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S U M M A R Y
Recently, marine controlled source electromagnetics (CSEM) has shown great potential in
hydrocarbon exploration, where the goal is to detect thin resistive layers at depth below the
seafloor. The experiment comprises a horizontal electric dipole transmitter towed over an
array of receivers at the seafloor. The transmitter emits a low-frequency signal (<1 Hz) and
measurements of the electric field are made. The depth of the target layer requires transmitter–
receiver separations of several kilometres. As a function of separation r, the electromagnetic
signal consists of a short-ranging contribution with an exponential decay resulting from the
transmission through ocean and sediment (including the reflection at all interfaces) and a long-
ranging contribution with a dominant 1/r3-decay associated with the airwave guided at the
air–ocean interface. Of particular interest among the exponentially decaying waves is the wave
guided in the resistive target layer with a well-defined long decay length. In a shallow sea, this
‘resistive-layer mode’ is partly masked by the airwave.

The topics of this study are the airwave and the resistive-layer mode. For a general 1-D
conductivity distribution we derive the simple expression of the leading term of the airwave
for arbitrary transmitter and receiver position and define a ‘pure’ complete airwave, which
for all separations is close to the asymptotic expansion of the airwave in powers of 1/r.
Whereas the treatment of the airwave can be done in terms of Bessel function integrals with
real wavenumbers, the resistive-layer mode requires the complex wavenumber plane, where it
is defined as the residual at the TM-mode pole with the smallest imaginary part. For sufficiently
high integrated resistivity of the layer, we give a simple method to determine the position of
this pole. In the complex wavenumber plane, the pure complete airwave is presented by a
branch-cut integral. For a typical model, this study concludes with the remarkable result that
the superposition of airwave and resistive-layer mode provides an excellent description of the
electric field over a wide range of separations.

Key words: electrical conductivity, electromagnetic induction, guided waves, layered media,
oceans, wave propagation.

1 I N T RO D U C T I O N

The recent success of marine controlled source electromagnetics (CSEM) in off-shore hydrocarbon exploration (Eidsmo et al. 2002; Ellingsrud
et al. 2002) has renewed the interest in this method, which has been used since the 1980s for studies of the oceanic lithosphere (e.g. Cox 1980;
Chave et al. 1991). In the marine CSEM exploration method, an electric dipole with a transient or low-frequency continuous wave excitation
is towed over an array of seafloor receivers that measure the electric and/or magnetic field (e.g. Edwards 2005). The targets are typically thin
sedimentary layers that are resistive because they are saturated with hydrocarbons. In view of the variety of different experimental setups, the
data type considered in this study is restricted by focusing on continuous wave excitation (with a typical frequency of 0.5 Hz) and on electric
fields.

Using continuous wave excitation, the target depths of up to 1000 m below the seafloor require transmitter–receiver separations of
several kilometres. The electromagnetic skin effect in the sea and seafloor sediments dominates at short separations and leads, both for the
direct signal and the signal reflected at interfaces, to an exponential decay with a horizontal decay length of approximately 630 m (combined
effect of sea and seafloor sediments at 0.5 Hz). For greater separations, the measured signal is influenced by the insulating air half-space
and, if present, also by the resistive target layer. In the insulating air, with its infinite depth of penetration and vertical extent, the horizontal
decay of the signal is purely geometrical and all electromagnetic field components (except the vertical electric field) decay as 1/r3, where
r is the horizontal separation between source and receiver. By the continuity of the tangential electromagnetic field across the air–ocean
interface, this asymptotic 1/r3-behaviour is imparted onto the electromagnetic field inside the earth, which then shows the same asymptotic
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Figure 1. Time-harmonic horizontal electric dipole in x-direction at x 0 = y0 = 0 and z0 = 1000 m with f = 0.5 Hz. The conductivity model shown (the
‘standard model’) and the frequency will be used throughout in this study. The time-averaged energy flow is displayed in the (x, z)-plane at y = 0 by means of
the Poynting vector S. The arrows show only the direction of S, the strength |S| with its great dynamic range is presented by the size of the black circles, such
that an increase of the diameter by a factor of 2 corresponds to an increase of |S| by a factor of 1000. The discontinuity of Ez at z = 0 introduces a discontinuity
in Sx . Therefore, the arrows for z = 0− are drawn for clarity with a vertical displacement.

behaviour. This contribution is called the ‘airwave’ (e.g. Constable & Weiss 2006). Also, the resistive layer gives rise to a long-ranging far-field
contribution. Its small positive conductivity leads to an exponential far-field decay with a well-defined decay length, mainly determined by the
local penetration depth, but decreased by non-linear interaction with adjacent conductors. For the standard conductivity model considered in
this study (see Figs 1 and 2), the decay length is on the order of 1700 m. This resistive layer contribution to the far-field is the ‘resistive-layer
mode’. Mathematically, it is the residual of a particular pole in the complex wavenumber domain.

This study shows that electromagnetic seafloor data contain, in addition to short-ranging contributions controlled by the local penetration
depth, long-ranging contributions resulting from remote resistive structures such as the insulating air half-space and the resistive layer. These
contributions are ‘guided waves’, where the air–ocean interface and the resistive layer serve as ‘wave guides’. Although from the same physical
origin, the following discussion reveals that the two guided waves are actually quite different.

A useful concept of controlled source electromagnetic induction in a layered earth is the decomposition of the electromagnetic field
into a TE-mode (= tangential electric, i.e. vertical electric field missing) and a TM-mode (= tangential magnetic, i.e. vertical magnetic field
missing). These modes propagate without coupling through a layered structure, and are coupled only through the source, which generally
excites both modes. In the TE-mode, electromagnetic coupling between adjacent layers is inductive. Therefore, a very thin resistive (or even
insulating) layer has virtually no influence on the progation of this mode. In the TM-mode, adjacent layers are coupled galvanically. Thus a
very thin resistive layer acts as an efficient barrier shielding deeper conductors from the TM-mode. Thus the resistive-layer mode with its
well-defined exponential decay length is a pure TM-mode phenomenon.

Whereas the TE-mode bridges an insulating layer of finite thickness by inductive coupling to a conducting half-space in the direction of
propagation, the infinite insulating air half-space cannot be bridged. Due to the continuity of the tangential electromagnetic field across the
interfaces, the geometrical 1/r3-decay is imparted onto the field inside the earth. The TM-mode inside the conductor decays exponentially and,
therefore, plays no role in the formation of the airwave. The airwave is a pure TE-mode phenomenon. Therefore, it is present also in controlled
source setups requiring only the TE-mode, for example in vertical magnetic dipole sources or horizontal line currents. (For the latter, the
decay is only ∼1/r2.) Particularly in subsurface to subsurface communication, the airwave is also called a ‘lateral wave’ (e.g. Bannister 1984;
King et al. 1992).
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Figure 2. The same model as in Fig. 1. Now the Poynting vector S is displayed in the (y, z)-plane at x = 0.

Finally, we attempt to visualize the energy flow in marine CSEM using a low-frequency horizontal electric dipole (HED) source. Since in
the frequency domain the electromagnetic field is governed by a Helmholtz equation (elliptic) rather than by a diffusion equation (parabolic)
or a wave equation (hyperbolic), we cannot visualize the energy flow by rays. See also the discussion by Løseth et al. (2006). Instead we use
a presentation in terms of the time-averaged real Poynting vector (e.g. Stratton 1941, p. 137 or Jackson 1975, p. 241)

S := 1

2µ0
Re(E × B∗), (1)

where E and B are the complex electric and magnetic field vectors and ∗ denotes the complex conjugate. Only the integral of the normal
component of S over a closed surface has a definite physical meaning as energy dissipated per unit time in the enclosed volume. The local
interpretation of S as energy flow density at a point is not without problems (Jones 1964, p. 52), since one has the freedom to add a non-divergent
vector to S. With this caveat in mind, the display of S will at least provide some idea about the energy flow.

For an embedded HED in x-direction at x 0 = y0 = 0 the vector S is presented on two orthogonal cross-sections through the dipole. Fig. 1
shows S in the (x, z)-plane at y = 0 with the components

Sx = − 1

2µ0
Re

(
Ez B∗

y

)
, Sz = + 1

2µ0
Re

(
Ex B∗

y

)
, (2)

whereas Fig. 2 displays S in the (y, z)-plane at x = 0 with the components

Sy = − 1

2µ0
Re

(
Ex B∗

z

)
, Sz = + 1

2µ0
Re

(
Ex B∗

y

)
. (3)

The arrows of unit length show the direction of S, its strength is indicated by the size of the black circles (see the caption to Fig. 1 for details).
In the cross-sections shown, the components Sy and Sz are continuous across layer boundaries, whereas the discontinuity in Ez introduces
a discontinuity in Sx . Most evident is the different expression of the resistive layer. In the (x, z)-plane with its galvanic coupling, the strong
values of Ez produce an enhanced energy flow in x-direction with only little dissipation (Fig. 1). In the (y, z)-plane (Fig. 2), the resistive layer
is bridged by inductive coupling and remains invisible.

The airwave is seen in both cross-sections. It consists of an upward transport of energy by Ex and By and, at greater separations, of a
downward transport by the same components. The horizontal energy transport is organized in the (x, z)-plane by Ez and By and in the in the
(y, z)-plane by Ex and Bz. These observations show that the local interpretation of S as energy flow density leads to results expected from
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physical intuition. A different attempt to visualize the pertinent CSEM fields at low-frequency induction has been undertaken by Um &
Alumbaugh (2007), who present an extensive collection of current density plots.

The paper is organized as follows. As the starting point of this study, Section 2 gives a concise general representation of the electromagnetic
field of a HED embedded in a layered conductor. Section 3 is devoted to the airwave. It includes the derivation of the leading term of the airwave
for a general 1-D conductivity distribution and for general positions of source and receiver. Moreover, we propose different completions of
the airwave, which reproduce all asymptotic terms. Finally, Section 4 generalizes the usual Hankel transform representations of the field
components to contours in the complex wavenumber domain, in which the guided waves can be identified as particular singularities: the
complete airwave as a branch cut and the resistive-layer mode as a pole. Most of the mathematical details are given in the appendices.

2 B A S I C P R E S E N TAT I O N S

In a layered 1-D medium of conductivity σ (z) and vacuum magnetic permeability µ0 the electromagnetic field admits a decomposition into a
TE-mode (subscript e) and a TM-mode (subscript m) as

B = Be + Bm = ∇ × ∇ × (ẑχe) + ∇ × (ẑχm), (4)

E = Ee + Em = −iω∇ × (ẑχe) + 1/(µ0σ )∇ × ∇ × (ẑχm), (5)

(e.g. Chave & Cox 1982). The time factor is e+iωt , ω > 0. Used are cylindrical coordinates (r, ϕ, z) with z positive downwards and the air–ocean
interface at z = 0. Moreover, the horizontal Cartesian coordinates are given by x = r cos ϕ, y = r sin ϕ. A HED with current moment p = px̂
is placed at r = 0, z = z0 ≥ 0. The position of the receiver is given by the vector r = r r̂ + ϕϕ̂ + zẑ. Then the TE-mode potential χ e(r) is

χe(r) = µ0 p

2π

∫ ∞

0

feb(z)/ feb(z0)

ae(z0) + be(z0)
J1(κr ) dκ sin ϕ, z ≥ z0, (6)

χe(r) = µ0 p

2π

∫ ∞

0

fea(z)/ fea(z0)

ae(z0) + be(z0)
J1(κr ) dκ sin ϕ, z ≤ z0 (7)

and the TM-mode potential χ m(r) reads

χm(r) = +µ0 p

2π

∫ ∞

0

am(z0) fmb(z)/ fmb(z0)

am(z0) + bm(z0)
J1(κr ) dκ cos ϕ, z > z0, (8)

χm(r) = −µ0 p

2π

∫ ∞

0

bm(z0) fma(z)/ fma(z0)

am(z0) + bm(z0)
J1(κr ) dκ cos ϕ, z < z0. (9)

For ease of notation, the additional dependence of ae,m, be,m, fea,b and fma,b on κ has been suppressed. The TE-mode functions fe(z) := fea(z)
and fe(z) := feb(z) are solutions of the ordinary differential equation

f ′′
e (z) = α2(z) fe(z), α2(z) := κ2 + iωµ0σ (z), (10)

vanishing, respectively, for z → −∞ (upward propagation) and for z → +∞ (downward propagation). At conductivity discontinuities fe and
f ′

e are continuous. From fea(z) and feb(z) we derive the (continuous) transfer functions

ae(z) := + f ′
ea(z)/ fea(z) and be(z) := − f ′

eb(z)/ feb(z). (11)

Physically, iωµ0/ae and iωµ0/be are the TE-mode spectral impedances of the upgoing and downgoing wave. Similarly, the TM-mode functions
fm(z) := fma(z) and fm(z) := fmb(z) are solutions of the ordinary differential equation

σ (z)[ f ′
m(z)/σ (z)]′ = α2(z) fm(z), (12)

vanishing, respectively, for z → −∞ and for z → +∞. At conductivity discontinuities fm and f ′
m/σ are continuous. From fma(z) and fmb(z)

the (continuous) transfer functions are

am(z) := + f ′
ma(z)/[σ (z) fma(z)] and bm(z) := − f ′

mb(z)/[σ (z) fmb(z)], (13)

where am and bm are the TM-mode spectral impedances. For real wavenumber κ , the transfer functions ae,m and be,m are in the first quadrant
of the complex plane, see eqs (73)–(76) in Section 4.1.

From eq. (5) the horizontal electric field components are given by

Er = −(iω/r )∂ϕχe + 1/(µ0σ )∂2
r zχm, Eϕ = iω∂rχe + 1/(rµ0σ )∂2

ϕzχm (14)

or explicitly

Er (r) = − iωµ0 p

2π

∫ ∞

0
[Qe(z | z0, κ) (1/r ) + Qm(z | z0, κ) ∂r ]J1(κr ) dκ cos ϕ, (15)

Eϕ(r) = + iωµ0 p

2π

∫ ∞

0
[Qe(z | z0, κ) ∂r + Qm(z | z0, κ) (1/r )]J1(κr ) dκ sin ϕ (16)

with (suppressing again the argument κ)

Qe(z | z0) := feb(z)/ feb(z0)

ae(z0) + be(z0)
, z ≥ z0, (17)
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Qm(z | z0) := 1

iωµ0

am(z0) bm(z)

am(z0) + bm(z0)

fmb(z)

fmb(z0)
, z ≥ z0. (18)

For z < z0 retain all arguments, but replace feb by fea in eq. (17) and fmb by fma in eq. (18). Moreover, interchange am and bm in the numerator
of eq. (18).

Qe and Qm are continuous with respect to z and z0 and satisfy the reciprocity relations

Qe(z | z0) = Qe(z0 | z), Qm(z | z0) = Qm(z0 | z). (19)

These relations are easily proved by inserting eqs (11) and (13) into eqs (17) and (18) and exploiting the fact that the Wronskians

We(z) := feb(z) f ′
ea(z) − fea(z) f ′

eb(z), (20)

and

Wm(z) := [ fmb(z) f ′
ma(z) − fma(z) f ′

mb(z)]/σ (z), (21)

do not depend on z. This property of the Wronskians, which is used extensively in the present study, is verified by showing that the differential
eqs (10) and (12) imply W ′

e,m(z) = 0.

3 T H E A I RWAV E

3.1 The leading term in the electric field

In marine CSEM two propagation paths are important. First, there is the transmission through oceans and sediments and the reflection at
interfaces (including the air–ocean interface), both of which are associated with an exponential decay with horizontal separation r. Secondly
there is the airwave guided at the air–ocean interface, which decays at long distances only ∼1/r 3 and, therefore, is the dominating signal in
the far-field. An example for the occurrence of the airwave is shown and explained in Fig. 3. It is related to the ‘standard model’ of Fig. 1.

This leading term of the airwave with its radial 1/r3-decay is easily expressed in terms of the conductivity structure and the position of
source and receiver. Assume in z < 0 an insulating air half-space and in z > 0 the earth/sea with a 1-D conductivity distribution σ (z) bounded
from below by σ min, that is, σ (z) ≥ σ min > 0. Then for arbitrary transmitter depth z0 ≥ 0 and arbitrary receiver depth z ≥ 0, the leading term

Figure 3. Radial component Er of the electric field, normalized with the current moment p of the electric dipole for various water depths d1. Transmitter and
receiver in in-line configuration are placed at the ocean bottom, z = z0 = d 1. The conductivity below the ocean follows the model of Fig. 1. The frequency is
f = 0.5 Hz. In this log–log plot, the leading term of the airwave with its decay ∼ 1/r3 is seen in the linear sections of the far-field. At shallow depth (d 1 = 100
and 400 m) the airwave masks the signal of the resistive layer, which manifests itself for d 1 = 700 m in the curved section between r ≈ 3 and 10 km.
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of the airwave (identified by the subscript 0) admits the representation

E air
0r (r) = iωµ0 p cos ϕ

2πr 3

e(z) e(z0)

[e′(0)]2 , (22)

E air
0ϕ (r) = iωµ0 p sin ϕ

πr 3

e(z) e(z0)

[e′(0)]2 , (23)

where e(z) is the downward propagating solution of eq. (10) in the limit κ = 0, that is, of

e′′(z) = iωµ0σ (z) e(z). (24)

Physically, e(z) is the electric field in 1-D magnetotellurics. Because 1-D magnetotellurics is insensitive to thin poor conductors, the resistive
target layer is barely seen in the airwave. The reciprocity (19) is reflected in the symmetry of the airwave with respect to z and z0.

The formally simplest airwave arises in a uniform half-space of conductivity σ . Then e(z) ∼ e−kz, k2 := iωµ0σ and

E air
0r (r) = p e−k(z+z0) cos ϕ

2πσr 3 , E air
0ϕ (r) = p e−k(z+z0) sin ϕ

πσr 3 . (25)

The amplitude decreases exponentially with increasing depth of transmitter and/or receiver. The result (25) has been given by different authors,
for example, by Wait (1961, p. 1026), Bannister (1984, Table 1) and Constable & Weiss (2006, p. G46).

Here we sketch only the major steps leading to the general formulas (22) and (23); details are given in Appendix A. According to
eqs (15) and (16) the electric field components Er and Eϕ can be expressed in terms of the Hankel transform

g1(r ) :=
∫ ∞

0
f (κ) J1(κr ) dr (26)

and its derivative g′
1(r ). Assuming that a Taylor expansion of f (κ) at κ = 0 exists,

f (κ) =
∞∑

n=0

κn

n!
f (n)(0), (27)

we obtain for r → ∞ the asymptotic formula (Tranter 1966, p. 67)

g1(r ) = f (0)

r
+

∞∑
m=0

(−1/2

m

)
f (2m+1)(0)

r 2m+2
. (28)

The Taylor expansion of f (κ) at κ = 0 leads for g1(r) to an expansion in terms of powers of 1/r. If it happens that f (0) and all odd derivatives
f (2m+1) (0) are vanishing, the transform g1(r) decays for r → ∞ faster than any power of 1/r, it decays exponentially. Physically, the exponential
decay will describe the transmission through oceans and sediments (including the reflection at all interfaces), whereas the slower decay in
powers of 1/r is associated with the airwave guided at the air–ocean interface.

First it is proved in Appendix A1 that

Qe(z | z0, 0) = Qm(z | z0, 0). (29)

As a consequence, a term ∼1/r2, which is present in the separate asymptotic expansion of the TE- and TM-mode part of Er and Eϕ , will
vanish when the total field is considered.

Secondly it is shown in Appendix A2 that, for κ �= 0,

Qe(z | z0, −κ) �= Qe(z | z0, +κ), Qm(z | z0, −κ) = Qm(z | z0, +κ). (30)

Since Qm is an even function of κ , all odd derivatives at κ = 0 vanish. Therefore, the TM-mode part of the electric field decays exponentially
with separation r and the leading term results only from the TE-mode, as expected. The presentations (15) and (16) in conjunction with the
results (28)–(30) yield as leading term

E air
0r (r) = − iωµ0 p cos ϕ

2πr 3 ∂κ Qe(z | z0, κ)|κ=0, (31)

E air
0ϕ (r) = − iωµ0 p sin ϕ

πr 3 ∂κ Qe(z | z0, κ)|κ=0. (32)

The evaluation of ∂ κ Qe(z|z0, κ)|κ=0 in Appendix A3 then leads to eqs (22) and (23).
Fig. 4 shows the data from Fig. 3 after removing the leading term (22). It is emphasized that this efficient removal was possible only

because σ (z) was assumed to be known. At great separations r, well below the error floor of the signals, the curves split indicating that the
second term in the asymptotic expansion of the airwave, decaying ∼1/r5, becomes relevant. For details see the caption to Fig. 4.

After treating the leading term of the tangential electric field, we briefly consider the asymptotic behaviour of the vertical component
Ez(r). Taking, for instance, z > z0 > 0 and using eqs (5) and (8), this component is given by (see also Appendix A4)

Ez(r) = p

2πσ (z)

∫ ∞

0

κ2am(z0) fmb(z)/ fmb(z0)

am(z0) + bm(z0)
J1(κr ) dκ cos ϕ. (33)

Since Ez is a pure TM-mode field, it does not show the airwave effect. Mathematically, it follows from Appendix A2 that the kernel is an even
function of κ and, therefore, inside the earth, Ez vanishes exponentially for r → ∞. For the standard model with a shallow sea (d 1 = 100 m),
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Figure 4. Subtraction of the leading airwave term (22) from the data shown in Fig. 3. The resistive-layer signal now becomes visible for all water depths d1.
The subtraction removes only the far-field with its 1/r3-decay. The reflections at the air–ocean interface with an exponential decay, occurring at intermediate
separations, are not eliminated. The linear sections, occurring for separations greater than 20 km, have a decay ∼1/r5 and represent the second asymptotic term
of the airwave, which is neglected in eq. (22). Even with an optimistic error floor of 10−16 (V/m)/(Am) (Constable & Weiss 2006), this second term will not
be seen in the data.

the component Ez is shown in the lower part of Fig. 5 by the solid line. The response for a modified model, in which the conductivity of
the target layer (0.01 S m−1) is replaced by the background conductivity (1 S m−1), is displayed by the dotted line. The straightline portions
of these graphs indicate the asymptotic exponential decay. The different decay lengths (1750 m in the first model and 700 m in the second)
clearly discriminate between these models, if E z could be measured with the required accuracy. Unfortunately, this is not yet the case. The
two graphs in the upper part of Fig. 5 show the corresponding radial component Er. This component is dominated by the airwave, which is
insensitive to the resistive layer.

The discontinuous component Ez, with Ez ≡ 0 at the sea-side z = 0+ of the air–ocean interface, is strongly guided at the atmospheric
side z = 0−, where it decays for r → ∞ only ∼1/r2,

Ez(r, ϕ, 0−) ≈ iωµ0 p cos ϕ

2πr 2

e(z0)

e′(0)
. (34)

Again e(z) is a downward propagating solution of eq. (24). The derivation of this result is briefly sketched in Appendix A4.

3.2 The leading airwave term in the magnetic field

The airwave is also present in the TE-mode part of the magnetic field. This warrants a brief look into the leading term of the field components.
According to eq. (5) we have Eair

0 = −iω∇ × (ẑχe). Comparison with eqs (22) and (23) yields

χe(r) = −µ0 p sin ϕ

2πr 2

e(z) e(z0)

[e′(0)]2 . (35)

From eq. (4) it follows that the leading term of the magnetic field is

Bair
0 = ∇ × ∇ × (ẑχe) = −ẑ∇2

hχe + ∇h(∂zχe), (36)

where ∇ h is the horizontal projection of ∇, or in components

Bair
0r (r) = +µ0 p sin ϕ

πr 3

e′(z) e(z0)

[e′(0)]2 , (37)

Bair
0ϕ (r) = −µ0 p cos ϕ

2πr 3

e′(z) e(z0)

[e′(0)]2 , (38)
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Figure 5. Standard conductivity model of Fig. 1 with d1 = 100 m, z = z0 = 100− m (i.e. immediately above sea-bottom) and f = 0.5 Hz: shown is Er and
Ez for the standard model (solid lines) and for a modified model, in which the target layer has the conductivity of the background (dotted). Component Ez is
not affected by the airwave and, therefore, decays exponentially (straight portions of the two lower graphs).

Bair
0z (r) = +3µ0 p sin ϕ

2πr 4

e(z) e(z0)

[e′(0)]2 . (39)

3.3 The complete airwave

3.3.1 General formulae

The airwave (22) and (23) with its 1/r3-decay is only the leading term in an asymptotic expansion in powers of 1/r. The asymptotic expansion
(28) and Fig. 4 show that contributions of order 1/r5 have been neglected. Now a more complete (but less useful) representation of the airwave
is considered. Since the TM-mode electric field is confined to the conducting earth and is not linked to the air half-space, the airwave, guided
at the air–earth interface, is a TE-mode phenomenon. Therefore, according to eq. (14), the horizontal components are interrelated by

E air
r (r) = (1/r ) f (z | z0, r ) cos ϕ, E air

ϕ (r) = −∂r f (z | z0, r ) sin ϕ. (40)

For this reason the discussion is confined to the radial component Eair
r (r). If required, Eair

ϕ (r) is then obtained via eq. (40). Since the contributions
from Qm(z|z0, κ) and from the even part of Qe(z|z0, κ) decay for r → ∞ faster than any power of 1/r, the far-field of Er is dominated by
the odd part of Qe, which leads to a decay in powers of 1/r. From eqs (15) and (28) the asymptotic expansion of the complete airwave is

E air
r (r) = − iωµ0 p cos ϕ

2π

∞∑
m=0

(−1/2

m

)
Q(2m+1)

e (z | z0, 0)

r 2m+3
. (41)

There are different functions, defined in r > 0, which lead to this asymptotic expansion. They differ by terms which decay faster than any
power of 1/r and, therefore, remain invisible in the expansion (41). Defining the odd part of Qe as

Qodd
e (z | z0, κ) := [Qe(z | z0, κ) − Qe(z | z0, −κ)]/2, (42)

two possible completions of the series (41) in the range r > 0 are

E1r (r) := − iωµ0 p cos ϕ

2πr

∫ ∞

0
Qodd

e (z | z0, κ)J1(κr ) dκ (43)

and

E2r (r) := −ωµ0 p cos ϕ

π2r

∫ ∞

0
Qodd

e (z | z0, i t)K1(tr ) dt, (44)
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Figure 6. Subtraction of the complete airwave E2r defined in eq. (44). In the far-field, the remainder shows to a high approximation an exponential decay with
amplitude and decay length slightly depending on d1. It represents the resistive-layer mode, discussed in detail in Section 4.3. See also the dotted line in Fig. 13.

where K 1(·) is the modified Bessel function of second kind and order one. The assertion immediately follows from the Taylor expansion

Qodd
e (z | z0, κ) =

∞∑
m=0

Q(2m+1)
e (z | z0, 0)

κ2m+1

(2m + 1)!
(45)

and the two integrals (Gradshteyn & Ryzhik 1980, formulae 6.561.14 and 6.561.16)

lim
ε→0+

∫ ∞

0

e−εκκ2m+1

(2m + 1)!
J1(κr ) dκ = 2

iπ

∫ ∞

0

(i t)2m+1

(2m + 1)!
K1(tr ) dt =

(−1/2

m

)
1

r 2m+2
. (46)

The justification of eq. (44), based on properties of Qe(z|z0, κ) in the complex κ-domain, is postponed to Section 4.2. For r → 0, completion
E1r is O(1) and E2r is O(1/r 2). Although eq. (43) is the more obvious completion, eq. (44) will turn out to be the more natural one.

If the airwave is strictly understood as the wave guided at the air–ocean interface, then only the unique asymptotic expansion (41) in
powers of 1/r is available. In a wider sense, however, the airwave is sometimes defined as the difference between the observed electromagnetic
signal for finite water depth d1 and the signal for infinite water depth, d 1 = ∞,

E3r (r) := Er (r, d1) − Er (r, ∞). (47)

The airwave in this definition also includes the reflections at the air–ocean interface, which show an exponential decay with separation r.
Moreover, E3r contains contributions from the TM-mode and, therefore, is no longer a pure TE-mode. Completion E2r(r), in which all reflections
are filtered out, is the purest airwave, the mixed completion E1r(r) takes in addition some reflections into account, and all reflections are
considered in E3r(r). The three significantly different definitions of the airwave show an identical far-field behaviour. However, it also turns
out that in the intermediate r-range they differ only slightly.

Fig. 6 shows the data of Fig. 3 after subtracting the complete airwave (44). The remainder is essentially an exponentially decaying wave
representing the response from the resistive layer.

3.3.2 Example: uniform half-space

As the simplest example consider a uniform half-space of conductivity σ . With k2 := iωµ0σ and α2 := κ2 + k2, the kernel Qe and its
decomposition into even and odd part gives

Qe(z | z0, κ) = 1

2α

[
e−α|z−z0| + α − κ

α + κ
e−α(z+z0)

]
, (48)
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Qeven
e (z | z0, κ) = 1

2α

[
e−α|z−z0| + α2 + κ2

k2
e−α(z+z0)

]
, (49)

Qodd
e (z | z0, κ) = − κ

k2
e−α(z+z0). (50)

The two alternative representations of the airwave derived from eqs (43) and (44) are

E1r (r) = p cos ϕ

2πσr

∫ ∞

0
κ e−α(z+z0) J1(κr ) dκ (51)

and

E2r (r) = p cos ϕ

π 2σr

∫ ∞

0
t e−β(z+z0) K1(tr ) dt, β2 := k2 − t2, (52)

or in closed form (Gradshteyn & Ryzhik 1980, formulae 6.637.1 and 6.637.3)

E1r (r) = p cos ϕ

2πσr
∂2

r z[I0(w−)K0(w+)] (53)

and

E2r (r) = p cos ϕ

2π 2iσr
∂2

r z

[
K0(e−π iw−)K0(w+)

]
, (54)

where I 0(·) and K 0(·) are modified zero-order Bessel functions of the first and second kind and

w± := (k/2)[R+ ± (z + z0)] with R2
+ := r 2 + (z + z0)2. (55)

The notation e−π iw− ensures the correct selection of the Riemannian sheet of K 0(w), which has a (logarithmic) branch cut along the negative
real axis. Since arg(w−) = π/4, the phase of e−π iw− is −3π/4, which lies in the same sheet as w−, whereas e+π iw− would lie in a different
sheet.

From the identity

π i I0(w) = K0(e−π iw) − K0(w) (56)

(Abramowitz & Stegun 1972, formula 9.6.31) it follows that

E1r (r) − E2r (r) = − p cos ϕ

2π 2iσr
∂2

r z[K0(w−)K0(w+)]. (57)

Explicit expressions of eqs (53), (54) and (57) are given in Appendix B1.
The leading terms of the asymptotic expansions of the modified Bessel functions (Abramowitz & Stegun 1972, formulae 9.7.1 and 9.7.2)

I0(w) = ew/
√

2πw [1 + O(1/w)], K0(w) = e−w
√

π/(2w) [1 + O(1/w)] (58)

reveal that

I0(w−)K0(w+) ≈ K0

(
e−π iw−

)
K0(w+)/(π i) ≈ e−k(z+z0)/(kr ), (59)

K0(w−)K0(w+)/(π i) ≈ e−k R+/(ikr ). (60)

From eq. (60) the difference (57) between the two completions E1r(r) and E2r(r) becomes exponentially small for r → ∞. Moreover, eq. (59)
in conjunction with eqs (53) and (54) shows that in this limit both completions tend to the leading term (25) of the airwave. The subsequent
terms, derived with eq. (50) from eq. (41), give

E air
r (r) = p e−k(z+z0) cos ϕ

2πσr 3

[
1 + 3ζ

2�2 + 45ζ (1 + ζ )

8�4 + O
(

1

�6

)]
, (61)

where � := kr and ζ := k(z + z0). For the uniform half-space, the different definitions E1r, E2r and E3r of the complete airwave are compared
in Fig. 7. Since it turns out that the three completions give very similar results, for clarity only differences are shown.

The even parts of the integral kernels produce contributions with a fast exponential r-decay: The TM-mode kernel

Qm(z | z0, κ) = α

2k2

[
e−α|z−z0| + e−α(z+z0)

]
(62)

and the even part eq. (49) of Qe(z|z0, κ) give rise to contributions with dominating terms e−k R− and e−k R+ , where R2
± := r2 + (z ± z0)2. The

two exponentials describe, respectively, the direct wave and the wave reflected at z = 0.

4 G U I D E D WAV E S I N T H E C O M P L E X WAV E N U M B E R P L A N E

4.1 Analytical properties of the integral kernels

The guided waves considered in this study are best described by generalizing the real wavenumber κ to complex values and investigating the
singularities of the integral kernels in the complex wavenumber domain. Then the airwave can be identified with a branch cut integral along
the positive imaginary axis and the resistive-layer mode, introduced in Section 1, is the contribution from a pole close to the origin κ = 0.
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Figure 7. Complete airwave: comparison of different completions for a uniform half-space. The airwaves E1r, E2r and E3r, defined, respectively, in eqs (43),
(44) and (47), have an identical far-field behaviour, but are influenced differently by shortranging reflections at the air–ocean interface. E3r, the difference of Er

to an ocean of infinite depth, contains all reflections, the ‘mixed’ airwave E1r is only partly influenced by reflections, and the ‘pure’ airwave E2r is not influenced
at all. This is illustrated by the two lower graphs showing that E3r is closer to E1r than to E2r. The two upper graphs, raised for clarity by two decades, illustrate
that Eair

r , represented in eq. (61) by the first three asymptotic terms, is closer to the pure airwave E2r than to E1r with its contributions from surface reflections.
In fact, |E 2r − Eair

r | equals almost exactly the first neglected term ∼1/r9 of eq. (61).

Conventionally, the electric field components in marine CSEM are presented in terms of Hankel transforms as in eqs (15) and (16). This
is a superposition of oscillating fields with real wavenumber κ , where the decay for r → ∞ is achieved by destructive interference. For the
airwave considered so far, this presentation was sufficient. However, for a deeper understanding and in particular for the wave guided in a
resistive layer, an extension of the real wavenumber description to complex wavenumbers is useful. The fundamentals of this description,
mostly restricted to TE-mode sources (vertical magnetic dipoles), are given by Kaufman & Keller (1983, pp. 432–445) and Goldman (1990,
chapter 2). In the complex κ-plane, the r-dependence of the fields is presented by a superposition of damped oscillations, originating from
the singularities (poles and branch cuts) of the integral kernels Qe(z|z0, κ) and Qm(z|z0, κ). This warrants a closer look into the analytical
properties of these kernels.

For real wavenumbers κ , the kernel Qe(z|z0, κ) has an even and odd part. The odd part comes from integrating the Riccati equation (A8)
with the initial value ae(0, κ) = κ ≥ 0. In the extension to complex wavenumbers, this assignment is changed: We assume an air half-space
with a small conductivity σ0 and define k2

0 := iωµ0σ 0, α2
0 := κ2 + k2

0. Then fea(z) ∼ exp(α0 z), z ≤ 0, yields in the limit σ 0 → 0

ae(0, κ) = lim
σ0→0

α0 =
√

κ2 =
{

+κ for Re(κ) > 0,

−κ for Re(κ) < 0.
(63)

This new definition of the initial value satisfies the symmetry ae(0, −κ) = ae(0, κ). Therefore, the integration of eq. (A8) gives a transfer
function ae(z, κ), which is symmetric in κ . As a consequence, Qe(z|z0, κ) now is a symmetric function in the complex plane. Mathematically
this has become possible by introducing via eq. (63) two branch cuts along the positive and negative imaginary axes, where the imaginary
part of

√
κ2 is discontinuous. These branch cuts of α0 lead from κ = +ik0 to κ = +i∞ and from κ = −ik 0 to κ = −i∞.

Due to the point-symmetry Qe,m(z|z0, −κ) = Qe,m(z|z0, κ), a singularity in the upper κ-halfplane has its correspondence in the lower
halfplane. Without loss of generality we, therefore, confine our attention to the upper κ-halfplane. The basic integral representations (15)
and (16) involve both J 1(x) and J ′

1(x). For the asymptotic approach in Section 3.1, the asymptotic expansion of J ′
1(x) was accessible by

differentiating the simple asymptotic series (28). For general argument x, the exact formula J ′
1(x) = J 0(x) − J 1(x)/x is used. Therefore,

J 0(x) is now also included and eq. (26) is extended to

gn(r ) :=
∫ ∞

0
f (κ) Jn(κr ) dr, n = 0, 1. (64)
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By general relations (Abramowitz & Stegun 1972, formulae 9.1.3, 9.1.4 and 9.1.39) the Bessel functions J n(·) in eq. (64) are replaced by the
Hankel functions H (1)

n (·) of the first kind,

Jn(z) = 1

2

[
H (1)

n (z) − enπ i H (1)
n (zeπ i )

]
. (65)

H (1)
n (z) is an analytic function of z throughout the z-plane cut along the negative axis and shows for |z| → ∞ the asymptotic behaviour

(Abramowitz & Stegun 1972, formula 9.2.3)

H (1)
n (z) ≈

√
2/(π z) exp [+i(z − nπ/2 − π/4)], −π < arg z < 2π. (66)

In particular, H (1)
n (z) vanishes for z → ∞ in the upper z-halfplane. The argument zeπ i in the last term of eq. (65) implies that for z > 0 a point

immediately above the cut along the negative axis is taken. The occurrence of H (1)
n (·) rather than H (2)

n (·) reflects the decision to use the upper
κ-halfplane.

Now the one-sided infinite Bessel function integrals gn(r) in eq. (64) are transformed with eq. (65) into a two-sided infinite integral,
using for κ < 0 the change of variable κ → −κ ,

g0(r ) = 1

2

∫ ∞

−∞
f (κ) H (1)

0 (κr ) dκ, (67)

where f (κ) has been completed by f (−κ) = − f (κ). Since H (1)
1 (z) ≈ 2/(iπ z) for z → 0, the pole at κ = 0 requires a slight modification,

g1(r ) = 1

2

∫ +∞

−∞
− f (κ) H (1)

1 (κr ) dκ = f (0)

r
+ 1

2

∫ +∞

−∞
∩ f (κ) H (1)

1 (κr ) dκ. (68)

In the first integral, the Cauchy principal value is taken and the second integral requires a small indentation of the contour above the pole.
Used was the even completion f (−κ) = f (κ).

The analyticity of H (1)
n (κ r ) in the upper κ-plane with its exponential decay at infinity and the ‘good behaviour’ of the integral kernels for

|κ| → ∞ (see for instance, eqs 48 and 62) will allow the (indented) real-axis contour to deform into a contour around selected singularities
of f (κ), which will be identified with the guided waves.

The construction of the transfer functions ae,m(z, κ) and be,m(z, κ) in Appendix A2 via the integration of the corresponding Riccati
equations shows that these transfer functions inherit their branch cuts from the initial values. Recalling that σt is the uniform terminating
conductivity at (great) depth, be(z, κ) and bm(z, κ) have a branch cut from κ = +ik t to κ = +i∞, k2

t := iωµ0σt , inherited from be(z t , κ) =
α t (κ) and bm(z t , κ) = α t (κ)/σ t . The branch cut of ae(z, κ) along the positive imaginary axis results from eq. (63), whereas am(z, κ) is free
of branch cuts; it is a meromorphic function. With these results it is seen, via eq. (Am) from eqs (17) and (18), that the branch lines of
Qe(z|z0, κ) are those of α0(κ) and α t(κ), whereas only the branch line of the latter is present in Qm(z|z0, κ).

Now we turn to the poles of the integral kernels. The position of the poles is an intrinsic feature of conductivity structure and frequency,
independent of the position of source and/or receiver. Let

De(z, κ) := ae(z, κ) + be(z, κ) and (69)

Dm(z, κ) := am(z, κ) + bm(z, κ) (70)

be the denominators of the integral kernels (17) and (18). Suppressing the subscripts e, m specifying the mode for ease of notation, and
recalling the definitions (20) and (21), the Wronskian

fa(z, κ) fb(z, κ)D(z, κ) = W (z, κ) =: D(κ) (71)

is independent of z and the pole positions are the zeroes of D(κ). Let D(κ0) = 0. Because of W (z, κ 0) = 0, the linear independence of fa

and fb breaks down at κ = κ 0 and fa(z, κ 0) becomes a multiple of f b(z, κ 0), that is, fa(z, κ 0) = γ fb(z, κ 0), γ �= 0. Since these functions are
specified only up to a constant factor, γ = 1 can be taken without loss of generality. Therefore,

fa(z, κ0) = fb(z, κ0) =: f0(z). (72)

The function f0(z), defined for the TE-mode in the range −∞ < z < +∞ and for the TM-mode in the range 0 < z < ∞, vanishes
at both ends of the interval and is a square-integrable eigensolution of eq. (10) (TE-mode) or eq. (12) (TM-mode). The eigenvalue is
κ = κ0. The quantities κ0 and f0(z) define a bound state or discrete mode. The properties of these modes are described in detail by Chew (1995,
chapter 6). A particular bound state, namely the resistive layer mode, is the focus of Section 4.3.

Since f0(z) does not vanish identically in z, a value of z with f0(z) �= 0 can be found. Then a zero κ = κ 0 of D(κ) is also a zero of
D(z, κ). The region of possible zeroes of D(z, κ) in the κ-plane is identified in the following way. After multiplying the differential eqs (10)
and (12) by their complex conjugate solutions, integrating by parts, and using the definitions (11) and (13), the integral representations are,
recalling the definition of α2 in (10) and retaining only the most important arguments,

ae(z) =
∫ z

−∞
[| f ′

ea |2 + α2| fea |2] dt/| fea(z)|2, (73)

be(z) =
∫ ∞

z
[| f ′

eb|2 + α2| feb|2] dt/| feb(z)|2, (74)
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am(z) =
∫ z

0+
(1/σ )[| f ′

ma |2 + α2| fma |2] dt/| fma(z)|2, (75)

bm(z) =
∫ ∞

z
(1/σ )[| f ′

mb|2 + α2| fmb|2] dt/| fmb(z)|2. (76)

Let the conductivity in z > 0 be bounded by

0 < σmin ≤ σ (z) ≤ σmax < ∞. (77)

With κ =: u + iv it follows from eqs (69) and (70), using eqs (73)–(77) and

α2(z, κ) = u2 − v2 + i[2uv + ωµ0σ (z)], (78)

that

Re(De,m) > 0 for Re(κ2) = u2 − v2 ≥ 0,

Im(De,m) < 0 for Im(κ2) = 2uv ≤ −ωµ0σmax,

Im(Dm) > 0 for Im(κ2) = 2uv ≥ −ωµ0σmin,

Im(De) > 0 for Im(κ2) = 2uv ≥ 0.

(79)

The conditions (79) define regions in the κ-plane, where the real or imaginary part of the denominators De,m has a definite sign. The zeroes
of De,m(z, κ), corresponding to the zeroes of De,m(κ), lie in the complementary part of the plane.

Next, the pole condition D(κ) = 0 is formulated in terms of conditions on the zeroes of transfer functions at z = 0, where these conditions
attain the simplest form. Applying eq. (71) at z = 0 with f ′

ea(0, κ) = √
κ2 fea(0, κ) and fma(0, κ) = 0 for all κ , but fmb(0, κ) = 0 only for

κ = κ 0 (see eq. 72), with the definitions (11), (13), (20) and (21), the result is
√

κ2 + be(0, κ) = 0, 1/bm(0, κ) = 0, (80)

where the square root
√

κ2 is interpreted as in eq. (63). The disadvantage of formulating the pole conditions at z = 0 is that the pole position
associated with a deep structure (as the resistive-layer pole discussed in Section 4.3) is extremely sharp and might escape detection when
scanning the κ-plane. Therefore, use of the local condition D(z, κ) = 0, with a value of z in the depth range of interest, will be preferable.

Fig. 8 diagrams the analytical properties of Qe and Qm in the upper κ-halfplane. (With point symmetry at κ = 0, the same singularities
occur in the lower halfplane.) Also shown are the branch cuts of H (1)

n and the pole κ = 0 of H (1)
1 (see eq. 68). Therefore, the origin κ = 0 is a

very exceptional point. It is a branch point both of Qe and the Hankel functions and in addition it is a pole of H (1)
1 . For conceptional simplicity,

the situation near κ = 0 is disentangled by assigning a small positive conductivity σ 0 to the air, which separates the corresponding branch
points ik0 and 0. The result is the clarified picture shown in Fig. 8. After this explanation, however, all further discussions will be restricted
again to the limit σ 0 → 0+. This is justified, since the pole κ = 0 does not contribute to Er and Eϕ : The residual, which according to (15) and
(16) is ∼ [Qe(κ = 0) − Qm(κ = 0)]/r 2, vanishes in view of (29).

All singularities of Qe and Qm lie in the ‘triangular’ region bounded by Im(κ2) = −ωµ0σ max, Re(κ2) = 0 and Im(κ2) = 0. Two branch
cuts occur: the first from κ = 0 to κ = i∞ associated with the air–half-space and the second from κ = ik t to κ = i∞ associated with the
terminating uniform half-space. There is some freedom in the selection of the branch line connecting the branch points. We have chosen the
branch line along which Re(

√
κ2) = 0 and Re(α t ) = 0, where the latter condition is equivalent to Im(κ2) = −ωµ0σ t . Then Re(

√
κ2) > 0

and Re(α t ) > 0 outside the branch lines. When crossing the respective branch lines, Im(
√

κ2) and Im(α t) change sign, with positive values
attained at the right bank.

The existence and position of poles depend on the conductivity layering, with the most general situation shown in Fig. 8. For instance, in
the degenerate case of a uniform half-space all poles are missing and only the two branch cuts occur. The difference in the nature of TE- and
TM-mode (inductive and galvanic coupling) introduces differences in the distribution of poles associated with these modes. For the TM-mode
a thin resistive layer is a barrier, whereas the TE-mode easily bridges it. As a consequence, TM-mode energy can be trapped between two
resistive layers or between the air–ocean interface and a resistive layer at depth, with the consequence that the energy bounces between the
barriers. This gives rise to an infinite series of TM-mode poles, which can be investigated by means of the ‘standard model’.

The position of poles for this model is shown in Fig. 9. There is only one TE-mode pole, but an infinite number of TM-mode poles, from
which only the first seven are shown. Distinctly separated from the six other poles is the pole associated with the resistive layer of conductivity
σ r = 0.01 S m−1 between z = 2000 and 2100 m (see Fig. 1). This pole is discussed in detail in Section 4.3. The other TM-mode poles, which
form a regular pattern with three pairs of two poles, describe a system of highly damped trapped modes between the air–ocean interface at
z = 0 and the resistive layer at z = 2000 m. Let the sea have the depth d1 and the conductivity σ1 and assign to the ocean sediments between
ocean bottom and resistive layer the thickness d2 and the conductivity σ 2. For the ‘standard model’ with d 1 = d 2 and the total thickness
D := d1 + d2 of the conducting layers, simple approximate expressions exist for the position of the TM-mode poles in the regular pole pattern.
Ordering the poles κ n in ascending order of Im (κ n), we find for pair m, asymptotically valid for m � 1 (see Appendix B2),

κ2
n ≈




−n2π2

D2 − iωµ0
2σ1σ2

σ1 + σ2
, n = 2m − 1,

−n2π2

D2 − iωµ0
σ 2

1 + σ 2
2

σ1 + σ2
, n = 2m.

(81)
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Figure 8. Schematic view of the analytical properties of the Bessel function integral kernel and the Hankel functions H (1)
n (κr ) in the complex κ-domain.

Shown are the relevant lines Im(κ2) = −ωµ0σ , where σ is either one of the bounds σ max or σ min defined in eq. (77) or the conductivity σ t or σ 0 of one of
the bounding half-spaces (terminating half-space or air half-space). Branch cuts (solid lines) are associated only with the latter. The finite endpoints are given

by κ = ik = (−1 + i)
√

ωµ0σ/2. Marked is also the pole κ = 0 of H (1)
1 (κr). For conceptual clarity, a small positive conductivity σ 0 is assigned to the air

half-space. This assumption, however, is dropped in the sequel. The singularities with the smallest imaginary part determine the far-field behaviour: the branch
Im(κ2) = −ωµ0σ 0 = 0 yields the pure airwave and the pole κ r close to ikmin gives the resistive-layer mode. Shown is the most general situation: in specific
models some regions are void of poles and a distinct resistive-layer pole does not exist.

For a uniformly conducting slab with σ 1 = σ 2 := σ , the poles are asymptotically aligned along Im(κ2) = −ωµ0σ and are given by

κ2
n ≈ −(nπ/D)2 − iωµ0σ. (82)

This formula becomes exact for σr → 0, see eq. (B10). A comparison of exact and approximate positions of the first six trapped TM-mode
poles gives Table 1.

The TE-mode pole of the ‘standard model’ represents the combined TE-mode effect of the first and second layer. Together with the
branch lines Re(

√
κ2) = 0 (associated with the air half-space) and Re(α t ) = 0 (associated with the terminating layer), all important TE-mode

constituents are represented by singularities of Qe, whereas the resistive layer with its marginal influence onto the TE-mode, remains invisible.

Table 1. Comparison of exact TM-mode pole positions from Fig. 9
with the approximations obtained from eq. (81) with σ 1 = 3 S m−1,
σ 2 = 1 S m−1, D = 2000 m and ω = 3.142 s−1.

1000 × κ n (m−1)

n Exact Approximate

1 −1.193 + i2.209 −1.405 + i2.107
2 −1.544 + i3.407 −1.430 + i3.452
3 −0.601 + i4.781 −0.623 + i4.753
4 −0.789 + i6.318 −0.780 + i6.331
5 −0.371 + i7.874 −0.377 + i7.863
6 −0.525 + i9.436 −0.523 + i9.439
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Figure 9. Standard conductivity model of Fig. 1: Position of the poles in the complex plane κ = u + iv. The frequency is f = 0.5 Hz. There is only one
TE-mode pole, but an infinite number of TM-mode poles. From these poles are shown the resistive-layer pole and six regular poles from the sequence eq. (81).
The solid and dotted lines are the isolines Im(κ2) = −ωµ0σ with σ marked at the graph. In particular, the solid line is the terminating branch. Note the different
scales in u- and v-direction.

On the basis of numerical experiments we conjecture that the number of TE-mode poles is always smaller than the number of layers.
Region B in Fig. 8 is void of poles, if σ min is small, as in the resistive-layer case. On the other hand, a pole can exist in region B for a model
consisting of the air half-space and two layers with the upper layer less conducting than the terminating half-space.

Since H (1)
n (κr ) is analytic in the upper κ-halfplane and vanishes according to eq. (66) ∼ exp(−vr) for v = Im(κ) → +∞, the original

contour confined to the real axis (with an indentation above κ = 0, see Fig. 8), can be deformed to the contour surrounding the triangular
region of singularities as shown in Fig. 10. This contour, which does not require knowledge of the poles, can be used to obtain highly precise
far-field responses. This is shown by Goldman (1990) for the vertical magnetic dipole. When the position of poles is known, the contour
can be contracted around each pole and the response is represented as the sum of the residua at these poles plus the integrals along the two
branch cuts. The far-field is then dominated by the poles and branch points with the smallest imaginary part, because these lead to the slowest
exponential decay. A pole or branch point at κ0 is associated with the decay length

L0 = 1/Im(κ0). (83)

4.2 The airwave in the wavenumber plane

In case of the branch cut Im(κ2) = 0, which has a branch point at κ = 0, the exponential decay has to be replaced by an algebraic decay in
terms of powers of 1/r. The contribution of this branch cut to Er(r) is obtained by integrating in Fig. 10 along both banks of the branch cut,
down along the left bank with

√
κ2 = −i t and up along the right bank with

√
κ2 = +i t (see eq. 63). Then eqs (15) and (68) yield

− iωµ0 p cos ϕ

2πr

1

2

∫
⋃ Qe(z | z0,

√
κ2)H (1)

1 (κr ) dκ

= ωµ0 p cos ϕ

2πr

1

2

∫ ∞

0
[Qe(z | z0, i t) − Qe(z | z0, −i t)]H (1)

1 (itr) dt

= ωµ0 p cos ϕ

2πr

∫ ∞

0
Qodd

e (z | z0, i t)H (1)
1 (itr) dt

= −ωµ0 p cos ϕ

π 2r

∫ ∞

0
Qodd

e (z | z0, i t)K1(tr ) dt = E2r (r), (84)

with Qodd
e and E2r already defined in eqs (42) and (44). Moreover, it has been used that H (1)

1 (itr) = −(2/π )K 1(tr) (Abramowitz & Stegun
1972, formula 9.6.4). In Section 3.3.1 it was shown that E2r(r) has the asymptotic behaviour (41) of the airwave and, therefore, is a possible
completion of the asymptotic series in the range r > 0. For this reason the branch Im (κ2) = −ωµ0σ 0 = 0 in Fig. 8 is called the ‘airwave
branch’.
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Figure 10. Deformation of the contour, originally confined to the real axis (see Fig. 8) to a contour surrounding the region of singularities in the com-
plex κ-domain. Contrary to Fig. 8, the air has again the conductivity σ 0 = 0. For r → ∞ each path element gives a contribution decaying exponentially
∼ exp[−r Im(κ)]. The TM-mode contour can be closed already along the path Im(κ2) = −ωµ0σ min (see Fig. 8) and, therefore, the TM-mode is a superpostion
of contributions with a strict exponential decay. The critical point κ = 0 contributes only to the TE-mode, where the resulting algebraic decay in powers of 1/r
forms the airwave.

The alternative definition (43) of the complete airwave E1r is based on Qodd
e , which in the context of complex wavenumbers is defined as

Qodd
e (κ) = [Qe(

√
κ2) − Qe(−√

κ2)]/2, where Qe(−√
κ2) is the image of Qe(

√
κ2) mirrored at the positive imaginary axis. Qodd

e (κ) is an odd
function of

√
κ2. When performing the integral in the definition (43) of E1r in the complex plane, the contribution E2r is obtained from the

branch Im(κ2) = 0 plus exponentially decaying fields from integrating Qodd
e (κ) along the terminating branch cut (see Fig. 8). In addition there

are exponentially decaying contributions from the TE-mode poles. Whereas E2r is the purest representative of the guided airwave in the range
r > 0, the airwave E1r in addition contains exponentially decaying fields generated by interaction with the interface z = 0. This is clearly
demonstrated by the uniform half-space example of Section 3.3.2. The mixed airwave E1r, given in eq. (53), is decomposed via eq. (56) into
the pure airwave E2r, given in eq. (54), resulting from the airwave branch, and the exponentially decaying difference eq. (57), resulting from
the integration of eq. (50) along the two banks of the terminating branch from ik to + i∞. A further discussion has already been given at the
end of Section 3.3.1. See also Fig. 7.

4.3 The resistive-layer mode

A second type of guided waves occurs, if there exists a resistive layer of conductivity σr in between two well conducting layers. The resistive
layer serves as ‘wave guide’ for the TM-mode ‘resistive-layer mode’ introduced in Section 1. Mathematically, this mode is the residual at the
resistive-layer pole κr. Under the assumption that σr is the smallest conductivity encountered in z > 0, the pole κr is the TM-mode pole of
smallest imaginay part. Its existence close to ikmin is indicated in Fig. 8 and is demonstrated for the standard conductivity model in Fig. 9. In
this model, the TM-mode pole κr is clearly separated from the other six TM-mode poles belonging to the series eq. (81). When κr is found,
the resistive-layer mode with the decay length Lr = 1/Im(κ r ) is the residual at κr.

The following method for the determination of κr has turned out to be very useful. From eq. (71), that is,

Dm = fma(z) fmb(z)Dm(z) = Wm(z), (85)

then follows that κ = κr is the smallest root of

Dm(z, κ) = am(z, κ) + bm(z, κ) = 0, (86)

where z > 0 is arbitrary. Let the uniform resistive layer of thickness dr be positioned in zu < z < zd , d r = zd − zu , see Fig. 11. The freedom
in the selection of z is exploited by solving eq. (86) for z = zu , because for this choice the resulting equation becomes a quite explicit function
in the unknown κr. The recursion formula (B23) yields as variation of bm(z) from bottom to top of the resistive layer,

bm(zu) = ζr
bm(zd ) + ζr tanh(αr dr )

ζr + bm(zd ) tanh(αr dr )
, (87)
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z = zd
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Resistive layer with conductivity σr

Tr := dr/σr, Sr := σrdr
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σ(z)

σ(z)

bm(zd, κ)

am(zu, κ)

Figure 11. To the computation of the resistive-layer pole κr via eq. (90). The functions am(zu, κ) and bm (zd , κ) are the TM-mode spectral impedances for
partial waves propagating, respectively, from z = zu upwards and and from z = zd downwards.

where ζ r := α r/σr, α2
r := κ2 + k2

r , k2
r := iωµ0σr . With the further abbreviations

Tr := dr/σr , Sr := drσr and c := αr dr coth(αr dr ), (88)

a reformulation of eq. (87) yields

bm(zu) = c bm(zd ) + α2
r Tr

c + Sr bm(zd )
. (89)

After inserting this expression into eq. (86) for z = zu and solving for α2
r , the implicit equation

κ2 = −k2
r − {[am(zu, κ) + bm(zd , κ)] c(κ) + am(zu, κ) bm(zd , κ)Sr } /Tr (90)

is obtained for the determination of κ = κ r . A simple iterative solution with the starting point κ = 0 converges after a few iterations, if
the integrated resistivity T r is sufficiently large. Generally an iterative solution of the equation x = f (x) exists, if f (x) is contracting, that is,
| f ′(x)| < 1. After dropping insignificant terms in (90) (see eq. 93), this condition is equivalent to∣∣∣∣∂[am(zu, κ) + bm(zd , κ)]

∂κ2

∣∣∣∣ < Tr . (91)

In Appendix B3 it is shown that

∂am(zu, κ)

∂κ2
=

∫ zu

0+

f 2
ma(t, κ)

f 2
ma(zu, κ)

· dt

σ (t)
and

∂bm(zd , κ)

∂κ2
=

∫ ∞

zd

f 2
mb(t, κ)

f 2
mb(zd , κ)

· dt

σ (t)
. (92)

Eqs (91) and (92) are then interpreted in the sense that the iteration converges, if the integrated resistivity of the resistive layer is greater than
the field-weighted integrated resistivity of the conductors outside the layer. The ‘standard model’ of Fig. 1 requires T r > 1000 �m2. For
smaller T r, nonlinear equation solvers are required.

The spectral impedance am(zu, κ) depends only on the conductivity distribution above the resistive layer. Similarly, bm(zd , κ) depends
only on σ (z) in z > zd . For an earth consisting of uniform layers, these transfer functions are easily obtained by recursion (see Appendix B4).

The exact formula (90) can be simplified. Because of the small conductance Sr of the resistive layer, the second term in curly brackets
can be neglected. Moreover |αr d r | � 1 and, therefore, c(κ) ≈ 1. Hence,

κ2 ≈ −k2
r − [am(zu, κ) + bm(zd , κ)]/Tr . (93)

This condition follows also directly from eqs (86) and (87) by approximating the latter equation by

bm(zu) ≈ bm(zd ) + ζr tanh(αr dr ) ≈ bm(zd ) + α2
r Tr . (94)

The application of eq. (90) to the ‘standard model’ yields

κr = (−2.7887 + i5.8318) × 10−4 m−1, (95)

corresponding to a decay length of L r = 1/Im(κ r ) = 1714.7 m. The result obtained by the approximation (93) differs only slightly,

κr ≈ (−2.7896 + i5.8321) × 10−4 m−1. (96)

At κ = κ r , the linear independence of fma and fmb breaks down. This is formally seen from (86), that is, from am(z, κr ) = −bm(z, κr ), which
according to (13) is equivalent to f ′

ma/ fma = f ′
mb/ fmb or fma = γ fmb. Since only field ratios are important, γ = 1 is taken without loss of

generality. Therefore, fma and fmb merge into the eigensolution fmr, vanishing both at z = 0 and for z → ∞,

fma(z, κr ) = fmb(z, κr ) =: fmr (z). (97)

This eigensolution, with its peak amplitude in the resistive layer, is displayed in Fig. 12.
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Figure 12. The eigensolution fmr(z) of the resistive-layer mode for the standard conductivity model of Fig. 1. Displayed is fmr(z), normalized with respect to
its value in the centre z = zr of the resistive layer. Here f mr(z) attains its largest amplitude and phase. The exponential variation of fmr(z) in the uniform host
below the resistive layer induces a linear phase change. The slope discontinuities at z = 1 km mark the seafloor.

The resistive-layer mode (superscript rlm) is the residual of the TM-mode at κ = κ r . From eqs (15), (16), (18), (68), (85), (86) and (97)
it follows that

Erlm
r (r) = ε(z | z0) ∂r H (1)

1 (κr r ) cos ϕ, Erlm
ϕ (r) = −[ε(z | z0)/r ] H (1)

1 (κr r ) sin ϕ (98)

with

ε(z | z0) := i p

2

am(z, κr ) am(z0, κr ) fmr (z) fmr (z0)

∂κ Dm(κ)|κ=κr

, (99)

Then ε(z|z0) = ε(z0|z). An alternative formulation is obtained by using the identity am(z, κ r ) f mr(z) = f ′
mr(z)/σ (z), which follows from

eqs (13) and (97). For an actual evaluation, the denominator of eq. (99) is replaced by

∂κ Dm(κ)|κ=κr = f 2
mr (z) ∂κ Dm(z, κ)|κ=κr , (100)

where eqs (85) and (86) have been used. The depth z > 0 is arbitrary, for example, z = z or z = z0. The κ-derivative on the right-hand side
of eq. (100) is readily determined numerically. Nevertheless, a useful approximation of the derivative can be derived from the exact integral
representation

∂κ Dm(z, κ)|κ=κr = 2κr

∫ ∞

0+

f 2
mr (t)

f 2
mr (z)

· dt

σ (t)
, (101)

easily deduced from eq. (92) with zd = zu = z and the linear dependence (97). The main contribution to the integral comes from the resistive
layer, where both 1/σ and the amplitude of f mr(z) are large (see Fig. 12). Thus eqs (100) and (101) yield

∂κ Dm(κ)|κ=κr = 2κr

∫ ∞

0+
f 2
mr (t) · dt

σ (t)
≈ 2κr Tr f 2

mr (zr ), (102)

where zr is depth to the centre of the resistive layer. Therefore, eq. (99) is approximated by

ε(z | z0) ≈ i p

4

am(z, κr ) am(z0, κr ) fmr (z) fmr (z0)

κr Tr f 2
mr (zr )

. (103)

For the ‘standard model’ (Fig. 1), the error of the approximation eq. (102) is 3.5 per cent.
Fig. 13 illustrates for this model that the remainder after subtracting the complete airwave (dotted) agrees in the far-field with the

resistive-layer mode predicted by eqs (98) and (99). Therefore, in the ‘standard model’, the airwave branch and resistive-layer pole together
give an excellent description of the electric field over a wide range of separations. Fig. 13 also shows as a dash-dotted line the component Er,
without the airwave, for the case where the poorly conducting target layer is replaced by the host conductivity. In this situation a resistive-layer
pole no longer occurs and the asymptotic exponential behaviour is controlled by the TM-mode singularity with the smallest imaginary part.
This singularity turns out to be the branch point ikt = (−1 + i)

√
ωµ0σt/2 with σ t = 1 S m−1, see Fig. 8. Therefore, the decay is skin-effect

controlled with the decay length 1/Im(ik t ) ≈ 700 m, whereas the TM-mode pole with the smallest imaginary part is associated with a decay
length of only 300 m.
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Figure 13. Standard conductivity model of Fig. 1 with d 1 = z = z0 = 1000 m and f = 0.5 Hz: the solid line represents the resistive-layer mode eq. (98),
which in the far-field (r > 4 km) is in full agreement with the remainder after subtracting the complete airwave eq. (44), dotted line. In the linear r-scale, the
asymptotic exponential character is evident. The resulting decay length L ≈ 1700 m is longer than the skin-effect controlled decay length L ≈ 700 m of a
model, where the resistive layer is replaced by a 1 S m−1 conductive layer (dot–dashed line, complete airwave removed).

Finally, consider the vertical component Erlm
z (r). In view of E air

z (r) = 0, the resistive-layer mode dominates the far-field. From eqs (5),
(8) and (9) follows

Erlm
z (r) = εz(z | z0) H (1)

1 (κr r ) cos ϕ (104)

with

εz(z | z0) := i p

2σ (z)

κ2
r am(z0, κr ) fmr (z) fmr (z0)

∂κ Dm(κ)|κ=κr

, (105)

or with the approximation eq. (102),

εz(z | z0) ≈ i p

4σ (z)

κr am(z0, κr ) fmr (z) fmr (z0)

Tr f 2
mr (zr )

. (106)

As a consequence of the asymptotic behaviour (66), all components of Erlm(r) decay for r → ∞ exponentially ∼ exp[−Im(κ r )r ] =
exp(−r/L r ). Since Ez is not affected by the airwave, a reliable measurement of this component would have useful discrimination capa-
bilities (see Fig. 5).

5 C O N C L U S I O N S

With restriction to HED sources and frequency domain electric field data, this study gives an account of the two relevant guided waves in marine
CSEM, the airwave and the resistive-layer mode. In view of the renewed interest in the subject, most of the results might already be known,
but are buried in technical reports. The emphasis in this study lies more on fundamental principles rather than on practical considerations.
Therefore, the results are illustrated by a single ‘standard model’ only, rather than by a variety of models.

The two waves are complementary. The airwave, guided along the air–ocean interface, is a TE-mode phenomenon that decays in powers
of 1/r, the resistive-layer mode, guided in the thin reservoir layer, is a TM-mode phenomenon with an exponential decay. With respect to the
information contents, the airwave is unwanted noise, the resistive-layer mode useful signal.

We did not address the practically important problem of removing the airwave. Subtraction of the airwave in Figs 4 and 6 is done under
the assumption that the underlying conductivity structurewe is exactly known. Nevertheless, the results allow some general conclusions. Since
the conductivity parameters in CSEM do not vary widely, a reliable guess can be made for σ (z), including other sources of information such
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as water depth, water conductivity and borehole logs. On this basis, the leading term of the airwave is easily estimated using eqs (22)–(24).
Moreover, the leading term turns out to be virtually independent of the parameters of the resistive layer.

The airwave is present in five of the six electromagnetic field components. Only Ez, which is a pure TM-mode, is not affected by the
airwave and shows an exponential decay dominated by the resistive-layer mode. Therefore, a reliable measurement of this component would
be of importance for hydrocarbon exploration in a shallow sea.

In Section 4, we have made an effort to interpret the radial decay of electric fields in terms of singularities of the electric field kernels Qe

and Qm in the complex wavenumber domain. Viewed from this perspective, it was possible to identify and isolate a ‘pure’ complete airwave
as the branch-cut integral of TE-mode kernels along the positive imaginary axis and the resistive-layer mode as the residual of the TM-mode
pole with the smallest imaginary part. This study concludes with the remarkable result that in case of the ‘standard model’ the superposition
of only these two guided waves yields an excellent description of the electric field over a wide range of separations.
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A P P E N D I X A : T H E L E A D I N G T E R M I N T H E A I RWAV E

A1 Proof of eq. (29)

For a proof of eq. (29), that is,

Qe(z | z0, 0) = Qm(z | z0, 0) (A1)

with Qe and Qm defined in eqs (17) and (18), f e(z, κ) and f m(z, κ) have to be considered in the limit κ = 0. Then the differential eqs (10) and
(12) read

f ′′
e (z, 0) = iωµ0σ (z) fe(z, 0), [ f ′

m(z, 0)/σ (z)]′ = iωµ0 fm(z, 0). (A2)

Let g := f ′
m/σ . Then g′ = iωµ0 f m , g′′ = iωµ0 f ′

m = iωµ0σ g. Therefore, g(z) and f e(z, 0) satisfy identical differential equations and for
fm(z, 0) = fma(z, 0) or fmb(z, 0) the function g(z) is a multiple of fea(z, 0) or feb(z, 0), that is, g(z) = γ f ea,b(z, 0), where γ is a non-zero
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constant. Hence, using also eqs (11) and (13), it follows that

f ′
ma,b(z, 0) = γ σ (z) fea,b(z, 0), γ f ′

ea,b(z, 0) = iωµ0 fma,b(z, 0), (A3)

am(z, 0) = iωµ0/ae(z, 0), bm(z, 0) = iωµ0/be(z, 0). (A4)

Using these equations, the TM-mode quantities can be replaced by the TE-mode quantities in Qm(z|z0, 0), see eq. (18). Let for example
z ≥ z0. Then from eqs (17), (18) and (11) it is deduced, after a little algebra, that

Qm(z | z0, 0) = feb(z, 0)/ feb(z0, 0)

ae(z0, 0) + be(z0, 0)
= Qe(z | z0, 0). (A5)

This proves eq. (29) = (A1). The physical interpretation of eqs (A3) and (A4) is that the horizontally uniform electric and magnetic fields
resulting from κ = 0 can be associated either with a TE-mode (large horizontal current loops) or with a TM-mode (large vertical current
loops). In particular, eq. (A4) expresses the fact that in this case TE- and TM-mode impedance agree.

A2 Proof of eq. (30)

In this Appendix, we prove the relations (30), that is,

Qe(z | z0, −κ) �= Qe(z | z0, +κ), Qm(z | z0, −κ) = Qm(z | z0, +κ). (A6)

For simplicity it is assumed that in z > 0 the conductivity σ (z) is bounded from below by σ min, σ (z) ≥ σ min > 0. Moreover, it is assumed
that σ (z) terminates with a constant conductivity σ t > 0 for z > z t , where zt is a great depth. Recalling that α2 = κ2 + iωµ0σ , the following
results are obtained:

(1) be(z, κ) is an even function of κ:
From eqs (10) and (11) it follows that be(z, κ) solves the Riccati equation

b′
e(z, κ) = −b2

e (z, κ) + α2(z, κ). (A7)

The solution f e(z) ∼ exp(−α t z) for z ≥ z t , α2
t := κ2 + iωµ0σ t , implies that be(z t , κ) = α t (κ). When integrating eq. (A7) with this initial

value from z = zt upwards, it is seen that be(z, κ), z ≥ 0, is an even function of κ .
(2) ae(z, κ) has an even and an odd part:

From eqs (10) and (11) it follows that ae(z, κ) solves the Riccati equation

a′
e(z, κ) = a2

e (z, κ) − α2(z, κ). (A8)

Observing the continuity of fea(z) and f ′
ea(z) at z = 0, the solution f ea(z) ∼ exp(κ z) for z < 0 implies that ae(0, κ) = κ . When integrating

eq. (A8) with this initial value from z = 0 downwards, it is seen that ae(z, κ), z > 0, has both an even and an odd part.
(3) bm(z, κ) is an even function of κ:

From eqs (12) and (13) it follows that bm(z, κ) solves the Riccati equation

b′
m(z, κ) = −σ (z)b2

m(z, κ) + α2(z, κ)/σ (z). (A9)

Similarly as in the case be(z, κ), an upward integration of eq. (A9) with the initial value bm(z t , κ) = α t (κ)/σ t qualifies bm(z, κ) as an even
function of κ .

(4) am(z, κ) is an even function of κ:
A vanishing vertical current density Jz = σ E z = −(1/µ0)(∂2

xx + ∂2
yy) χ m (see eq. 5) at z = 0 requires fma(0, κ) = 0. Therefore, consider the

spectral admittance am(z, κ) := 1/am(z, κ), satisfying according to eqs (12) and (13) the Riccati equation

a′
m(z, κ) = σ (z) − a2

m(z, κ)α2(z, κ)/σ (z) (A10)

with the initial value am(0+, κ) = 0. Downward integration of eq. (A10) then shows that am(z, κ) [and am(z, κ)] is an even function of κ .

On using eqs (11) and (13), the symmetry in the transfer functions is mapped onto the field ratios via

feb(z, κ)

feb(z0, κ)
= exp

[
−

∫ z

z0

be(t, κ) dt

]
,

fmb(z, κ)

fmb(z0, κ)
= exp

[
−

∫ z

z0

σ (t) bm(t, κ) dt

]
. (A11)

Corresponding relations apply for fea and fma. In conjunction with the definitions (17) and (18) this proves the assertions (30) = (A6).

A3 Evaluation of ∂κQe(z | z0, κ)|κ=0

This quantity, which controls the amplitude of the airwave, is required in eqs (31) and (32). For brevity we use the notation

ḣ := ∂κh(κ)|κ=0. (A12)

Since Qm is an even function of κ , implying Q̇m = 0, only Q̇e contributes in eqs (31) and (32) to the leading term. The reciprocity (19) allows
confining attention to z ≥ z0. Since ḃe = 0, the only contribution to Q̇e comes from ae in the denominator of eq. (17). To compute ȧe(z), we
first deduce, from eq. (10) by differentiation with respect to κ and subsequently putting κ = 0, that ḟea(z) satisfies the differential equation

ḟ ′′
ea(z) = iωµ0σ (z) ḟea(z), (A13)

C© 2007 The Author, GJI

Journal compilation C© 2007 RAS



August 4, 2007 14:42 Geophysical Journal International gji˙3527

22 P. Weidelt

which coincides with eq. (10) for κ = 0. Therefore, the corresponding Wronskian is independent of z,

W ea(z) := fea(z, 0) ḟ ′
ea(z) − f ′

ea(z, 0) ḟea(z) = const. (A14)

From f ea(z, κ) = f ea(0, κ) exp(κz) it follows that Wea(0) = f 2
ea(0, 0). For this reason,

ȧe(z) = W ea(z)/ f 2
ea(z, 0) = W ea(0)/ f 2

ea(z, 0) = f 2
ea(0, 0)/ f 2

ea(z, 0). (A15)

Now Q̇e(z | z0) can be evaluated. Eqs (17), (A15) and (20) yield

Q̇e(z | z0) = − ȧe(z0) feb(z, 0)/ feb(z0, 0)
[ae(z0, 0) + be(z0, 0)]2 = − f 2

ea(0, 0) feb(z, 0) feb(z0, 0)
W 2

e (z0)

= − f 2
ea(0, 0) feb(z, 0) feb(z0, 0)

W 2
e (0)

= − feb(z, 0) feb(z0, 0)
[ f ′

eb(0, 0)]2 .

(A16)

The last step is based on

We(0) = − f ′
eb(0, 0) fea(0, 0), (A17)

since f ′
ea(0, 0) = 0. By inserting eq. (A16) into eqs (31) and (32) and using the simplified notation e(z) := f eb(z, 0), we arrive at the airwave

representation (22) and (23).

A4 Sketch of the proof of eq. (34)

The result (34) can be verified as follows. From eq. (5) it is inferred (with ∇2
h as horizontal projection of the Laplace operator) that

Ez(r) = − 1

µ0σ (z)
∇2

hχm(r), (A18)

which according to eq. (9) requires the consideration of fma(z)/σ (z) at z = 0−, where numerator and denominator both vanish, such that the
ratio is indefinite. Its value can be determined via the continuity of f ′

ma(z)/σ (z) across the interface. In the air z < 0 assume σ (z) = σ 0 > 0
and consider the limit σ 0 → 0. Thus in the air–half-space fma(z) ∼ exp(α0z) and fma(z) = f ′

ma(z)/α0, α2
0 := κ2 + iωµ0σ 0. Then

lim
σ0→0

fma(0−)

σ0
= lim

σ0→0

f ′
ma(0−)

α0σ0
= f ′

ma(0+)

κσ (0+)
(A19)

leads to a definite value. With eqs (A19) and (9) it is infered from eq. (A18) that

Ez(r, 0−) = − p cos ϕ

2πσ (0+)

∫ ∞

0

bm(z0) f ′
ma(0+)/ fma(z0)

am(z0) + bm(z0)
κ J1(κr ) dκ, (A20)

where it was noted that ∇2
h [J 1(κr ) cos ϕ] = −κ2 J 1(κr ) cos ϕ. The asymptotic formula (28) yields as leading term of eq. (A20)

Ez(r, 0−) ≈ − p cos ϕ

2πσ (0+)r 2

bm(z0, 0) f ′
ma(0+, 0)/ fma(z0, 0)

am(z0, 0) + bm(z0, 0)
. (A21)

Via eqs (A3) and (A4), the TM-mode is replaced by the TE-mode. After simplifying the result with the Wronskian relations (20) and (A17),
the result is eq. (34).

A P P E N D I X B : T E C H N I C A L D E TA I L S

B1 Explicit forms of the complete uniform-half-space airwave

Implicit forms of the uniform-half-space airwave are given in eqs (53), (54) and (57). Performing differentiations with respect to r and z results
in

E1r

(
r) = +γ

[
(w2

+ − w2
−
)
(a0d0 − a1d1) + 2w+a0d1 + 2w−a1d0

]
, (B1)

E2r (r) = +γ
[(

w2
+ − w2

−
)
(b0d0 − b1d1) + 2w+b0d1 + 2w−b1d0

]
, (B2)

E1r (r) − E2r (r) = −γ
[(

w2
+ − w2

−
)
(c0d0 + c1d1) + 2w+c0d1 − 2w−c1d0

]
, (B3)

where

an := iπ In(w−), bn := Kn(e−iπw−), cn := Kn(w−), dn := Kn(w+), n = 0, 1 (B4)

and

γ := p cos ϕ

4π2iσ R3+
. (B5)

According to formula 9.6.31 of Abramowitz & Stegun (1972), an, bn and cn are interrelated by

an = bn − (−1)ncn . (B6)
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B2 Asymptotic distribution of TM-mode poles for a simple model

In eq. (81) of Section 4.1, we have given the asymptotic distribution of the TM-mode poles of the standard model. Here a short derivation of
this result is presented. Replacing the resistive layer by an insulator, the simplified model consists of the sea with conductivity σ1, and depth
d1, the sediments with conductivity σ2 and thickness d2 and an insulator below. According to eq. (80) the required poles are the poles of the
surface impedance bm(0, κ). From eq. (B23) it follows that with b3 = ∞, b2 = ζ2 coth(α2d2) as surface impedance

bm(0, κ) =: b1 = ζ1
ζ2 coth(α2d2) + ζ1 tanh(α1d1)

ζ1 + ζ2 coth(α2d2) tanh(α1d1)
, (B7)

which provides the pole condition

ζ1 cosh(α1d1) sinh(α2d2) + ζ2 cosh(α2d2) sinh(α1d1) = 0, (B8)

or equivalently

(ζ1 + ζ2) sinh(α1d1 + α2d2) + (ζ1 − ζ2) sinh(α2d2 − α1d1) = 0, (B9)

where α2
j = κ2 + iωµ0σ j , ζ j = α j/σ j . For σ 1 = σ 2 =: σ , implying α1 = α2 =: α, ζ 1 = ζ 2, condition (B9) simplifies to sinh (αD) = 0,

D := d 1 + d 2, or

κ2
n = −(nπ/D)2 − iωµ0σ, n = 0, 1, 2, . . . (B10)

Guided by condition (B10), we try as squared pole positions

κ2
n = −(nπ/D)2 − iωµ0εn . (B11)

Assuming that εn increases with n slower than n2, α j is for n � 1 approximated by

α j ≈ inπ/D + ωµ0 D(σ j − εn)/(2nπ ). (B12)

When inserting the resulting expressions for α j and ζ j = α j/σ j into condition (B9), it is taken into account that
sinh(α1d 1 + α2d 2) = sinh(inπ + γ ) = (−1)n sinh γ ≈ (−1)nγ , where

γ := ωµ0 D(σ1d1 + σ2d2 − Dεn)/(2nπ ). (B13)

First we consider the simple case d 1 = d 2 = D/2, appropriate for the standard model. Then for n → ∞ the left-hand side of eq. (B9) is O(1).
This leading order vanishes, if

(−1)n(σ1 + σ2)(σ1 + σ2 − 2εn) + (σ2 − σ1)2 = 0, (B14)

which implies

εn = 2σ1σ2

σ1 + σ2
for n odd and εn = σ 2

1 + σ 2
2

σ1 + σ2
for n even, (B15)

asymptotically valid for n � 1. In combination with eq. (B11) the approximation eq. (81) is recovered.
When the restriction d 1 = d 2 is dropped, the resulting pole structure is less regular, yielding for n � 1

εn = (An + Bn)/Cn (B16)

with

An := (−1)n(σ1 + σ2)(σ1d1 + σ2d2)/D + cos βn (σ2 − σ1)(σ2d2 − σ1d1)/D (B17)

Bn := −2nπ (σ2 − σ1) sin βn/(iωµ0 D2) (B18)

Cn := (−1)n(σ1 + σ2) + cos βn (σ2 − σ1)(d2 − d1)/D (B19)

and β n := nπ (d 2 − d 1)/D.

B3 Proof of eq. (92)

Because of the similarity of the two parts of eq. (92), attention can be confined to the proof of the first part. Let gma(z, κ) := ∂ fma(z, κ)/∂κ2.
From the TM-mode eq. (12) follows

σ [ f ′
ma/σ ]′ = α2 fma, (B20)

σ [g′
ma/σ ]′ = α2gma + fma . (B21)

Now multiply (B21) by fma/σ and (B20) by gma/σ and integrate the difference over z from z = 0+ to z = zu . Then integration by parts yields,
on using the the insulating half-space boundary conditions fma(0, κ) = gma(0, κ) = 0,

fma(zu) g′
ma(zu) − f ′

ma(zu) gma(zu)

σ (zu)
=

∫ zu

0+
f 2
ma(z) · dz

σ (z)
. (B22)

From (13) it follows that the left-hand side equals f 2
ma(zu) ∂am(zu , κ)/∂κ2. In conjunction with (B22), the first part of assertion (92) is

verified.
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B4 TM-impedances for a layered earth

The solution of (90) for the resistive-layer pole κ r requires the downgoing TM-mode impedance bm(zd) at the bottom of the resistive layer
and the upgoing impedance am(zu) at the top of this layer. For an earth consisting of uniform layers, these impedances are easily obtained by
recursion (e.g. Ward & Hohmann 1987, p. 206). Consider an N-layered earth consisting of N − 1 layers with conductivities σ n and thicknesses
dn and a terminating half-space of conductivity σ n and let n = r , 2 ≤ r ≤ N − 1, be the resistive layer. With ζ n := αn/σ n , α2

n := κ2 +
iωµ0σ n the recursion (see also eq. 87)

bn = ζn
bn+1 + ζn tanh(αndn)

ζn + bn+1 tanh(αndn)
, n = N − 1, . . . , r + 1 (B23)

starting with b N = ζ N and the recursion

an+1 = ζn
an + ζn tanh(αndn)

ζn + an tanh(αndn)
, n = 1, . . . , r − 1 (B24)

starting with a1 = ∞, yield bm(zd ) = br+1 and am(zu) = ar .
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