyief(4 7).

For symmetry reasons, there is no contribution from Ggy and %,
‘The integrals over the adjacent celis can be effected in a similar way. In the
numerical evaluation of the kernels given in Sec. 3, the integration with
respect to z 1s casily included by adding in the integrand the factor

_ 2 sinh (o, A2/2)/ ety
by which exp (& oyz,) s multiplied when integrated over the thickness
of the cell ceatered at =,

The system of equations is solved cither iteratively {e. g. by meaas of the
GauB-Seidel method) ot by matrix inversion. Because of the large storage
required, the latter method is attractive only for small anomalous domains,
It is of great advantage to exploir all symmetries. For structures with two
vertical symmetry planes, the number of unknowns is reduced to almost
25%,, and hence, the storage for matrix inversion is only 1/16 of the original
storage. For iterative methods, both the computer time for one iteration
and the number of iterations is reduced.

The Gaul-Seidel iterative scheme convetrges only for moderate con-
ductivity contrasts. In numerical experiments it was found that a good
convergence can be obtained for conductivity contrasts up to 1:106 only;
E,, was used as initial guess for E. If for higher contrasts matrix inversion
is not possible, the best remede might be to apply the powerful method of
shifting the specttum as described by Hutson ez 2 (1972, 1973).
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Fig. 2. Induction atrow maps for two different configurations of the anomalous

domain (top). Vectotial addition of the arrow of the left structure and of a

similar structure rotated through 90° (bottom). Only arrows longer than one half
of the length of an arrow head are shown

5. Resalts

The feasibility of the integral equation approach has been tested for
simple cases. Some of the results are presented below. A completc. and
concise presentation of the anomalous field vectors for 2 three-dimensional
model poses a difficult problem. For 2 quasiuniform external field, 24
displays of a function over a two-dimensional array are required to give a
complete description of the in-phase and out-of-phase part of the .eiec.tnc
and magnetic field vectot for the two mutually perpeadicular polarizations
of the external field. Four of these displays (in-phase and out-of-phase
part of FI, for both polarizations) can be combined to vield an induc.tion
atrow map. Bxamples of such maps are shown in the upper half of Fig. 2
for two different configurations of the anomalous domain. The bodies of
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Fig. 3. In-phase and out-of-phase patt of the anomalons electric field vector for

a uniform external field in x-direction serving as reference field. The associated

normal magnetic field points in y-direction. A rectangular anomalous domain,

50 km % 25 kin % 10 ki of ¢ =12 m, embedded in a uniform half-space with

=100 m just below the surface is chosen. The period of the inducing field is
120 sec

=1 Om are 10 km thick and are placed immediately below the surface
of a uniform substratum of p =10 2m. In-phase and out-of-phase arrows
ate matrked by black and white heads, respectively. Only arrows longer
than one half of the arrow head are shown. It has been proved by Siebert
(1971) that the induction arrows for 2 complex structure, consisting of two
elongated, mutually perpendicular anomalies can be obtained approximately
by vectotial superposition of the individual arrows. Along this line, the
lowet map of Fig. 2 has been obtained by adding to the arrows of the left
map the arrows of the same structure, rotated through 90°. Since mutual
induction is neglected, the induction effect is slightly overestimated,

‘The complete set of 24 displays for 2 different high conducting intrusion
is illustrated in Figs. 3—6. The plots ate thought to provide a qualitative
idea of the fields, although quantitative results can be extracted by a some-
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Fig. 4. The anomalous magnetic field of the model described in the caption to
Fig. 3. The normal magnetic field setves as reference field

what awkward procedure. The disturbing body is decomposed into cubes
with 5 km edges. There atre 10, 5, and 2 cubes in x, v, z-direction, respec-
tively. The complete surface field has been evaluated on a 18 x 13 grid.
On a UNIVAC 1108 computer the determination of all ketnels took 70 sec,
the solution of the integtal equation and the evaluation of the surface field
required additiona] 50 sec for each polarization, the Gaull-Seidel iterative
scheme being convergent after 10 iterations.

In all subsequent figures, only the anomalous ficlds are shown. The
modulus of the corresponding notmal field serves as reference. Fig. 3
presents the electric field for a uniform external electric field in x-direction.
The asscciated normal magnetic field points in y-direction. Within the
good conductor, the Ejpcomponent breaks down. It exhibits a discon-
tinmuity at the front and rear surface since the normal component of the
current density is continuous there. The Fy-component differs appreciably
from zero only near the corners. The signs ate easily understood using the
idea of the electric curreats being sucked into the good conductor. The
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Fig. 5. In-phase and out-of-phase part of the anomalous electric ficld vector for
a umf_orm e_xtcn}al field in -y-direction associated with a normal magnetic fleld
in x-ditection. The same anomalons domain and period as in Fig. 3

magnitude of the Ez-component is of the order of F, Its origin are
surface charges: negative charges at the front bending the cutrent lines
towards the surface and positive charges at the rear reflecting the lines
from the surface. Fig. 4 shows the corresponding magnetic field. The signs
are understood using the idea of magnetic field lines expelled from the
good conductor.

Figs. 5 and 6 display the electtic and magnetic field for an external
magnetic field in x-direction associated with an electric field in -y-direction.
With the present choice of the dimensions of the disturbing body,
this polarization resembles the two-dimensional H-polatization, i.e. the
anomalous magnetic field vanishes if the anomaly is extended to infinity at
both ends. In the same limit the former polarization degenerates into the
F-polarization case.

After decomposing the kernels G2 and Gy according to (3.33) and (3.34),
the poloidal and toroidal part of the electric surface field can be obtained
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Fig. 6, The anomalous magnetic field vector of the model of Fig. 5

separately. For the F; and 5, component of Fig. 3 this is done in Figs.
Ta and 7b.

Finally, the transition from three to two dimensions has been investigat-
ed for a particular model. Fig. 8 illusirates that on a central profile a two-
dimensional description is adequate if the length of the disturbing body
exceeds three times its width.

6. Conclusion

The integral equation technique based on Green’s tensor turns out to
be a useful tool in treating three-dimensional induction problems.

It is suitable for small anomalous domains, and here it is of particular
advantage if the anomalous field is required for a set of different conductiv-
ities within the anomalous domain andjor different external felds, for
the time consuming computation of the pertinent kernels has to be carried
out once only. Work is still necessaty to develop effective iterative methods
if the conductivity contrast is large (>>100:1). For large aromalous do-
mains, a finite difference technique combined with a surface integral
boundary condition appears to be the most promising approach.
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Appendix
The Tensor Elements for a Uniform Half-Space
For- a uciform half-space with ¢,(2) = oy these elements have already
been given by Raiche (1974) in terms of integrals. However, all integra-

tions can be carried our explicitly. Using source coordinates X0, V0, 20
and the abbreviations.

RE == (x—20)? + (y—90) + (2 2 20)?,
g = exp (—koRs)[(4aRys), wi=g + g4, ko — iwugay,

ﬁ = s — (a/az){jo(;:-éo[RTZ—Zo]) . Kg(%;ég[k++z+20])} /(2?5),

where [y and Ky are modified Bessel functions of order zero, first and second
kind, it results for 2, 25 >0

kS G = (B] — 2235 8 + (82/022) (ay — B),

kG Gay = k§ Gy = — (8225 ),

£S Gz = — (22/8 % 32)ay,

kG Gyy = (kG — 82/2yD)8 + (2%/222) (s — ),

kG Gz = — (92/3y32)

kG Gy = — (320202,

kb Goy = — (82/020))0_,

£l Gop— (kb — 22/022)a...

The vertical componeats Gy, Gyzy G, vanishing for z »4-0, tend
for z »—0 to the limiting values

kg Gz =~ (220 x Bzo)y, &§ Gye = — (8% dyds0)y,
ko Goy = (8%223)y,

where
y = (3/020) {fo (é ko[ﬁo—zo]) Ko (% féo[ﬂo+20])} 22,

R{ = (se—20)2 + (y—y0)? + 3.

Since in applications an integration over the source or observer cootdi-
nates (Hqs. (2.14) and (2.11), respectively) is involved, most of the above
differentiations need not to be cartied out. (Use Of0x =—2]8x, 3/By =
—0/0y0, and e.g. a0z =— 0oy /0%0, Do/ 05— Dr_{Dp.)
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