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Response characteristics of coincident loop 
transient electromagnetic systems 

P. Weidelt* 

ABSTRACT 

The occasional occurrence of persistent sign reversals in 
coincident loop transient electromagnetic (TEM) mea­
surements stimulates an investigation of possible causes 
for this effect. By examining the response in the complex 
frequency plane near the spectrum of freely decaying 
current modes, it is shown that for any physically rea­
sonable frequency-independent distribution of electrical 
conductivity and magnetic permeability the voltage re­
sponse to a step function driving current is of one sign only, 
Moreover, under the conditions mentioned above, the 
logarithm of the induced voltage is a decreasing convex 
function of time, These characteristics are retained for 
more general time functions of the driving current. The 
conservation of sign for frequency-independent material 
parameters supports the assumption of IP effects as a 
possible mechanism for sign reversals, The latter point is 
illustrated by a simplified example, 

INTRODUCTION 

The growing application of transient electromagnetic (TEM) 
methods in prospecting for ore warrants a more detailed investiga­
tion of the signal characteristics under regular conditions, A 
violation of these properties would indicate that the inductive 
response to the driving current is contaminated with signifkant 
contributions from other sources, such as external noise and in­
duced polarization, This paper presents characteristics of the 
(formally) simplest TEM system, where the transmitter loop 
coincides with the receiver loop, This configuration is currently 
used by the MPP series (Kamenetskij, 1976) and by Sirotem 
(Buselli and O'Neill. 1977), Although it is generally assumed 
that the induced voltage is of one sign only, definite sign rc­
versals were reported by Spies (1980), and the role of IP etfects 
as a possible cause of sign reversals was studied by Lee (1975, 
1981), Besides such a frequency-dependent conductivity, Spies 
(1980) cites as possible mechanisms for a sign reversal either 
magnetic effects caused by a special distribution of magnetic 
permeability or reflections caused by a particular conductivity 
distribution, However, Gubatyenko and Tikshayev (1979) showed 
these mechanisms cannot be relevant for a sign reversal by 
proving that for any frequency-independent linear medium the 

induced voltage caused by a unit step excitation is of one sign only, 
A different proof of the above result is given herein, It relies 

on properties of the response in the complex frequency plane near 
the decay spectrum of freely decaying current modes, More­
over, the results of Gubatyenko and Tikshayev (1979) are ex­
tended by considering more general time functions of the driving 
current and by formulating constraints also for slope and curva­
ture of the decay curve, 

Let lit) and l' (t) be the driving current and its time derivative, 
Assume J' (t) = 0 for t > 0 and that for s 0, the Laplace transform 
of l'(t), 

f 
to 

'Y (AJ = _% J' (t) eAt dt, (I) 

is of constant sign for A > 0, Then the following two general 
statements hold for t > 0: 

(I) No sign reversal in the induced voltage 0 (t) occurs for 
any distribution of frequency-independent electrical 
conductivity and magnetic permeability and for any 
shape of the loop, 

(2) Under the same conditions, log I 0 (t) I is a decreasing 
convex function of time, i,e" it has a negative first 
derivative and a positive second derivative, 

A look into a table of Laplaee transforms (Abramowitz and 
Stegun, 1965, chap, 29) shows that the class of driving functions 
with no sign reversal of 'Y (AJ is rather broad, It comprises all 
monotonic functions, but also oscillating functions such as 
sin (0. t - cp), 0. > 0, 0 ~ cp ~ 'IT / 2, and half sinusoids, The 
above statements are clearly true for the simplified conducting 
loop model of Grant and West (I <J65, p, 486, 540), where the 
conducting matter is replaced by a single loop, The following 
analysis shows that the conducting loop model can be generalized, 

THEORY 

Let (J" (r) and f.L (r) denote the electrical conductivity and mag­
netic permeability, which may be arhitrary, physically reasonable 
functions of position r, Starting in the frequency domain (time 
factor eiO>t), using SI units. and neglccting the displacement current, 
the electric and magnetic field vectors E and H and the source 
current density L are interrelated by 

v x E = - iWflH, V x H = (J"E + L. (2a, b) 
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yielding, after elimination of H, the differential equation 

I 
V X - V x E + iwuE = -iwL. (3) 

IL 

The source current density j s can be represented by 

(4) 

where few) is the Fourier transform of the driving current, rs is 
some point of the loop :£, s is the unit vector tangential to the 
loop at r" and ~h is a two-dimensional o-function, nonvanishing 
over the cross-section of the wire forming the loop. The voltage 
U induced in the loop :£ is given by 

U(w) = - 1. E(r, w) . dr 
Y5£ 

and conveniently written as 

U(w) = iwf(w)L(w), 

with 

L(w) = a x + g(w), 

(5) 

(6) 

(7) 

where L (w) can be considered as the inductance of the system 
loop-conductor. The constant Ox is the limit of L(w) for w ~ x. 

It vanishes if the magnetic flux through the loop is completely 
coupled with the conductor, i.e., if the entire loop is lying inside 
the conductor or on its boundary. The definition ofa x implies 
g(w) ~ 0 for w ~ x. The ordinary free-space self-inductance 
of the loop is L (0) == L o, which is finite only if the finite thickness 
of the wire forming the loop is taken into account (e.g., Smythe, 
1968, p. 337). 

A simple integral property of the response can be deduced 
from equation (6). Using the Fourier representation 

w'=o 

\ x w / 

FIG. I. The contour C in the complex frequency plane. 

I J Cx 
F(t) = - F(w)eiwldw 

27Tx 

of a time function F(t), the convolution theorem yields 

J
+X 

Vet) = -x i' (T)L(t - T)dT. (8) 

On integrating over t, we obtain 

J
+oc 

-oc V(t)dt 

J
+X J+x J+x 

= -x i' (T)dT -oc L(t - T)dt = -x i' (T)dT . L(O) 

or 

J
+X 

-x V(t)dt = L(I{i(+co) - it-co)}. (9) 

The right-hand side is independent of the ground. For a unit step 
driving current, relation (9) was given by Gubatyenko and 
Tikshayev (1979). It also holds for frequency-dependent material 
parameters. An experimental vcrification of irttegral relation (9) 
for a step function driving current will be complicated because 
of the difficulties in recording the dominant contribution of V (t) 
immediately after the step. 

The transfer function 

e(r, w) = E (r. w)/[iwf(w)], (10) 

which is physically defined only for real frequencies, can be 
continued to complex w. As is well-known from the theory of 
linear diffcrential equations, a unique solution e(r, w) of the 
inhomogeneous equation (3) cxists for all w, for which the 
associated homogeneous equation 

I 
V x - V x f - il.uf = 0, w = iil. (11 ) 

IL 

only has the trivial solution f = O. At such a point, e (r, w) is 
an analytic function of w (cf., Appendix A). The analyticity 
breaks down for those w for which equation (11) has a nontrivial 
solution subject to the boundary condition of bounded If (r) I 
at infinity. It is easily shown that these free decay modes occur 
at w = iil., iI. ~ 0 (i.e., time factor e -AI). After multiplying equa­
tion (11) by the complex coni ugate solution f * and integrating 
over a sphere SR of radius R using integration by parts, we obtain 

iI. = lim [f 
R~oc SR 

-f .!. (f* x V x f) . da]/f,c
R 

ulfi2dv, 
aSR IL, 

where dv is the volume elemcnt and da the surface element 
(directed outwards). The behavior of f for R ~ cc depends upon 
u. If u is finite at infinity, f oscillates there and the second quo­
tient is O(I/R). If u vanishes sufficiently fast. then f ~ 0 for 
R ~ 00. (This behavior is illustrated in Appendix C by the free 
decay modes of a uniform half-space.) From both cases, iI. ~ O. 

The analytic properties of e are transferred via equations 
(5)-(7) to g (w), implying that this function is analytic outside 
the positive imaginary axis. Cauchy's integral theorem yields 

I 1 g(w') 
g(w)=-., ,_ dw', 

27T1 'c W W 
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where the closed contour C is shown in Figure I. Since g (w) ~ 0 
for w ~ 00, the large circle does not contribute to the integral, 
if its radius approaches infinity. Also the small circle around 
w' = 0 yields no contribution in the limit of a vanishing radius, 
since g (w) has to bc 0 (w -I j f), C > 0, for w ~ 0 to ensure [with 

reference to equations (6) and (7)] that the induced voltage 
vanishes in the limit t ~oo for a step-function driving current. 
Finally, the Fourier transform of U(w) has to be real, which 
requires that g attains complex conjugate values at points 
symmetric to the imaginary axis, i.e., g (w) = g* (-w*). Hence, 

Ix a (A) dA 
g(w) = --.-, 

o A + IW 
(12) 

with 

1 
a (A) = - lim - Im [g (iA + El], 

E- +0 1T 
(13) 

The function a(A) is deduced from the differential equation 
(3) by multiplying it by its complex conjugate solution E * and 
integrating the result over the full space V. After integration by 
parts, the surface integral vanishes by virtue of the localized 
source. On using equations (4) and (5), the result is 

iwlU* = I {~IV X EI2 + iW(J'IEI 2}dv. 
v J.1 

Taking the complex conjugate, dividing by I w/1 2
, and using 

equation (6), we obtain 

r CL 1 

L(w) = J
v 
t~ IV x el" - iw*(J' lel 2 fdV, (14) 

which implies, from equations (7), (12), and (13), 

a(A) = hm ~ I (J' lel 2 dv?; o. 
€- +0 1T v 

(15) 

This nonnegativity of a (A) causes the simple characteristics 
of the coincident loop response. The real part of L(w) [equation 
(14)] is nonnegative for all real frequencies. Consequently, 
a x ?; O. Hence, L (w) admits the representation 

Ix a (A) 
L(w) = ax + --- dA, a x ?; 0, a(A) ?; O. 

o A + iw 
(16) 

This is illustrated in Appendix B by a simple example. The 
Fourier transform of equation (16) is 

r 0, t < 0 
i (t) = ~ (X l axo(t) + L a(A)e-~tdA, t?; 0, 

o 

(17) 

which yields for an arbitrary driving current j (t) the response 
given in equation (8) (with t + 0 as upper integration limit). In 
particular, the response to a step-function driving current 

{ 

0, t < 0 
jet) = 

10 , t> 0 

is Vet) = loi(t). If j' (t) = 0 for t> 0 and 'Y(A) is the Laplace 
transform of j' (t) for t ~ 0 [cf., equation (I)], then for t > 0 

Vet) = r 'Y(A)a(A)e-~tdA. 
o 

(18) 

A sufficient condition for a constant sign of V (t) for t > 0 is a 

constant sign of 'Y (A) for A > O. Assuming 'Y (A) ?; 0 for ease 
of notation, we obtain 

V(t)?; 0, V'(t) ~ 0, V(t)· Q"(t) - W'(t))"?; 0, (19) 

where the last result was deduced by Schwarz's inequality 

r fTdA . r f~dA - ( r Ilh dA )2 ?; 0 
o 0 . 0 

with IT = 'Y(A)a(A)e- At and h = All. Hence, for finite t the 
voltage V (t) is positive and log V (t) is a decreasing convex func­
tion. It approaches a straight line only when the decay process is 
dominated by a single decay constant. Equation (19) includes the 
weaker result that Vet) is also decreasing and convex. The gen­
erally used double logarithmic plot of V (t) is decreasing, but no 
definite sign of the second derivative can be inferred from equa­
tion (18). 

The same results can be obtained by a free decay mode ex­
pansion of E. The arguments are briefly discussed in Appendix C. 

IP EFFECTS AND CONCLUSION 

The preceding results show that frequency independent con­
ductivities and permeabilities yield coincident loop responses of 
one sign only, leaving induced polarization (JP) effects as the 
most probable candidate for persistent sign reversals. This possi­
bility will be demonstrated by an cxtremely simplified example. 
In the conducting loop model of Grant and West (1965, p. 486, 
540) an extended conductor is replaced by a conducting loop 
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I:1G. 2. Semi-logarithmic plots of the normalized voltage u = 
U / (k 2 AI oLo) for pure inductive decay (0) and for the decay 
modified by IP effects (1 and 2). 



1328 Weidelt 

with self-inductance L and resistance R. If M is the mutual in­

ductance between this loop and the conducting loop, the induced 

voltage in the frequency domain is 

U(w) = iwI(w)Lo[(l - n + k 2 R/(R + iwL)], (20) 

where k 2 = M2 / (LLo) ~ I is the squared coupling coefficient. It 

yields the step current response 

O(t) = IoLo[(I - k 2 )1)(t) + k2 Ae- Af
], A = R/L. 

Pelton et al (1978) succeeded in fitting the frequency dependent 
impedance Z (w) of many different IP spectra by a simple Cole­

Cole relaxation model 

Z(W)=R[I-rn(l- I .. )], 
1+ (IWT)' 

(21 ) 

where typically 0.1 ~ rn ~ 0.9, 0.1 ~ c ~ 0.6, and the time 

constant T, characterizing the IP decay, varies over a broad 
range. If R in equation (20) is replaced by Z(w), the resulting 

step-function response is shown in Figure 2 for representative 

values of rn, c, and AT, where the latter is the ratio of the time 
constants for pure IP decay and pure inductive decay. Induced 

polarization affed~ the inductive decay by reducin~ the decay 

rate and creating negative responses at late times, as Lee (1975) 

also found in a more complex example. Recently, Lee (1981) 

also produced sign reversals by applying model (21) to a uniform 

half-space. The concave shape of curves I and 2 in Figure 2 

shows that these curves cannot result from a pure inductive 
decay. In order to satisfy relation (9), which also holds for 

modd (2l), the negative responses have to be balanced by a 

reduced decay rate at positive responses. 
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APPENDIX A 
ANALYTlCITY OF e(w) 

The analyticity of the transfcr function e(r, w) [cf., equation 

(l0)] in the complex frequency plane outside the positive imagi­

nary axis has played a key rolc in the preceding developments. 

Although this result can be inferred from the analytic properties 

of the resolvent of a linear operator (e.g., Kantorovich and 
Akilov, 1964, p. 512), a more elementary justification of this 
as~ertion will he given here. It ifC s{Jfficient to show that for two 
frequencies wand w' outside the positive imaginaries, the limit 

e(w') - e(w) 
lim , 

w'-w W - W 
(A-I) 

exists and is independent of the mode in which w' ~ w. 
Let the subscrijJt i = I, 2, " denote the Cartesian directions 

X, y, Z. Then the Green's vector G,(rolr, w) associated with equa­

tion (3) and vanishing at infinity satisfies 

I 
V X - V X G,(rolr, w) 

f.L 

+ iwa(r)Gj(rolr, w) = x,1)(r - ro). (A-2) 

Gj is essentially the electric field of an oscillating electric dipole 

placed in the xrdirection at ro. According to equations (10), (3), 
and (4), e(r, w) is a solution of 

! 
V X - V x e(r, w) 

f.L 

+ iwa(r)e(r. w) = -o2(r - r,)S(r s )' (A-3) 

Multiply equation (A-2) by e (r, w) and (A-3) by Gj (rolr, w) 

and integrate the difference over the full space. On integrating 

by parts, the boundary at infinity yields no contribution because 

of the localized sources. Hence. the jth component of e is given by 

ej(ro, w) = - f Gj(rolr, w) . dT. 
-; 

(A-4) 

After replacing w by w' in equation (A-3), a similar procedure 

yields [from equation (A-4)] 

ej(ro, w') - ej(ro, w) = 

-i(w'V - w) J a(r)G}(rolr, w) . e(r. w')dv. (A-5) 
\' 

To see that the integral in equation (A-5) exists and is bounded, 

we assume for definiteness a conducting half-space with a = 0 
in z < 0 and a > 0 in z > 0, where a and f.L should tend to 

constant values ao and f.Lo at large distances from some origin. 
Then the asymptotic behavior of G j at infinity is nonuniform: 

near the air-earth interface G j will show the I /1 r - ro 13 decay of a 
dipole field in air. Well below the source point the exponential 
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decay of an oscillating dipole in a full space with parameters 
CTo and f.lo applies, i.e., 

(

e'kolr-rol) 
IGj(rolr, wJI = 0 Ir _ rol. ' ko = YiWf.loCTo (A-6) 

(e.g., Morse and Feshbach, 1953, p. 1781). Because of equa­
tion (A-4), e has the same asymptotic properties as G j. Conse­
quently, the integrand in equation (A-5) decays sufficiently 
fast to yield a bounded integral. This implies that e is con­
tinuous at w. Hence, a unique limit (A-I) can be formed from 
(A-5). 

The above arguments break down, if w is positive imaginary. 
In this case the exponential term in equation (A-6) is purely 
oscillatory and the field no longer decays sufficiently fast at 
infinity. 

APPENDIX B 
EXAMPLE FOR THE REPRESENTATION 

OF U(oo) BY EQUATIONS (6) AND (16) 

In this appendix the representation of the induced voltage 
U(wJ by equation (6) and (16) is illustrated by a simple well 
studied example, namely a horizontal circular loop of radius b 
at height h over a uniform half-space of conductivity CT and 
vacuum permeability f.llJ. 

The work of Lee and Lewis (1974) infers that a x and g (w J 
lequation (7)] are given by 

and 

a x = Lo - f.lo'ITb 2 IX JTCKh)e- 2Kh dK, 
o 

2 Ix 7 . 7 h KdK 
g(w) = 2'ITf.lob Ji(Kb)e-- K 

--Q' 

o K + ~ 

(B-\) 

(B-2) 

where 13 = Y K2 + iWf.loCT, and J I is the Bessel function of first 
kind and first order. 

To begin with, it is noted that I/(K + (3) as a function of w is 
analytic outside the positive imaginary w-axis (where it has a 
branch point) and vanishes for w ~ ::N. Hence, equations (IL) 

and (13) are also applicable to this function and yield 

_K_ = Vi; IX ~dA A = K2 CT 
K + 13 1i Ao A(A + iwl ,0 /(f.lo l. (B-3) 

Inserting equation (B-3) into equation (B-2) and changing the 
order of integration (which includes a change in the integra­
tion limits), we identify [with reference to equation (12)] 

2b
2 IKO 

Q(A) = -- KYK6 - K2 e-2Kh JY(Kb)dK, KO = YAf.loCT, 
ACT 0 

which is positive as Jequired. If h = 0, further processing is 
possible by means of the identities (9.1.14) and (6.2.1) of 
Abramowitz and Stegun (1965), yielding 

oc (-I)k(2k + 2)I(YAf.loCTh/2fk-3 
a(A) = f.lob-Y;; 2: 

k~O k!(k + \)'(k + 2)!f(k + 7/2) 

After performing the A-integration in equation (\ 7), the result 
of Lee and Lewis (1974) or Raiche and Spies (1981) is recovered. 

APPENDIX C 
FREE DECAY MODE EXPANSION OF E(r, (0) 

In this appendix it is shown that the rcpresentation (16) can 
also be obtained by expanding E (r, w) into the series of free 
decay modes, which are the bounded nontrivial solutions of 
equation (1\). These vectorial eigenfunctions form an orthogonal 
set with CT(r) as weighting function. For definiteness, a con­
ducting half-space with CT (r) = 0 in z < ° and CT (r) > 0 in 
z > 0 is assumed. 

The nature of the spectrum of dccay constants is immaterial 
for the sequel. But for example, it is reasonable to assume that 
the well-known results for three-dimensional scalar equations of 
type 

or 

V' (-!. Vi) + ACTf= 0, 
f.l 

(C-I) 

(C-2) 

apply also to the vector equation (11). [This assumption is sup­
ported by the fact that equation (11) rcduces to the two-dimensional 
analogs of equations (C-I) and (C-2) in the case of £- and H­
polarization, respectively.] From the asymptotic distribution of 
eigenfunctions of equations (C-I) and (C-2) for A ~ Of) (Courant 
and Hilbert, 1953, p. 442), it is inferred that the spectrum is 
discrete, if for bounded CT the integral 

I (f.lCT)12 dv 
v 

is finite, i.e., if CT decreases faster than R -2. where R is the distance 
from some origin. If the integral diverges, as in all half-space 
models with nonzero conductivity. the eigenvalue spectrum is 
continuous for large A. 

However, for simplicity even in the latter case eigenfunc­
tions are denoted symbolically by a discrete quantum number n, 
and the electric field vector is expanded as 

(C-3) 

The first term on the right-hand side takes into account the possible 
incompleteness of the set of eigenfunctions, which would occur 
if both the point of observation and the current loop (or parts of 
it) were lying in the air half-space. Details will follow below. 

Assuming the normalization 

f CT fn . f~,dl" = onn" 
V 

the expansion coefficients en are given by 

c = I CT E . f*dv = - iwI f .. !' f~' dr. (C-4) 
"v " An + iw . 

This result has been obtained by multiplying the complex con­
jugate of equation (11) for f = fn by E and equation (3) by 
f~ and integrating the difference over the full space V. On using 
equation (5) the induced voltage is 

,( "'''' an U(w) = - r Ex' dr I iwI' .6 . 
.'f n An + lW 

(C-5) 

where 
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(C-6) 

The term Ex in equation (C-3) is due to the occurrence of con­
ductivity as weighting function in the orthonormalization of 
the eigenfunctions; if the conductivity in z > 0 tends to infinity, 
both the amplitudes of the eigenfunctions and the expansion 
coefficients en tend to zero. In this limit, there will be no contribu­
tion from the second term in equation (C-3). On the other hand, 
there exists an electric field in the insulator z < 0 consisting of 
the primary E-field and its (negative) image, mirrored at z = O. 
Ex is equivalent to the high-frequency limit. Hence, we identify, 
in view of equations (5)-(7), 

and 

-f Ex' dr = iw/a x , 

.'f 

~ _a-'.n,--- = g (w). 
n An + iw 

(C-7) 

(C-8) 

In the case of a nondegenerate spectrum, the representations 
(C-8) and (12) are identical. If the spectrum is degenerate, 
representation (C-8) sums the contributions from individual 
eigenfunctions, whereas the integration in equation (12) extends 
over the eigenvalues. 

The representation (C-8) is illustrated by the example of 
Appendix 8: A horizontal circular loop of radius b at height 
z = -h over a uniform half-space of conductivity a in z > O. 
For this model the free decay modes f"k (r) are characterized by a 
continuous wave number vector 

k=ux+vy+wz 

with -00 < u < 00, -00 < v < 00, 0 ~ w < 00 and by a quan­
tum number ex indicating the polarization: for ex = I the current 
loops are closed in horizontal planes and for IX = 2 in vertical 
planes. Using the abbreviations 

K = U X + v y, K = I KI, k = Ikl, 
the orthogonal eigenfunctions fab normalized by 

J a fak . f~'k·dv = oa""o(k - k'), 
z>o· 

can be constructed from the general half-space approach of 
Weaver (1970): 

flk = V x (Z\fllk), 
fLk = V X V x (i$Zk), z *" Q, 

where 

!
WeKZ,Z~o 

\fIlk(r) = N(k)e iK
'
r 

. 

(w cos wz + K sin wz), z ~ 0 

and 

!(W/K)e KZ
, z < 0 

\fI2k(r) = N(kje iK
'
r , 

sin wz, z > 0 

These eigenfunctions belong to the eigenvalue 

A"k = ,,2/(f.Loa) = (K2 + w 2)/(f.Lo a ). (C-9) 

In this highly degenerate model, the decay constants A depend 
only on the modulus of the wavenumber vector and are in­
dependent of the polarization. A layered model removes the 
degeneracy with respect to wand IX. 

Now it will be shown that the functions g(w) defined in equa­
tion (C-8) and (8-2) are identical. First it is noted that for any 
loop in the air half-space the closed contour integrals in equation 
(C-4) vanish for the polarization IX = 2, since f2k (r) is a potential 
field in z < O. In this case thc current flow is completely de­
scribed by the horizontal current mode IX = 1, which is a well­
known result. Using the identity (9.1.21) of Abramowitz and 
Stegun (1965), it is easily found that 

From equation (C-8) 

J 
ark) LX LX ark) 

g(w) = --.- d 3 k = 2'lT K dK dw--.- , 
w>O A + lW 0 0 A + lW 

where A = A I k is given by equation (C-9). After performing the 
elementary w-integration, the remaining K-integral agrees with 
equation (8-2). 


