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S U M M A R Y
The frequency response c(ω) in 1-D magnetotellurics admits a well-known integral represen-
tation with kernel 1/(λ + iω) and non-negative spectral function w(λ), λ ≥ 0. The purpose
of this paper is to elucidate the hidden, but fundamental relationship between w(λ) and the
underlying conductivity structure σ (z). The most important criterion for classifying the con-
ductivity structure is the existence of moments of w(λ): if all moments exist, σ (z) consists of
a finite or infinite number of thin sheets; the sheet parameters are obtained from orthogonal
polynomials associated with the weight function w(λ). If no moment (or only a finite number
of moments) exists, σ (z) contains sections with a piecewise continuous conductivity structure,
possibly covered by thin sheets. In both cases, the spectrum may be continuous, completely
discrete or a mixture of both. The great variety of possible spectral functions is illustrated
by a plethora of examples. The present investigation has no immediate impact on practical
inversion because the unstable determination of w(λ) is mostly circumvented in the inversion
of experimental data. Therefore, the rich morphology of the spectral function generally has
escaped our attention.

Key words: electrical conductivity, electromagnetic induction, inverse theory, magnetotel-
lurics.

1 I N T RO D U C T I O N

Because of its great simplicity, the inverse problem of 1-D magnetotellurics is the best studied inverse problem in geoelectromagnetism. An
answer can be given to all relevant questions of uniqueness (Tikhonov 1965), existence (Weidelt 1986; Yee & Paulson 1988b) and construction
(Parker 1980; Parker & Whaler 1981) of a solution. In particular, the last two issues are treated for incomplete data sets.

In the 1-D magnetotelluric problem, all field quantities depend on the depth coordinate z only, z positive downwards. The one-component
electric and magnetic field vectors E = E x̂ and H = H ŷ satisfy for a time factor exp(iωt) the equations, using throughout the abbreviation
ζ := iω,

E ′(z, ζ ) = −ζµ0 H (z, ζ ), H ′(z, ζ ) = −σ (z)E(z, ζ ), (1.1)

where the prime denotes differentiation with respect to z and σ (z) ≥ 0 is the electrical conductivity. Eliminating H from eq. (1.1) yields the
ordinary differential equation

E ′′(z, ζ ) = ζµ0σ (z)E(z, ζ ). (1.2)

If E(z, ζ ) is the solution of eq. (1.2) with E ′(z, ζ ) → 0 for z → ∞, then the magnetotelluric response function c(ζ ), as defined by Schmucker
(1970), is

c(ζ ) := E(0, ζ )

ζµ0 H (0−, ζ )
= − E(0, ζ )

E ′(0−, ζ )
, (1.3)

where provision is made for the case that, as a result of the presence of a thin conducting sheet, H (z) may be discontinuous at the surface
z = 0. The complex response function c(ζ ) has the dimension of a length and admits the spectral representation (Weidelt 1972; Parker 1980;
Yee & Paulson 1988a)

c(ζ ) = w0 +
∫ ∞

0−

w(λ) dλ

λ + ζ
, w0 ≥ 0, w(λ) ≥ 0. (1.4)

The constant w0 in eq. (1.4) is the thickness of an insulating surface layer, below which the first conductor occurs. For simplicity, it is
assumed that w0 = 0, but a positive w0 is easily introduced whenever required. The non-negative real function w(λ) has to be considered
as a generalized function to include both the continuous and discrete part of the spectrum. We avoid the more appropriate Stieltjes integral
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notation and represent the discontinuous part by a superposition of δ-functions. Although the name ‘spectral function’ is usually reserved for∫
w(λ) dλ, we shall apply it for simplicity also to w(λ). The points λ ≥ 0 with w(λ) > 0 correspond to the decay constants of freely decaying

current systems E(z, t) = e(z, λ) exp(−λt), defined by the eigenvalue problem

e′′(z, λ) + λµ0σ (z)e(z, λ) = 0, e′(0−, λ) = 0, e(z, λ) finite for z → ∞. (1.5)

Using for the orthogonal modes the normalization∫ ∞

0−
µ0σ (z)e(z, λ)e(z, λ′) dz = δ(λ − λ′), (1.6)

the formal expansion of the solution of eq. (1.2) in terms of the eigenmodes is

E(z, ζ ) = −E ′(0−, ζ )
∫ ∞

0−

e(0, λ)e(z, λ) dλ

λ + ζ
, (1.7)

yielding in view of eqs (1.3) and (1.4)

w(λ) = e2(0, λ). (1.8)

On the semi-axis ζ ≤ 0, a pole of c(ζ ) at ζ = −λm with residuum wm corresponds to a spectral line at λ = λm with strength wm and is
represented in the spectral function by wmδ(λ − λm). The lower limit 0− in eq. (1.4) guarantees that a possible term ∼δ(λ) is fully included in
the range of integration. A branch cut of c(ζ ) in ζ < 0 corresponds to a continuous section of the spectrum. In general, a mixture of spectral
lines and (several) continuous sections occurs.
The best-studied spectrum consists of a finite number of discrete lines and is given by the typical spectral function

w(λ) =
N∑

m=1

wmδ(λ − λm) with wm > 0, λm > 0 (1.9)

with pairwise different λm . The 2N positive parameters of w(λ) are mapped onto the 2N free positive parameters of the conductivity distribution

σ (z) = τ0δ(z) +
N∑

n=1

τnδ(z − zn) with zn > 0, τn > 0, τN = ∞. (1.10)

This conductor consists of a thin surface sheet with conductance (= depth integrated conductivity) τ 0, followed by N sheets with conductances
τ n at depths zn. The terminating sheet is perfectly conducting. This degenerate class of conductivity models has to be considered when
constructing in a D+ interpretation of experimental magnetotelluric data the best-fitting 1-D model (Parker 1980; Parker & Whaler 1981).

Experimental data are collected on the imaginary ζ -axis (= real ω-axis), whereas the spectral function is associated with the behaviour
of c(ζ ) on the negative-real semi-axis,

w(λ) = − 1

π
lim

ε→0+
�c(−λ + iε), (1.11)

where � denotes the imaginary part (cf. Yee & Paulson 1988a, p. 272). This involves an unstable analytic continuation in the direction of
the sources (cf. Fig. 1). Therefore, small details of the spectrum cannot be reliably inferred from experimental data and a representation of
experimental data by approximating eq. (1.4) by a finite set of discrete lines,

c(ζ ) = w0 +
N∑

m=1

wm

λm + ζ
, λm ≥ 0, wm ≥ 0, (1.12)

Figure 1. Response function c(ζ ): Position of singularities and data in the complex ζ -plane.
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568 P. Weidelt

will mostly be fully adequate. In theory, however, the spectrum is much richer: besides a finite number of discrete lines, it may consist of an
infinite number of discrete lines or of one or several continuous sections, possibly with interlacing discrete lines. The aim of the present paper
is to explore in some detail the relationship between the fine structure of the spectral function and the underlying 1-D conductivity structure.
Although this study will be of limited relevance for the actual solution of the inverse problem, it visualizes a fundamental facet of the inverse
problem, which generally escapes our attention.

Let the moment of order k of w(λ) be defined as

sk :=
∫ ∞

0−
w(λ)λkdλ, k = 0, 1, 2, . . . . (1.13)

With regard to the existence of moments, two different classes of conductivity distributions have to be distinguished, as follows.

(i) If moments sk of all orders k exist, then the underlying conductivity structure σ (z) consists of a finite or infinite set of thin conducting
sheets. The existence of all moments requires that w(λ) is integrable and that either w(λ) = 0 for λ > b (with b < ∞) or that w(λ) decays
very fast for λ → ∞ (e.g. exponentially). The spectrum may be discrete or continuous or a mixture of both. This class is typically represented
by the discrete spectrum (1.9) with the thin sheet structure (1.10).

(ii) If w(λ) is not integrable at all or if only a finite number of moments sk exists, then σ (z) contains a piecewise continuous conductivity
section, possibly lying under a finite number of thin sheets. To this class belong the spectral functions w(λ) with a slow decay for λ → ∞.
(The integral representation (1.4) exists if the decay is as slow as 1/λε , ε > 0.) Again, the nature of the spectrum is arbitrary. A prominent
representative of this class is the uniform half-space (conductivity σ 0), where

w(λ) = 1

π
√

λµ0σ0
. (1.14)

For the thin-sheet models (i), we can develop a fairly complete theory, which is based on continued fractions (CFs) and orthogonal
polynomials, well-studied mathematical subjects of the late 19th and early 20th century. Although the underlying theory of these subjects is
well presented in text books (e.g. Perron 1913; Wall 1948; Szegö 1975), for a more self-contained treatment and a unified notation, some of
the relevant material will be readdressed. A less complete theory can be formulated for the piecewise continuous conductivity models (ii).
Here, the treatment will be limited to illustrative examples only.

The thin-sheet models (i) are studied in detail in Section 2 by representing the thin-sheet parameters both in terms of the orthogonal
polynomials associated with the weight function w(λ) and in terms of the moments sk of w(λ). The first formulation gives rise to a simple
new numerical algorithm for calculating the sheet parameters from the spectral function. For illustration, the sequences of thin sheets derived
from the classical orthogonal polynomials are treated in some detail.

Section 3 is devoted to the spectral functions of piecewise continuous conductivity structures, illustrated by means of simple examples.
The appendices complement the material presented in the main part of the paper. In particular, Appendix B sketches the solution of the
simplest forward problem, i.e. the determination of w(λ) for a finite set of thin sheets.

2 T H I N - S H E E T C O N D U C T I V I T Y S T RU C T U R E S

2.1 Expression of the sheet parameters in terms of orthogonal polynomials

In this section, it is assumed that all moments sk of the spectral function w(λ) exist, i.e.

sk :=
∫ ∞

0−
w(λ)λkdλ < ∞, k = 0, 1, 2, . . . . (2.1)

The non-negative spectral function w(λ) is interpreted as the weight function determining the scalar product of two functions f (λ) and g(λ),

( f, g) :=
∫ ∞

0−
w(λ) f (λ)g(λ) dλ, (2.2)

where f (λ) and g(λ) are real-valued functions of the class L2
w(0, ∞). The existence of all moments allows the construction of a set of

orthogonal polynomials pn(λ) of degree n, n = 0, 1, 2, . . . , such that

(pm, pn) = hnδmn, (2.3)

where δmn is the Kronecker symbol and hn is the L2
w(0, ∞) norm of pn(λ). For w(λ) consisting of a finite number of N discrete lines, the

polynomials can be constructed only up to degree N − 1. However, if w(λ) contains a continuous section, the orthogonal polynomials exist
to an arbitrarily high degree. For instance, w(λ) = s 0/(b − a) in 0 ≤ a ≤ λ ≤ b, with b > a and w(λ) = 0 elsewhere, is associated with the
shifted Legendre polynomials

pn(λ) = Pn

(
2λ − a − b

b − a

)
, a ≤ λ ≤ b, n = 0, 1, 2, . . . . (2.4)

The polynomials are uniquely determined up to an amplitude factor at our disposal. Let this factor be the coefficient kn 
= 0 of the leading
power λn . Then the following result is proved.
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Figure 2. Thin-sheet model with conductances τ n and intersheet separations dn. The responses cn, with c0 = c(ζ ) as the MT response, refer to the position
z−

n immediately above the sheet.

If all moments sk of w(λ) exist, the response function c(ζ ) has to be interpreted by a stack of thin sheets with conductances τ n and
intersheet separations dn (cf. Fig. 2), which can be expressed in terms of the orthogonal polynomials, evaluated at λ = 0, as

µ0τn = p2
n(0)/hn, n ≥ 0, (2.5)

dn+1 = − kn+1hn

kn pn(0)pn+1(0)
, n ≥ 0. (2.6)

If and only if w(λ) is represented by a finite number of discrete lines [as in eq. (1.9)], is the number of sheets finite. So far no standardization (e.g.
hn = 1 or kn = 1) of the polynomials pn(λ) has been applied, and the two dependent parameters kn and hn have been retained for flexibility.
A simple numerical algorithm for the computation of the sheet parameters associated with a given weight function w(λ) is presented in
Section 2.2.

For a justification of the above result, it is first noted that the orthogonal polynomials pn(λ) satisfy for n ≥ 0 the three-term recurrence
relation (e.g. Erdélyi et al. 1953, p. 158; Szegö 1975, p. 42)

pn+1(λ) = (Anλ + Bn)pn(λ) − Cn pn−1(λ) (2.7)

with C 0 = 0 and

An := kn+1

kn
, Bn := An

(
k ′

n+1

kn+1
− k ′

n

kn

)
, Cn := Anhn

An−1hn−1
, (2.8)

where

pn(λ) = knλ
n + k ′

nλ
n−1 + . . . and hn := (pn, pn). (2.9)

The mathematical basis for the representation of c(ζ ) by a stack of thin sheets is Markoff’s theorem (Markoff 1895), presented here in the
formulation of Erdélyi et al. (1953, p. 162); see also Szegö (1975, p. 54) and Perron (1913, § 68). Markoff’s theorem expresses c(ζ ) as a CF
in terms of An, Bn and Cn as

c(ζ ) =
∫ ∞

0

w(λ)dλ

λ + ζ
= s0 A0

A0ζ − B0 − C1

A1ζ − B1 − C2

A2ζ − B2 − . . .

. (2.10)

This CF representation converges in the whole ζ -plane with the exception of the points ζ = −λ with w(λ) > 0.
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570 P. Weidelt

In addition to the contracted CF (2.10), we consider also its even extension, defined by the property that the approximant of order m of
the contracted CF agrees with the approximant of order 2m of the extended CF, m = 1, 2, 3, . . . . Then contracted and extended CFs are given
by (e.g. Wall 1948, p. 21)

c(ζ ) = a0

A0ζ + b0 − b0a1

A1ζ + a1 + b1 − b1a2

A2ζ + a2 + b2 − . . .

(2.11)

= a0/A0

ζ + b0/A0

1 + a1/A1

ζ + b1/A1

1 + a2/A2

ζ + . . .

, (2.12)

where the comparison of eqs (2.10) and (2.11) yields

a0 = s0 A0, b0 = −B0, bn−1an = Cn, an + bn = −Bn, n ≥ 1. (2.13)

Contraction and extension are illustrated by verifying that, for instance, the approximant m = 2 of eq. (2.11) agrees with the approximant
2m = 4 of eq. (2.12):

a0

A0ζ + b0 − b0a1

A1ζ + a1 + b1

= a0/A0

ζ + b0/A0

1 + a1/A1

ζ + b1/A1

. (2.14)

Solving eq. (2.13) for an and bn, we obtain for n ≥ 1

an = − Cn

Bn−1 − Cn−1

Bn−2 − . . . − C1

B0

, bn = −Bn − an, (2.15)

and deduce from eq. (2.7)

an = −Cn pn−1(0)/pn(0), n ≥ 1, (2.16)

and

bn = −pn+1(0)/pn(0), n ≥ 0. (2.17)

Moreover, a0 = s 0 A0. Recalling that w(λ) ≡ 0 for λ < 0, all n zeros of pn(λ) lie in λ > 0 (e.g. Szegö 1975, p. 44). Therefore, no sign changes
of pn(λ) can occur in λ ≤ 0 and sign[pn(λ)/kn] = (−1)n for λ → − ∞ implies sign[pn(0)/kn] = (−1)n . With eqs (2.8), (2.16) and (2.17) it
then follows that an/An > 0 and bn/An > 0. This positivity warrants the further substitutions

an

An
= 1

µ0τndn
,

bn

An
= 1

µ0τndn+1
, n ≥ 0, (2.18)

with the understanding that a0/A0 = 1/(µ0τ 0). The inversion of eq. (2.18) yields

µ0τn = b0b1 . . . bn−1

a0a1 . . . an
· An > 0, dn+1 = a0a1 . . . an

b0b1 . . . bn
> 0, n ≥ 0. (2.19)

The new parameters τ n and dn will turn out to be the intrinsically positive thin-sheet parameters. The substitutions (2.18) transform the CF
(2.12) into (cf. Perron 1913, § 67)

c(ζ ) = 1

µ0τ0ζ + 1

d1 + 1

µ0τ1ζ + 1

d2 + . . .

. (2.20)

This CF represents the response of a stack of thin sheets (cf. Fig. 2) because the response functions cn and cn+1 at levels z−
n and z−

n+1 (i.e.
immediately above the sheets) are recursively connected by

1

cn
= µ0τnζ + 1

dn+1 + cn+1
. (2.21)

Concatenating these recursion formulae, starting with c(ζ ) =: c0, we arrive at the CF (2.20). Finally, the result quoted in eqs (2.5) and (2.6)
is obtained by inserting eqs (2.16) and (2.17) into eq. (2.19) on using eq. (2.8) and h0 = p2

0 s 0 = p2
0 a0/A0.

If w(λ) has an infinite number of points, where w(λ) > 0, the CF (2.20) is infinite. This occurs, for instance, if there exists at least one
section where 0 ≤ a < λ < b, w(λ) > 0 or if w(λ) is a superposition of an infinite number of δ-functions at the discrete points λm .
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The CF is finite, if w(λ) consists of a finite number N of δ-functions. The termination of the CF (2.20) will be demonstrated for the
example (1.9), assuming more generally λ ≥ 0. The scalar product (2.2) now reads explicitly

( f, g) :=
N∑

m=1

wm f (λm)g(λm). (2.22)

Therefore pN (λ), being orthogonal to the N polynomials up to degree N − 1, is simply

pN (λ) = kN

N∏
	=1

(λ − λ	), (2.23)

implying hN = (pN , pN ) = 0. If min(λm) > 0, then pN (0) 
= 0 and τ N = ∞. If, however, min(λm) = 0, then pN (0) = 0 and dN = ∞ (i.e. the
conductor terminates with the finite conductance τ N−1). In this case, regular orthogonal polynomials exist only up to degree N − 1, whereas
no normalization is possible for degree n ≥ N .

2.2 A numerical algorithm

For numerical simplicity, the orthogonal polynomials pn(λ) with the weight function w(λ) are now assumed to be normalized, i.e.

hn = (pn, pn) = 1, kn > 0. (2.24)

Then the three-term recurrence relation (2.7) reads on using eq. (2.8)

βn+1 pn+1(λ) = (λ − αn)pn(λ) − βn pn−1(λ), (2.25)

where β n+1 := 1/An = kn/k n+1 > 0 and αn := (λ pn, pn). The value of αn follows from eqs (2.24) and (2.25) observing that pn−1(λ) and
pn+1(λ) are orthogonal to pn(λ). Eq. (2.25) opens a simple way for the recursive computation of the polynomials: starting with

p−1(λ) := 0, p0(λ) := 1/
√

s0, β0 := 0, (2.26)

we obtain for n = 0, 1, 2, . . .

(i) αn := (λpn, pn),
(ii) p̃n+1(λ) := (λ − αn)pn(λ) − βn pn−1(λ),
(iii) βn+1 := √

( p̃n+1, p̃n+1),
(iv) pn+1(λ) := p̃n+1(λ)/βn+1

.

Taking into account that hn = 1, kn/k n+1 = β n+1, eqs (2.5) and (2.6) simplify to

µ0τn = p2
n(0), n ≥ 0, (2.27)

dn+1 = − 1

pn(0) p̃n+1(0)
, n ≥ 0. (2.28)

In step (ii) and (iv) of the algorithm, p̃n+1(0) and pn+1(0) are updated along with p̃n+1(λ) and pn+1(λ). The spectral function w(λ) enters in
step (i) and step (iii).

Again the finite discrete case (1.9) deserves special attention. Because β N kN = k N−1, equation (2.23) implies

p̃N (λ) = kN−1

N∏
	=1

(λ − λ	). (2.29)

First let min(λm) = 0. Then p̃N (0) = 0 and therefore dN = ∞, meaning that the conductor terminates with τ N−1. Now let min(λm) > 0. In
view of the normalization hN = 1, the polynomial pN (λ) given in eq. (2.23) demands that kN = ∞, resulting in pN (0) = ∞ and τ N = ∞.

For the finite discrete case, the performance of the present algorithm was compared with the performance of the Rutishauser algorithm
proposed by Parker & Whaler (1981). This algorithm transforms the frequency domain partial fraction (1.12) into a CF of type (2.20). Even
for complicated models with 50 to 70 sheets, no difference was detected. This means that the algorithm described is both simple and stable.

2.3 Expression of the sheet parameters in terms of the moments

In the previous two sections, the sheet parameters were expressed in terms of orthogonal polynomials pn(λ) generated by w(λ). As an
alternative, the sheet parameters can be expressed in terms of the moments sk of w(λ). This presentation requires the determinants �n(i),
i = 0, 1, defined by �0(i) := 1 and

�n(i) :=

∣∣∣∣∣∣∣∣∣

si si+1 . . . si+n−1

si+1 si+2 . . . si+n

. . . . . . . . . . . .

si+n−1 si+n . . . si+2n−2

∣∣∣∣∣∣∣∣∣
, n ≥ 1. (2.30)

C© 2005 RAS, GJI, 161, 566–590
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Here, �n(i) is an nth order determinant with the element si in the upper left corner. A determinant, in which the entry ( j , k) depends on
j + k only, is called a Hankel determinant. If there is an infinite number of points with w(λ) > 0, then �n(i) > 0 for all n. This is immediately
obvious from the fact that the positive-definite quadratic form∫ ∞

0−
w(λ)λi

(
n−1∑
j=0

λ j u j

)2

dλ =
n−1∑
j,k=0

si+ j+ku j uk (2.31)

requires det[s i+ j+k] j,k=0,...,n−1 = �n(i) > 0. The finite discrete case (1.9) will be considered at the end of this section.
Then the presentation of the sheet parameters in terms of the moments is

µ0τn = �2
n(1)

�n(0)�n+1(0)
, n ≥ 0, (2.32)

dn+1 = �2
n+1(0)

�n(1)�n+1(1)
, n ≥ 0. (2.33)

These results are also quoted by Shohat & Tamarkin (1943, p. 73), referring to Perron (1913). The first few sheet parameters are

µ0τ0 = 1

s0
, d1 = s2

0

s1
, µ0τ1 = s2

1

s0

(
s0s2 − s2

1

) , d2 =
(
s0s2 − s2

1

)2

s1

(
s1s3 − s2

2

) . (2.34)

This example clearly shows how the number of required moments increases with increasing depth of investigation: all moments up to order
2n and 2n + 1, respectively, are required to recover τ n and d n+1, n = 0, 1, 2, . . . .

We shall derive eqs (2.32) and (2.33) from eqs (2.5) and (2.6) on using for pn(λ) its representation in terms of the moments: let

pn(λ) =
n∑

j=0

anjλ
j , (2.35)

where ann =: kn 
= 0 is taken as a free scaling factor at our disposal. In particular, p0(λ) = k 0. For n ≥ 1, the remaining n coefficients anj are
determined from the n conditions

(λm, pn) = 0, m = 0, . . . , n − 1 (2.36)

implied in the n orthogonality conditions (p	, pn) = 0, 	 = 0, . . . , n − 1. From eqs (2.35) and (2.36) result the n equations
n−1∑
j=0

anj s j+m = −knsn+m, m = 0, . . . , n − 1. (2.37)

Solving for anj and inserting in eq. (2.35), we obtain for n ≥ 1

pn(λ) = kn

�n(0)

∣∣∣∣∣∣∣∣∣∣∣

s0 s1 . . . sn−1 sn

s1 s2 . . . sn sn+1

. . . . . . . . . . . . . . .

sn−1 sn . . . s2n−2 s2n−1

1 λ . . . λn−1 λn

∣∣∣∣∣∣∣∣∣∣∣
(2.38)

(Erdélyi et al. 1953, p. 158). Obviously, the co-factor of λn is kn and eq. (2.36) is satisfied because, after insertion of pn and integration, the
(n + 1)th row of the resulting determinant duplicates one of the n upper rows and therefore the determinant vanishes.

Following Wimp (2000, p. 191), we deduce from eq. (2.38) for λ = 0

pn(0) = (−1)nkn�n(1)/�n(0). (2.39)

Moreover, using eq. (2.38),

hn = (pn, pn) = kn(λn, pn) = k2
n�n+1(0)/�n(0). (2.40)

After eliminating with eqs (2.39) and (2.40) the quantities pn(0), kn and hn from eqs (2.5) and (2.6), we arrive at eqs (2.32) and (2.33). A
derivation of these equations without appeal to orthogonal polynomials is given in Appendix A.

The expression of the cumulative parameters

Sn :=
n∑

	=0

τ	, n ≥ 0, z0 := 0, zn :=
n∑

	=1

d	, n ≥ 1, (2.41)

in terms of the moments is particularly simple,

µ0 Sn = �n(2)

�n+1(0)
, zn = −�n+1(−1)

�n(1)
, n ≥ 0. (2.42)

The determinants �n(2) and �n(−1) are also defined by eq. (2.30) with i = 2 and i = −1. In the latter case, the additional definition s−1 :=
0 applies. The relations (2.42) are proved by first verifying that S0 = τ 0 and z0 = 0, and then considering Sn − Sn−1 = τ n and zn − zn−1 =
dn, n ≥ 1, on using the identity (Pólya & Szegö 1971, problem VII,19)

�k(i − 1)�k(i + 1) − �k+1(i − 1)�k−1(i + 1) = �2
k(i). (2.43)

C© 2005 RAS, GJI, 161, 566–590



Spectral function and conductivity structure in MT 573

For the finite discrete case (1.9), for which eqs (2.32) and (2.33) deserve special attention, the pertinent results are summarized only: the
determinants �n(i) are positive for n ≤ N − 1 and vanish for n ≥ N + 1. For n = N , we have �N (0) > 0 and either �N (1) > 0 if min(λm) >

0 or �N (1) = 0 if min(λm) = 0. From eqs (2.32) and (2.33), it then follows that the stack of thin sheets ends for min(λm) > 0 with τ N = ∞
and for min(λm) = 0 with dN = ∞ (i.e. with the finite conductance τ N−1).

The expressions of the sheet parameters by the moments via eqs (2.32) and (2.33) are of formal simplicity. This holds in particular also
for the cumulative parameters (2.42). However, compared with the orthogonal polynomial approach, they are less suitable for a quantitative
determination of the parameters from a given spectral function, because the evaluation of determinants is awkward and not very stable without
precautions.

2.4 The sequence of thin sheets generated by the classical orthogonal polynomials

In this section, we shall study the thin-sheet structures associated with the classical continuous and discrete orthogonal polynomials. A wealth
of information about these polynomials is contained in Erdélyi et al. (1953, chapter 10), Abramowitz & Stegun (1972, chapter 22), Szegö
(1975). The easily accessible middle reference will satisfy most needs.

The weight function (spectral function) w(λ) is parametrized by its zero-order moment s 0 > 0 as a free parameter at our disposal. From
eq. (2.34) follows s 0 = 1/(µ0τ 0) with τ 0 as conductance of the surface sheet.

2.4.1 Continuous weight function w(λ)

Here, only Legendre and Chebyshev polynomials are considered, which are members of the wide class of Jacobi polynomials treated in some
detail in Appendix C.

Legendre polynomials. The weight and response functions of the Legendre polynomials Pn(x), −1 ≤ x ≤ + 1, shifted to the interval 0
≤ a ≤ λ ≤ b, b > a, are

w(λ) = s0

b − a
, c(ζ ) = s0

b − a
log

(
b + ζ

a + ζ

)
, (2.44)

where eq. (1.4) has been used. The associated polynomials

pn(λ) = Pn

(
2λ − a − b

b − a

)
(2.45)

satisfy

pn(0) = Pn(−u) = (−1)n Pn(u), u := (b + a)/(b − a) ≥ 1 (2.46)

and

hn = s0

2n + 1
,

kn+1

kn
= 2

b − a
· 2n + 1

n + 1
. (2.47)

Therefore, eqs (2.5) and (2.6) yield the sheet parameters

µ0τn = (2n + 1)[Pn(u)]2/s0, n ≥ 0, (2.48)

dn+1 = 2s0/[(b − a)(n + 1)Pn(u)Pn+1(u)], n ≥ 0. (2.49)

This is an infinite sequence of thin sheets with increasing conductance τ n and decreasing separation dn, clustering at z∞ = c(0) =
s 0(b − a)−1 log(b/a). For a = 0, implying u = 1, Pn(1) = 1, the structure simplifies to µ0τ n = (2n + 1)/s 0, d n+1 = 2s 0/[(n + 1) b],
n ≥ 0.

Chebyshev polynomials. The weight function of the Chebyshev polynomials of the first kind, T n(x) = cos(n arccos x), shifted from the
interval −1 < x < +1 to the interval 0 ≤ a < λ < b, is

w(λ) = s0

π
√

(λ − a)(b − λ)
, a < λ < b. (2.50)

Outside this interval, w(λ) = 0. According to eq. (1.4), w(λ) gives rise to the response function

c(ζ ) = s0√
(a + ζ )(b + ζ )

. (2.51)

The associated polynomials are

pn(λ) = Tn

(
2λ − a − b

b − a

)
(2.52)

with

pn(0) = Tn(−u) = (−1)n Tn(u), u := (b + a)/(b − a) ≥ 1 (2.53)
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and

hn =
{

s0, n = 0
s0/2, n ≥ 1

,
kn+1

kn
= 2

b − a
·
{

1, n = 0
2, n ≥ 1

. (2.54)

Therefore, eqs (2.5) and (2.6) give the sheet parameters

µ0τn = 1/s0, n = 0 and µ0τn = 2[Tn(u)]2/s0, n ≥ 1, (2.55)

dn+1 = 2s0/[(b − a)Tn(u)Tn+1(u)], n ≥ 0. (2.56)

For a > 0, this is again an infinite sequence of thin sheets with increasing conductance τ n and decreasing separation dn, clustering at
z∞ = c(0) = s0/

√
ab. For a = 0, implying u = 1, Tn(1) = 1, we obtain the simple structure µ0τ n = 1/s 0 for n = 0, µ0τ n = 2/s 0 for n ≥ 1

and d n+1 = 2s 0/b for n ≥ 0.
The last conductivity model has an interesting application: if displacement currents are taken into account, the response function of a

uniform half-space with conductivity σ and permittivity ε is

c(ζ ) = 1√
ζµ0(σ + ζε)

, (2.57)

which has the form of eq. (2.51) with a = 0, b = σ/ε and s0 = 1/
√

εµ0. If erroneously a quasi-static interpretation of c(ζ ) is attempted, one
would get instead of a uniform dispersive half-space an almost uniformly laminated conductor with τ0 = √

ε/µ0, τn = 2τ0, n ≥ 1 and d n+1 =
D, n ≥ 0, where D := (2/σ )

√
ε/µ0. The average conductivity, 2τ 0/D, agrees with the true conductivity. The length D is the high-frequency

limit of the penetration depth,

1/D = lim
ω→∞

�
√

iωµ0(σ + iωε) (2.58)

(where � denotes the real part), and 1/τ 0 is the plane-wave impedance (= 377 
 for ε = ε0). Numerical values for ε = 9ε0, σ = 0.01 S m−1

are τ 0 = 0.008 S, D = 1.6 m.
An asymptotic result. In this section, it is shown that for n 
 1 the sheet parameters follow a very simple pattern, only weakly influenced

by the actual choice of the weight function. For w(λ) > 0 in 0 < a < λ < b and v := (
√

b + √
a)/(

√
b − √

a) > 1, we have

µ0τn = v2n F(v, w)/s0, n 
 1, (2.59)

dn+1 = 4s0

(b − a)v2n+1 F(v, w)
, n 
 1, (2.60)

where the non-dimensional function F > 0 is independent of n.
For a proof of eqs (2.59) and (2.60), let Rn(x) be an orthogonal polynomial associated with the positive weight function w̃(x), where

−1 < x < + 1. For formal simplicity, the standardization∫ +1

−1
w̃(x) dx = 1 (2.61)

is applied. The polynomial Rn(x) is assumed to be normalized, i.e. h̃n = 1 and k̃n > 0. Let x be real with |x | > 1 and let y be the solution of
y2 − 2xy + 1 = 0 with |y| > 1, i.e. y = x +√

x2 − 1 for x > 1 and y = −(|x |+√
x2 − 1) for x < −1. Then for n 
 1 we have asymptotically,

adapted from Szegö (1975, p. 277 and 297),

Rn(x) � yn · G(y) (2.62)

with

G(y) = 1√
2π

exp

{
− y2 − 1

2π

∫ +1

−1

log[w̃(t)
√

1 − t2]

y2 − 2yt + 1
· dt√

1 − t2

}
, (2.63)

or alternatively (Gradshteyn & Ryzhik 1980, integral 4.384.15)

G(y) = |y|√
π (y2 − 1)

exp

[
− y2 − 1

2π

∫ +1

−1

log w̃(t)

y2 − 2yt + 1
· dt√

1 − t2

]
. (2.64)

In particular,

G(y) = |y|√
(π/2)(y2 − 1)

for w̃(t) = 1

2
(Legendre) (2.65)

and

G(y) = 1√
2

for w̃(t) = 1

π
√

1 − t2
(Chebyshev). (2.66)

Generally, G(y) is symmetric around y = 0 if w̃(t) is symmetric around t = 0.
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Our application requires the shifted polynomial

pn(λ) = Rn

(
2λ − a − b

b − a

)
, 0 < a < λ < b, (2.67)

with the weight function, taking into account eq. (2.61),

w(λ) = 2s0

b − a
· w̃

(
2λ − a − b

b − a

)
. (2.68)

Of interest is pn(0) = Rn(x) with

x = −u, u = b + a

b − a
> 1 and y = −v, v =

√
b + √

a√
b − √

a
> 1. (2.69)

From eq. (2.64) it is inferred that the coefficient k̃n of the highest power xn of Rn(x) is for n 
 1 (Szegö 1975, p. 309)

k̃n = lim
x→∞

Rn(x)

xn
= 2n

√
π

exp

[
− 1

2π

∫ +1

−1

log w̃(t) dt√
1 − t2

]
, (2.70)

observing that y → 2x . Therefore, k̃n+1/k̃n � 2 and

kn+1

kn
= 2

b − a
· k̃n+1

k̃n

� 4

b − a
. (2.71)

With hn = s 0, we obtain from eqs (2.5) and (2.6)

µ0τn = v2n[G(−v)]2/s0, n 
 1, (2.72)

dn+1 = 4s0

(b − a)v2n+1[G(−v)]2
, n 
 1, (2.73)

implying

Tn := µ0τndn+1 = 4

(b − a)v
= 4

(
√

a + √
b)2

, n 
 1, (2.74)

which becomes independent of the weight function and of n, and is valid also in the limits a → 0 and a → b. The time Tn can be considered as a
local decay time of the conducting sheet τ n separated by d n+1 from a deeper perfect conductor. For a/b > 0.1 and n > 10, the approximations
(2.72) and (2.73) are correct to within 5 per cent for Legendre polynomials and to within 0.001 per cent for Chebyshev polynomials.

The asymptotic treatment shows that the sheet parameters are controlled by the quantity v, whereas the actual behaviour of the weight
function w(λ), involved in G(−v), plays a surprisingly insignificant role. For a > 0, the conductances monotonically increase in a geometric
progression and the distances between sheets decrease with the reverse law. Therefore, the sheets converge to a perfect conductor at finite
depth. In its character, this thin-sheet structure does not differ much from that of a single discrete line (a → b), giving rise to a surface sheet
and a perfect conductor at finite depth. The spectral function for the complementary sequence of thin sheets with decreasing conductances
and increasing separations requires an additional spectral line at λ = 0. This model is discussed in Section 2.5.

Laguerre polynomials. Contrary to the previous examples, the polynomials are now defined in the full range 0 ≤ λ < ∞. Weight function
and response function are

w(λ) = s0ae−aλ, c(ζ ) = s0aeaζ E1(aζ ), (2.75)

where a > 0 is a scaling factor and

E1(z) =
∫ ∞

z
e−t dt

t
, | arg z| < π (2.76)

is the exponential integral with a branch cut along the negative-real semi-axis. The moments sk , defined in eq. (1.13), are sk = s 0 k!/ak .
Therefore in this infinite range, the high frequency expansion (A9) is valid only asymptotically. The first few terms are

c(ζ ) = s0

ζ

[
1 − 1!

aζ
+ 2!

(aζ )2
− · · ·

]
. (2.77)

The weight function w(λ) generates the orthogonal Laguerre polynomials

pn(λ) = Ln(aλ) with pn(0) = 1. (2.78)

Because

hn = s0, kn+1/kn = −a/(n + 1), (2.79)

the sheet parameters (2.5), (2.6) are simply

µ0τn = 1/s0, dn+1 = s0a/(n + 1), n ≥ 0. (2.80)
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2.4.2 Completely discrete weight function w(λ)

These polynomials pn(λ) are orthogonal with respect to a finite or infinite set of discrete abscissae λm and weights wm , i.e. the weight function
and orthogonality relation are

w(λ) =
∑

m

wmδ(λ − λm),
∑

m

wm pn(λm)p j (λm) = hnδnj . (2.81)

The response function is simply

c(ζ ) =
∑

m

wm

λm + ζ
. (2.82)

Discrete Legendre polynomials. The polynomials pn(λ) are shifted versions of the discrete Legendre polynomials �n(x |N ) =: �n(x),
0 ≤ n ≤ N − 1, briefly described in Appendix D. They are orthogonal on a finite set of N equidistant abscissae

λm = a + m(b − a)/(N − 1), 0 ≤ m ≤ N − 1, (2.83)

with equal weights wm = s 0/N and are given by

pn(λ) = �n

(
2λ − a − b

b − a

)
, 0 ≤ a ≤ λ ≤ b, b > a, (2.84)

with

pn(0) = �n(−u) = (−1)n�(u), u := (b + a)/(b − a) ≥ 1. (2.85)

The polynomial parameters are

hn = s0

2n + 1
·

n∏
m=0

N + m

N − m
,

kn+1

kn
= 2

b − a
· (2n + 1)(N − 1)

(n + 1)(N − n − 1)
, (2.86)

converging for N → ∞ to eq. (2.47). From eqs (2.5) and (2.6) follow the sheet parameters

µ0τn = [�n(u)]2/hn, 0 ≤ n ≤ N − 1, (2.87)

dn+1 = kn+1hn

kn�n(u)�n+1(u)
, 0 ≤ n ≤ N − 2. (2.88)

Moreover (see Appendix D),

dN = 2hN−1

(b − a)�N−1(u)[u�N−1(u) − �N−2(u)]
, τN = ∞. (2.89)

For a = 0, i.e. u = 1, we obtain dN = ∞ and τ N is missing.
Charlier polynomials. They are an example of an infinite set of discrete abscissae,

λm = m�, wm = s0e−aam/m!, m = 0, 1, 2, . . . , (2.90)

where � > 0 is the λ discretization and a > 0 is a non-dimensional scaling parameter. The associated Charlier polynomials are given by (e.g.
Erdélyi et al. 1953, p. 226)

pn(λ) =
n∑

r=0

(−1)r

(
n
r

) (
λ/�

r

)
r !

ar
(2.91)

with pn(0) = 1. The polynomial parameters

hn = s0n!/an, kn+1/kn = −1/(a�) (2.92)

give rise to the sheet parameters

µ0τn = an

n!s0
, dn+1 = n!s0

an+1�
, n ≥ 0. (2.93)

For a < 1 the conductances monotonically decrease, for a > 1 they first increase until n � a and then decrease. The sheet separations behave
oppositely. With b := ζ/� and Kummer’s transformation (Abramowitz & Stegun 1972, formula 13.1.27), the response function (2.82) is

c(ζ ) = s0e−a
∞∑

m=0

am

m!(λm + ζ )
= s0

ζ
· e−a M(b, b + 1, a) = s0

ζ
· M(1, b + 1, −a) = s0

ζ
·

∞∑
m=0

(−a)m

(b + 1)m
, (2.94)

where M is the Kummer function (Abramowitz & Stegun 1972, chapter 13) and (x)m is the Pochhammer symbol defined in eq. (C4). Hence,
asymptotically for |b| 
 1,

c(ζ ) = s0

ζ

[
1 − a

b
+ a(a + 1)

b2
− a(a2 + 3a + 1)

b3
+ · · ·

]
. (2.95)

See the end of Appendix B for sufficient conditions under which an infinite discrete spectrum evolves.
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2.5 Two examples of a more complex spectral function

In the previous examples with a continuous spectral function, this function was non-vanishing in only one interval. Now we present two simple
examples of a spectral function w(λ) with a slightly more complicated structure.

Continuous spectrum plus single spectral line. The addition of a single spectral line at λ = 0 can drastically change the thin-sheet pattern.
This is discussed by considering instead of w(λ) the weighted mean

wε(λ) := εs0δ(λ) + (1 − ε)w(λ), 0 ≤ ε ≤ 1, (2.96)

with the response function

cε(ζ ) = εs0/ζ + (1 − ε)c(ζ ), (2.97)

where s 0 is the zero-order moment both of w(λ) and of wε(λ).
The limit ε = 1 describes simply a thin surface sheet with τ 0 = 1/(µ0s 0), which can be considered as the extremal expression of a

sequence with decreasing conductances and increasing separations. On the other hand, the limit ε = 0 recovers the sheet parameters of w(λ).
Therefore, in the model class of sequences of thin sheets with increasing conductances and decreasing sheet separations, which were typical
for the first two examples treated in Section 2.4, intermediate values of ε will generate the complementary sequence of sheet parameters with
decreasing conductances and increasing separations.

The resulting modifications of the sheet parameters are simple: let

�0(ε) := 1, �n(ε) := 1 + ε

n∑
m=1

(τm/τ0), n ≥ 1. (2.98)

Then

τ0(ε)

τ0
= 1,

τn(ε)

τn
= 1 − ε

�n−1(ε)�n(ε)
,

dn(ε)

dn
= �2

n−1(ε)

1 − ε
, n ≥ 1, (2.99)

where τ n and dn refer to w(λ) and τ n(ε) and dn(ε) to wε(λ). With increasing ε, obviously τ n(ε)/τ n decreases, dn(ε)/dn increases, and for
ε = 1 only the surface sheet subsists.

This transformation is proved via the moment presentation of eqs (2.32) and (2.33) of the sheet parameters. Eq. (2.96) implies

s0(ε) = s0, sk(ε) = (1 − ε)sk, k ≥ 1. (2.100)

Therefore, the Hankel determinants (2.30) are modified as follows:

�n(i, ε)/�n(i) = (1 − ε)n, i ≥ 1, (2.101)

�n(0, ε)/�n(0) = (1 − ε)n

[
1 + εs0

1 − ε
· �n−1(2)

�n(0)

]
= (1 − ε)n−1�n−1(ε). (2.102)

In the last step, we have made use of eq. (2.42). Then eqs (2.101) and (2.102) in conjunction with eqs (2.32) and (2.33) lead to eq. (2.99).
Moreover, eq. (2.42) yields Sn(ε)/Sn = 1/�n(ε), whereas for zn(ε)/zn no simple expression exists. Invariant under a change of ε are the
quantities

τ 2
n (ε)dn(ε)dn+1(ε) and

1

dn(ε)

[
1

τn−1(ε)
+ 1

τn(ε)

]
, n ≥ 1. (2.103)

Bipartite continuous spectrum (plus single spectral line). This spectrum is related to the periodic structure τ 2n = τ a at z2n = 2nD and
τ 2n+1 = τ b at z2n+1 = (2n + 1)D, n ≥ 0. As inferred from eq. (2.20), the response function c(ζ ) is implicitly defined by

c(ζ ) = 1

µ0τaζ + 1

D + 1

µ0τbζ + 1

D + c(ζ )

(2.104)

and therefore reads explicitly

c(ζ ) = 2s0(λb + ζ )

ζ (λb + ζ ) + √
ζ (λa + ζ )(λb + ζ )(λc + ζ )

(2.105)

with

s0 := 1

µ0τa
, λa := 2

µ0τa D
, λb := 2

µ0τb D
, λc := λa + λb. (2.106)
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[The square root in eq. (2.105) has to be computed as the product of the square roots of the four factors of the radicand.] First let τ a > τ b,
implying λa < λb. Then the spectral function, as deduced from eq. (1.11) with ζ = −λ + i0+, is

w(λ) = 2s0

πλa
·




√
(λa − λ)(λb − λ)(λc − λ)

(λc − 2λ)
√

λ
, 0 < λ ≤ λa,√

(λ − λa)(λ − λb)(λc − λ)

(2λ − λc)
√

λ
, λb ≤ λ ≤ λc.

(2.107)

The support of w(λ) consists of two intervals of equal length λa , the zero λ = λc/2 of the denominator lies in the gap between these sections
and therefore plays no significant role. The case τ a < τ b or λa > λb requires two modifications. First, the upper form of w(λ) holds in the
range 0 < λ ≤ λb and the lower form in the range λa ≤ λ ≤ λc. Secondly, c(ζ ) now has a pole at ζ = −λc/2, which augments the spectral
function by

�w(λ) = s0(λa − λb)

λa
· δ(λ − λc/2). (2.108)

s 0 remains the zero-order moment of w(λ). Taking into account that 2s 0/λa = D, it is seen that the omission of the pole would result in the
spectral function of a periodic structure starting with τ b rather than τ a(τ b > τ a). More obviously, this follows also from the identity

c(ζ ) = Dλa(λb + ζ )

ζ (λb + ζ ) + sqr
= Dλb(λa + ζ )

ζ (λa + ζ ) + sqr
+ D(λa − λb)

λc + 2ζ
, (2.109)

where sqr denotes the square root in eq. (2.105).
In the particular case λa = λb, the two intervals coalesce and w(λ) agrees with the Jacobian spectral function (C1) for α = −1/2, β = +1/2,
a = 0 and b = λc. In this limit, eq. (2.105) coincides with eq. (C15). The spectral function w(λ) and the first polynomials are displayed in
Fig. 3 for τ a > τ b and in Fig. 4 for τ a < τ b. With w(λ) given, the polynomials were obtained by the numerical method of Section 2.2. [Since
τ n and dn are known in this example, analytical expressions are also easily obtained via eqs (B6) and (B10).]

If more generally the sheet parameters are p periodic, such that p is the smallest integer satisfying τ n+p = τ n , d n+p = dn for all n, then for
p ≥ 2 the continuous spectrum consists of p disjoint sections with at most one spectral line in each of the gaps (Grommer 1914, pp. 151–152;
Wouk 1953, pp. 156–157).

3 P I E C E W I S E C O N T I N U O U S C O N D U C T I V I T Y S T RU C T U R E S

3.1 The nature of the spectrum

Whereas in the previous section the conductor consisted of a finite or infinite stack of thin sheets, we are now considering the other extreme
that no thin sheet is allowed to occur in the layering: the conductor consists of sections with continuous variation, possibly separated by
interfaces where the conductivity changes discontinuously. For this class of conductivity models, the nature of the spectrum was studied by
Weidelt (1972). The main results will now be summarized. Let zm be the maximum depth to which an external electromagnetic field can

Figure 3. Weight function w(λ) and the first orthogonal polynomials pn(λ) for a double-periodic sequence of sheets with the better conducting sheet at the
surface (τ a > τ b or λa < λb). The weight function is normalized with s 0 = 1.
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Figure 4. Weight function w(λ) and the first orthogonal polynomials pn(λ) for a double-periodic sequence of sheets with the better conducting sheet at depth
z = D (τ a < τ b or λa > λb). Now an additional spectral line occurs at λc := (λa + λb)/2. This line is displayed as a rectangular box with an arbitrary width,
the area of the box, however, equals with the strength of the spectral line. Again the normalization s 0 = 1 is applied, to which in the present case the spectral
line contributes 50 per cent and therefore exerts a great influence on the behaviour of pn(λ) near λ = λc (compare with Fig. 3).

penetrate, i.e. zm is either infinity, if the conductivity is bounded everywhere, or zm is the finite depth below which infinite conductivity screens
the electromagnetic field. The nature of the spectrum then depends on the integral

I :=
∫ zm

0

√
σ (z) dz. (3.1)

It is assumed that 0 < σ (0) < ∞. The following two cases have to be considered.

(i) I < ∞: in this case, c(ζ ) shows on the negative-real semi-axis an infinite number of poles at ζ = −λm . For m 
 1, poles and residuals
are given by λm � m2π2/(µ0 I 2) and wm � 2/[µ0

√
σ (0)I ]. Therefore

w(λ) =
∞∑

m=1

wmδ(λ − λm) with
∞∑

m=1

wm = ∞. (3.2)

The asymptotic behaviour of wm follows from Weidelt (1972, p. 262) using the asymptotic theory of Morse & Feshbach (1953, p. 739).
(ii) I = ∞: the isolated poles beyond a certain limit point λB merge into a branch cut from ζ = −λB to ζ = −∞ with w(λ) = O(1/

√
λ)

for λ → ∞. In −λB ≤ ζ ≤ 0, a finite number of isolated poles or branch cuts of finite length may subsist.

In both cases no moment of w(λ) exists. A few examples illustrate these results.
Uniform layer over perfect conductor or insulator. The layer of conductivity σ 0 and thickness D is the first lying over a perfect conductor.

Then I = √
σ0 D is finite and

c(ζ ) = tanh(
√

ζµ0σ0 D)√
ζµ0σ0

=
∞∑

m=1

wm

λm + ζ
(3.3)

with

wm = 2

µ0σ0 D
, λm = (m − 1/2)2π 2

µ0σ0 D2
. (3.4)

For D → ∞, the poles coalesce and c(ζ ) approaches the uniform half-space response 1/
√

ζµ0σ0 with a branch cut from ζ = 0 to ζ = −∞.
The changes for an underlying insulator are that tanh is replaced by coth, m-1/2 by m and a term 1/(ζµ0σ 0 D) is added in the series expansion.

Continuous conductivity variation σ (z). In the model

σ = σ0/δ
4, δ := 1 − bz, (3.5)

quite different solutions are obtained for b ≥ 0 and b < 0, corresponding to I = ∞ and I < ∞, respectively.
First, let b ≥ 0. Then σ → ∞ for z → 1/b and I = ∞. From eqs (1.2), (1.3) and (1.11), we find that the electric field, response function and
spectral function are (k2 := ζµ0σ 0)

E(z) ∼ δ exp(−kz/δ), c(ζ ) = 1

b + k
, w(λ) = 1

π
·

√
λµ0σ0

b2 + λµ0σ0
. (3.6)
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Next let b < 0. Then I = √
σ0/|b| < ∞ and

E(z) ∼ δ sinh{k/(bδ)}, c(ζ ) = 1

b − k coth(k/b)
= 3|b|

ζµ0σ0
+

∞∑
m=1

wm

λm + ζ
, (3.7)

where

λm = (bxm)2

µ0σ0
, wm = 2|b|

µ0σ0
, (3.8)

and xm is the mth positive root of xcot x = 1, implying xm � (m + 1/2)π for m 
 1.
Example of a branch cut with an isolated pole. Let 0 ≤ q ≤ p and consider the two responses

c±(ζ ) = A√
ζ + p ± √

q
, (3.9)

where A, of dimension m s−1/2, is a positive constant. Both responses have a branch cut from ζ = −p to ζ = −∞. However, in addition,
c−(ζ ) exhibits an isolated pole at ζ = −(p − q). The spectral functions

w+(λ) = A

π
·
√

λ − p�(λ − p)

λ − p + q
, w−(λ) = w+(λ) + 2A

√
qδ(λ − p + q) (3.10)

differ only by the contribution from this pole. Here �(·) is the Heaviside step function. The conductivity distributions associated with c±(ζ )
are

µ0σ±(z) = A2

[A − (
√

p ± √
q)z]2[A + (

√
p ∓ √

q)z]2
. (3.11)

They are shown in Fig. 5 and give rise to the electric field

E±(z) ∼ [A − (
√

p ± √
q)z]α+ [A + (

√
p ∓ √

q)z]α− (3.12)

with α± = (1 ± √
1 + ζ/p)/2.

3.2 Constant-phase conductivity models

In this section, the restriction 0 < σ (0) < ∞ is dropped and σ (0) is allowed to attain both bounds. As a generalization of the spectral function
(1.14) of a uniform half-space, we consider for 0 < λ < ∞ an inverse power law, in which spectral function w(λ) and response function c(ζ )
are related by

w(λ) = sin(πε)

π
· Aε

λε
, c(ζ ) = Aε

ζ ε
, 0 < ε < 1. (3.13)

The integral representation (1.4) converges only for the restricted range of the exponent ε. Obviously no moment of w(λ) exists. The positive
amplitude Aε , generally depending on ε and of dimension m s−ε , is at our disposal. The selection in eq. (3.13) was guided by the quest for a

Figure 5. Conductivity distributions σ ±(z) corresponding to spectral functions w±(λ) with the same continuous part and an additional spectral line of w−(λ).
The dominating influence of this line on σ −(z) is obvious, because an isolated spectral line corresponds to a thin surface sheet with a perfect conductor at
depth. For z → zm := A/(

√
p − √

q), conductivity σ − tends to infinity. The parameters are defined in the text.

C© 2005 RAS, GJI, 161, 566–590



Spectral function and conductivity structure in MT 581

simple c(ζ ). The magnetotelluric response functions (apparent resistivity �a and phase ϕ) are

�a = ωµ0|c|2 = µ0 A2
εω

1−2ε, ϕ = π/2 + arg(c) = (π/2)(1 − ε). (3.14)

As a particular facet, the phase is independent of frequency. Clearly, ε = 1/2 refers to the uniform half-space. However, which conductivity
profile is connected with arbitrary ε?

This question is answered by relating eq. (3.13) to the Jacobian spectral function (C1) with

α = −ε, β = 0, a = 0, b → ∞, s0 = Aε sin(πε)

π (1 − ε)
· b1−ε . (3.15)

Using eq. (C13), it is inferred that dn ∼ s 0/b ∼ 1/bε . Therefore dn → 0 for b → ∞, i.e. the thin-sheet structure is transformed in this limit
into a continuous conductor. Because a parcel of finite thickness now comprises many thin sheets, attention can be confined to eq. (C14),
being the limit of eqs (C12) and (C13) for n 
 1,

µ0τn � 2�(ε)n1−2ε

Aε�(1 − ε)b1−ε
, dn � 2Aε�(1 − ε)n2ε−1

�(ε)bε
, (3.16)

where it was noted that π/sin(πε) = �(ε)�(1 − ε). A conductivity σ n := τ n/dn is assigned to a depth zn, obtained by integrating dn over n.
Therefore,

µ0σn = �2(ε)

A2
ε�

2(1 − ε)
·
(

n2

b

)1−2ε

, zn = Aε�(1 − ε)

ε�(ε)
·
(

n2

b

)ε

. (3.17)

In our application, b and n (occurring in the combination n2/b only) independently tend to infinity. As a consequence, the parameter n2/b
can attain all positive values, with small values referring to shallow depth. Therefore, eq. (3.17) is a parameter representation of the desired
conductivity profile σ (z). In this simple case, the parameter can be eliminated to yield

µ0σ (z) =
[

�(ε)(εz)1−2ε

Aε�(1 − ε)

]1/ε

∼ z−2+1/ε . (3.18)

When approaching the surface from below, the conductivity decreases to zero for ε < 1/2 and increases to infinity for ε > 1/2, but remains
integrable. In the first case, the limiting model for ε → 0 is an insulating layer over a perfect conductor at depth A0. In the second case, a thin
surface sheet with conductance 1/(µ0 A1) is the end-member for ε → 1.

In view of the various limiting processes involved, it appears worthwhile to verify that σ (z), given in eq. (3.18), in fact reproduces the
response (3.13): the solution of eq. (1.2) is (Abramowitz & Stegun 1972, formula 9.1.51)

E(z) = √
zKε

[
2(pz)1/(2ε)

]
, p := ε�(ε)ζ ε

Aε�(1 − ε)
, (3.19)

where Kε(·) is the modified Bessel function of the second kind and order ε. With the boundary values (Abramowitz & Stegun 1972, formulae
9.6.9, 9.6.26 and 9.6.6)

E(0) = 1

2
�(ε)/

√
p, E ′(0) = − 1

2ε
�(1 − ε)

√
p, (3.20)

the response is, according to eq. (1.3),

c = − E(0)

E ′(0)
= ε�(ε)

p�(1 − ε)
= Aε

ζ ε
. (3.21)

3.3 Piecewise continuous conductors including thin sheets

Stack of thin sheets over a piecewise continuous conductor. By the non-linear interaction of a finite stack of thin sheets with an underlying
piecewise continuous conductor σ pc(z), essential properties of the thin sheet response function, characterized by a finite number of poles, are
imparted to the combined response function c(ζ ): if the response function cpc(ζ ) has a branch cut at ζ = −λB , then c(ζ ) can show a number
of poles in 0 > ζ > −λB resulting from the thin sheets. Moreover, the stack of thin sheets acts as a low-pass filter by damping w(λ) for λ →
∞. Consequently, now a number of moments exist, which allow all thin-sheet parameters to be resolved.

Transferring the general case to Appendix E, here only an illustrative example is considered. It consists of a thin surface sheet of
conductance τ 0 > 0 overlying a piecewise continuous conductor with σ pc(z) = σ 0/(1 − µ0σ 0 pz2)2 [see eq. (3.11) with q = 0 and A2 =
1/(µ0σ 0)]. The corresponding response function and spectral function are, following eqs (3.9) and (3.10),

cpc(ζ ) = 1√
(ζ + p)µ0σ0

, wpc(λ) = �(λ − p)

π
√

(λ − p)µ0σ0

, p > 0. (3.22)

With 1/c(ζ ) = ζµ0τ 0 + 1/cpc(ζ ) and eq. (1.11), the combined model gives

c(ζ ) = 1

ζµ0τ0 + √
(ζ + p)µ0σ0

, w(λ) = 1

π
·
√

(λ − p)µ0σ0�(λ − p)

(λµ0τ0)2 + (λ − p)µ0σ0
+ v1δ(λ − κ1) (3.23)
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Figure 6. Spectral function w(λ) of a single thin sheet embedded in a uniform half-space. With increasing α = √
λµ0σ D the height of the peaks increases

(�αmβ2/π ) but the area under the peak decreases (�1/αm ), where β := τ/(σ D) and αm � (m − 1/2)π is the approximate position of the mth peak for
m 
 1.

with

v1 = 1

µ0τ0
· α√

1 + α(1 + √
1 + α)

, κ1 = 2p

1 + √
1 + α

< p, α := 4pµ0τ
2
0 /σ0, (3.24)

where ζ = −κ 1 is the pole of c(ζ ). Because w(λ) = O(λ−3/2) for λ → ∞, the zero-order moment s 0 of w(λ) exists and yields (including the
contribution from the pole) s 0 = 1/(µ0τ 0). It allows τ 0 to be resolved and is independent of σ pc(z).

Thin sheet embedded in a piecewise continuous conductor. This model class will be illustrated by the following two simple examples
only.

(i) Thin sheet of conductance τ embedded at depth z = D in a uniform half-space of conductivity σ . The response

c(ζ )

D
= 1

a
· 1 + aβ + coth a

(1 + aβ) coth a + 1
, a :=

√
ζµ0σ D, β := τ

σ D
, (3.25)

gives rise to the spectral function

w(λ)

D
= 1

απ [1 + αβ sin(2α) + α2β2 cos2 α]
, α :=

√
λµ0σ D. (3.26)

The parameter β is the conductance ratio of thin sheet to overburden. The resulting spectral function is displayed in Fig. 6. For D > 0, no
moment exists: w(λ) oscillates around the uniform half-space spectral function (dotted line) and shows peaks near α = αm � (m − 1/2)π ,
m = 1, 2, 3, . . . . The peaks get more pronounced with increasing λ and β, and thus w(λ) resembles more and more the spectral function (3.3)
of a uniform layer overlying a perfect conductor. For m 
 1, the area under the peaks approaches 1/αm ∼ 1/m, which underlines that not
even the zero-order moment exists.

(ii) Periodic sequence of thin sheets of conductance τ embedded at depth z = nD, n = 1, 2, 3, . . . , in a uniform half-space of conductivity
σ . The periodicity condition yields the response

c(ζ )

D
= 1

a
· aβ/2 + √

1 + aβ coth a + (aβ/2)2

1 + aβ coth a
. (3.27)

Let R: = 1+αβcotα-(αβ/2)2. Then c(ζ ) is associated with the spectral function

w(λ)

D
= 1

απ
·

√
R�(R)

1 + αβ cot α
+

∞∑
m=1

β2αmδ(α − αm)

β + sec2 αm
, (3.28)

where �(·) is again the Heaviside step function and αm is the mth positive solution of 1+αβcotα = 0 with αm � (m−1/2)π , sec αm �
(−1)mβαm for m 
 1. As in the previous example, in this limit the amplitude of δ(α − αm) is 1/αm and therefore no moment exists. This
asymptotic behaviour is also seen in Fig. 7, which displays w(λ)/D. Because αmδ(α − αm) = 2λmδ(λ − λm), in the λ representation the
amplitudes tend to the constant value wm � 2/(µ0σ D).
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Figure 7. Spectral function w(λ) of a periodic sequence of thin sheets embedded into a uniform half-space. It results in an infinite number of continuous
spectral sections separated by discrete spectral lines. These lines are displayed by rectangular boxes of equal width, with an area corresponding to the strength
of the line.

3.4 Inversion of the spectral function for piecewise continuous conductors

In the case of thin sheets, the sheet parameters could be inferred from the spectral function by the numerical algorithm described in Section 2.2.
For piecewise continuous conductors, the situation is more complicated. At least in the case that σ (z) has no discontinuities at all, the various
Gel’ fand–Levitan type techniques will serve for this purpose (Weidelt 1972; Whittall & Oldenburg 1986, 1992). Without readdressing the
topic in detail, only a short description is given.

The unstable determination of the spectral function w(λ) from experimental data is the most difficult part of the inverse problem. However,
if w(λ) is assumed known, the inverse problem is reduced to a stable (linear) Fredholm integral equation of the second kind, in which the
kernel is derived from w(λ). Let 0 < σ (0) < ∞, µ := √

λµ0σ (0) and w̃(µ) := w(λ). Then w̃(µ) → 1/(πµ) for µ → ∞ and the kernel of
the integral equation is constructed from

B(x) :=
{

0, x < 0,

(1/π )
∫ ∞

0 [1 − πµw̃(µ)] cos(µx) dµ, x ≥ 0,
(3.29)

where x has the dimension of a length (a distorted depth coordinate). The kernels of the linear integral equations are K (x |y) = B(x + y) +
B(x − y) in the Gel’ fand–Levitan method and K (x |y) = B(|x − y|) in the Gopinath–Sondhi technique. The latter technique is applicable
even to a discontinuous σ (z). For further details, see the references given above.

4 C O N C L U D I N G R E M A R K S

This paper investigates for the first time in some detail the question how in 1-D magnetotellurics the conductivity structure σ (z) is mapped
onto the structure of the corresponding spectral function w(λ). A gross summary is given in Table 1. It classifies the conductivity structures
according to obvious properties of the spectral function such as continuous and discrete parts and how many moments exist. The term ‘strong
parameter variation’ is not well defined. With reference to the end of Appendix B, it means, loosely speaking, that for n 
 1 asymptotically
the limits 0 or ∞ are attained either for the product τ nd n+1 or for the ratio of parameters of adjacent sheets.

Appropriate mathematical tools for the treatment of thin-sheet structures are CFs, orthogonal polynomials, Hankel determinants and
second-order difference equations, which show an intimate relationship and allow one to see the w(λ)–σ (z) correspondence under different
aspects (Sections 2.1–2.3 and the Appendices A and B). For instance, the three-term recurrence relations (A3) for CFs, eq. (2.7) for orthogonal
polynomials and eq. (B3) for second-order difference equations turn out to be different views of the same object.

Table 1 is incomplete as far as thin sheets embedded in piecewise continuous conductors are concerned. For these conductivities, no
moment exists, but the nature of the spectrum found in the examples at the end of Section 3.3 (a continuous spectrum or an infinite sequence
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Table 1. First classification of conductivity structures according to how many moments of w(λ) exist and the
nature of its spectrum. Examples for a strong parameter variation are given at the end of Appendix B.

Number of moments Nature of the spectrum

Continuous sections Completely discrete
with some discrete lines

All moments exist Infinite sequence of Finite sequence of thin
thin sheets sheets or infinite sequence

of thin sheets with a
strong parameter variation

A few moments exist Thin sheets over a Thin sheets over a
piecewise continuous piecewise continuous
conductor with I = ∞ conductor with I < ∞

No moment exists Piecewise continuous Piecewise continuous
conductor with I = ∞ conductor with I < ∞

Abbreviation: I := ∫ zm
0

√
σ (z) dz, where zm = ∞ or the depth of a perfect conductor.

of continuous sections, separated by a single spectral line) does not fit into the scheme of Table 1; for these structures an extension of the table
is required.

No systematic treatment of the w(λ)–σ (z) relation for piecewise conductors has been attempted. The examples in Section 3 have been
selected mostly for an informative illustration rather than for a systematic coverage of all aspects.
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A P P E N D I X A : D I R E C T E X P R E S S I O N O F T H E S H E E T PA R A M E T E R S I N T E R M S O F
T H E M O M E N T S

In Section 2.3, the relationship (2.32) and (2.33) between the moments sk and the sheet parameters τ n and dn was derived via orthogonal
polynomials. The alternative derivation of this appendix can be obtained from results presented by Perron (1913, § 58 and § 67) after a number
of transformations. With a loose reference to this source, we will give a short derivation directly related to the pertinent CF (2.20). Let

c(m)(ζ ) := Am(ζ )

Bm(ζ )
(A1)

be the mth order approximant of c(ζ ) in its representation by the CF (2.20). With the starting values

A0 = 0, B0 = 1, A1 = 1, B1 = µ0τ0ζ, (A2)

Am(ζ ) and Bm(ζ ) are for n = 1, 2, 3, . . . recursively obtained from

X2n = dn X2n−1 + X2n−2, X2n+1 = µ0τnζ X2n + X2n−1, (A3)

where Xm := Am or Xm := Bm (e.g. Wall 1948, p. 15). By induction it is inferred that

A2n(ζ ) =
n−1∑
	=0

a2n,	ζ
	, B2n(ζ ) = 1 +

n∑
	=1

b2n,	ζ
	, (A4)

A2n+1(ζ ) = 1 +
n∑

	=1

a2n+1,	ζ
	, B2n+1(ζ ) =

n+1∑
	=1

b2n+1,	ζ
	, (A5)

where in particular

b2n,n =
n∏

k=1

(µ0τk−1dk), b2n+1,n+1 = µ0τn

n∏
k=1

(µ0τk−1dk), (A6)

implying

µ0τn = b2n+1,n+1/b2n,n, dn+1 = b2n+2,n+1/b2n+1,n+1. (A7)

Eq. (A7) shows that for the computation of τ n and dn only the coefficients (A6) have to be determined. Again by induction it is found (e.g.
Wall 1948, p. 16) that

c(m+1)(ζ ) − c(m)(ζ ) = (−1)m

Bm(ζ )Bm+1(ζ )
, (A8)

which, according to eqs (A4) and (A5), is O(1/ζ m+1) for |ζ | → ∞. After expanding the kernel 1/(λ + ζ ) in the integral representation (1.4)
of c(ζ ) in powers of 1/ζ , |ζ | → ∞, we obtain a representation of c(ζ ) in terms of its moments,

c(ζ ) =
∞∑

k=0

(−1)ksk

ζ k+1
. (A9)

If w(λ) = 0 for λ > b, b < ∞, this expansion is convergent for |ζ | > b, otherwise it is valid only asymptotically. Because c(m)(ζ ) and c(m+1)(ζ )
agree in powers of 1/ζ less than m + 1, it can be concluded that c(m) reproduces the first m terms of the expansion (A9), i.e.

c(m)(ζ ) =
m−1∑
k=0

(−1)ksk

ζ k+1
+

∞∑
k=m

gmk

ζ k+1
, (A10)

where only the coefficients gmk of the second sum depend on the order m of approximation. Multiplication of eq. (A10) with Bm(ζ ) yields

Am(ζ ) = Bm(ζ ) ·
m−1∑
k=0

(−1)ksk

ζ k+1
+ Bm(ζ ) ·

∞∑
k=m

gmk

ζ k+1
. (A11)

First, let m = 2n and compare the coefficients of the powers (1/ζ ) j , j = 1, . . . , n. With reference to eq. (A5), we obtain the n equations
n−1∑
k=0

(−1) j+ks j+kb2n,k+1 = (−1) j s j−1, j = 1, . . . , n. (A12)

The range of j is chosen in such a way that the coefficients am	 and gmk are not involved. The right-hand side results from the term b2n,0 = 1
in eq. (A4). The solution of this set of equations for b2n,n gives, with �n(i) defined in eq. (2.30),

b2n,n = �n(0)

�n(1)
, (A13)

using

det
[
(−1)i+ j+ksi+ j+k

]
j,k=0,...,n−1

= (−1)n·i det[si+ j+k] j,k=0,...,n−1. (A14)

Next consider eq. (A11) with m = 2n + 1. A comparison of the coefficients of (1/ζ ) j , j = 0, . . . , n, yields with reference to eq. (A5) the n
+ 1 equations

n∑
k=0

(−1) j+ks j+kb2n+1,k+1 = δ0 j , j = 0, . . . , n, (A15)
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where δmn is the Kronecker symbol. The right-hand side originates from the term a2n+1,0 = 1 in eq. (A5). Solving for b2n+1,n+1, we obtain

b2n+1,n+1 = �n(1)

�n+1(0)
. (A16)

Eqs (A7), (A13) and (A16) then yield the desired expressions (2.32) and (2.33) of the sheet parameters in terms of the moments.

A P P E N D I X B : C O M P U TAT I O N O F W(λ) F O R G I V E N T H I N - S H E E T PA R A M E T E R S

This appendix sketches the solution of the forward problem, i.e. the determination of w(λ) from the sheet parameters. First, a finite stack
of N thin sheets with conductances τ n at z = zn, 0 ≤ n ≤ N − 1, is assumed (see Fig. 2). The sequence is terminated with τ N = ∞ at
z = zN . Moreover, z0 = 0, d n+1 = zn+1 − zn. Then the eigenvalue problem (1.5) reads

e′(z+
n ) − e′(z−

n ) = −λµ0τne(zn), 0 ≤ n ≤ N − 1 (B1)

with e′(z−
n ) = [e(zn) − e(zn−1)]/dn, e′(z+

n ) = [e(zn+1) − e(zn)]/d n+1 and the boundary conditions e′(z−
0 ) = 0, e(zN ) = 0. With

fn := √
µ0τne(zn), f := ( f0, f1, . . . , fN−1)T (B2)

it reduces to

JN f = λf, (B3)

where JN is the N-dimensional symmetric tridiagonal matrix (Jacobi matrix)

JN =




α0 β1

β1 α1 β2

. .

. .

βN−2 αN−2 βN−1

βN−1 αN−1




(B4)

with

α0 := 1

µ0τ0d1
, αn := 1

µ0τn
·
(

1

dn
+ 1

dn+1

)
, βn := − 1

µ0
√

τn−1τndn
, 1 ≤ n ≤ N − 1, (B5)

implying that the principal subdeterminants

detJn = 1/

n−1∏
m=0

(µ0τmdm+1), 1 ≤ n ≤ N , (B6)

are positive. Therefore, JN is positive definite. Hence, for finite τ n , dn and N , all eigenvalues λm , 1 ≤ m ≤ N , are positive. Let fm be the
normalized eigenvectors, fT

m f j = δmj. Then F := (f1, f2, . . . , fN ) with the entries Fnm is an orthogonal N × N matrix. Let the polarity of fm

be fixed by F 0m > 0. Conventional methods provide the expansion of the solution of eq. (1.2) in terms of Fnm =:
√

µ0τnem(zn),

E(zn, ζ ) = − E ′(0−, ζ )

µ0
√

τ0τn

N∑
m=1

F0m Fnm

λm + ζ
= −E ′(0−, ζ )

N∑
m=1

em(0)em(zn)

λm + ζ
, (B7)

and in particular, using eq. (1.3) and s 0 = 1/(µ0τ 0),

c(ζ ) =
N∑

m=1

wm

λm + ζ
with wm = s0 F2

0m = e2
m(0). (B8)

This solves the forward problem for finite N .
Whereas the orthogonality of the columns of F expresses the orthogonality of the eigenvectors, the orthogonality of the rows of F is

associated with the orthogonality of the orthogonal polynomials pn(λ). Let pn(λm) := Fnm/
√

wm . Then

N∑
m=1

Fnm Fkm = δnk =
N∑

m=1

wm pn(λm)pk(λm) = (pn, pk), (B9)

where the normalization (2.24) has been adopted. It implies p0(λm) = 1/
√

s0. Row (n + 1) of eq. (B3) reads for f = fm (after division by√
wm)

βn pn−1(λm) + αn pn(λm) + βn+1 pn+1(λm) = λm pn(λm), (B10)

which is the three-term recurrence relation (2.25). In contrast to β j > 0 assumed there, the parameters β j are negative here. This difference
changes only the polarity of the polynomials of odd degree, such that now pn(0) > 0 for all n. For given τ n and dn, the polynomials pn(λ) can
be calculated via eqs (B5) and (B10).

For N → ∞, the discrete spectral lines obtained for finite N will either cluster to one or more continuous sections of finite or infinite
support (with a few discrete lines subsisting) or they will remain discrete, either with λ∞ as a finite point of accumulation or increasing to
+∞.
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Of particular interest is an investigation of the conditions under which the spectrum remains discrete for N → ∞. Although it appears to
be difficult to formulate conditions for the coefficients αn and β n , which are both necessary and sufficient, at least some sufficient conditions
can be found in the literature. The spectrum remains discrete if for n → ∞ one of the following conditions applies.

(i) αn → λ∞ ≥ 0, β n → 0 (after Achieser & Glasmann 1977, p. 80).
Examples:

(a) τn ∼ n!, dn+1 ∼ 1/n!, αn ∼ (1 + 1/n) → λ∞ > 0, βn ∼ 1/
√

n → 0;
(b) τ n ∼ qn

τ , dn ∼ qn
d , q τ qd > 1, αn → λ∞ = 0, β n → 0.

Achieser & Glasmann consider only the case λ∞ = 0, but λ∞ > 0 is a simple extension of it.
(ii) αn + β n + β n+1 → + ∞ (Hinton & Lewis 1978 p. 431).

Examples:

(a) τn ∼ 1/n!, dn+1 ∼ n!, αn + βn + βn+1 ∼ (n + 1 − √
n − √

n + 1) → +∞
[this parameter set is a special case of eq. (2.93) and gives rise to the Charlier polynomials];
(b) τ n ∼ qn

τ , dn ∼ qn
d , qd < q τ qd < 1 or 1/qd < q τ qd < 1, αn + β n + β n+1 ∼ (1 − q τ )(q τ q2

d − 1)/(q τ qd)n → + ∞.

In the examples, ∼ denotes proportionality with a positive constant independent of n. In case (i) the discrete eigenvalues accumulate at
the finite value λ∞, in case (ii) the discrete eigenvalues tend to infinity.

A P P E N D I X C : T H I N - S H E E T M O D E L S G E N E R AT E D B Y JA C O B I P O LY N O M I A L S

The Legendre and Chebyshev spectral functions (cf. Section 2.4.1) are members of the great family of Jacobi spectral functions

w(λ) = s0(λ − a)α(b − λ)β

(b − a)α+β+1 B(α + 1, β + 1)
, α > −1, β > −1, 0 ≤ a < λ < b, (C1)

where B(x , y) := �(x)�(y)/�(x + y) is Euler’s Beta function. Fig. C1 shows a normalized version of w(λ) for the symmetric choice α = β.
Legendre polynomials result from α = β = 0, Chebyshev polynomials from α = β = −1/2. The response function is (Gradshteyn & Ryzhik
1980, integral 3.228.3)

c(ζ ) = s0

b + ζ
2 F1(1, β + 1; α + β + 2; z), z := (b − a)/(b + ζ ), (C2)

where 2 F 1 is the hypergeometric function (e.g. Abramowitz & Stegun 1972, chapter 15), which converges inside the unit circle |z| = 1.
Because �ζ = 0, on the unit circle only the point z = 1 can be reached (for a = ζ = 0). Here, 2 F 1 diverges for −1 < α ≤ 0. In this case,

Figure C1. Normalized Jacobi weight functions w(λ) with a = −1, b = +1 and s 0 = 1. Shown are only symmetric functions with α = β (curve parameter).
In addition, there are asymmetric weight functions with α 
= β, e.g. the periodic model (C15) with α = −0.5, β = +0.5.
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c(0) = ∞ means that a terminating perfect conductor is missing. Convenient for numerical evaluation is the power series

c(ζ ) = s0

b + ζ
·

∞∑
m=0

(β + 1)m

(α + β + 2)m

(
b − a

b + ζ

)m

(C3)

with the Pochhammer symbol

(x)m := x · (x + 1) · (x + 2) . . . (x + m − 1) = �(x + m)/�(x), (C4)

implying in particular (x)0 = 1, (1)m = m!. Associated with eq. (C1) are the Jacobi polynomials

pn(λ) = P (β,α)
n

(
2λ − a − b

b − a

)
(C5)

with

pn(0) = P (β,α)
n (−u) = (−1)n P (α,β)

n (u), u := (b + a)/(b − a) ≥ 1, (C6)

where the transition from −u to +u requires the exchange of α and β. An explicit representation is

P (α,β)
n (u) = 1

2n

n∑
m=0

(
n + α

m

) (
n + β

n − m

)
(u − 1)n−m(u + 1)m . (C7)

With the polynomial parameters

hn = (n + α + β + 1)(α + 1)n(β + 1)ns0

(2n + α + β + 1)(α + β + 2)nn!
, (C8)

kn+1

kn
= 2

b − a
· (2n + α + β + 1)(2n + α + β + 2)

2(n + 1)(n + α + β + 1)
, (C9)

we obtain from eqs (2.5) and (2.6)

µ0τn = [
P (α,β)

n (u)
]2

/hn, n ≥ 0, (C10)

dn+1 = kn+1hn

kn P (α,β)
n (u)P (α,β)

n+1 (u)
, n ≥ 0. (C11)

With P (α,β)
n (1) = (α + 1)n/n!, the resulting simplification for a = 0 is

µ0τn = (2n + α + β + 1)(α + 1)n(α + β + 2)n

(n + α + β + 1)(β + 1)nn!s0
, n ≥ 0, (C12)

dn+1 = (2n + α + β + 2)(β + 1)nn!

(α + β + 2)n(α + 1)n+1
· s0

b
, n ≥ 0. (C13)

Asymptotically for a = 0 and n 
 1,

µ0τn � B(α + 1, β + 1)

�2(α + 1)
· 2n2α+1

s0
, dn+1 � �2(α + 1)

B(α + 1, β + 1)
· 2s0

bn2α+1
. (C14)

The exponents α = −1/2, β = +1/2 yield the completely periodic model µ0τ n = 1/s 0, d n+1 = 4s 0/b, n ≥ 0 with the response function

c(ζ ) = 2s0

ζ + √
ζ (b + ζ )

. (C15)

This result follows also from eq. (2.21) with cn = cn+1 =: c. Other classical orthogonal polynomials contained in eq. (C5) are the Chebyshev
polynomials of the second kind (α = β = 1/2) and the Gegenbauer polynomials (α = β =: γ − 1/2, γ > −1/2).

A P P E N D I X D : D I S C R E T E L E G E N D R E P O LY N O M I A L S

The polynomials �n(x |N ) =: �n(x), 0 ≤ n ≤ N − 1, are polynomials of degree n in x, which are orthogonal with respect to summation over
the N equidistant abscissae

xm = 2m/(N − 1) − 1, 0 ≤ m ≤ N − 1, (D1)

with x 0 = −1, x N−1 = +1. The standardization �n(1) = 1 leads to the orthogonality relation

1

N

N−1∑
m=0

� j (xm)�n(xm) = δ jn

2n + 1
·

n∏
m=0

N + m

N − m
. (D2)

�n(x) is easily obtained from the recurrence relation

(n + 1)(N − n − 1)�n+1 − (2n + 1)(N − 1)x�n + n(N + n)�n−1 = 0, 1 ≤ n ≤ N − 2, (D3)

starting with �0 = 1, �1 = x . The subsequent polynomials are

�2 = 3(N − 1)x2 − N − 1

2(N − 2)
, �3 = x[5(N − 1)2x2 − 3N 2 + 7]

2(N − 2)(N − 3)
. (D4)
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The relation between �n(x |N ) and the Legendre polynomial Pn(x) is

lim
N→∞

�n(x |N ) = Pn(x). (D5)

From eq. (D3) follows the limit, a result required in eq. (2.89),

lim
n→N

(N − n)�n(x) = (2N − 1)(N − 1)

N
[x�N−1(x) − �N−2(x)]. (D6)

The present standardization establishes a close relationship between �n(x) and Pn(x) in eq. (D5). With a different normalization, these
polynomials (sometimes also called Chebyshev polynomials) are treated by Erdélyi et al. (1953, p. 223) and Szegö (1975, p. 33).

A P P E N D I X E : S TA C K O F T H I N S H E E T S OV E R A P I E C E W I S E
C O N T I N U O U S C O N D U C T O R

As a generalization of the introductory example of Section 3.3, it is now assumed that the overlying conductivity structure consists of N thin
sheets with conductances τ n and separations d n+1, n = 0, . . . , N − 1. Here, dN ≥ 0 is the separation between the last conducting sheet τ N−1

and a piecewise continuous conductivity profile σ pc(z) starting at z = zN . Let the response function and spectral function at z = zN be given
by cpc(ζ ) and wpc(λ). The corresponding surface response can be obtained by using the recursion relation (A3) with the only modification
that now

X2N = (dN + cpc)X2N−1 + X2N−2, Xm = Am or Bm . (E1)

Then eq. (A1) yields

c(ζ ) = A2N (ζ )

B2N (ζ )
. (E2)

If ζ is real, both X 2N−1 and X 2N−2 are real too. The two cases (i) I < ∞ and (ii) I = ∞, distinguished in Section 3.1, require different
treatments.

(i) I < ∞: then

cpc(ζ ) =
∞∑

m=1

wm

ζ + λm
, wm > 0, λm ≥ 0. (E3)

Assuming first that B 2N−1(−λm) 
= 0 for all m, the poles λm of cpc(ζ ) differ from the poles κ n of c(ζ ), the latter being the solutions of
B 2N (ζ ) = 0. Therefore,

w(λ) =
∞∑

n=1

vnδ(λ − κn), vn > 0, κn ≥ 0, (E4)

with vn = A2N (−κ n)/B ′
2N (−κ n). After performing the differentiation and replacing dN + cpc(−κ n) by −B 2N−2(−κ n)/B 2N−1(−κ n), we obtain

(omitting the argument ζ = −κ n throughout)
1

vn
= −B2

2N−1c′
pc + (B2N−2 B ′

2N−1 − B2N−1 B ′
2N−2)

= B2
2N−1

∞∑
m=1

wm

(λm − κn)2
+

N−1∑
	=0

µ0τ	 B2
2	 > 0.

(E5)

Here, the implication from eq. (A8) that

B2N−2(ζ )A2N−1(ζ ) − A2N−2(ζ )B2N−1(ζ ) = 1 (E6)

has been used. Moreover,

B2N−2(ζ )B ′
2N−1(ζ ) − B ′

2N−2(ζ )B2N−1(ζ ) =
N−1∑
	=0

µ0τ	 B2
2	(ζ ). (E7)

If, however, B 2N−1(−λ j ) = 0 for some j, then eq. (E6) yields A2N−1(−λ j ) 
= 0 and therefore λ j =: κ n will also be a pole of c(ζ ). Then
eq. (E1) gives

lim
ζ→−κn

cpc(ζ )B2N−1(ζ ) = lim
ζ→−κn

w j B2N−1(ζ )

ζ + λ j
= −B2N−2(−κn). (E8)

Therefore, eq. (E5) is replaced by

1/vn = B2
2N−2(−κn)/w j +

N−1∑
	=0

µ0τ	 B2
2	(−κn) > 0. (E9)

A detailed analysis provides for n 
 1 the asymptotic results κn = O(n2) and

dN > 0 : cpc(−κn) → −dN , vn = O(κ−2N
n ),

dN = 0 : cpc(−κn) → 1/(µ0τN−1κn), vn = O(κ−2N+1
n ).

(E10)
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(ii) I = ∞: now cpc(ζ ) has a branch cut from ζ = −λB to ζ = −∞. For ζ = −λ, λ < λB , the response cpc(ζ ) is also real, see eq. (3.9) or
eq. (3.22) for an example. Therefore, in this λ range, the real function B 2N (ζ ) may have a number of zeros at ζ = −κ n , κ n < λB . Again, a
possible pole λm of cpc(ζ ) is suppressed if B 2N−1(−λm) 
= 0; otherwise, the pole subsists in c(ζ ) with the residual given by eq. (E9). For ζ =
−λ, λ > λB , the response cpc is complex. From eq. (E1), it follows that now B 2N (ζ ) = 0 has no solution. Therefore, recalling eqs (1.11) and
(E6),

w(λ) = wpc(λ)�(λ − λB)

|B2N (−λ + i0+)|2 +
∑

n

vnδ(λ − κn), κn < λB, (E11)

where �(·) is again a Heaviside step function. Assuming for σ pc the quite general power law (3.18) when approaching z = zN from below, we
have, referring to eq. (3.13), cpc(ζ ) = O(1/ζ ε) for |ζ | → ∞ and wpc(λ) = O(1/λε) for λ → ∞, 0 < ε < 1. With reference to eqs (E1) and
(A5), the leading term of B 2N for λ → ∞ is ∼ [dN + cpc(−λ + i0)]λN . Therefore in this limit,

dN > 0 : w(λ) = O(λ−2N−ε),

dN = 0 : w(λ) = O(λ−2N+ε).
(E12)

(For the introductory example of Section 3.3 holds N = 1, ε = 1/2, dN = 0 and λB = p.)

If dN > 0, eqs (E10) and (E12) allow the 2N moments sk , k = 0, . . . , 2N − 1, to be calculated and, if dN = 0, the 2N − 1 moments sk ,
k = 0, . . . , 2N − 2, can be obtained. In both cases, the number of moments agrees with the number of thin-sheet parameters. Therefore, the
thin-sheet parameters can be determined from the given moments, which in fact do not depend on σ pc(z) (see the introductory example of
Section 3.3).
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