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This review shows that the inversion of two-dimensional structures is still an almost uninvestigated area. Only for
very restricted anomalous domains exact methods exist: (a) undulated interface between perfect conductor and
insulator; (b) thin non-uniform sheet. So far, real conductors must be inverted by linearization. A method for the
computation of the pertinent kernels is described and the well-developed method of generalized matrix inversion is

applied in a preliminary study both to artificial and real data.

1. Introduction

Upon the determination of the change of normal
conductivity with depth by a one-dimensional in-
verse problem, attention is drawn to the next com-
plicated inverse problem: Assume that within a known
normal conductivity structure there is embedded an
unknown, laterally non-uniform, anomalous domain
with constant cross-section in the x-direction, and of
limited extent both in the other horizontal direction
and in depth (y- and z-direction, respectively). The
additional assumption of an x-independent inducing
magnetic field renders the configuration purely two-
dimensional. Then the problem to be solved is to
deduce the conductivity within the anomalous do-
main from a knowledge of the normal conductivity
structure and the anomalous electromagnetic field,
observed for various frequencies at the surface of the
earth, Since more a local then a global feature is con-
sidered, the assumption of a plane earth is justified.

For a two-dimensional configuration, Maxwell’s
equations are split into two disjoint sets, named ac-
cording to the component in the x-direction either
E-polarization (£ x,.Hy , H,), or H-polarization (H,,
Ey, E,). For simplicity, the following considerations
are confined to the more interesting E-polarization
case, where both the electric and magnetic surface
field are disturbed. Using cartesian coordinates x, y,
z with z positive downwards, SI units and a time

factor el“ ! throughout, the pertinent equations are:
aF oF

. x : -

iwpoH,, = vl iwpoH, = 3 (1a,b)
0H, OH

= _2

ok, = 5y o 2)

leading to the differential equation:

32E, 0%E, G)
+ = iy 0F 3

oy2  9z2 0

In the E-polarization case the inducing field might
be due to any two-dimensional current distribution, but
the subsequent considerations are simplified, if a quasi-
uniform external magnetic field is assumed.

The interpretation is based on one or more of the
transfer functions:

ExalExn »  HyalHyn H,/H,, 4)

which are functions of frequency w and space coordi-
nate y. The subscripts n and a refer to the normal and
anomalous part of the respective field quantity.

It is generally accepted that a perfect knowledge of
any one of the transfer functions (4) contains sufficient
information to reveal the anomalous conductivity in a
unique way; the dependence on y provides the lateral
resolution and the dependence on w gives the resolu-
tion with depth. So far, however, a proof of this asser-
tion has not been given. Apart from the question of
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uniqueness, there remains also unanswered the ques-
tion of existence of a solution; i.e., which conditions
a data set has to satisfy to belong to an anomalous
conductivity structure. From the answer, certain com-
patibility relations can be derived (e.g. statements on
the smoothness of the frequency dependence), which
experimental data have to satisfy to be exactly inter-
pretable. Although it is expected from experience
with the one-dimensional inverse problem that a
uniqueness proof will not offer a very appealing way
to find the conductivity in practice (Bailey, 1973), it
will consolidate the fundaments of induction theory.

Apart from two degenerate cases, which will be
considered later on, there appears to exist no specific
approach to invert two-dimensional structures. In
general, starting with a simple, plausible model, trial
and error techniques are applied. In this way, an ex-
cellent agreement is sometimes obtained between ob-
servations and model interpretations for various fre-
quencies. Work along these lines has been carried out
by Schmucker (1964, 1970), Filloux (1967), Swift
(1967), Cochrane and Hyndman (1970), Bennett and
Lilley (1971), Bennett (1972), Greenhouse (1972),
Hyndman and Cochrane (1971), Scheelke (1972),
Dragert (1973), Steveling (1973), and Winter (1973).

Only in the two complementary cases where either
the anomaly is due to an undulation of the deep in-
terface between an insulator and a perfect conductor,
or the anomaly is due to lateral conductivity variation
in a thin-surface anomaly, exact inverse methods
exist. These will be considered in Section 2. So far,
the only way to handle the inversion in finite conduc-
tors is to linearize the problem and to apply the tools
of generalized linear inversion. This is worked out in
Section 3.

2. Degenerate cases
2.1. Undulation of a perfectly conducting interface

When the conductor can be approximated by an
insulator with a perfectly conducting substratum, the
interface is a magnetic line of force, since no magnet-
ic component normal to the interface exists. Hence,
the family of field lines, which give rise to the surface
field have to be computed. This can be done by search-
ing for a set of current sources beneath the surface

z =0, which can account for the observed anomalous
field (Siebert, 1974). The differential equation for a
magnetic line of force is H,,/H, = dy/dz, or introduc-
ing the vector potential 4, with “OHy =04,/0z,
ugH, = —0A4, [y it yields (04, /dy)dy + (34,/0z)dz
= 0. Hence, the lines 4, = constant are the field lines.
It is assumed that the field is undisturbed for Iy |- e,
Since the vector potential of a single-line current is
proportional to log Iyl for ly|-> oo, a representation of
the field in terms of current dipoles and higher multi-
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Fig. 1 A. Interpretation of the anomalous field of the north
German conductivity anomaly (full lines) by a current dipole
(dashed lines).

B. The family of equivalent undulations of a perfect conductor
(after Siebert, 1974).
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poles is required. The vector potential of a current
dipole at r;, is:

A =Dy - (r—r)lIr —r

where the vector Dy points from the current in —x-
direction to the current in +x-direction. The vector
potential of Hyn is uoH, 1z, and considering a field
line with z >z, for ly| > o, for a representation in
terms of dipoles the implicit equation:

(z _zo)+Zk)ﬁk r—rllr—r,2=0 5)

5k = Dk/(“OHyn)

is obtained, which for fixed y and z; might be solved
by Wegstein iteration, starting with z =z It results a
family of curves with z(, as parameter. A proper z,
must be chosen by physical reasoning, in particular
min {z(»)} > 0 has to be satisfied. Siebert (1974)
interprets the north German conductivity anomaly
(Schmucker, 1959) by a single current dipole (y; =0,
zy =127 km, 151| = 7,600 km?2, inclination 45°). The
result is shown in Fig. 1. None of the three curves ap-
pears to be very realistic: The interface zg =40 km
cuts the surface, the interface z; = 80 km is pretty
steep, and the most reasonable interface zy = 60 km
approaches the surface up to 7 km.

2.2, wersion of thin sheets

Assume that the anomaly results from a lateral

variation of the integrated conductivity 7 in a thin sur-

face sheet at z = 0 with known horizontal layering for
z>0. Let:

)= tT0) . 7,()=0

where 7, is known and 7,(y) is to be determined. For
the E-polarization case Schmucker (1971a,b) proposes
the following method of solution.

From the sheet-current density:

TEy = Hy —Hy = (H}, — Hyp) + (Hy, — Hyp)

for Iyl oo

=7.En +H}",’a—H‘

ya
follows:
_ H;; —Ho —T.F..
Ta = E (6)

X
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where the superscripts + and — refer to the upper (z
= —0) and lower side (z = +0) of the sheet, respective-
ly. The vertical component H, is continuous across
the sheet. There exist two kernels K* and K —, which
admit a convolution integral representation of
H3, in terms of H,:

+oo

H,0)= [ KO- Hmi2K xH, ()

— o0

K* and K~ depend only on the conductivity above
and below the sheet, respectively. Since a surface sheet
is assumed, K™ is in fact independent of conductivity
and is given by:

1
+ = _ 21
K'0)=—
i.e. the negative of the familiar K-operator (Siebert and
Kertz, 1957). Examples for K~ are:

(a) For zero conductivity in 0 <z </ and a perfect
conductor at z = h:

—n =L y
K-(y)= T COth<2h)
(b) For a uniform halfspace with conductivity g:

kln du
K~()= ;{5 + f K, (@) ;}‘Sgn(y)
kiyi
where K| is a modified Bessel function of the second
kind and k2 = iwpgyoy.
From eqs. 6, 7, and 1bfollows:

(K* —K") X 3E,,[dy — iwpgTh By y

T, = - 8
2 1"“’“O(Exn +Exa) ( )

Thus 7,(y) can be determined from a knowledge of
the transfer function E,,/E, , for one frequency only.
If instead the transfer function z, = HZ/HJ,n is given,
eq. 8 reads:

(K* —K~) X H, —iwuyr,G % H,
= - ©®
C*H,y+ G % H,

where:
E,, =iwugG X H,
G = Jsgn(y)
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and
E.p= iwu0C+H;n

have been applied. C* depends on the normal conduc-
tivity structure and yields for the two cases mentioned
above:

(a) C* =h/(1 +iwpyTyh)
(b) C* = 1/(k +iwuyTy)

Details for the computation of all kernels are given
by Schmucker (1969, 1971a,b). If the data are perfect,
and the normal conductivity is completely known, the
same conductivity profile 7(y) will be obtained for all
frequencies. Moreover, this quantity will be real. In
practice the normal conductivity structure must be
varied in order to minimize the quadrature part of
7,(») and to maximize the agreement between the
conductivity profiles for all frequencies. A successful
application of this inversion procedure is given by
Schmucker (1971a).

3. Inversion of thick conductors by linearization
3.1. Computation of the partial derivatives

The inverse problem of electromagnetic induction
is a non-linear problem. The most popular way to
handle non-inear problems is to linearize them. As-
sume that the anomalous domain consists of M cells of
known size and constant unknown conductivity o, j=
1, ..., M. For conciseness let a7 = (01, vy Opg). AsSO-
ciated with each datum is a function f;, which trans-
forms o into the datum g;:

g =f{0), i=1,.,N (10)

Suppose that an approximation o9 to ¢ is known.
Neglecting terms of order O(o —0'0)2, eq. 10 reads:

Mo
Do - =g fle® ,  i=1,..N
j=1909

’ an

If a9 is near o, the system (11) with N equations and
M unknowns yields a correction to ¢Y, thus starting an
iterative scheme. The inversion of system 11 is best
carried out by generalized matrix inversion (Section
3.2.). First the partial derivatives 9f;/90; have to be

determined. For the moment consider partial deriva-
tives of the electric field only and let £, and £, be
two solutions of eq. 3 with 6 = 0, and 0 = 0:

AE (r) = ioug0,(NE,(r)
AE4(r) = iwuoaﬂ(r)EB(r)

(For shortness, the subscript x of E is dropped in the
sequal.) The difference (12a)—(12b) is:

(12a,b)

A(E, — Ep) = iwpgog(E, — Ep) + iwpg(oy, — 0pE,

, (13)
Let G4(r'|r) be that solution of:

AGﬁ(r' Ir) = icopy aﬁ(r)Gﬁ(r' ) —8@—r) (14)
which vanishes at infinity. Multiply eq. 14 by

E(r') — Eg(r') and eq. 13 by G,(r'Ir) and integrate
the difference with respect to r’ over the whole (,2)-
plane. Then Green’s theorem yields:

Eo(r) — Eg(r) = —icottg [{0,(r) — 05}

X E(r)Ga(r'Ir)dA’ (15)
The domain of integration is within the (y,z)-plane
the region where o, ¥ 04. If 0, = 0, 05 = 6, eq. 15
reads:

E(r)=E(r) - iwuofoa(r')E(r')Gn(r' lr)d4’ (16)
where 0,=0 - 0,,.

This is an‘efficient integral equation for E, provided
that G}, is known (Hohmann, 1971). Formulae for G,
are given below. For an infinitesimal conductivity
difference §0 = 0, — 04, eq. 15 yields:

SE(r) = —iwpq f 50(rEr)G( 1/)dA’

where E and G correspond to ¢ = ¢, ~ gg.
In the case of cells with constant conductivity as-
suming that £ is constant within each cell this leads to:

BEG 1\7 .
——aoj = —iwugk )l
0= f G(r'lr)dd’

Cj -
where ¢; is the cell centered at r;. Hence, via egs. 17a,b

the partial derivatives are closely related to the Green’s
function G(r'|r), which satisfies the integral equation:

G(r'lr) = G, (r'lr) — iwpy f 0,(r"G,(r'1FNGE" Ir)da”
(18)

(17a,b)



286

derived along the lines of eqgs. 12--16. Integrating
eq. 18 with respect to r' and using eq. 17b yields:

M
T = Ty — ity kZ=>1 Ok Tkl hi (19)

"1, ..,NE(&J), j=1,...,M

Ng(w) is the number of points, for which surface
values of £ at the frequerncy w are given. For i fixed
19 is a system of M equations for the M unknowns

F The solution is simplified by the dominant diago-
nal due to the logarithmic singularity of G,(r'Ir) for
r—r'. The partial derivatives for the magnetic field
components are obtained similarly. According whether
HyorH, is considered, egs. 17a,b and 18 are differen-
tiated with respect to z or y (coordinates of the point
of observation).

It remains to determine G, (r'lr), which can be
conceived as the electric field of a unit line current
placed at #’ and observed at r. The reciprocity relation
for Green’s functions requires G, (r'1r) = G, (rIr’). The
normal conductivity structure consists inz>0of L
layers with conductivities o, , m = ., L and inter-
facesat h; =0,h,, ..., hyandinz < O of a nonconduc-
ting air half-space (o, = 0). Required is the solution
of:

AGL(r' 1) = iwpg o, (NG, (' 1r) — 8(r — 1)

which vanishes at infinity. Let the source and obser-
vation point be placed in the pth and mth layer, re-
spectively, and let in the mth layer:

Gr'Iny= [ P, + Py Yeos Ny - y)dA (20)

0
where:
YoA L fm(2)s z<z
Pi =
m 7LB,tnf;,(z), z>7

[(2) = exp {2a,,(z — h,,)} =22 +icwpy 0y,
Yo and 7y can be so adjusted that AO = BL = 1 Since
there are no sources in z < 0 and for z >z’ if Z' is in

the Lth layer, Ay = BZ = (. With these starting values,
the continuity of G, and 3G, /9z across the interfaces
yields the forward and backward recurrence relations:

P. WEIDELT

A;z:(l iC‘m—l/o"'m)lg'r-';zﬁ lAr;—l’L(l $am—1/am)

Xgr;—lAa—l ) m=1,..,u

Br;z =(1 iam+I/O‘m)g;’lB:r:t+1 +(1 iam+1/0‘m)

XgmBuil > m=L—-1,..,u

with:

80 =112, & =01/2exp{ta,,(hyyy — )},
m=1,..,L—1

In the case u = L, no recurrence is required for
the B terms. The coefficients v, and v, are deter-
mined from the fact that in eq. 20 the difference in
the upward- (downward-)travelling waves for z > 2’
and z < z' must be due to the primary excitation
given by:

1 R T ndA
—2;K0(k#|r—r|)=2—ﬂ f e wlz-z 'cos)\(y—y)(—x—
0
where K|, is the zero-order modified Bessel function

of the second kind and k2 iwu(oy,. Hence:

1 B f_+B f
70" 2na,, A*B—-A ~B!

1 _f_+A f
L ey, gtp azB?
wherefg= ‘;(z ).

The nominator (including a,)) can be considered as
the Wronskian of two solutions of:

w'(2) = {2 + iwpg o, (D}a(r)

It is independent of z (and u), thus ensuring reciprocity.
The integration (17b) for a rectangular cell with dimen-
sions Ly and L, is easily performed by adding in

eq. 20 the factor:

4 sin ()\Ly/2) sinh (auLz/2)/(7\au)

and using an obvious modification for the cell where
z=2z'

An alternative way to compute the partial derivatives
is to determine numerically the effect due to a conduc-
tivity change in the jth cell. From numerical experiments
in the one-dimensional case (Glenn et al., 1973) it is ex-
pected that this approach is significantly less accurate.
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3.2. Generalized matrix inversion

The system of linear equations arising from the
linearization of the inverse problem is best solved by
generalized matrix inversion. Excellent discussions of
this topic are given by Lanczos (1961), Jackson (1972)
and Wiggins (1972). Applications to electromagnetic
and geoelectric sounding can be found in Glenn et al.
(1973) and Inman et al. (1973). The linearization equa-
tion (11)yields NV equations for the M unknown param-
eter corrections written as matrix equation A'x =y’
Here A’ is the N X M matrix of the partial derivatives,
x = 600 the parameter correction vector, and y' the
N component residuum vector between the data and
previous model outcome.

If the errors of the data are known, it is advantageous
to transform the equation in such a way that each
datum has the same variance U%. Assuming uncorrelat-
ed data, this is easily done by multiplying the jth row
by:

oo/ var (y;) )

Thus in a least squares solution, each residuum is
weighted with the inverse square root of the variance.
In the transformed system:

j=1,..N

Ax=y
the matrix 4 is now decomposed into eigenvectors:
A=UAVT

Here Vis an M X P matrix containing the P eigenvectors

belonging to the P non-zero eigenvalues of the problem:

ATay, =2}y, ,  i=1,..M
Similarly, U is an NV X P matrix with the P eigenvectors
of the problem:

Ty =32
AA u]- )\]u] s

associated with non-zero eigenvalues. Aisa P X P
diagonal matrix with the P non-zero eigenvalues. The
generalized inverse of A4 is:

H=VA lyT

j=1,.,N

In the well-posed case H is the ordinary solution
(M = N = P), in the overconstrained case (i.e. N> P
=M) H provides aleast-square solution, and in the un-
derdetermined case (V=P <M) the shortest vector

compatible with the data is found. Due to the above
transformation, the variance of the component x; is
simply:

Lowv.\2
var (x;) = a3 ijl (*X]];k) 2n

From eq. 21 it is seen that the variance is largely due
to the small eigenvalues, which should be discarded
when a small error is intended. If, however, the num-
ber of eigenvectors used to construct the inverse H
decreases, the solution degrades, the parameter chang-
esx; become less resolved, HA will deviate more from
an M-element unit matrix than before. The resolved
vector <x) is related to the true, but unknown vector
x through:

{(x)= HAx = Rx
R is named the resolution matrix and is given by:
R=VA-LUTUAVT = yyT (22)

Hence, there is the same trade-off between resolution
and error of estimate as is well-known from the
Backus-Gilbert theory (Backus and Gilbert, 1970).

Generalized matrix inversion is used both to in-
vert a structure and to estimate the information con-
tents of a given data set. Inverting a structure one
has two tools to stabilize the notably unstable inver-
sion scheme: to diminish the number of eigenvectors
and to prescribe an upper bound for the parameter
changes, e.g. 25% of the actual value of the param-
eter, leading to a trade-off between convergence rate
and stability (Glenn et al., 1973). This has the addition-
al advantage that the searched quantities do not change
their sign.

In a first application of generalized matrix inversion,
the information contents of different data sets are es-
timated. A particular resistivity structure, shown in the
top of Fig. 2, is assumed, and for this structure the per-
tinent surface data and kernels for eleven different
combinations of periods and components are computed
for eleven points at the surface. Further it is assumed
that the in-phase and quadrature part of each datum
have an error of 10% of the modulus of the datum.
Then the resolution matrix has been computed under
the assumption that the error for each x; should be
near to 20%, thus determining according to (21) the
number of retained eigenvectors for each row of (22)
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separately. The 6th row of the 32 X 32 resolution
matrix R is shown in Fig. 2 for the different data cases.
For perfect resolution the 6th component of this row
would be unity, the remaining components zero. The
cell, where the resolution is maximized is marked by
a black arrow head. The other arrows were only drawn
when their length was longer than one half of the
length of an arrow head. The white arrows show the
relative weights, with which the other cells enter in
an estimate of cell 6.

For each cell an averaging cross-section g; in units
of the area of a cell has been determined according to:

P. WEIDELT

Z)|/k1 (23)

where r;; are the elements of R. This number is given
below each small figure of Fig. 2. In the present exam-
ple the estimation of the data contents started with
the assumed model; in applications the last iteration is
the appropriate starting point.

Numerical experiments were performed to test the
capability of generalized matrix inversion for the in-
version of two-dimensional structures. In one example,
for the four periods mentioned in Fig. 2 the H, compo-
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Fig. 4. The complete resolution matrix for the Rio Grande anomaly using the result of Fig. 3 and admitting an error of 20% for the

averaged conductivities.

nent at the same surface points and for the safme resist-
ivity structure as in Fig. 2 were used as input data.
Using the normal resistivity structure as zero-order
approximation, the iterative scheme converged to the
correct values, provided that the anomalous domain
was decomposed into 8 cells with 5-km edges, whereas
this first approximation was diverging for 32 cells with
2.5-km edges. This suggests the strategy of starting the
inversion with a coarse grid, which is refined later on.
An application of the inversion procedure to the
Rio Grande anomaly (Schmucker, 1970) is given in
Fig. 3. The data set consists of the H, values for four
periods over a profile of 990 km, interpolated for 12
equidistant data points. The anomalous domain con-
sists of 48 cells, 90 X 40 km?2. During the iteration
only the resistivity in 32 cells was allowed to change.
Using the normal resistivity structure given in Fig. 3,

and as initial guess 200 £2m for the first row of the
anomalous domain and 1,000 Qm for the other, the
RMS error of fit between data and model outcome
first decreased and then divergence occurred. Fig. 3
shows the model for the least RMS error obtained.
Using the errors of the data given by Schmucker
(1970) and assuming an estimation error of 20%, Fig. 4
shows the resolution matrix for the model of Fig. 3.
It is seen that only high-conducting regions are clear-
ly resolvable.

4. Conclusion
The inversion of two-dimensional structures is

still at its beginning. Only when the possible anoma-
lous conductivity structure is confined either to an
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undulated interface between an insulator and a per-
fect conductor or to a thin non-uniform sheet, exact
methods exist.

The more realistic case of a thick anomalous
domain can in the moment only be attacked by
linearization using either the Backus-Gilbert proce-
dure or the closely related generalized matrix inver-
sion. In a very preliminary investigation of two-di-
mensional inversion by linearization the latter meth-
od has been applied, because it is particularly suited
for discrete variables. The disadvantage of this meth-
od compared with the Backus-Gilbert procedure is
that the resolution function is not so clearly normal-
ized to allow an easy interpretation. Much work is
still necessary, in particular the non-linear effects
ard not yet clearly investigated.
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