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1, Introduction, basic equations

1.1, Beneral ideas

The following model is the basis of all electromagnetic methods
which try to infer the electrical conductivity structure in the
Farth's subsurface from an analysis of the natural or artificial
electromagnetic surface field: On or above the surface of the Earth
is situated a time-dependent electromagnetic source. By Faraday's
law the time-varying magnetic field ﬁ induces an electrical field
E which drives within the conductor a current 1. By Ampére's law
this current has a magnetic Ffield which again is an inducing agent,

and so on. Hence, there is the closed chain
. . induction

H + H
~—gource =

[ E
Ampére's conduction
law i
L

The mathematical expression of this closed chain is a second order
partial differential equation resulting after the elimineticn of
two field guantities from the two first order equations 1 + H and
0~ E. |

At the surface the electromagnetic field of the scurce is disturbed

by the internal fields. This disturbance depends on the conductivity

‘structure and contains information which must be revealed. It is a

matter of the particular objective which surface data have to be

measured and how the information is extracted from them.

The induced currents try to expel the external field from the conduc
tor leading to a decrease of the electromagnetic field amplitude
with depth.

The available pepiod range and average conductivity daterimine the
depth range of a particular method. For a uniform haif-space with
conductivity-c or vesistivity p = i/0 the penetration depth (decay
on 1/e) is approxima%ely

p = 0.5 /pT, wheve p. in km, p in Qm, and T in sec. (1a)



Alternatively . _
p = 30. VpT, where T in h, (1b)

Egs. (ta,b) can also be used as a rule of thumb if p varies with

depth and an average resistivity is inserted.

The natural magnetic source fields of the ionospheric and magneto-
spheric currents offer periods approXimately between 0.1 sec and 20
permitting crustal and upper mantle surveys down to a depth of
approximately 800 ~ 1000 km. On the other side periods between 0.01
and 0.002 sec are most commonly used for Sounding of +the first 300 n

with artificial fields.

Electromagnetic methods are applicable for two objectives:

1) Investiga{ion of the change of conductivity with depth, in parti-
cular detection and delineation of horizontal interfaces marking
a change of stratigraphy oxr temperature. )

2) Investigation of lateral conductivity variations, in particular
search for local regions with abnormal conductivities (e.g.
metallic ore deposits, salt domes, sedimentary basins, zones of
elevated temperature). R

.The results of the first investigation are often used to construct

a normal conductivity model from which local deviations are measure:

In an interpretation of natural fields the change of the electro-
ﬁagnetib field quantities both with frequency and with position are
used. Broadly speaking the dependence on the position provides the
lateral resolution and the dependence on freguency gives the reso-

lution with depth.

1.2. Rasic eguations

Let r be the posi{ion vector and let H, E, and 1 Te the vectors of
the magnetic field, electrical field and current density, respecti-
vely. Using ST units and a vacuum permeability R throughout, the

pertinent equations are

]curl H = L1, (i1.2)
curl E = —uoﬁ _ (1.3
"1 =0 E o (i.u)

div H = 0 (1.5)

l



A1)l field gquantities are functions of position r and time t. Also the
(isotropic) conductivity ¢ is a function of position. R is the
current density of the external current sources being different from
0 only at source points. The displacement current Eoé 1s generally
neglected in induction studies. This is justified as follows: within

the conductor the conduction current oE exceeds the displacement

current even in the case of Jowest periods (0,001 sec) and highest

resistivities (105 Qm) still 102 times. In the vacvum where the

conduction current is absent the inclusion of the displacement
current merely introduces a slight phase shift of the external field
at different points. For in this case the solution of (1.2) and (1.3
(including eoi at the RHS of (1.2)) are electromagnetic waves, e.g.

the plane wave el(5°£ - wt), where w is the angular frequency and
k the wave vector along the direction of propagation. The phase

difference between P1 and P2 is

wht = REX cosa
e 10“2 in the very pessimistic
case of Ax = 1000 km and T = 1se

H and 1 can be eliminated from (1.2) - (1.4). It results

o 2T SR ;
curllg +n, O E M, o (1.8)

Induction egquation

On using (1.2) and (1.4) the electrical charge density p{x) is
given by

p = e, div E = - €, E « grad logo, (1.7

i.e. there is charge accunulated if an electrical field compcenent
parallel to the gradient.of the conductivity. Physically this is
clear, since the normal eomponént of the curpent density 1s conti-
nuous whereas the charges account for the corresponding disconti-

nuilty of the normal electrical field.



The electrical effect of the changes 1s very important. They modify

by attraction and repulsion the current flow; in particular surface
changes deflect the current lines in such a way that the normal
current component vanishes at the surface. In contrast the magnetic
effect is of the order of that of the displacement current and

can be neglected.

2. Electromagnetic induction in 1-dimensional structures

2.1. The general solution

The following vector analytical identities are used in the sequel

(A is a vector, ¢ a scalar).

div curl A = 0 (2.1)
curl grad ¢ = 0 (2.2
div(A¢) = ¢.div'§_+‘§ « grad ¢ | {2.3)
curl(A¢) = ¢ curlhA — Ax grad ¢ _ (2.4
curl?s = grad divA - AA (2.5)
grad¢(y) = %% grady ' : (2.6)

In this chapter it is assumed that the electrical conductivity ¢ is
a function of depth z (positive downwards) only. In this case the
electrbmagnetic field inside and outside the conductor can be re-
presented in terms of two scalars ¢E(3) and ¢M(£) denoting the elec-
tric and magnetic type of solution. These fields are defined as

," - - » ) - -
follows(z is the unit vector 1in z-directionl:

R )
. o 1 ) ~
EM = curl (U¢M_z;) H "P:’"M R curl (U¢M_Z_) - (2.7a .
L _ a2 -~ : __” _ e A
e = curl (opz)s  Ep u curi(¢.z) (2.8a
. : . el Ll
On using the identity curl(yz) = -z x grad¢ (from (2.4)), it is see:

that the M~type solution has no magnelic z-component and the E-type

solution has no electrical z-component.



o = const. Hence, it is called a TE-mode (tangential electric). Con-
versely the M-type solution is named a TM-mode.As required from (1.5)
the magnetic field of both modes is solenoidal (i.e. divH = 0). In
addition the E-field of the TE-mode is also solenoidal. In this

mode there is no accumulation of charge, all current flow is parallel

to the (x,y)-plane.

Now we have to derive the differential equations for the scalars
pp and by The TE-field (2.8a,b) satisfies already (1.3) - (1.5).
It remains to satisfy
curlH. = ¢ Eg.
Using (2.5), (2.2), and (2.4) it results
2 x grad(hp, - u 0 ¢o) = O,

from which follows

{—;}.@E = W0 ¢E (2.8

~(for if 2f/%x = 0 and 9f/9y = O and f+0 for x,y =+ «, then £=0).

The TM-mode has to satisfy

-

curlby = “”05M

From this equation follows with the same arguments

div[2 grad(as,)] = v o ¢ (2.10

Tn uniform domains, (2.9) and (2.10) agree. Using (2.9), (2.10),
(2.5), and (2.4) the TE- and TM~fields in the vacuum cutside the

sources are

H = 0 20y (2.13
= - = F LA
By = 0 Ey = grad 3
ad)E Eas -
EE = g?ad 550 Er = n 2 X grad ¢p

Fields outside the conductor




variables x,y, and t which do not explicitly occur in (2.9)

The
and (2.10) can be separated from ¢F and o by exponential factors.
Let for ¢E or ¢M

$oo .

G(x,vs2,t) = SIS f(z,ﬁ,w)el(h L+wt)de> de dw (2.13)
where © = € % + K y and «k® = K < K . (2.14a,}
Then (2.9) and (2.,10) read

1t . . 9 =
fE(;) = {k* + 1wuoc(z)}fE(z) (2.9a)
‘ ..l = Ty - 241 1 .
(UCUfM(L)) 3= {k %1mu00(z)JfM(z) (2.10a)
The general solution of (1.2) - (1.5) for a one-dimensional conduc-
tivity structure is the superposition of a TE- and TM-field. The
total field then reads in components:
- 8 32¢E r,
HX = —é—}-;(G(f)M) + —é—ﬁ'z (2.15a)
3 2"
- e i 1 0
H_V = ax(o’(ng) + 3797 (2.15b)
2 2 :
H = - v g, (2.15¢)
X dy?
0% (od,,) ]
SRS ¢ M —E 5
Ex =5 %0z Ho oy (2.16a)
92 (6¢,,) 36,
1 M : I
R - S . 161
By =5 Toy5z Mo Tax » (2.316b)
02 2
B, = ~(2— s 2o, (2.16¢)
ax?  ay?
General expression of field components

At a horizontal discontinuity the tangential components of E and H

and the normal component of HZ are continuous. Let [ 1 denote

the jump of a particular quantity. Then from (2.15¢) for H,



- T -

2 2
( 8 ) + - B = ) [d) r‘] = O
ox? oy ? =

[¢E] satisfies the two-dimensional Laplace equaltion, is bounded
and vanishes at infinity because of the finite extent of the
sources. Hence, from Liouville's theorem of function theory

[¢E] = 0, i.e. @B continuous. Differentiating (2.15a) with respect
to x and (2.15b) with respect to y and adding we infer along the
same lines that 3¢E/32 ig continuous. Conversely differentiating
(2.1%a) with respect to y and (2.15b) with respect to x and sub-
tracting one obtains 0¢M continuous. Finally differentiate (2.16a)
with respect to x and (2.16b) with respect to y and add. It re-
sults that (1/0) B(Gém)/az is continucous or %@M/az is continous

if o tends to a constant value at both sides,

Summarizing:

3¢

- 1 590y
q‘)Es BZ 1 Uchﬁ

g 3=z

i

continuous (2.417a

Continuity conditions

This result shows that the TE- and TM-field satisfy disjoint :T?]
°b

boundary conditions. Hence, they are completely independent and

not coupled.
From (2.417¢) follows

(z = 4+0) = O ' (2.18.

This boundary condition has a serious drawback for the TM-field:
As a result within the conductor no TM-field can be excited by
external. sources.
From {(2.18) follows via (2.13) fM(o) = 0. Now
g___ 2 - - .= 1 | gz x 0
ot 2 Re{(of)' (oL, ") c(2.18

Multiplying (2.%a) by (ofM)% and integrating over z from 0 to zZ,

integration by parts yields in virtue of fM(o) = 0

(ng)ting)% =0 S { [Cof )t [*oroe? « ion o) [£,]%)dz (2.20

C =N

From (2.20) and (2.19) follows for real frequencies



d - 2
*a‘—Z—_IUfMI _>_O -

On the other hand fM has to tend to a limit for .z + ®. Hence,

f,(z) 20, 0 < 2 <

i.e. there is no externally excited TM-mode.

Outside the conductor the electrical TM-field does not vanish in
general. Since ¢M vanishes inside the conductor we have
B¢M/Bz = 0 for z = +o. The boundary conditiog (2.17dY then requires
that also

B¢MZBZ = 0 for z = =0, (2.21)

Let ¢§(x,y,z,t) be the TMmpotential of the source. It is a sclu-
tiqn of A¢§ = 0 ((2.10)). Then the mirror potential @;(x,ysnz,t)
satisfies also (2.10), and the total THM-potential satisfying (2.21)
is

¢M(x5y,z,t) = ¢;(x,y,z,t) + ¢§(x,y,~z,t), z < 0. (2.22)
' According to (2.11b) and (2.21) the horizontal components of E,
vanish at z = -0, whereas the vertical component is twice the ver-
tical component of the scurce field. At the surface z = -0 this
component 1g the only indication of a TM-part of the socurce field,
since according to (2.13a) The magnetic T¥M-field vanishes identi-

cally in. z < 0.

We may retain as the most important result of this section that in

a horizontally stratified conductor all current flowiindependently

of the source is in horizontal planes and thalt one scalar function'®
(¢E) is sufficient to represent all fields relevant for the in-

duction process.



J

2.2 Tree modes of decay

Whereas external fields can excite only the TE-mode within the
conductor, there exist free modes of current decay for both TE-
and TM-fields. Consider the typical potential

| 8t

¢(x,y,2,t) = COSK_ X * cos&cy y « flz)e °°, (2.23)

where ¢ and f stand for ¢E’ and fE’ fM’ respectively. First it

¢M
will be shown that the decay constants B (eigenvalues) must be
positive quantities. Inserting (2.23) in (2.9) and (2.10) we ob-

tain

n . 2 . - .

fB(z) = {k Buod(z)} fE(&), (2.24)

’ 1 . ( 11’ = 2. '

{g(z)(c(é)fm(z)) } = {k Buoo(z}}fM(z), (2.25)
where k? = K; + K;. The eigenfunctions have to satisfy the boundary
conditions :

= {#m) = = 1 {0} = A
fE = {#w) 0, fM(+o) 0, fM( J 0 (2.26)

If there is a perfect conductor at finite deﬁth d then

— i 4 — -
fE(d) = 0, fM(d) = 0 (2.26a)
Multiplying (2.24%) and (2.25) by f§ and Ufﬁ and integrating over z
from -» to +» and 0 to =, respectively, we obtain on integrating

by parts and using (2.286)

Jeo [ . ’
_i‘{[fﬁ[2+mz[fE[2}dz = By, g 0(2) [f,(z)]%dz, ' (2.27)
1 /. " 2 2 - < 12

g E{Lng) [2+c?[of, |2} dz = Bu, glofM[ dz. (2.28)

Hence, all decay constants B are real and positive. The current
flow for TE-decays is in horizontal planes, whereas the TM-decay

currents flow predominantly in vertical planes.

Example: G = 0

o 0,




- 10 -

a) TM-mode

From (2.25), (2.28), (2.26a) follows

f&(z)+y2fM(z) = 0, f,(o) = £fi(d)=0, YZ:BuOG - K*,

fM(o) = 0 yields fM(z) = sinyz, whereas f&(d) = 0 requires cosyd=0.

Hence, )
(2n-1)2m?+he?d?

Y, = £ZE%%1E, B = : s n=1,2,3 ... (2.29)
1
1¥6] uoc

The unnormalized eigenfunctions are

(2n-i)wz

5 s o= 1,2, ..

.fM,n(Z) = sin

There exists alsc an electrical (potential) field outside the con-

ductor. ¥Find it!

b) TE-mode
From (2.24), (2,268), (2.26a) follows

T - 2
fé(z) = K IE(Z), z < 0

LU 'YZ ) = _ 2: . - 2
IE(Q)+ IE(z) 0, 0 < z < d,‘ Y BHOU K

with fE(~m) = 0, fE’ fﬁ continuous across z = O, fE(d) = 0.
fE(z) = "%, g <0

fE(z) cosyz + (k/yl)sinyz, 0O < z < d.

—

Then fF(d) = 0 leads to Tthe eigenvalue condition
cosyd + (x/vy)sinyd = O.

For k¥ = 0 the eigenvalues agree with those of THM. For rkd << i

approximately
oo . _4ye..2 "
n - (Zﬂ?é)ﬁ * (Qitj)ﬂ’ S T AR B ) (7.31)
) . ; ’ ) udz}JOO' }Jo(jd

For a current system in the upper nantle of the Earth with =500 km

i/¢ = 80 Qm, the greatest decay time is approximately 1/61=MO min.



The TE-decay systems occur as transients to fit the initial con-

ditions, e.g. when an external field is switched on.

2.3. Calculation of fE(z).for a layered structure

Let the half-space consist of L uniform layers with conductivities

the upper edge of layer m being at hm(h1 = 0). Let

0'15 023 e vy GL’
the index O refer to the air half-space.
o =0 - :
h,=0 9 Then given'in z < 0 the potential of the source
61 field
h €y - 7 TKRZ (2.32)
2 . _ fp(z) = f e
. we have to solve (2.8a). i.e.
-1 T -
- -1 1 - 2 o2 h
L-1 LE(é) {k +1mgoc(z)}fE(z;.
h
L
o
L

With the abbreviations

o2 _ : -
ug = k?, a;]» K2+1wpoon? m= 4,2, ... L
and the understanding that hi ;4= @ we have
' _ —O0 Z L Og
f (z) =6{Be ©° +8B %3}, 03> 2z>-n (2.23)
E o o s

- o~a (z-h ), te (z=h ) .
§{B e T ipgle W 3.0 <z<h
. m = e 4

fT(Z) (2.33a)

.Y

1< m< L

In Eq. (2.33) h > 0 is the height of the lowest source point.
Since there are no upwérd travelling waves in the last layer,
B£=Om The constant § will be so adiusted that we can choose B£:1.

With these starting values the continuity of f_. and fﬁ across

I
boundaries yields the backward recurrence relations

+ - o+ -

= . — : sha
Bm (j,m,]m 1/0£m)gmBJ'{+1+ (1 axni-l/am)gmBml (2.34a)
— o+ X p - .

= - ; . M i izs .
Bullray, Jode, Byt (e Joede By (2.34D)



with the abbreviation

* 1 * 1

a9, = 5e 9, 7 5 exp{tam(h ~h )}, m=1L1-1, ..., 1.

m+t m

Having computed B;, Egs. (2.32) and (2.33) yield

6 = £ /By -
Thus the field is specified.
If we are interested in fF(z) for 2 < O only, it is not necessary

to calculate B; and B; separately. Instead only the ratio

4

Ym = Bm / Bm

is required; Because of (2.33) and j2.32) fE(z) is given by

_— = 4
fFQZ) = £ {e “Z ¢y e"%%}, o <~z < h

o] =]

where Yo is obtained recursively from the ratio (2.34a}/(2.34b),
i.e,

(o 4o )y + {a_-o )
- m  mkT” w1 m _mt] exp{~ Zam(hm

(ammam&1)Y * (am+am+1)

Tm 1 hm)}

m+1

-1 <m0

starting with Yy, O.
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2.4, Particular source fields

. Notation: In the sequel only fields with a periodic time function
exp (iwt) are considered. For any field quantity A{x,t)

we write i(gﬁw) with the understanding
that the real or imaginary part of A(x,t) exp(iwt) is
meant. Furthermore, since only the TE-mode is of interest

we shall drep the subscript "E".

In the last section an algorithm for the calculation of the ¢-poten-
tial in a layered halfmspéce has been given. As input occurs
fe(Z,ij) = f;(gfw)exp(uxz), the representation of the source poten-
tial in the wave-~number space. From (2.12a}, i.e.'ﬁ;grad(a%/az)
follows that - 85/82 is the magnetic scalar potential. Between
f;(g,w) and the source potential 5e(£,w) exist the following reci-.

procal relations

~e e iker-Kaz .

P (xew= 7S fo(gjw)e dk dxy (2.35)

~ - . +e0 . ‘wiﬁ.g

fo(_?ifw)e = (2‘“)2 ic{o $ (_r_,w)e dx dy {2.36)
General field

If ¢ is symmetrical with respect to a vertical axis,; i.e. ¢ is a

function of r = x2+y2)1/2 only, egs. (2.35) and (2.36) simplify to
- e : < -KZ
¢ (r,z,w) = 2n S fO(K,w)e JO(Kr)K dk (2.35a)
. :
-k 1 e e : "
fo(m,w)e Z = pI g ¢ (r,z,0) Jo(mr)r dr (2.30a)
Cylindrical symmetry

In the derivation of (2.35a) and {2.36a) the cartesian coordinates

were replaced by circular polar coordinates

¥ = rcosl, v = yrsing, Ky, = kceosy, Ky = gsiny

3

and use was made of the identity
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2T . T
as=S e lKrcusedGEZICOS(KrCOSO)GG=2ﬂJO(K£).
0 0

T e
[oe ik cosg (0}

From (2.35a), (2.36a) follows that if 5 is function of r=(x2+y2)1/2,
- ;

then f_ is a function of k = (K; + K;)T/M. In certain cases (e.g.

example k) below), it is only possible to obtain the potential on

the c¢ylindrical axis (xr

fi

o) in closed form. Then (2.35a) reads

L w _—
6®(0,2) = 21 f kE_(k)e K2 Gk, (2.35b}
' o]
Eg. (2.35b) can be considered as a Laplace-Transform for which the

inversion is
2mie £ (K) = e e 9% (0, 2)e %az (2.36b)
T ot 211 . !
where ¢ is. an appro?riate real constant (thus that all singulari-
ties of ¢e(ofz) are at the left of z = g). Simpler would be the use
of a table of lLaplace transforms.
The spectral representation of the source iz now calculated for
simple sources:

“a) Vertical magnetic dipole

Locate the dipole at r, = (0,0,-h), I > o and let its moment be
M= Mg. When it i1s produced by means of a small current locp then

" M = current x area of the loop. (M is positive if the direction of
the current forms with g a right~handed system, and negative else.)

From the scalar potential

M - R/(41R®), R=x ~xr_, R = |R|

x
=0

fo llows

©96% _ M(z+h)

o
0z 4TR®

e
whence R rree

Since ¢ shows cylindrical symmetry, we obtain from (2.36a) on using
the result

r oo - - 1 =K {z+h)
o Jo(hl)dl = @ .

O 8

immediately

£ (k) = L oKD (2.37)
O 2
B

Vertical magnetic dipole




b) Circulax current loop

Let a and T be the radius and the current of the loop. The potential

“has cylindrical symmetry,but can be expressed by means of simple

functions only on the axis r = 0. For the moment we assume that.

the current loop is in the plane z = ©. For symmetry reasons there
is only a Hz component on the axis.

Biot-Savart's law yields

a” e T
a,/ R
0 I
whence
) Aﬁ; t’ﬁ% .a Ag _E“__
: 74432 Jz24+a?
Ta? AD

A% {0,2) .
e~ e 2
45////a H = L2
A & . 7

AH '
-T z Z(Z?f!'a?')

Now H.Z = —~3V/3z = + 32¢e/322, Hence integrating twice on using
V{®) = 0 = ¢(») we obtain

3/2

~ . ._a
e
o) (o,z) = =

o

z4vztval

Now we have to solve (2.35b), i.e.

g 2 = L egz L
a -
T Ty = Lk E ke 7T dx
- AT 0

Looking up in a table of Laplace transforms:

f;(m) = 22 J1(Ka)
gt
Tf the plane of the loop is z = -h, h > O, then a simple change

of origin yields

f;(m) = EQE; Jj(Ka)e”Kh ' {(2.38)

Circulaxr current loop
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In the limit a + o, T + o, M = ra® I fixed, this leads to the result

(Z2.37)} for the vertical magnetic dipole (Ji(x)mx/Z + 0(x®)).

) Horizontal magnetic dipole

Here M = M §_and

‘;géi _ My ge oL Mx
9% ety 3 F ) o
4wR 4'ﬂR(Rr.§‘,.h)

With this result, suppressing all further details the evaluation of
(2.36) yields !

- Miﬁx ~xh
f (g} = ——"— @ {2.39)

Horizontal magnetic dipole

- d) tine current

Current I at vy = 0, 2z = ~h. It results the scalar potential
R .
g ouy =~ 207 oL aretan Y
Vily,2) = y e arctan et gl

The corresponding source function is

Ty w 2T -Kh e |
£o(k) = LKYK ik de , K o= {Kyl (2.40)

Line current

The delta function 6(Kx) occurs since there is no dependence on .

"Plane wave' (elementary undulated ficld)

Assume a wavenunmber Ky = w and let the scalar magnetic source po-
tential bhe

ve = .y Ssin wy -[w|z
o W

leading to a magnetic field

~]w[z, Hi = fHO sin(wy)em[wlz

A1

e
Hy = HO cos (wy)e . sgn(w)._
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I'Ience, ée — e I_IO quné"q:fl e-- i'w l 7 F
and
- - ZWZHO y
£ () = —= 8(x ) {8k _+w) ~ 8§k _~w)} (2.41)
O awlw] ¥ y y

Elementary undulated field

When the source can be considered as elementary harmonic.field, as
in this case, the Fourier integral representation (2.35) complicates

things only.

Tn the limit w > O we obtain a uniform source field in y-direction.
For the induction process a strictly uniform source field is useless
since only a vertical magnetic field ccmponent induces. Hence w
must be non-zero, no matter how small. If we confine our attention
to a finite part of the infinite horizontal plane, the dimensions
of that part being smaller than 1/|w], then formally we may put

w = 0 and can profit from the particularly simple resulting egua-

tions. Such a source field is called a quasi~uniform field. To the

unrealistic uniform field belongs the source potential

% = H_ yz

which can no longer be represented in terms of (2.35}).
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2.5, Definition of the transfer function Clw,x)

The TE-potential is
- ot igex
¢ (r,w) = ST f(z,K,0)e di dmyﬂ (2.42)
-—00 4

With this potential we define as the basic transfer function for a

half-space with one-—-dimensional conduétivity structure

f(oiﬁr(ﬂ)
: (2.43)
£7(0,k,w)

. Clw, k) = -

Note that f depends on K and Ky separately Vvia the source
' function as an amplitude factor. In the ratio f£/£' this factor -
drops out and it remains only the dependence on K ='¢Ki+K;, since

f is a solution of (2.%a), i.e.

£ {2z, K, w) ='{K2+impoo(z)}f(z,5,w). ‘ ' (2.44)

How can C be determined from a knowledge of the surface electro-
magnetic field, at least theoretically?

From {(2.8a,h) results

- ~a o Fe ~ o RKeX

H=curl? (¢z)=/I{ixf +c*fz])e d,, di (2.45a
~ ~ ~ teo ikex

D 2 = 3 ix £ e < < 2.45)
E=ipy 2z x gradd 1wu0£i zx ix f e de dry (2.45b
Let

~ cq Ee e “ikex

H(g,w) = —— Jf B(x,y;0,0)e dxdy (2.464&

o (21) % —e
~ ' 1 Foo . —igex :
"E(k,w) = ——— [f E{x,y,0,n)e dxdy (2.46b
(21?)2 —co .

denote the surface fields in the wavenumber-frequency space. Then
from (2.45a,b), (2.46a,b)

"H=ik " +k?fz , (2.47a
o= iwuo zZ % ik £ ' (2.47h



There are several ways to determine C:

a) From the ratio between two orthogonal components of the

horizontal electric and magnetic field

Vectorial multiplication of ({2.47a) with 2z and use of (2.43) yields
E=~-iwu, C2xH

~

or with any horizontal unit vector e

ek
C = - R = (2.48)
iwy (zxe) = H
In particular ¢ = x and g = y yields
> E
1 X -1 7y
C = - P! ~ 2.49
lmuo H %wuo H ( @
- y . X

b) From the ratio of vertical and horizontal magnetic field
components '

(2.47a) vields immediately

= : (2.50)

c¢) From the ratic of internal to external part of a magnetic

horizontal component
+

In z < 0 £ reads

. e~ Kz, ot Kz |
f= fo e f fo e (2.51

o

Let er and Hyi be the source part and internal part of Hx' Then
fyom (2.47a) and (2.51)

Fa ey . — -l- .
H 4+H , = ix k(-f_ + £ ) = irg_ Ff?
xe i X% ) o 2
. e — +
H =~ ., = -l k(f + £ = ~jx K T
e T xi Yy (io fo) , x* £
Defining

- T a (e 2,52
S(x,w) = H 4 (c,0) /B, (K,0) (
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we arrive at

=1 1-8 r
C = = 7T , (2.53)

~

The same applies to Hy'

d) From the ratio of vertical gradients at z = +o0 to the

corresponding field components at z=o

N

Let H;(K,w) be the vertical gradient of HX at z = +o0 in the wave-

nunber - freqguency domain. Then

Hx‘{E,w)zimxf“(o,g,w) = iKé{K2+iwuoc(o)}fo(ofﬁpm) (2.54)

On applying (2.44) Eg. (2.47a) vyields

... .H.W

C = - £ - (2.55)
{e?+ipy o (o) }H

0 ps

~

The same applies to Hy' For applications of (2.55) the surface
value of 0 must be known. C can also be cobtained from other field

ratios involving vertical gradients.

The methods a) and d) axe also applicable for a guasi-~uniform
source field; b) and c¢) break down in this case.
The apparent resistivity of magnetotellurics is defined as

E

1 1 .
b= e [E[2 = o | Y2 | (2.56)

Wy
0 Hy o] Hx

According to {(2.49%9a,b) its relation to C is

p, = wnlc|?
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2.6. Properties of C(uw,k)

a) Signs, limitihg values
According to (2.43) the response function C is defined as

/

o o - Llorg,w) | < . .
Clw,r) = T (0, 0" | (2.58)
= (2.43)
where f satisfies '
£ (2z) = {k® + iwy o(z)}£(z). (2.59)
) = (2.44)
C has the dimension of a length. Let
-1
C=g-ih or ¢ = |c[e Y (2.60)
Then g >0, h>0 or O <P < /2 . {(2.61a;b)

Proof: Take the complex conjugate of (2.59), multiply by f and in~
tegrate over z. Integration by parts yields

~£(0) £ % (o) = SO {[£ | *+ (xP-dwy o) [£]%}dz.
: 4]

Division by |f'(o){? leads to the result.

The limiting values of C for w +~ O and w » = are

1

= tanh (kH) for w-o (2.62a)
O ==

1 for wew : - (2.62b)

fiwuoc(o) .

In (2.62a) H is the depth of a possible perfect conductor. If
absent, then H + =, C = 1/&.
Proof: For w=0 the solution of (2.5%) wvanishing at z=H is
f ~ sinhk (i-z), -~ whence (2.62a). = For high frequencies f tends
the solution for a uniform half-space, i.e. £ - exp{JIGﬁ;E}, yield.
(2.62b). This limit is attained, if the penetration depth for a
uniform halfspace with o = ¢ {0},

T

p = 1/‘um2(j ' - (2.63)
. |

is small compared with the scale length 1/k of the external field

and the scale length ]o(o)/o‘(o)l of conductivity variation.
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b) Computaticn of C for a layered half-space

When interested in the electric field within a layered structure,
+

we have to compute a set of coefficients B& according to the rules

of Sec. 2.3. These ceoefficients can be used also to express C:

+
B B 1 B

B - B % B

1 + B
c =1 (2.64)
K

- B

— e

The latter form is also applicable for k=0, whereas a limiting pro-
cess is involved in the former one in this case. If we are only
interested in C then we may proceed as follows: C can be con-

sidered as a continuous function of depth. Then

C 1= w01 m m :  (2.65)

From {2.34a,b} follows:

o

- - + m+1
o+

mmgm)(Bm+1+Bm+1)+ o

— .[. + —— -— = .
+ = (¢ 4 - 2.6
Bn Bm_(g (gm gm)(Bm+1 Bm¢1)’ (2.66)

m

+ 1 :
where ¢ = — exp{ta d },4 =h  _~h 0? = k?+ion o .
m Pt P m w’ n i P

'Hence, {2.65) and (2.66) yield

- ‘
C _ 1 OtmCmH tanh(@mdm) (o
m o 1+amcm+1tanh(amdm)

<G7)

Starting with CL = 1/dL backward recursion using (2.67) leads to

C1 = (,

c) Approximate interpretation of a one-dimensional conductivity

'stIUCtugg

If we cén assume K = 0, i.e. scale length of external field large
compared with penetration depth (as generally done in magneto-
tellurics) then there exists a simple method to obtain from

C a first approximation of the underlying conductivity structure
(Schmucker~Kuckes relation):



gl e

-~ 23 -

Let € = g — ih. Then a first approximation ox(zx) of o(z) is ob~

tained by setting

!

=g, o =t _ | (2.68)

mu0h2

This gannof be proved rigorously but the following arguments are

in favour of it: )

1) zx = g can be considered as the depth of the "centre of gravity"
_of the in-phase induced current system.

2} It will be shown bhelow that z* continuously increases when the
frequency decreases. According to a} ite maximum value is H.

3) For a uniform half-space and k=0 we have h = J§7Eﬂ;5. Hence,
o® is correct in fhis case. For perfect conductions ¢%+o since

h=>0. , ‘ -

This approximate method performs particularly well when there is a
monotone increase in conductivity. The following two figures(9-24)

illustrate capabilities and limitations of the method.

d) Properties of C in the complex frequency plane

For the following considerations it is usefull to consider the fre-
guency « as a complex gquantity. Then in the complex frequency

plane outside the positive imaginarv axis € is an analytical func-

tion of frequency. For 2 proof multiply (2.5%) by £ and integrate

over z. Then the integration by parts yields

~£7(0,0) £ (0,0)=r L [£' (z,0) [ 2H{c?+iou o (2) }| £(z,0) | }az. (2.69)
0

Hence, for w not on the positive imaginary axis f'{(0,w) cannot
vanish. There are neither isolated poles nor a dense spectrum of
poles (branch cutl). .

Division of (2.69) by |[£'(0,w)]|? yvields

c® (w)=f {[f‘(z)/f'(o)[2+{K2+iwuod(z)}[f(z)£f‘(o)[z}dz ' (2.70)
o

We can easily deduce from (2.70) that

Re C(w) > O, Im(@)-é o {2.71:
< 0, Re(w) >0 .

m C{w) { {(2.711
> 0, Re(w) <O
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The approximate interpretation of C using (2.68). In
the left figure (monotone increase of conductivity)
the zero order approximation interpretes the data
already completely. When there is a resistive layer
(left hand) the zero oxder interpretation needs re-
finement. In the dotted line at the left hand, an
approximate phase of C was used. This approximate
phase has been obtained by differentiation of the
double-logarithmic plot of pa(T) (cf£. Bg. 2.77).
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As a consequence of (2.71a,b)Cis also free of zeros outside the

positive imaginary axis.

e) Dispersion relations -

Because of the analytical properties of C, its real and imaginary
part are not independent functions of fredquency. Let ® be a point
in the upper w-plane and L be a closed contour consisting of the

real axis and a large semi-circle in the lower w half-plane.

Then C . Xw0=m+ie
. ,.! f by —
1ogSwndu e
T L w'~wo

since the integrand is analytical

in L. Due to (2.62b) the large

semicircle does not contribute w'-plane
and the contour can be confined
to the real axis. Here put w'=x and let mozw+ie (w real, ® > 0)

tend to the real awxis. Then

1  cdx L 1T (w)e ()8
O=lim -—— f 9é§%$§ = lim {e s Llxidx toer J A {2 =}
gtp e FTUTLE g++0 Teo g4 (x~w) 2 Thiw 24 (x-w)?
1 " c(x)ax
- v A EERE (2:72)

where v

1im o i = S{x - w)

g-r40 g+ (x~w)?

has been used. £ denotes the Cauchy principal wvalue of the integral

Let for real frequencies

Clw) = glw) - ih(w).

Here g is an even and h an odd function of freguency, i.e.
g{w), h{-u) = -hw).

g (~w)

This is a consequence of (2.70). Hence a separation of (2.72) in

its real and imaginary part yields



| 1 ¥ neoax _ 2 7 xhx)d
gl{w) = ,_T,r_, £ __ﬂ}?}_fé__?f. = :1?"[ ERAAICX (2.73a)
—co o x? - w?
1% ga 2 2 g (x)dx
hip) = ~ F 3i§5—£ =<2 f WaAR) AR (2.73b)
T * o xZ-w? : -
Dispersion relations

Dispersion relations of this kind occur in many branches of physics.
They are a direct consequence of the causality requirement.
Relations corresponding to (2.73a,b) exist alsc for modulus and

phase of C. Due to (2.71a) C is also free of zeros in the lower

log{/Iuy o (o} C(w)}‘
is analytical there and vanishes for [w[ ; o due to (2.62b). Let
Clw) = [Clw)|e V) | (2.74)
and assume w > O; Then the relation corresponding to (2.73b) is

dx

x2-p?

pr- §= - 2 s Log{/56(0)  [c(x) ]|

or introducing the apparent resigtivity from {2.57}

(>
B ~ . ax___ -
Yw) = ¢ - = F loglp, (x}/0.} e {2.75)
) X
where Po = 1/0{o). There exists a simple approximate version oxf
{(2.75). Integration by parts yields
. © dlog p_ (x) .
B A S8 . W~ %
vlw)~ 7 = o g i% loglg | dx
1 © dlog pa(x) w - Xpdx
T © loglpxiTx
o dlog x%
or since x | loglz ; i is an integrable function peaked at w=x,

in an approximate evaluation one may draw out of the integral the
term dlogpa/dlogx!y_m. Hence

dlog p_{w)
pl) - 77 a__, (2.76)
dlogw

where the result
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o0 1 )
w-xdx _ -ty dt . _ @
[ loglppil= = 2 [ loal) £ = - 5
o 0 - _
has been used. With T = g%, dlogw=-dlogT. The final result is
- dlog p_(T)
~ T ] a .
Plw) ~ 7 {1 + dTogT (2.77)

Since in general double-logarithmic plots of pa(T) aré used, a first
approximation of the phase can immediately be obtained from the
gslope of a sounding curve. The degree of accuracy can be asserted

: g T g from two examplesAgiven at the

!

left. True phase in broken

» xoagm
L o AP
}

mi

g??*r

lines, approximate phase in
full lines.

) . . s+ . The simple approximate method
of inversion described in ¢}

o (Schmucker—Kuckes relation)

————— ahie Phuse
Nihtrurg }
5. +

combined with the approximation

{2.77) provides an extremely

T ¥ T

simple tool to derive a zero
order approximation of the true

conductivity from apparent re-

sistivity.
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il i —Haherung ('i&
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- /0 _{w)
£ o a W, _H 2 ‘ -
2 == ‘{T—'—'COSIP, g (2 ) == (2-78)
Yo pa(w)sin2¢

f) Inegualities for the frequency dependence of C

Cauchys formula is

1

Clw) = o= [
2mi

L

" Clw'")

A (2.79)

dw?,
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where L is a positively oriented closed contour enclosing only a
domain where C is analytical and the point w. We choose the par-
+icular contour shown at the left. When the radius of the circle
tends to infinity the circle does

not contribute since Clw) = 0{1//5)
for |w|+«. Hence the contour can be

confined to both sides of the posi-

Ut tive-imaginary axis. On the right
w hand side put w'=ii+e, & > 0. Then
(2.79) yields
, o . P P '
Cw) = - lim 21. s C(ll;ei ; CTliArte) 4y =
ge++o <7t o : 1.
o0 - o :
- o 4 1 Im C(iite) _ ¢ gAdx
Lim o / A+iw . dx =/ Atim
g-+r+o _ 0
Cwhere g(A) = - lim = Im C(il+e) > O
: erto T

in virtue of (2.71b). Summarizing:

cw) =5 HHA L g00 >0 (2.80)
- 0

The non-negativity of g(A} has the consequence that C must be a
smooth function of frequency. Again let w be a positive frequency
and let

C =g - ih.
befining
- df df df ~ ' 4
= mlll  TE enmrmeas TS T s s - 2.8
DE T dlogw dlogT - ( "

then the following constraints apply

[ctpc| <9 - Ipcl < h (2.82a,b)

{c+213c+33%[ < g .[DZCI‘ < h (2.84a,b)

g2z2o0 h > 0 (2.82a,b)
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(2.82a,b) simply results when (2.80) is split into real and imagi-

nary; it has already been given above (XEq.(2.67a,b)).{2.83) is

proved as follows

. ® g (r) <
|ctpe]=[ctuc (m)[=l£ T‘%;r%%-)—z- ax| < £Ik+;m[2}\q(k)dk
RTLe)
o AZ4up?

The other constraints are proved

constraints involving second and

in a similar way.

higher dexrivatives.

There are cother

In terms of

apparent resistivity and phase ¢ Igs, (2.83b,a) read:
1 Dpa .
74 - —2)2 + (DY) ? < sin?y (2.85a)
Pa
1 Dpa
701+ -5--—)2 + (DY) ? < cos?y {2.85b)
a

The slope of a double-logarithmically plotted sounding curve is
- Dpa/pa. As a consequence of (2.85a,b) we have always
. Dp :
[—=] < 1
Pa
The monotone decrease of the real part of C with freqguency is a

consequence of

glw) = f igéﬁ_.?
o

The following figure shows data (full lines) which are inconsistent
on the basis ofabne—dimensional model, since the constraints (2.83a,b)
are partly violated. Then the least corrections to the data are
determined that the inequalities are satisfied. Since this is only

a necessaxry conditionf‘interpretability is not yet granted.
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g) Dependence of interxrpretation on wave-number

The fundamental equation is

1

' (z,w) “'{K2+imu00(z)}f(zﬁm).

By the transformations

1 tanh (i¢z)

-~

M2
1

£

¢ = ¢ » cosh" (kz)"

I

f ¢+« sechikz)

it is transformed into

.%“(E,m) = iwuoa(z)f(z,w)
in such a way that !
: flo,w} flo,w]
Clw) = - Zpi= = - AL
A £ (o,m)

(2.86a)
(2.86b)

(2.86c)

remains unchanged. Hence any € can first bz interpreted by a uni-

form external field (k=o} and the result 5(5) is then transformed

to the true conductivity by

o(z) = sech“(ﬁz)-;(%'tanh(Kz)B

(2.87)
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For this interpretation the condition

. 1
Clo) < =

has to be satisfied on C(w}).
An application of (2.87) is given in the following figure,

when k increases attenuation is interpreted
by geometrical damping at the expense of
electromagnetic damping due to a perfect
conductor.

. 3. Model calculations for two-dimensional structures

~3.7. General equations

We are considering now induction problems, where both the conducti-
-ﬁity structure and the inducing field are independent of one hoxri-
zontal coordinate, say x. Compared with Ch. 2, the class of in-
ducing fields has become more restricted, but the class of ad-
mitted conductivity structures has heen enltarged.

For x-independence, Maxwell's eguations

curlf = Gﬁ, curle = —iprH

are split into two disjoint sets
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BH? 3H ~ oH w
—? = X g B —t 2z o R
3y 2z X 32 ¥
Y ~ U ~
X . . X o :
Fraie lmuoH 5y g EZ
9E ~ 8 ohn ~
._._.2{.. = i ...__X — ._,._Z'_ = \
5y Foiwy H oP g 1mu0H
TE-mode ox E—polérization TM-mode or H-polarization

{3.1a,b)

{(3.2a,b)

{3.3a,b)

Phe TE-mode has no vertical electric field, the TM-mode has no ver-

tical magnetic field. In the treatment of these modez the use of

—~
"

electromagnetic potentials is not necessary since ﬁx and H  can serve
as pertinent potentials. For conciseness let
. H: = Hx ' E: = Ex {3.4b;a
Then E and B satisfy the equations .
AE = k*E , (3.5a)
‘ k? = iwp o
. -0
dlvéngradﬂ) = I (3.5h)
k

In uniform domains both equations agree. Eg. (3.5b) resembles

equation of heat conduction in a non-uniform heat conductor.

the

The continuity of the tangential electric aund magnetic field compo-

nents at conductivity discontinuities leads to the conditions

B, %% continuous : TE
1 98 e .
H, g EY continuous : M -

9

e

(2.6a)

{3.¢€b)

o™ is the derivative in direction to the normal of the discontinuity.

The E- and H—polarizgtion shows very differeant patterns. From (3.1b),

(3.2b) follows that H_ is constant in the air half-space (o=0). Hence

the T™™-mode admits only a quasi-uyniform inducing magneﬁic field., In

contrast in the TE-mode any two—dimensional inducing magnetic field

is allowed.

Hence,

Jg ¥ez) and  H, 8(z+h),

the source terms to be added on the RBHS of (3.1a,b) are

3

/4
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assuming that the TM magnetic source field is due to a uniform
sheet current at height z = -h, h > 0, This assumption, however,

is immaterial for the following.

In the sequel all field quéntities are gplit into a normal and
anomalous part, denoted by the subscripts "n" and "a", respectively.
The normal part refers to a one-dimensional conductivity structure.
Let ' '

oly,z) = Un(Z) + o, (y,z) (3.7)

k¥ {y,z) = k2(z) + ki(y,z) : (3.8)
E(y,2z) = E (y,2)} + B (v 2) ' (3.9a)

= - 9
H{y,z) Hn(z) e Ha(y,z) (2.2b)

£ and Hn are defined as solutions of the eqguations
e
AE = k* B+ j (3.10a)
n nn
d 1 4 _ S ’ o a
n ‘

vanishing for z = .,
In virtue of (3.5%a,b), (3.%a,b), and (3.10a,b) Ea and Ha satisfy

- 127 2 4
AEa = k Ea + ka En _ (Z.11a)
dH
— . a 1. _ 1 n p
le("];Z' gradHa) = Ha+ ———dz (-——-—kz wkz)waz r 2 E’_ O - (3:? Ib)
' n

If the anomalous domain is of finite extent, Ea has to vanish uni-
formly at infinity. Under the same condition H, has to vanish uni-
formly in the lower half-space. At z=0 Ha is zero.

If the anomalous domain is of infinite extent in horizontal direc-

tion, we can demand only that Ea' Ha40 for z + =,

- For a numerical solution of (3.11a) the following three choices of

a basic domain are possible (boundaries hatched}.

In approach A, (3.11a) is solved by finite differences subject to
the boundary condition Ea=0 or better subject to an inpedance
boundary condition (below). In approach B (3.11a) is solved by
finite differences only in the anomalous slab. At the horizontal
boundaries boundary conditions involicity the normal structure
above and below the slab are applied. I approach C (3.11a) is re-
duced to an integral equation over the anomalous domain. These

approaches will now be discussed in details.
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3.2. Air half-space and conductor as basic domain

(Finite difference method)

¥Yor the TE- and TM-mode we have to solve the differential equa-

tions (3.5a,b), i.e.

AR = X2E + iwﬁoje , k2=iwﬁoc : (3.12a)
div{l;gradﬂ) = H, H = H_ at z=o (3.12Db)
k B

with the boundary condition that the differences EameEn and
Ha=H—Hn vanish at infinity. En has to be computed for any given
two~dimensional external source field along the lines of Sec.2.3.
The Hn~field belongs to a uniform external magnetic field.

In the finite difference method, the differential operators in
(3.12a,b) are réduced to finite differences. For simplicity a
square grid-with grid wf%h h is assumed., Consider the following

configuration of a nodal point O and its four neighbours:



.¢3

Then the evaluation of (3.12a) in uniform subdomains yields

¥ - ] — n = p 2 4
E14E2+E3+E4 4EO h*k EO
[oh o
E =« {B. +R.+E_. + E,} (3.13)
O 44n2k2 + 273 4

-

Within uniform subdomains the same formula spplies to H. Differences
occur if the nodal point O is at an interface. Consider as example

a vertical discontinuity:

Y
Region 1 / Region 2
: L/
o /0 o
2 / 4
/

w
I

In the absence of region 2 one can write a central difference egua-

tion for E at nodal point O as

(1) 10 (1) 0 (1) (1) 22y (1) |
E1 4E2 +E3 %24 (4+h k?)Eo : {3.14)

where the bracketed superscript indicates the region. In the ab-

sence of region 1 the central difference eguation at O is

(2),.(2), . (2),(2) _ (2) '
B, R, 4RSS 4R = (4+h2k§)Eo . (3.15}

At the vertical discontinuity we have becanse of the continuity of
E:

1) (2 ey Ao @) () _ 2oy
Since also the normal gradient of E is continuous,
(1) _, (1) _ L(2)_o(2)
By -hy o= EO-ES (3.17)
(2)

The field wvalues E2 and Eé1) are fictitious and have to be elimi-
nated with the aid of (3.16) and (3.17) from (3.14) and (3.15). The

result is

B, o e {E,+E
4+h2(k§+k§)/2

2+E3+E4} (3.18)

A

L - e (1) . (2}
where Ezk— E2 and E4 = 54 .



Hence, the conductivity is to be averaged in the TE-case. Now con-

gider the TM—-case:

H(1)+H(1)+H(1)+H£1)= (4 + hzk%)Héq} : {3.19)

1 2 3
(2),,(2) 1 (2) 2V, o (2) ' ~
H1 -Hnl2 -lH3 +H4 = (4 h? k )H {3.20)

The continuity of H and % dn/dn yields

(1) _ (?)_ (1) ., (2) 2 (1) _, (2) 2 "
H'i Hl HO —Ho _HO, H3 —1{3 _H3 (3.21)
(H(q)"Héi)yb = (H(z) H /02, (3.22)
from where we obtain on eliminating Héz) and Hé1)
H, + H, + (H,/k2+H,/k2) k" .
H = 1 3 Eu 1472 (3.23)
© 4 + n?k?
where (M]:i)‘_’j = l(l_ + l~) and H_ = H(1), H —H(?)
27, 2 2 2 2 4
ki kg

similar formulae hold for a horizontal discontinuity.

The normal values of En and H, are used as starting as initial
values. At the boundaries we have two choices
a) The boundary values are kept fixed, i.e. E = E_,

n
b) Or free boundary values are used a$ impedance boundary condition,

i.e.

k() E () = = 557 (3.24)

where n is the direction of the outward normal.

(3.24) is obtained under the assumption that the anomalous fields
diffuses in form of plane waves outwards, a valid approximation only
if the local penetration depth is small compared with the scale
length of conductivity changes. It performs poorly at edges and in
isclators. However, better then Ea=0.

Eqg. (3.24) yields as condition at the upper edge of the air layer:
BEa[Bz = 0 {i.e. constant horizontal magnetic field)}.
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The iteration is carried out either along rows or columns. Generally
the GauB-Seidel iteration procedure is used with a successive over-

relazation factor to speed up convergence.

3.3. Anomalous slab as basic domain

In practice it is not necessary to solve the diffusion equation by
finite differences in the total conductor and the air half-space.
Instead it is sufficient to treat the eguation only in that slab
which contains the anomalous domain.

Let the anomalous slab be confined to the depth range 24 2z 2 24,
Within this domain we have to solve the inhomogeneous egquation

(considering for the moment only the TE-case)

AE = XPE_ + k2 E (3.25)
a a a ' n
=(3.5a)
subject to two homogeneous boundary conditions at z = z, and z,,

" which involwve an for z < z1 and z > z,

the vanishing anomalous field for z -+ ¢ «, When (3.25) is solved

respectively and account for

by finite differences, the discretization involves also the field
values one giid point width above and below the anomalous slab.
The idea is to express these values in terms of a line integral
over Ea at z = Z4 and 2, respectively.

Let V1

and V, be the half-planes z < 2, and z > Zor respectively.
Let G (m)(golg), x, r, € V_ be Green's functions which satisfy

AG(m)(go[g) = k2 (x) G(m)(EOLEJ—G(g - x ), m=l,2 (3.26)

subject to the boundary condition

G(m)(goli) = 0 at Z = %y m= 1,2 (3.27)

In V, and V

1 ot Ea is a solution of

— 2 ' .
hE, (x) = X} (@) B, (). | (3.28)

Now Green's formula for two-dimensions states that

e PO
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Ly U

_ I 3V |
r{uav-vaulda = F{u o 5

lds ' (3.29)

The RHS is a closed line integral bordering the area over which the
LHS integral is performed. In the RHS differentiation in direction
to the outward normal is involved.

Prom (3.28) and (3.26) follows

GAE, - E_AG = §{(x - x )E_.
a a - ~o'Ta

Identifying U with G, V with Ea’ Bg. (3.29) yields in virtue of
(3.27)
- - : 3 (m)
E_(x) = / B (x) 3= ¢ (x lr)as.
around Vo '

(m)

Now G and its normal deYivative vanish at infinity. Hence, only

the part of the line integral along the axis z = Zn contributes.

. S =9 o .8 2
For m=1 : %= = 7o M=2 1 oo 5z
Hence,
m heo ] (m) " '
E_(z)=(~1) {m Ea(y,zm)ggg ¢ (x ]y,zm)dy, r eV, (3.30)

Because of (3.26), Eg. (3.30) depends only on the difference YoV, -

befining
ROV (yoy 2 ) = (1™ 2 6™ ly,z ) (3.30a;]
m B
EBg. (3.30) reads shorter
T ) ~
E (v rzy) = J K (y-y ,2.) E (y,z )dy (3.31)

—00

(m)

For a layered structure in Vh, the kernels K are easily detexr-

mined:
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Let us first consider the case m = 2. Assume that there are L uni-~-

2=0 form layers below z = z, with con-

ductivities U?, 02, vesy O and

Lf
z=24 upper edges at z = h., h h

// ‘ 21 ot I
/§;E;>/;42%222;7 (h1 = 22). In applications the '
7 z=z,=h, vertical grid width z_ - z, will be

" so0 small that Zo is in the first

————— — 0, = == ==~ g=3g
1 ho uniform layer. Then a solution of
=
2 (3.26) having the correct singu-
o
2 z=h3 larity is
v h
. z=h
1,
. _ w ~q,|z-z ]|
1 N -1 1 o — 34 -
§F~Ko(k1[£_50|)— T i e cosi(y yo)a1 (3.32)
R veman=aa = Sy 2
ky = #Ebuocq, o o\ +k ]

-

~However, the boundary condition (3.27) is not yet satisfied and the
normal conductivity structure has not yet been taken inte account.

To achieve this leit in

© - 0, {z-2.,}) -—-o,(z~z.,)
2 1 2 1 2
zzizizozG( )(r f£)m gﬁo{e -e }cosl(y—yo)&l, {3.33a
e (z-z.,) ~-a, {z-2.)
L (2) a1 2’ - % 2 _
zogzihz.G (r lr)= iGL{B1 e +B1 e tcosx(y yo)dl (3.
: 5 © 4 G {z=h) ;am(z~hm)
“h <Z§hm+1’G( )(r ‘E)zgsL{Bm e +Bm e }cosl(y—yo)dk(3.

m=2, ..., L; hjéfm Eg. (3.33a) satisfies already (3.27). Starting

with Bz = O, BL = 1 the coefficients Bi are determined from the
(2)

. continuity conditions for G
Sec. (2.3):-

across intexrfaces as indicated in

x — R |

ok

#

- - 1 -
gm = 'i' exp{ium(h h )}

T
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4
Having determined B;, the coefficients 60 and GL are determined
from the fact that the difference between upward (downward)
travelling waves of (3.33a) and (3.33b) at z = z_ must be due to

the primary excitation given by (3.32). Hence,

o, {z =%.) o, (z -2,)
5 B+ o 1" %0 72 + 1 - 5 e 1*"o 72
L 1 21r0.1 0
g, (2 —~2.)
~ ~ L - 170 72
; aq (2720 + 55 L By ¢
- e 1
0 .
whence
f+B+ + £.B. f+ - £ g {z -~z.)
_ 11 171 - 1 1 £ _ 1" %0 72
60 - T 1 6]._, - A — 7 f1 = e .
2110&1031 + B1) 2ﬂa1(B, + B1)
From (3.30&)
4+ -
(2) B L I
R (ymygezy) =5 - — cosA(y-y }di. (3.35)
o] B'l + }31

gince (3.35) involves only the ratio B:/B;, it can bhe expressed

in terms of the transfer function Cat z = z, {(cf. (2.64)):

_ u1c -1
u1C + 1

. B

-

B

-

For a uniform half space (3.35) is simply

. w g (zZ2-2,_.) {z —z.}k
(2) 1 %qY45%2 27 %1
CKY  y-y 42 ) == e cosA(y-y Ydi= K. (k Igfr 1)
e 9 ™o : o © R o 1=
—_ =0

{3.36)

For k1 + 0O (iéolator) this yields
: : (z_~z,) : . .
k2 gy _,z) = - o_2 . (3.36a)

................. ﬂ{y~yo)? +u{z§zo}?}
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The case m = 1 can be treated in a quite analogue way. If the
anomalous slab extegg till the surface, i.e. 21 = 0, the pertinent
kernel is easily derived from (3.36a):

k1) (y- ) = - i < 0 -
YoY e 2y ¢ 2 (3.37)

T{{y-y)?* + 22}

(Because of (3.30a) there has been a change of sign.)

If there are more normal layers (in addition to the air half-space),
the problem is treated as for m = 2, with the air half-space as
last (L—-th) layer, we have to calculate GL and hence B: separately.
We can't use C.

(m) are nicely peaked functions. The halfwidth is

The kernels K
approx¥imately 2[zm~20[, i.e. twice the vertical grid width. For an
insulator the tails are comparatively long (~1/y?), for a conductor,
an exponential decrease is inferred from (3.36). In general two
points to the left and the right of the central pqint will give a

satisfactory approximation:

2 '
Ea(,y,zo) ~ E P Ea(y + J.hy, zm), (3.38)
i==2
where /2
h
& 3h._/2 o
pM=2 [k 0,z dau, pI™ =Y k™ 0,z yau, pM = k™ u,n,
o hy/2 3h, /2
y
Py = P;s I p; =1, hy, = horizontal gridwidth.

(3.38) expresses in any application of the finite difference formul
the anomalous part of the electric field outside the anomalous slab
in terms of anomalous field values at the boundary. At the vertical
boundaries the impedance boundary condition (3.24) is applied.

So far only the TE-case has been considered. The TM~mode can be
handled similarly, taking only the different boundary gondition
into account. The approprate formulas can be worked out as an
exercise.
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3.4, Anomalous region as bhasic domain

Integral equation method

In the integral eguation approach Maxwell's eguations are transformed
into an integral eguation for the electric field over the anomalous
domain. With the usual splitting

— = - 2 _ 32 2

we have
AE = k®E + oy, 5€ | {3.39)

AE = k2E_ + iwuoje , | (3.40)

or subtracting

AE = k;Ea + k;E . (3.41)

Let Gn be Green's function for the normal conductivity structure, i.e.
. _ 2 — . -
AGn(Eolg) = kn(E)Gn(Eo‘E) §(x - x ). (3.42)
Gn(501£) can be conceived as the electric: field@ of a unit line
.current placed at X, and observed at x.

Multiply (3.41) by G » (3.42) by E_r subtract and integrate with

respect to x over the whole space: It results

B = 2 | ° -
B, (x,) JRZ(E(X)YG (r [r)an + J{G AR E,AG }da. | (3.43)

Green's theorem (3.29) yields
_ 3L _ aGn
TR ] = ' ____“__CL__ 1 bt =
JiG AE -E_AG A = [ {G T B e }ds = 0,
since Ea and Gn vanish at infinity. Hence, introducing into (3.43)

E instead of E_. we obtain the integral equation

B(z) = E_(r)) - J X2(DE@G, ( lxan | (3.44)

In (3.44), the inhomogeneous term E_ can be computed for a given
normal structure and given external field in a well-known way.

It remains to determine the kernel Gn(Eoi£)‘ It satisfies the reci-
prdcdity relation

G (

LSl = G (xlx,)s (3.45)




i.e. source and receiver are interchangeable. For a proof write
(3.42) for Gn(EO\E‘) and a corresponding equation for Gn(glg').
Multiply these equations crosswise by Gn(£|£f) and Gn(EOIE‘), sub-
tract and integrate over the full space. Then the result is ob-

tained on using Green's theorem.

Tor a solution of (3.44) we have to put a line current at each point
Eo.of the anomalous domain and have to compute the resulting elec—
tric field at each point of this domain replacing its anomalous
structure by the ncrmal conductivity. Assume a rectangular anomalous
domain with NY cells in ywdirectioh and Nz cells in z-direction.
Because of horizontal isotropy the field depends in horizontal direc-
tion only on the distance between source and receiver. Hence, we
need field wvalues only for NY horizontal distances. Due to the
layering there is no isotropy in vertical direction. Here we have

to put the line current into the center of each cell. Because of
reciprocity the sorresponding field values have to bhe calculated

in and below the depth of the source. Hence, for the kernel Gn a
total of NY - %Nza(NZ+1) field values has to be calculated.

A second set of kernels is required which tiansform on using (3.44)
the electrical field in the anomalous domain inte the electromagne-
_tic surface field for all three compoﬁents Ex' Hy' Hz' The number of
reguired kernel data depends on the range where the field is to be
evaluated.

It remains to calculate GH(EOIE) for a layered structure. Assume L
layers with conductivities a, = 0, Oqr eoor Op and upper edges

hy =0, Ny, wevy hpy Dy g o= =

Let the source and observation point be placed in the m-th and p-
layer, respectively, and let in the m-th layer

w
, Gﬁ(golg) = g{?; + P;}cosl(y~yo)dl (3.46)
where
A
N GOA fm(z), z £z,
P, = , _ (3.47)
SLB&fz(z), z > z

+ e . 2 a2
‘fm(z) = exp{iam(z—hm)}, o = A +iwp o .
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60 and 6L can be so adjusted that A; = B£ = 1. Since there are no

sources in z < 0 and in z > Zq if L is in the L-th layer,
- +

AO = By = 0. With these starting values the continuity of Gn and
BGn/Bz across interfaces yields the forward and backward recurrence
relations
o1 At s (1F Yg_ A = 1
Am_( _am+1/u )gm 1" m-1 0tm-—“l/mm Im-1Pp-1? ™5 Froeees M
+ + + — + _
Bm_ * m+1/ m Im Bm+1+(1+am+1/u )g Bm+1' m = L 1’ crer M
 with

+ +
g;:1/2’ g&=(1/2)eXp{iam(hm+1#hm)}’ m= 1, ..., L-1.

In the case | = L no recurrence is required for the B-terxrms. The
coefficients 60 and GL are determined from the fact that in (3.46)
the difference in the upward (downward) travelling waves for z > Z,

-

and z < Z must be due to the primary excitation given by

o - —
37 Kol Iz D) = 3 1 e "l é"!cosww%ﬁ '-
Hence,
, B+ B:f: e 1. BEL A:f:
0 2ﬂau A:B; - A;B: L 2ﬁau ﬁ:B; - A;B:

+ +
where f; = f;(zo). The nominator {including au) is a Wronskian of

the differential equation

W' (z) = {A* + kI (z)}W(z)

which is a constant thus ensuring reciprocity. (Proof?)

In applications the anomalous domain is split into rectangular cells,
the electric field is assumed to be constant within each cell. Then
(3.44) reduces to a system of linear equations, which is easily
solved because of its dominant diagonal due to the logarithmic
singularity of the kernels. Either direct elimination or GauB-Seidel
iteration can be applied, the latter being in general Quickly
convergent. When E is assumed to be constant within each cell, the
integration over the kernel is easily effected by adding in (3.46)

the factor
‘ 451n(Ah /?)blnh(a h /2)/(Aap),

.o A . | - - - £ R T D —_——" 1
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The integral equation method for the H-polarization case looks
slightly more complicated. This is related to the fact that even
for three-dimensional structures Maxwell's equations look simple
when formulated for E, whereas in the H-~formulation additional gra-

dients of the conductivity arise:
curlzé + iwuoc i = 0, curl(%~curl§) + iwuoﬁ = 0,

The pertinent equation for H-polarization is (3.5), i.e.

[

div(% gradi) = iwp H (3.48)
with the usual splitting
o=0¢_ + 0, H=H + H
- Tn a n a

and the additional definitions

p=1/0, p, = T/GR, P, =P = P, (3.4%a~-

the equations for the normal and anomalous part are

a 1 d s - -
Eg(on P Hn) = 1wu0Hn, Hn(o) = Ho ) {3.50)
and
| dlv(pn gradHa) = 1quHa - dlv(pa gradH} {3.51)

‘This equation corresponds to (3.41) for the E-polarization case.

Green's function appropriate to (3.51) is defined as

i ~adG = iwu - o . )
dlv(pn glaan) 1wu0Gn 8 (r go). (3.52)

Physically Gn can be interpreted as the magnetic field due to an
infinite straight line of oscillating magnetic dipoles along the
x-axis. )

Multiply (3.51) by Grl and (3.52) by Ha’ subtract and integrate over
the whole space. Then

.I{Gndlv(pngradﬂa) - Hadlv(pngradGn)}dA =

= - fGndiv(pag§adH)dA + Ha - {3.53)




[
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From the generalized Green's theorem

f{udiv(ygradv) - Vdiv(wgradU)dA =

; #{u %:{- -V 52 )ds ‘ (3.54)

follows that the LHS of (3.53) wvanishes. Applyving (3.54) also to
the RHS of {3.53) we obtain, introducing Ha = H - Hn:

H(x ) = Hn(50)+fH(£)diV(pa(£)qradGnigclg))éA (3.55)

This is an integral equation for‘Ha. It can be cast in a slightly
different form, which is wvarticularly suitable for applications
since the high degree of singularity due to a two-fold gdifferentia-

—

tion of Gn at r =‘£o is removed. Because of

P
div(pagradGn)=Eg{iwqun~6(E—EO)}+pngradGn=grad(pa/pn)
n

Eg. {3.55) reads alternatively

p (x ) | p_(x)
H(a;o)———?i% n(x )+ () {iew G (z |x )B%(—r—)—-wn(g)grad@n(}:ol}:)
p, (x) - :
. grad (—T}qA (3.5¢€
n - £

The kernel of the integral eqguation consists of two parts. The first
part takes account of the changing'concentrétion of current lines
in anomalous domains. It is a volume effect. The second effect
regsults from the bending of current lines where conductivity changes
It is essentially a surface effect.

In the case of discontinuous changes in conductivity, which is the

most common asSumption, {(3.56) needs a slight modification. Assure

that the anomalous domain consists of rectangular cells, where the

conductivity is allowed to differ from cell to cell. H is assumed
to be constant in each cell.



sigee,

Sk : : L
E{H(lr3)+H(l+1:3)}Pn(llj)

HHG ) HHE I Yo, (4,9)
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Y
& hy >
lT\
h (i,3) =  (i,3+1)
! ;
(i+1,3)

I
z

Then the discontinuity between cell (i,3j) and (i+1,]) contributes

to the integral

aGn(Eoll,j)
9z

pa(i'{"t:j) pa(irj)
I e RN o DR
pn 1+t ] pn ¢

3G . .
It has been used that H and pT are continuous across interfaces.

The contribution from the (i,3) » {(i,j+1) intexface is

(i,3+1) o, (i,3)

3G _(r ]i,j)'
n_—o , ~ —th .
(i,3+1) pn(l,j) 7

oy

P
*1
P

a

n

The integral equation is decomposed into a set of linear eguations
for the Ha—vaiues at each cell. The electric field is then obtained
by differentiating (3.56) with respect to the coordinates of x . -

o
It remains to calculate G,- At z = O Gn has to satisfy the boundary

condition of H_r i.e. H Of G, = 0. The boundary conditions at

a

interfaces are Gn and(1/o)acn/az continuous. Assume again L uniform
layers with conductivities © o

hy =0, h hy, by o=

: s+, 0. and upper edges at
2 L P

1!
2! LA LI o
Let the field in the m-th layer be

m 1 _ PO - -
¢, lx) = £ {o + o Yeosr(y-y )dx

K +
where Yo C_fi(z), z < z

mm o]

=

. o L
YL mfm(z)’ 22 %

+ o _ 2 - y2 ;
fm(z) = exp{iam(z hm)}, o’ A% o+ Lo O
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Yo and v, can again be so adjusted that C: = D£ =1. 6, =0 for
z = O reguires then C; = «~ 1, and Gn + O for z = « demands Dz = 0.

tarting with these initial values, the boundéry conditions yield

the forward and backward recurrence relations

6 B _
A m~1, -+ + = m=1, = -
= (1 A (] s 2
Qm (1 Bm )gmwi cm~1 (1+8m )gmm1 Cm-1' Zzimzw
Di=(1+8m+1) + pt + (1¥'Emi1) + L~-1T>m>
m B Im ] 8 “m Tmerf T Zm M
m | m :
where
- S 1 )3
By = Op/ Oy 204 gy = 5 explto (b, ooh )

i is the source layer. There is no recurrence required for the C-
term if g4 = 1 and for the D-terms if u = L.

The free factors follow again from the source. representation

ay %y —uu[z~z | 3z
‘-2“;&' Ko(kul']i""sgo[) = -é—_E g e .COS;‘\(Y"YO) 'a; ‘

which must account for the difference for upward and downward

travelling waves at z = 2o Hence,
o D £ 4 D £ o . Cf o+ £
Y= 5 ¥ $4p U Ef Yo ?u E U u E .
o g b . 2O + -
b - CD D - C
T Tt LT TR Ty

With the present determination of the field Gn satisfies again

. ; T - : = G . "00F?)
the reciprocity relation Gn(golr) GH(ElEO) (Proof?)
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4. Model calculations for three-dimensional structures

4.1. Introducticn

In the three-dimensional case the TE-~ and TM-mode become mixed and
cannot longer he treated separately. Now the differential equation
for a vector field instead of a scalar field is to be solved. In
numerical sclutions guestions of storage and computer time become
important. Assume as example that in approach A a basic domain with
20 cells in each direction is chosen. In this case, only the storage
of the electric field vector would reguire 48000 locations. For an
iterative improvement of one field component at least 0.0005 sec
are needed for each cell. This yields 12 sec for a complete itera-
tion, and 20 min for 100 iterations. This appears to be the least
time reguired for this model. Hence methods for a reduction of com-
puter time and ‘storage are particularly appreciated in this case.

The equation to be solved is

curl®E(xr} + k*(x)E(x) = *iwnole(g) ) (4.1)
where 2. s
k(x) = ilwu o(x).
1. (@) is the source current density.

After the splitting
- 2 2 2 . - _ a
o] 6n+da, k kn + ka’ E E 4+ B, {(4.2a-c)

where En is that solution of

2 , 2 = -3
curl En(i) + kn{g)gﬁ(E) low 1, . (4.3)
which vanishes at infinity, we obtain for the anomalous field the

two alternative eqguations

curl?E  + k2E = - k?E ' (4.4a)
- n—a a

i

2 4 2T Lou2 ’
curl Ea F k°E LaEn (4.4h)

a

Egq. (4.4a) is the starting point for the volume integral or integral
equatlion approach, Eg. (4.4b} is the point of starting for the sur-

face integral approach.
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4.2. Integral equation method

Let gi(zo[g), i=1,2,3 be a solution of

curl?G, (r 1o +k2 ()6, (z lx) = 5,8 ), (4.5)

vanishing at infinity. Herei the %i are unit vectors along the
cartesian coordinate axes: X,=X, X, = ¥, %3 = z. Multply (4.5) by
ga(g) and (4.4a} by gi(golg) and integrate the difference with re-
spect to ¥ over the whole space. Green's vector theorem

J{gccurl?yv-veurl?uldr= [ {(hxV) »curlU- (axU) +curlv}da, (4.6)
where dr is a volume element, dA a surface element and 1 the out-
ward normal vector, yields

- 2 - v i o=
B, (x,) = fka(E)gi(EOlE) E(x)dt, i =1,2,3

since E, and Gy vanish at infinity. After combining all three compo-

nents and introducing E instead of Ea’ the vector integral eguation

n Eo

) =1k (x) g{f(goll:_) ‘E(x)dt (4.7)

is obtained. Here %{is Green's tensor being defined as

3 3 ~

(r |r)= %G, (r |p)= 1% G..(r‘[r)%,'x. (4.8)
=7 2 FiEl R i,4=q 3300

(using dyadic notation). The tensor elements Gi_.J admit a simple
physical interpretation: Gij(Eo[E) is the j~-th electric field com-
ponent of an oscillating electric dipole of unit moment pointing

in xiudirection, placed in the noxmal conductivity structure at c.;

the point of observation is r. Note that the first subscript and
argument refer to the source, the second subscript and argument to
the receiver. Because of the fundamental reciprocity in electro-

magnetism, source and observer parameters are interchangeable, i.e.

Gij'(go[_r_) = Gy (x]x,) . (4.9)

For a prdof replace in (4.5) r by r', write an analogous equatibn
for'gj(glg'), malitiply cross-wise by gj and gi, integrate the ‘
difference with respect to r® over the whole space, and obtain (4.9)
on using (4.6). Due to (4.9), the equation (4.7) is alternatively

written
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E(x)) = E (xr)- Jki(x) E(x)Lfx]x))ar (4.10)

ah

Eg. (4.7) involves integration over the coordinates of the receiver,
(4.10) requires integration over the coordinates of the source.
The kernel G and the inhomogeneous term E, of the integral eguation
(4.7) or (4.10) depend only on the normal conductivity structure.
To determine the kernel %Zreplace first the conductivity within
the anomalous domain by its normal values. Then place at each point
of  the domain successively two mutually perpendicular horizontal
and one vertical dipole and calculate the resulting vector fields
at each point of this domain. At a first glance the work involved
appears to be prohibitive, but it is sharply reduced by the reci-
procity (4.9} and the isotropy of the normal conductor in horizon-~
tal direction. Because of (4.9), from the elements of Green's
tensor

Gxx ny ze

GYX GYY GYZ

sz Gzy Gzz

G need not to be calculated when

3 G
the threée elements ze' wy! Cyz

Gzy' ny, Gzy is computed. From the remaining six elements ny has

the same structure as Gxx’ only rotated through 90°. The same re-

‘1ation holds between Gzy and Gzy. Hence, there are only the four

yx! sz'_Gzz {say). The particularx

ny’ Gzzhcomponent in connection with the re-
ciprocity (4.9) then shows that these components#need to be evalua-

independent elements Gxx' G
symmetry of the Gxx’

ted only for points of cobservation above source points. Consider
for example a vertical dipele at xo=y0=0, Z- Then (4.9) yields

Gzz(o,o,zo[x,y,g) = Gzz(x,y,zlo,o,zo). (4.11)

Because of the isotropy of the conductor in horizontal direction

{4.11) is alternatively written

GZZ(O(O;ZO;XIYJZ) = GZZ(O;OIZ‘*X'"Y'ZO)'
Now, Gzz has circular symmetry around the z~axis. Hence,

GZZ(Q,O,ZO[x,y,z) = GZZ(O,O,zlx,y,zo).
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The element sz_is needed for all z and Z,+ Assume a rectangular
anomalous domain, which is decomposed into cells with guadratic
horizontal cross—section. It is sufficient to pose the dipoles in
one cornexr of the anom%ly in the (x,y)-plane. Then assuming NX, NY,

NZ cells in x,y,z-direction the total number of required kernels is
_ 5 3
| NX NY NZ (~2~ Nz + —2-) . ‘
There is still a reduction up to a factor 2 possible, if instead
of the corresponding components only some auxiliary functions de-

pending only on the horizontal distance from the sourced are cal-

culated._

The corresponding kernels are most easily computed using a separa-
tion into TE~ and TM~-fields as done in Section 1. '

Let the normal structure consist of L uniform layers with conduc-
tivities Gm, m=1, ..., L with upper edges at z = hm’ m= 1, ...,L
(h1 = Q). '

The Green vector gi satisfies in the m-th layer the equation

-

Fa .o
200, 2 I ' 2 .
curl*G.4k*G, = %, 8{r -~ r = .
=i i =5 (x wo)’ km WU, O

We try a solution in the form

m _ 2,5 .M AR
G, =curl®(z ¢,) + curl(z ¥7) (4.12)

where ¢i corresponds to the TM~potential and wi to the TE-potential.
According to Sec.2.1, at horizontal interfaces ¢ and ¢ satigfy the

continuity conditions

gd, %%y P, %% continuous : (4.13)

There is no coupling between ¢ and ¢ across boundaries. Within
uniform layers, but outside sources ¢ and ¥ satisfy identical

differential eguations

Ax? = k2 x?, YU o= g, ¢? X (4.14)

The behaviocur of ¢ and ¢ near souxce points can be obtained from
the particular forms, which these functiconz show in a uniform whole-

space:
- o~kR
Gzl = (kP8 -9 0%, dx,)

§ 19%5 z;;;;: (4.15)

R = !r - x|
=~ -0



For a dipole in z-direction this is egual to
S~ y e—kR , A e~kR

gz = (kz - gradgy- = - curl® (z ———1},
® 4mRk? 4mRk?

(4.16)

since
ate FRzanr)) = ke %/ (4nR).

Comparison of (4.16) and (4.12) shows that for a whole space
&efkR
q) = - I Lp mo

Z - 4uRk? z
S

(4.17)

The absence 0f a TE-potential is-clear from physical reasons, since
the magnetic field of a vertical dipole must be confined to hori-
zantal planes (i.e., no vertical magnetic field, which can only

be produced by a TE-field).

Using Sommerfeld's integrél, (4.17) is written

o ~q[z~zo
¢_ = - I (Ar)aa, of = A%4k®

z 4mk?

e

FAe (4.18)
o & '

The field cof a horizontal electric dipole (in x-direction, say) has

hoth an electric and magnetic component in z-direction. Hence, a

TM~ and TE-potential are needed. Py
Since ' _ k;dli@l
L. a® n 2 2 ~kR o0 "C(.]Z"'Z I
G, = e L I LT ©' g, (r)ax coso
dx*  9y? 47k?® 9xdz R 4dmk?o '
XSLgn(szO)
and
92 2z
(— + _-)J1(lr)cos¢ = - lZJT(Kr)cos¢
,-BXZ ayz
we have
q —a]z~20[ ‘ .
¢x = - e J1(Ar)dlcos¢ . sign(z—zo) (4.19)
47k? o :
and from
| 32 O¥x 1 a2 KR

= d) _— e =

G
* 0 pyez X ox 4rk? 3xdy R

then folldws
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—a[z“zol

J1(Ar)§% siné (4.20)

_1 7
wx*/mée

With this knowledge of the behaviour of ¢z' b, wx in the uniform

e
whole-space, these functions for a layered medium can be easily”
obtained.

Let in the m-th layer hm < z < hm+1

[+4] .
m _ o, et 4 oo
¢, = i {Pm 4 Pm} I, ()i (4.21)
) ’ + &
where .y A _E 2 < Z
f o m m .~ TQ
r
Pm - ’
Bifi A4 .
Y.°n " =~ "o

O -t
60C£f% ’ z 2z, o
+ ) .
where Q"::{ ' (4.22)
n %
GLDmfm ‘ z > 2,
SR
¢$ = f‘{Rm + Rm}Jj(Rr)dl cos
o 4
b o
EoAmfm ' z < zO
+
where R = (4.23)
n £t .
€1 B m ' 22 %

-+ .
-t ey " 2 o y24%2, . . . .
and £ exp{_um(g hm)}, aZ = A®+k:. Then starting with

+ - m_‘ +"‘ “: +."’:. —'.‘: +=.: _: ; '
AO - 1’ AO_Or BL O; BL 1 r CO 1 I Co O; DI_‘ 0; D}.J 1 L]

The boundary conditions (4.13) lead to the recurrence relations



c
* m—=1 -1, + -+ m—1 =1y = -
A= ( + )g o+t + g, _
m o O m-1 m-1 m o m~1 m—1
. m=1, ...,
¢t = (1 P \ull DS e 7 om Yoo oo
m o - @ m~1"m~1 " o -1 "m~1
g o —_ U _
E ot TmEty F 4 m+] -~ “mt+l, + -
B = (U T o )gm Bm+1+(d g )gm Bt
m m m m
w=L=1,...,H
o . o
* P mtkty A+ - _mtl, -+ -
— +
Dm (1 T ) I m+1+(1 * o, } m Dm+1

I+ -

where g; = exp{idm(hm+1~hm)}/k, 95 = 1/2 and ﬁ is the layer of the
source. Tn the case p = L there is no recurrence required for the
B and D terms. The free factors are determined in the usual way
simply by comparing upwards and dowiwards travelling waves at

Z = 2 taking the source terms (4.18)+~ (4.201 info afcount.

- Dropping the subscript p on e k;, A, B, ¢, D, f; for

TR PR TR
conciseness, we obtain from (4.21) and (4.18)

i AT A S PO
' {mak Aok
whence
3 ptet &+ 7 . A}f+ . AT
Yoo T mar? 2t - 5'a | % inax® AR - B'A (4.2¢4)

+ +
vhere £~ means f;(zo). From (4.22) and (4.20)} follows

e | - + - - 1 -
§ D £ 4waﬂ GOC £, §Ccf ¢ yerelin 6,0 f ,
whence
: . - AR - - ‘
§ - 4 DE +pE g o= o CE 2 CL (4.25
0 dwe L " ¢p” -~ Dc

ctp~ - pfe”

Because of (4.19) ¢ is discontinuous across z = z_. Hence



ELB+f+ + ~t— = e A'E", e Af - —— = B7f
47k*® 4k ?
H H
_ 1 Btet - 7" g aTEY _oaTE” :
or €= - . T € 5 T T _— (4.26)
47k A B - B A 47k* A’ B - A B

Bfter having determinred ¢Z, wx; ¢x' Green's tensor G is obtained
from (4.12). Also required is the magnetic field in z < O. Only
the TE-part of a horizontal dipole contributes.

Let E, (EOIE)' i = 1,2 be the magnetic field at r due to a dipole
in x,~direction at y_ . Then in z £ O

oy°

- '?0= ‘ZAO = ._,_.:_L....._
iwp ii curl (Epi) grad 57 . (4.27)

Now the kernels for the integral equation (4.7) are determined and
it remains to discuss how this equation is solved in practice. The
simplest way certainly is to decompose the anomalous domain into
a set of N rectangular cells and to assume that the electric field
is constant within each cell. Then there results from (4.7) a set

of 3W linear equations f£ox 3N unknown$, The system haz the form

"X =Axt g, (4.28)

— =

where x is the vector of unknown field components, A the matrix of
coefficients and g the given vector of the normal electric field
values. A direct inversion of this matrix is only feasible for

N < 50 (say), becaﬁse of the large amount of storage required. Hence

iterative methods must be used in general.

The simplest way would be to start an iterative procedure with

. L9 . . .
X = g. This sequence of approximations, however, converges only

if the eigenvalue of A with the largest modulus has a modulus less

than 1, a condition which is certainly not satisfied if o4 is large.

Better convergence properties shows the GauB-Seidel iterative scheme,
using during iteration already the updated approximation and a
successive overrelaxation factor:
Let the components of A be a;, . Then (4.28) reads

3N

Xi =k£'i aika -+ gir i = 1( LG 3Nn
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Then a new approximation to x; is obtained by

IN - ~
eV L r a XOld - x?ld + g.} (4.29)

new_ old+ & i
- ik™k i i

z X __'_"""_'{ E
LT Ty ke

The successive overrelaxation factor © > 1 has to be chosen suitably.
In many cases = 1 (i.e. no ovér;elaxation) is already a good
6hoice. If the Gauf-~Seidel method does not converge then one can
apply a spectrum displacement technique: As already mentioned,

simple iteration without updating.is only convergent, if the largest
modulus of the eigenvalues is smaller than 1. Eg. (4.28) is equi-
valeht to

1

k= @-aDx+ax+g

or - .

1 i
tigle 2779

£

(A ~ ol) (4.30)

The iterative procedure (4.30) will be convexrgent, if o can be

chosen in such way that the eigenvalues of B are of modulus less
" than 1. If X is an eigenvalue of A then (A-a)/(1-a) is an eigen-
value of B. Consider for example the following situation that A
max’ llmaxl > 11 Then a

{/2 is appropriate. The condition

has negative real eigenvalues from O to A

choice of o = - [X
max

N P

nal 2
1‘+ ixmax[/z

is then satisfied for all eigenvalues A. The requirements which
o has satisfied can be put in that form that a circle around o
has to include all eigenvalues of A but has to exclude the point
1. The following figure illustrates the case stated above.

‘ A-plane This case applies approximately
to the three-dimensional modelli
vroblem, where at least the
largest eigenvalues are foxr a

higher conducting inserxtion to

1 a good approximation negative

real. For a poor conducting in-

sertion the largest eigenvalues
are essentially positive, but

smaller than 1.
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4.3. The surface integral apprcach to the modelling problem

: H
In the surface integral approach, within the anomalous slab the

equation (4.4b), i.e.

curl?E  + k?E_ = -~ kZE (4.31)
Za =a a~n .

- is solved by finite differences or an equivalent method. The re-

quired field values one grid point width above the upper horizontal
boundary at z = z, and below the lower boundary at z = 2, are
expressed aS surface integrals in terms of the tangential component

of E_ at =z = Z4 and =z

o respectively.

Let V1 and Vé be the half-spaces z < z and z > z., respectively,

(mf

and let S, m = 1,2 be the planes 2z = z . Let G,
m o ~i

(EolE)' Zo € Vi
r e Vm U Sm be a solution of

Curlzgém)(£01£)+k;{£)§£@)(£01£)=%i S(EfEO) ‘ (4.32)

(i=1,2,3; wm=1,2) satisfying for r ¢ Sm the boundary condition

e e m) -
zx G (x lx) =0 . (4.33)
In v, and V,, E_ is a solution of

2 2 ;
| curl Ea + kn Ea 0 {(4.34)
Multiply (4.34) by gém), (4.32) by ga' integrate the difference with
respect to r over Vm’ and obtain on using (4.6}, (4.33) and Ea + 0O
for r + = ’

’

. — gy {m) '.A
E @ )=0-D"J curles (r_lx)+{z x E_(x)}aa, (4.35a)

S
m

"y € V , or in tensor notation
~0- m

E () = (D" ! Curl?(m) (z D)z x B, (x)}an (4.35b)
m
3 .
where cur%?(m) = I X, curic™,
i=t 7 T
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Egs., {4.35a,b) admit a representation of the field values outside
the anomalous layer in terms of the boundary wvalues of the con-

tinuous tangential component of E_.
™ subject to (4.33)

is as follows: Reflect the normal conductivity structure for

A physical interpretation of Green's vector G

z < Z, and z > Z, at the planes z = Z4 and z = Z, and place a unit

dipole in xi~directi9n at r, € Vm and an image dipole at .

Eé = Eo + 2(zm - zo)g, the moment being-the same for the vertical
dipole and the opposite for the two horizontal dipoles. Then the
{m) {(m)
i i
solution of {(4.32) for re Vmo

tangential compcnent of G vanishes at z = I and G is a

(m)

Hence, if Vm is a uniform half-space, gi iz constructed from the

whole~gpace formula (4‘15), Eq. {(4.35) then reads:

By, (x) = {zo - zm[ é F(R)E,, (r)da, (4.36a)
. m .
ay(£o) = [zo - zm[ s F(R)antg)dA, (4.36D)
| Sn .
— - m = 1 - - - . N
B () = (-1} é F(R}{x xJE  (Z)+(y yo)an(g)}dA, (4.3§c)
m
where R = |lr ~ z [, k% = iwp o
o "“O' e}
' __ 1.4 ,-kr ~ oy KR, s
F(R) = 7R 4R (e /R) = {1 + kR)e /(2mR*) -

Egs. (4.36a-c) contain as important subcase the condition at the

air-earth interface (m = 1, 2y = 0, ko = 0}.

Because of the limited range of the kernels,in applications of the
surface integral only'a small portion of S, must be considered.
For Eax and an the contribution of the region nearest to £ is
most important. Assuming Eax and an to be constant within‘a‘small
disc of radius p centered perpendicularly over x, the weight from
(4.36a,b) is

- S22
e #A—(R/JTE:;?) e kv'A *p7,

> A = - . L8 ontri i to E__ only if BE__ and
where A = |z zo[ There is a contribution to E_, Y .

Eay have a gradient along x and y direction wespectively.
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Al the vertical boundaries the condition Ea = 0 is relaxed to the

impedance boundary condition

" kXE_ ., =n x curl E_, .é + E =0,

where E, is the tangential component and n the outward normal.

t

5. Conversion formulae for a two-dimensional TE-Tield .

" 5.1. Separation formulae

In this subsection 5;1. it is assumed that the conductivity does
not change in x~direction and that the inducing magnetic field is
in the (y,z)~plane, i.e. the conditions for the E~polarization
case of 8ec. 3.1. Then from a knowledge of the H_ and HZ component
along a profile from -= to +» at z = o it is possible to separate
the magnetic field into its parts of internal and external origin
without having an additional knowledge of the underlying conducti-~
vity structure. '

The pertinent differential eguation is (3.5a), i.e.

AR = iwn o E (5.1)
which reducing in z < O to

AE = O, < (5.2)
which has the general solﬁtion

O PR
E(y,z) = / {AO(K}e + AO(K)e

—

+|Klz}eiKy dk (5.3)

where A; describes the external and Ag the internal part of the fiel

The magnetic field‘components at z = 0 are (cf. (3.2a) and (3.3al)}

OE te +, i
—— = aeq e = 1 f— - KY o 5. 4
5e Lo H _ilKl{ A, + Ate dk | (5.4a)
-~ +00
JE . = e +y _iry
—_— = -} = 5. 4b
5y }wuoHZ “i 1K{AO + Ao}g ax. ( )
Let
N ot 5.5a,]
Hy Hye Ho o By, = H dH ., { '
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where the subscripts "e" and "i" denote the parts of external and

internal origin at z = oO.

Further, let the Fourier transform of any one of the above six

~ Foo s '
H{x) = %E ; H{y,oye TFY ay. ‘ (5.6)
—C0
Then (5.4a,b) yields
Hye/Hze =-~i sgn(k), Hyi/Hzi = +isgn (k) (5.7a,b)

A product between Fourier transforms in the x~domain transforms to

a convolution integrél in the y-domain:

~ ‘!“°°

I:‘mt(\. x.’.l.-_... t -7t .‘=-1--—'
F Ge H F(y) oy iG(y_)H(y yv')dy 5o G = H

Hence we obtain from (5.7a,b)

=4+ KXKnH ,; H . =-K =z H . (S.Sa,b)
ve ze' vi zi ‘
e = K = Hye' 21 = +K x H i (5.8c¢,d)
Here, foo
CKy) = %F S -—isgn(sc)ele di =
I
= sin (ky)dk
(o}
(=]
= lim 1 S sin(Ky)e—EKdK =1 lim® —L—— = %~
e+to 0 T erto yiee?2 M

' - 3
~€K . .
Convergence was forced by a factor e . The resulting convolution
integral exists only in the sense of a Cauchy principal value, i.e.

(5.8a) for example reads explicitly

~ o0 ~
Bely) =/ K(y-n)E,_(n)dn
' T~ y-€ © -~
:1 ....@-B-. = 1 l dn
- F Hze(n) lim {1 7 7 }Hze(n) el

- © Y™ goto T -m yte
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The four equations

Hye

+ isi .
N isign(k} H .

i sgn(x) Hz P

e

LT

> >
e Mm

ooy

+ 8
Y ve yvi Z zZe Z21i

it

Ea)

can easily be solved for H

ve! Hze' H .. B .-

yi® Tzi

When transformed into the y-domain it results

A T = S TP -

Hye =z (Hy + k = HZ) S S "'E(Hz K = Hy)
H . =+ (0 -KwH), H. =XH +Xun)
yi 2 y A z1i 27z Yy

Two—-dimensional separation formulae

For practical purpuses these separation formulae are not very con-
.venient, since the kernel decays rather slowly requiring a long
profile to determine the internal and external part at a given

surface point.

" 5.2, Conversion formulae for the field components of a two-

" dimensional TE-field at the surface of a one-dimensional structure

For the separation of the magnetic field components no knowledge
of the two~dimensional conductivity structure is regquired. However,
the conductivity enters if it is attempted to deduce for instance
the total vertical component of the magnetic field at the surface
from the corresponding tangential component. If the conductivity
structure is one~dimensional, the conversicon between two components
can be effected using a convolution integral, where the kernel is
derived from the one-dimensional structure via the transfexr func-
tion Cw,|k]). Sec. (2.5) yields

L E_(0,k,0) H (o,€,0) . f
], 0)= _xm K.y 00 _ , (o Kw):: 1 .1 = s(]x[,w) (5.9

iwuoﬁy(b,K,m) iKﬁy(O,K,w) 1 + S([Kl,w)

'Yhere S([k|,w) is the ratio between internal and external part of

. , i s .
Hy’ i.e. Hyi/Hye' in the frequency wavenumber domain.

From (5.%a-c) the/yarious conversion formulas for the durface cOmp

nents can be derived. The following table gives the definition of
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the pertinent kernels and their form for two particularly simple
structures. Note that in the case of a vanishing conductor (i.e;
in the examples h = «, or k + 0} the kernels X  and M have to
agree with the kernels of (5.8a) and (5.8c), respectively. The
function Lz, occurring in the P-kernel of the uniform half-space
model is the modified Struve function of the second order (cf.

Abramowitz and Stegun, p. 498).
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Conversion

Convolution kernels

perfect conductor at depth h

" Uniform half-space with ano

TAN + WMVIJ\M

C = tanh(kh)/« c =
. 1/2
(<,w) domain (v,w) domain | Abbr.: u = y/(2h) abbr.: k = (iwu ¢ ) /2, v=x|y|
Limiting values Limiting values
luf<<1 - _ lal>>1 - vt _..A;<_vvg
. I.._ [+ o] _
H, = 1%@ H, H, = K= Hy ‘ .
............... 1/0ryy .1 1/ (2h)sgnly). . A/tmyd) oo (k/2) sgndy) oo
- X o
~ . ~ . - (2h sinhra) - 2K (V) ¢ sonly)
H = ikC mm H, = M= mm . ' )
ll.:- G -
=1/{ny) Jm.._ _\WJm@ﬁﬁMV =1/ {ny) -ke <\awﬁ< «sgn{y)
) ) N . w.wom coth (w{ul/2) Lx v
E = iwu CH B =iwy NzH "o
X o Y X 0"y , : N
1 =T 1 -V
- —loglyl | 7. - 1 logly| | &7V//2m0
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6. Approaches to the inverse problem of electromagnetic induction

by linearization

6.1. The Backus-Gilbert methcd

6.17.1. Introduction

The method of Backus and Gilbert is in the first line a method to
estimate the information contents of a given data set; only in the
second line it is a method to solve a linear inverse problem. The
procedure takes into account that observational errors and incom-
plete data reduce the reliability of a solution of an inverse
problem. It is strictly applicable only to linear inverse problems.

Assume +that we are going to investigate an "earth model” m(r},

where m is a scalar quantity which for simplicity depends only on
one coordinate. For the following examples it will be chosen as
the distance from the centre of the earth (to be as close as
possible to the original approach of Backus and Gilbert). Then in

a linear inverse problem there exigt N linear functicnals (“rules"),

which ascribe to m(r) via data kernels Gi(r) numbers gi(m) in the

way a
gi(m) =.f m(r)Gi(r)dr, ; =1, ..., N. (6.1)
o :
The measured values of gi(m) are the N data Yyt i=1, ..., N. The

"grogs earth functionals” gi(m) are lineay in m, since it 1is
assumed that the data kernels Gi(r) are independent of m. The in-
verse problem consists in choosing m(x) in such a way that the
calculated functionals g; agree with the data 1K The Backus-—Gilbert
method shows how m{r) is constraint by the given data set. Befoxe
gbing into details let us give an example. Assume that we are
interested in the density distribution of spherically symmetrical
earth, i.e. m{x} = p{r), and that our data consist in the mags M
and moment oflineftia g. Then

Y1=Mf Ym@

2
a 87 a '
g, (p)=4w S p(r)r?dr, g,p) = =5 J o (r)r"dr
0 o
P () ST 8
G1(r)~4ﬂr ' Gz(r)— 3 T
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6.1.2. The linear inverse problem

The data may have two defects:

a) insufficient

b} inaccurate
Certainly in the above problem the two data M and © are insufficient
to determine the continuous function p(r). Generally, the properties
a) and b) are inherent to all real data sets when a continuous func-—
tion is sought. The lack of data smoothes out details and only
some average quantities are available, the observational error in-
troduces statistical uncertainties in the model. (If we were looking
for a descrete model with fewer parameters than data, then incon-
sistency can arise as a third defect.) Because of the lack of data,
instead of m at r, we can obtain only an averaged gquantity <m(ro)>,
which is still subject to statistical incextainties due to errors

in the data. Let
a )
<mlzy) > =S A(ro[r)m(r)dr, (6.2}
- o)
where a is gubiject to

fl
—

a .
J A(rolr)dr {6.3)

0
The latter condition ensures that <m> agrees with m, if m is a con-
stant. A(rolr) is the window, through which the real but unknown

function m(r) can be seen. It is the averaging or resclution functio

The more A at r, resembles a 6~function the better is the reso-
lution at e Resolvable are only the projections of m(r) into the
space of the data kernels Gi.'The part of m, which is orthogonal
to the data kernels canncot be resolved. Hence, it is reasonable
to write A as a linear combination of the data kernels

i)

A(;OlrJ 5151 a, {r )G, (x), (6.4)

where the coefficients ai(ro) have to be determined in such a way
that A is as peaked as possible at L The most obvious choice
would be to minimize

a
g'{A(rO[r) - §(r - ro)}zdr, | | (6.5)

subject to (6.3). For computational ease Backus and Gilbert prefer
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to minimize the guantity
. a i
= 2 - 2
s=12[A (r, ) (x=x ) *ar. | (6.6)
Since (r-—ro)2 is small near ror A can be large there. The factor 12
is chosen for the fact that if A is a box-car function of width L

"1

, O, else

then s = L, i.e. if A is a peaked function then s in the definition
of (6.6) gives approximately the width of the peak. s(ro) is called

the spread at T,

We have also taken into account that our measurements s have ob-

servational errors Ayi, i.e.

Yy~ Avy 29 ) <oy, oAy _ : (6.7)

Insertion of (6.4) into (6.2) using (6.1) yields

N a N
<m(ro)> = 131 ai(ro)gm(r)ci(r)dr ﬂii1 ai(ro)gi(m) (6.8)
From (6.7) and (6.8)
N
A<m(r )> = i§1 a; (r )by,

and the mean variance is
N

"2 z .
gc = (A<m(r0)>) —.E _ ai(ro)ak(ro)Eik (6.9)
i k=1
where _
= ’ ' )
Eik by Ayk {6.10}

is the covariance matrix of the data errors, which in general is
assumed to be diagonal.

2

Qf course, we would appreciate if the error of m(ro), i.e. €° would
be very small. But also the spread (6.6) )
2 ; | ‘2 N
s =12/ (rolx) (r-x ) 'éi',ﬁ:‘iai(ro)ak.(ro)sik(ro) (6.11)
with . '
S (x) =12 1 64 (r)Gk-(r) (r-r_)*dx ' (6.12)

o



should be small. Hence it required to minimize simultaneously the

quadratic forms

N .
s = I a, S.v. ¢ g2 = ¥ a,a, E. (6.13)
i,k=1 1% Pik i, k=1 ik Tik
subject to the condition (6.3), i.e.
N a
z a; f Gj(r)dr = (6.14)
i=1 0 -

There does not exist a set of a; which minimizes s and e? separately.

As a compromise only a combination.

0 =Ws + (1 - W) + ce? (6.15)

can be minimized. In (6.15}, ¢ is an arbitrary positive scaling
factor which accounts for the different dimensions of s and e? and

W is a parameter

0 < W< 1

-

which weighs the particular importance of s and e?, For W = 1 the
spread is minimized without regarding the error of the spatially
averaged quantity <m(ro)>. Conversely -for W = O the spread s is

large and the error €? is a minimum. Hence, in general there is a

trade-~off between resolution and accuracy, which for a particular

r, is shown in the following figure,
: 2

€
FsN
2
€ e ey W=
max @
2 "
Eyin 7" ?W“O
!
5 > S
max
Near s = Shin the trade-off curve is rather steep. Hence, a small

sacrifice of resolving power will largely reduce the error of the
‘average <m(ro)>. This uncertainty relation between resolution and

accuracy isg the central point of the Backus-Gilbert procedure.
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It remains to show a way to minimize Q, subject to (6.15). The way,
however, is well-known. One simply introduces as (N+1)-st unknown

a Lagrangian parameter A and minimizes the quantity
a
| g— - =
Q 0 + A(Eaiui 1), uy é Gi(r)dr {6.16)
" The differentiation of (6.16) with respect to the (N+1) unknowns
yields the (N+1) linear equations

N .
2.21 ai Qik + l,uk = O' k = 1' 4 N (6.178.)
i= : :

N

b a; ki =1 (6.17b}
i=1

= - + - 3
where Qik W Slk {(1-W)c Eik
This system of equations is easily solved. The meaning of A is

revealed by multiplying (6.17a) by a , adding and using (6.17b)

k
and (6.15). It results
A== 2 Qmin'
In the case W= 1, we have A = -2s. With a knowledge of ai(ro),

-<m(r0)> is obtained from (6.8) with g = Y and €2 from (6.9).
When <m(xr)> is inserted in (6.1) instead of m(r), it will in

general not exactly reproduce the data.

The minimization (6.15) .
N N

o=Ws+ (1-W)ce?, O<W<1 c>b g = X a.a, S. gl= ¥ a,a, .,
. r USWS T, r ki1 i%kCik! i,k=1 i kKTik

. N
subject to the constraint I a,u, = 1 admits for two data (N=2)

a simple geometrical interﬁ?étation: For constant s and e? these
positive definite guantities are represented by ellipses, the con-
straint is a line in the (a1,a2)-plane. ¥or uncorrelated errors,

2

the principal axes of €° are the ay and a, axis.

‘When W varies from O to 1 the combinationsof (a1,a2) on the fat
line are obtained. s and.e? are determined from the ellipses

through these poinks Since all s-(e?)-ellipses are similar, s ande?



8
maXx

are proportional to the long axes of these ellipses.

"6.1.3. The nonlinear inverse problem

The Backus-Gilbert procedure applies only to linear inverse

problems,; where according to

a
gi(m} = f m(r)Gi(r)dr (6.18)
° = (6.1 )
the gross earth functionals 95 have the property that

gi(im-r-m') = g; m) + g;(m"), g; hm) = g, (m).

This means for instance that the data are built up in an additive
way from different parts of the model, i.e., that there is no
coupling between these parts. This certainly does not hold for

electromagnetic inverse problem, where each part of the conductoxr

is coupled with all other parts.

In nonlineaxr problems the data kernel Gi(r) will depend on m. Here

it is in general possible to replace (6.18) by
' a
gi(m')"gi(m)=£(m‘(r)—m(rDGi(r,m)dr + O{m'-m)?, (6.18a)

where m and m' are two earth models. The data kernel Gi(r'm) is

called the Fréchet derivative or functional derivative at

model m.
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Again, from a finite erroneous data set we can extract only averaged

estimates with statistical uncertainties, i.e.

a
<m(r )> = J A(xr_[r)m(r)dr. (6.19)
o o
0 = (6,2 }
As in the linear case A(ro[r) is built up from a linear combination
of the data kernels

Ar_|r) = 15-1 a; (r m)C; (x m). - (6.20)
Introducing {6.19) into (6.20) we obtain

N
> o=
<m(r0) E

a
. ai(ro;m)qi(m), qi(m) = f m(r)Gi(r,m)dr (6.21)

1 o]
which for nonlinear kernels is different from (6.8), since in this

nonlinear case g, (m) + g ().

In the linear case, two models m and m' which both satisfy the’
data lead to the same average model <m(ro)>. In the nonlinear case,
the average models are different; the difference, however, is of

the second order in (m'-m}), (Exercise!l)

The Backus~Gilbert procedure in the nonlinear case requires a model
~which already nearly fits the data. Then it can give an appraisal
of the information contents of a given data set.

" 6.2. Generalized matrix inversion

The generalized matrix inversion is an altermative procedure to

the Backus-Gilbert method. It is strictly appiicable only to linear
problems, whefe the model under consideration consists of a set of
discrete unknown parameters. Nonlinear problems are generally
linearized to get in the range of this method. Assume that we want
to determine the M component parametér vector p with RT = (p1,...,pr
and that we have N functionals (rules) g5 i=1, ..., N which

assign to any model p a number, which when measured has the average
value Y5 and variance var(Yi):

Y; = gi(g), i=1,2, .., N.
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Suppose that an approximation Ps to p is known. Then neglecting
terms of ordexr O{p - EO)Z, we have

g; (R} + (- Eo)'gradp 9, T Y3

or
M Bgi

Eq 3Py Py = Pro) = 73793 (Ry) s 1

1!

1l'zf LR N (6.22)
k

. Bg. (6.22) constitutes a system of N equations for the M parameter

changes Py = Pro- The generalized matrix inversion provides a so-
lution to this system, irrespective of N = M, N < M, oxr N > M. If
the rank of the system matrix Bgi/apk is equal to Min (M, N), the
generalized matrix inversion provides in the case M = N (regulax
system): the ordinary solution,M < W (overconstrained system): the
least sguares solution, M > N (underdetermined system): the

smallest correction vector p - Eo'

The generalized inverse exists also in the case when the rank of
agi/apk is smaller than Min (M, N). -_

After solving the system, the correction is applied to Ps and this
vector in the next step serves as a new approximation to p, thus

starting an iterative scheme.

It is convenient to give all data the same wariance G;, thus

defining as new data and matrix elements

Y; - 9:(p.) _ 3g, G .
y, = i 170 ., 6.0 Gy =% L. L (6.23a,b’
/var(Yi) Py fvar(Yj)

thus weighing in a least sguares solution the residuals according

to their accuracy which makes sense. Let
X =R TRy {(6.24)

. be the parameter correction vector. Then (6.22) reads

g x=y. . o (6.25)

(G corresponds to the data kernels Gi(r) in the Backus-Gilbert
theory). In the generalized matrix inversion first G is decomposed
into data eigenvectors Ej and parameter eigenvectors gﬁ:

g=UAY

(6.26)

Dimensions: G(N,M), U(N,P), A(P,P), V(M,P}
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Here U is a N x P matrix containing the P eigenvectors belonging
to non-zero eigenvalues of the problem
oo

&g uy=2fuy, 3=, vees N (6.27)

and V is a M x P matrix with the P eigenvectors of the problem

g?

!

v. =M v.,, 3=1, ..., M 6.28
2 Iy 3 Ly J = 1 ' ( )
agsociated with non-zero eigenvalues., P is the rank of G. Finally
A is a P x P diagonal matrix containing just the P nonzero eigen-

values lj. Then the generalized inverse of G is

T, | (6.29)

fiemt

f
<
=
fia

'H alvays exists. In the cases mentioned above, H specializes as

follows
M=N=P: H= g"1
P=M<N: E= (gg gt
P=N<M H=G(ggH

For the proof one has to take into account that because of the

orthogonality and normalization of the eigenvectors one always has

gTE = ;P (=P~component unit matrix) {6.30a)
T q
by=72 (6.30b)
- P
and in addition for
P=M:YVU=1,=YY (6.31a)
Pe=N: UU=Iy=0y | (6.31b)

For P < Min(M,N) H cannot be expressed in terms of G.

The generalized inverse provides a solution vector

<‘x>==Hy__ (6.32)

F— _

Its relation to the true solution x is given by

<X ¥

HH

AxX ,

where A is the (M x }) resolution matrix

A=EG=y A U UAY =Y Y. (6-33)

=3 = = ==
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Only for P =M, A is the M component unit matrix, admitting an
exact determination of x. (A corresponds approximately to the re-
solution functibn A(rolr) in the Backus-—-Gilbert theory. But there
are differences: A is symmetrical, A(Eo{r) not, the norm of A is

small if the resolution is poor, the norm of A(rolr) is always 1,)

In generalized matrix inversion exists the same trade-off as in the
Backus-Gilbert method. Consider the covariance matrix of the changes

of < x > due to random changes of y:

(b <z (b <o)” = T n oy ap T wT YT = o2 wiyt (6.34)
k—ﬁ"z——-J
GO
- In particular the variance of <x.> is
P N Vkl ° .
var(x ) = ¢? = (+=4)2, -k =1,2, ..., M (6.35)
° 3=1 %3

showing that the wvariance of X is largely due to the small eigen-
values Aj‘ By discarding small eigenvalues and the corresponding
eigenvectors, the accuracy of Xk can be increased at the expense
of the resolution, since A will deviate more from a (M x M) unit
matrix if instead of the required M eigenvectors a smaller number

is used. -

The model <x> will in general not.reproduce the data. The repro-

duced data are

<> =G<x>=GgHy=RBy

with the information density matrix
B=gR=0U. (6.36)

Only in the case N = P, B is a unit matrix. In particular, B
" describes the linear dependence of the data in the overconstrained
case, High diagonal values will show that this date contains
specific information on the model which is not contained in other
data. On the other hand a 1arge'offmdiagonal value shows that this

information is also contained in another data.

Valuable insight in the particular inverse problem can be obtained

by considering the parameter eigenvectors corresponding to high and
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small eigenvalues. The parameter vector of a high eigenvalue shows
the parameter combination which can be resolved well, the parameter
eigenvector of a small eigenvalue gives the combination of para-

meters for which only a poor resoclution can be obtained.

The generalized inverse is used both to invert a given data set and
to estimate the information contents of this data set when the
final solution is reached. A

ﬁaring the inversion procedure one has two tools to stabilize the

notable unstable process of linearization:

a) application of only a fraction of the computed parameter correc-
tion, leading to a trade-off between convergence rate and sta-
bility; '

b} decrease of number of eigenvalues taken into account.

In the final estimatlon of the data contents one might prescribe

for each parameter a maximum variance. Then one has to determine

from (6.35) the number of eigenvalues leading to a value nearest

to the prescribed one. Finally the row of the resolution matrix

for this particular parameter is calculated.

6.3. ‘Terivation of the kernels for the linearized inverse problem

of electromagnetic induction

6.3.17. The one-dimensional case

Both for the Backus-Gilbert proaedure and for the generalized lineax
inversion a knowledge of the change of the data due to a small
change in the conductivity structure is reguired.
In the one-dimensional case the pertinent differential equation ana
datum are | ’

£f'"{z,0) = {x? + imuOU(z)}f(z,w),

Clw) = ~fl{o,w)/£* (o,w).

Consider two conductivity profiles 9, and o, with corresponding

fields f1 ang f2, Multiplying the equation for £, with £, and the

equation for fz with f1, éubtracting the resulting equations and
integrating the difference over z from zero to infinity, we obtain

- 54 .
- fUE = 3 - . .37
£2£1)dz iwy / (01 Gz}f £, dz (6 )

o0
g e, 1%2

o O
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Now

i (qu2~f5f1)dz=£{(fif2)'—(féf1)'}dz= ~f;(o)f2(0)+fé(o)f1(o)-

Division by f%(o)-fé(o) yields

. fq(z,w) fz(z,w)
Cy(w)-Cylw)= —~iwn, f {02(2)-01(2}} - . dz
o filo,w)  £5(0rw)

Tf the difference §o = o, = Oy is small, f2 in the integral may
be replaced by f1, since the difference f2 - f1 is of the orxder

of v = Oy - 01, leading to a sécond order term in &C = C2 - C1.
Hence to a first order in 6o '
S§Cw) = - iwy [ 60(2){—iELﬁ_~}z dz (6.38)
° % £¥ (0,n)

Therefore in the Backus-Gilbert procedure the Fréchet derivative
of C is -iwué{f(z)/f'(o)}z. In the generalized inversion the deri-
vatives of C with respect to layer conductivities and layer thick-
nesses is required, if a structure with uniform layers is assumed.
Let there be L layers with conductivity O and thickness dm in

the m~th layer, hm <z < 1“11#[1+,!(hLL_!-,I = ), Then (6.38).yields

o h . '
o) o gy HEED) 32 gy, =, 1 (6.390)
m h f'(OrU)} ’
m -
...... L-1 L f(h, . ,0)
%wgiﬂl = —iuy, E (Uk+1"6k){hm"5ij 32, mo=1,...,L-1 (6.3
m ' k=m £' (o,w)

since in the last case all layers below the m-th layer are dis-
placed too.-

‘6}3.2;'?artial derivatives in two~ and three-dimensions

For two-dimensions only the E-polarization case is considered. The
pertinent equation is (cf. (3.5a))

AE = 1mu06 E .

Consider again two conductivity structures o, and o,.

1 2
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Then A(E2 - E1) = iwuod1(E2—E1) + 1wu0(62~01)E2 {6.40)
Let G1(£‘[£) be Green's function for O i.e.
AG, (x'[r) = 1wy 0, (x)G, (" |r) ~ &(x - '). (6.41)

Multiply (6.41) by E2(£') - E1(£‘) and (6.40) by Gq(gf[g), integrate
the difference with respect to r' over the whole (y,z)-plane. Then

Green's theorem (3.29) yields

E,(£)-E, (x) = -iwu, J {o,(x")-0, (5‘)}E2(£‘)G1 (x'lr)aa'.  (6.42)

With the same arguments as in the one-~dimensional case we obtain

for small conductivity changes, neglecting second order terms,

SE(r) = ~dwn, [ So(r")E(r')c(z'|x)an’ (6.43)

The kernel G(E'[E) must be determined from the solution of the

integral equation

G(z'x) =6 (z'[p)=iwu_ [ o_(z")6_(z'|z")6(x"[r)da" (6.44)

Eq. (6.44) results from (6.42) by replacing

r'->r", 02+Gf g1+0nl E2(£)—>G(£![£)! E'] (£)+Gn(£‘l£)l

——

This substitution becomes possible, since the d-function in the

Green's function equations drops out when the difference A(EZ—E1)

" is formed.

The changes of the magnetic field components are obtained from (6.43
and (6.44) by differentiation with respect o r. -~ Methods for the
computation of Gn(£‘]£) are given in Sec. 3.4.

In the three~dimensional case one obtains in analogy to (6.43) and
(6.44)

SE(x) = iuwm, J so(z") E(x') Gzt . (6.45)

whexE:%Fis competed by solving the tensor integral eguation

?(g'[gh%(fj[p - don, S da(g“)%(g'[5")-?{£"|£)dA“‘. (6.46)

Again the magnetic field kernels are obtained by taking the curl
of (6.45) and (6.46) with respect to r. Methods for calculating‘%g
are given in Sec. 4.2. At the moment, three-dimensional inversioh

appears to be prohibitive!
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6.4. Quasi-linearization of the one-dimensional inverse problem

of electromagnetic induction (Schmucker's PSI-algorithm)

i

In the one-dimensional prbblem it is possible to a certain extent
to linearize the inverse problem by introducing new suitable para-
meters and data instead of the old ones.

ductivities a

Assume a horizontally layered half-space with L layers having con-
o o, and thicknesses @

1,’ 2’ - = @ L 1" dzf Cl.' dL.—.‘i
(dM = w), Let the upper edge of layer m be at z = hm and assume

that layer conductivities and thicknesses satisfy the condition

Jcm 4 = const., m = 1,2, «ve, B-1. (6.47)

Let km = Jiwuodm. Then the pertinent eQuation for a quasi-uniform

external field is

" = 2 -
fm(z) ko fm(z), h <z <h

m

m+1
The transfer function is, as usual,

Cl{w) = - f1(o)/f{(o) .
Introduce instead of fm the new function

. (z) = Zlog{wkmfm(z)/fr‘n(é)}, h (6.48)

< =z < h
m—-— —

m-+-1

In the TE-case f and £' are continuous across boundaries, i.e.

= [ 4 =T .
fm (hm-l-‘l) fmJ‘-‘I (hm+‘i) ! fm (hm-I-T) fm—i—‘l (hmﬂ) (6.49)
As a consequence of (6.48) and
(6.49) ¢ is discontinuous across
boundaries: 7 _ _z=h,
dm O’ fm' lpm
& z=hm+1
_ wm+1(hm+1)‘" wm(hm+1) = log(dm+1/om) . - (6.50)

The variation of-fm in the m—-th layer is

_ =k _{z-h_) +tk {z~R_)
f (z) =A_ e O My at e ™ m
m T P m



whence
1+ at/a
lOg( T 1+ay
v () ) t - A /A _ lo (T—aY) (6.51)
¥ (h +1) v - 2k d log (12 d :
S 1+ /B )e T \ 93
lOg n Ik d
+ .- m mf
1 (Am/Am)e
e . 2kd -2k a
where  a = (& /A )e MM = MW

Because of the condition (6.47), ¥ is independent of m.

The quantity |a| is the ratio between the reflected and incident

wave at 2z = h Due to the conservation of energy the amplitude

m¥1’ .
of the reflected wave is never larger than the amplitude of the

incident wave. Hence,
fa] < 1.

}Equality applies to a perfect conductor or insulator. For la] << 1
(6.51) yields

v () 2ay (1+ %a2y2+...)
m'om '

) = =T{1 +O(a2)};
2a (1+ % a? 4 ...) -

wm(hm+1

or approxiﬁately

Vg by = v (b)) ‘ (6.52)

Since the neglected term is of order a?, this is a good approxima-
tion for [al << 1. Egs. (6.50) and (6.52) combined yield

.wm(hm) = y{¢ )Y . : (6.53)

m+1

(hm+1) * log(cm/cm+1

The datum C{w) is connected with ¥, (b ,w) through

¢1(h1,w) = ¢1(O,M) = 2 log(k1c).
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Introducing the new transfer function

y{w) = 2 log{/iwuodo Clw)} (6.54)

where 9, is an arbitrary reference conductivity, we obtain by con-

tinued application of (6.53)
. g
: _ % L
v{w) = log 5, + P, (hy)

. 0, - O,
= %og E? + v log E;'f Y $2(h2)
'GO 9q 2 %y 2
= log g; + v log g; +y" log == + y" ¥ (h;)
3
L—-1 - g
= X ¥ log dm
m=c 1
-1 o ¢)
vy = -1z ¥ 1og = - Y1 10g EE (6.55)
ST — Fo o

In the derivation of (6.55) it has been used that wL(hL) = 0. Bqg.
(6.55) is the desired result: it expresses the new data y(w)

linearly in terms of the new model parameter log(c/co).

When (6.55) is used for the solution of an inverse problem, one
chooses first an arbitrary 00, and prescribes the constants
/3;73: dm and L. If the ogcuning conductivity contrasts are not too
sharp, the inversion of (6.55) will already give good estimates
for the layer conductivities., For these estimates the correct
résponse values are calculated, and with the difference between
the data and these values the inversion of (6.53) is répeated,
giving corregtions Alog(dm/co) to the previous outcome. At the

. end of the iteration procedure, the true thicknesses of the layers
are calculated using (6.47). The errors of o, are finally trans-

formed into the errors of dm.
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7. Basic concepts of geomagnetic and magnetotelluric depth sounding

7.1. General charactériséics of the method

Two types of geophysical surface data can be distinguished to in-
vestigate the distribution of some physical property m(r) of matter

beneath the Earth's surface, The first type is connected with

R X r
. /@”l.‘”“/"—”;?'“! - R
////// \\\\\j .
. _C\,_ .

3

(%,y¥,2)
(x,¥,2 = 0)

n

static or quasi-static phenomena (gravity and magnetic fields), the
second type with time-dependent phenomena (seismic wave propagation)
or with controlled experiments under variable experimental con-

ditions (DC-geoelectric soundings), Geomagnetic and magnetotelluric

soundings utilize the skin-effect of transient electromagnetic

fields. Their penetration into the Earth represents a time~depen-
dent diffusion process, thus the observation of these fields at

the surface produces data of the second type.

The interpretation of static data y = y(R) is non-unique and an
arbitrary choice can be made among an unlimited number of possible
distributions -~ m(r), explaining y(R) equally well, The interpre-~
tation of transient data is with certain constraints unique in the
sense that only one distribution m(r) can explain the surface data
y = y(R,t), baéically because ongadditional variable t (time,
variable parameter of controlled experiment) is involved, '

If the observation of the transient process or the performance of
the experiment is made at .a single site, the data y = y(tf) permit
a vertical sounding of the propefty m = m(z), assumed to be a sole
function of depth z beneath that site, If the observations or ex-
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‘periments are done with profiles or arrays, the data y = y(R,t)
permit a structural sounding of the property m = m(z) + Am(r)

with particular emphasis on lateral variations Am(xr).

Here m(z) represents either a global or regional mean distribution.
It may also be the result of vertical soundings at "normal sites"
whentthe surface data show no indications for lateral variations
of m. Since the dependence of y(R,t) on m(x) will be non-linear,
anomalies Ay(R,t) = y(R,t) - yn(t) will be dependent on Am and
Wm(z), i.e. the interpretation of second-type-data must proceed on
the basis of a known mean or normal distribution Mm(z) consistent
with data yn(t) at a normal site. It should be noted that in the
case of static data of the first type usually no interdependence
between Ay and m will exist, i.e. the interpretation of their

anomalies is independent of global or regional mean distributions

of the relevant property m,

Suppose that for data of the second type the lateral variations
Am(r) are small in relation to m(z). Then the results of vertical
soundings at many different single sites may be combined to
approximate a structural distribution m = m + Am, For geomagnetic
induction data the relevant property, namely the electrical re-
sistivity has usually substantial lateral variations and a one-
dimensional interpretation as in the case of vertical soundings
will not be adequate. Instead = a truly multi-dimensional inter~
pretation of the data is required which is to be based on "normal
data" at selected sites (cf. 8.2)., Such normal sites are here rather
the exception than the rule,

7.2 The data and physical properties of internal matter which
are involved -

The Earth's magnetic field is subject to small fluctuations H{r,t}.
They arise from primary sources in the high atmosphere and from
gecondary sources within the Earth. At the Earth's surface their ¥

¥ amplitude is
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orders of magnitude - smaller than the quasi-static main field.
Theix dépth of penetration into the Earth is limited by the "skin-
effect", i.e. byﬂﬁpposing action of electromagnetically induced
eddy currents in conducting matter below the surface . These
currents produce the already mentioned secondary component of H,
They are driven by the electric field E(r,td} generated by the
changing magnetic flux accoréing to Farad y's inducticn law (cf,
~7¢3). The time~fluctuations in Ii are referred to'geomagnetic’ varia-

tions, those in E as geo-electric -or "telluric" variations.

. The connection between K and E is established by three physicai
properties of internal matter:; the conductivity ¢ (or its recipro-
cal the resistivity pl), the ﬁermeability B and the dielectric con-
stant €. The permeability of orulndry rocks ig very close to unity
and the approximation y = 1 is adequate. The magnetlc efffect of

- displacement durrents which is proportional to € can be neglected

within the earth (c¢f. Sec. 7, 3), leaving the conductivity ¢ as

"~ the sole propesk y .connecting E and H. Both fields tend to zero at

'sufflolently great depth, the skin-depth

ﬁ_E_
Ly

" being a characteristic scale length for the depth of penetration
of an oscillatory field exp(iwt) into a medium of resistivity p.

- Geomagnetic induction data are usually pfesented in terms of trans-
fer functions which connect as functions of frequency and locations
certain components of E and H. Examples are <the imagneto-telluric
transfer functions.between the tangential components £ cmel

and the magnetic transfer functions between the vertical and hori-
zontal components of H only. These transfer functions form input
data for magneto-telluric and geomagnetic depth goundings,

-abbreviated MTS and GDS, -
Notations and units. Rectangular coordinates (x,y,z) are used with

2 positive down. If x is towards local nmagnetic north and y towards
local magnetic east, the following notations of the nagnetlc and
electrlc field _components are common: '



The vertical magnetlc component H is usually simply denoted as Z.
All equations are SI -units, but for H the tradional geomagnetic

unit iy = 107°

GauR may be quoted. A convenient unit for the
telluric field is (mV/km), The magneto-telluric transfer function
between (EX,By) and (HX,Hy) will have in these units the dimension

"{mV/km}/y with the conversion

mV/km _ 41 40973 o
1 y 10
to SI-units; Measuring the period 1t = 21/w of time-harmonic field

variations in seconds,

= % vpT km,

_if 1 is measured in hours,
P = 3002 YpT km,

-7

the unit of p being in either case (Om); L 10" volt sec/

" Ampi,

- 7.3 Electromagnetic wave propagatlon and diffusion through
uniform domains

"Consider a volume V for which the physical properties ﬁ;s,c are
constants. Then E and H are non~divergent within V and connected
by Maxwell's field equations (< = 3/3t)

rot H = ok +’€€0 E

——

rot E ."ﬁﬁo H .
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Elimination of E or H yields a second order partial differential
equation

L R

2 _ L]
V°F = uuo(q£ + eeag )

where F denotes either the electric or the magnetic field vector
(div F = 0). This equation can be interpreted as a wave eguation
or as a diffusion equation, depending on the fastness of the field

variations in relation to the decay time
: = o
T, ee /|

of free electric charges within V,

Let w be the angular frequency of harmonic field variations, i.e.
F = iwf and F = -w?F, Then the basic differential equation is
conveniently written as a wave equation

2p = _(By2 2 -1
VEE = -(7 {1+ (dwt ) } F
for Wt >> 1 and as a diffusion equation
2 = 2...:—].'. ' . + 1
VE =335 {1+ (et DIE

for wr, << 1, In the first case the field truly propagates through

V with the speed 1

c = (uuoeeo)
and (iwro)—1 as absorption factor.

In the second case the field diffuses into V with
1
p = (Zp/wuo)?

as skin-depth. The diffusion can be regarded as "gquasi-stationary”

in the sense that the propagation term (ino) is sufficiently small

‘against unity.- - !
"1 o e (see),

1

For p = 1/0 in Om T, ~ 10

Since p will be lgss thah~105 Om within the Earth, fields for fre-

quencies up to 10 cps possess a quasi-stationary diffusion below
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the surface. Only near certain sulfidic omre veins the Peffective™
decay time T, may be in the order of fractions of seconds due to
induced polarisation and the propagation term may not be necessarily

small against unity,.

The air just above the ground has a resistivity in the order of
14
10

fast fluctuations "propagate")while slow variations "diffuse"

Om, yielding a time constant T of about 10 minutes, Hence,

- from their ionospheric sources to the Earth's surface,

For gecmagnetic soundings only the field at and below the Earth's
surface matters, regardless how the primary field reaches the

surface, It is necessary, however, to make one definite assumption

about the nature of the primary field in the following sense:

Non~-divergent vector fields such as E and H in uniform domains
can be decomposed into two parts

F = EI + EII = rot(xT) + rot rot{(rs)

where £ denotes a unit vector in some specified direction, here

the z-direction., T and S are scalar functions of position. It is
~readily secen that the so~called "toroidal® part EI igs orthogonal
to ﬁ, i.e. in the here considered case F; is tangential to planes

z = const, The remaining so-called "poloidal™ part Fig of T has

three components; =
i
\Vr \ /’ Vi F
\ 3 Z = Con§ i
. \ L s
T QP S AR
VAl a=y.
T
. :jV fz 4\ <
v

Let now Py and P;; be a "toreoidal and a "poloidal' diffusion
vector, both satisfying

V2P = iwuoo(1'+ T,)Es

from which the toroidal and poloidal parts of H are derived by
definition as follows:



H
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Observing that
rot rot rot P = =~ rot(Vzg—grad divP) = ~iwu00 rotP, the electric

vectors follow then Ffrom Maxwell's field equations as

21 rot rot P

p
o2 Frs Epg

z = ot P .

E
1(1+1) i

~1

1

Since the field which is derived from PI has a tangential magnelic
field, it is termed the "TM-mode" of the total field, The field
derived from Py; , on the other hand, has a tangential electric
field and represents the "TE-mode" of the total field,

Suppose that the conductivity is a sole function of depth, o = glz),
and therefore the diffusion vector vertical downward: P = (0,0,P ).
Let P De in planes z = const, a harmonic oscillating function

of x and y with the "wave numbers" kx and ky in x and y-direction:

P(z) = Py(z)-e BB with -k = (k) R = Goy).

Then

"

1"

rot rot P = (ik/C, iky/c, |x|® P

where = ='Efgéii and (k|2 = k;"+ k;. It can be shown that C is
a scale length for the depth of penetration of the field into the
uniform domain., Insert now rot P and rot rot P into the equations
as given above and obtain the following relations between field

components setting wro=0:

TM-mode TE~mode
= =wgC P o= ‘ ==3 . :
Hy UCIEX Hx- UCI“y Ex lwuoquHy Ey lmuOCIIHX
EZ:lkXCIEX EzzlkycIEx : Hz:lkaIIHX Hz: }kyCIIHy

i i B S S
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Since C; and C.. cannot be zero for a finite wave number |k|, TM-
modes will have in the here considered quasi-stationary approxima-
tion zero magnetic fields in nonconducting matter as in air above
the ground. Hence, the existence of TM-modes within the primary
field cannot be ruled out by magnetic observations since it will
be seen above the ground only in. the vertical electric field EZ,
provided that this vertical electric field is not due to local
anomalies of the secondary induced field (s. below), In reality,
the detection of a primary EZ will be nearly impossible because
changes of the vertical electric field due to changing atmospheric
conditions appear to be orders of magnitude greater than those

connected with ionospheric sources, Therefore it is an assumption

that the primary fields in geomagnetic induction studies are TE-
fields.

In that case the secondary induced field abdve and within a layered
substructure ¢ = Gn(z) is likewise a TE~field, The sum of both

fields will be referred to as the "normal" field ﬂﬂ and En for the
" considered substructure, Its depth of penetration is characterized

by the response function C = Cn whieh according to the basic re-

1I
lations given above can be derived from the magneto-telluric "im-

pedance' of the field

E E |
L T A PRt (MTS=magneto telluric sounding)
Hny an ¢ n ,

or from the geomagnetic ratiocs

H
—22 = ik C s E = iknd— (GDS=geomagnetic depth

Hox Hny : ~ sounding)

Suppose the internal resistivity is within a limited range also
dependent on one horizontal coordinate, say x:

¢ =0 (2)+ o _(y,2).

Now a local anomaly Ha(y,z) and Ea(y,z) will appear within the

secondary field,



Two special types of such anomalies can be distinguished. If the
electric vector of the primary fields is linearly polarized in

Xx~direction, i.e,

"

(Enx’ 0, 0)

and consequently

4]
[
<
o
as
~r

w

H
—n ny

the anomaly has an electric vector likewise only in x-direction,
because the flow of eddy currents will not be changed in direction.

Hence, the anomalous field is a TE-field -

Ea = (Eax’ 0, 0)
B’a = (O s Hay) Haz )'-

This polarisation of the primary field vector is termed E-polarisati

If the electric vector of the primary field is linearly polarised
in y~direction, the normal field is
E = (0, Eny’ 0)

and consequently

H = (H__, 0, 0)
-n nx

provided that its depth of penetration is small in comparison to
its reciprgﬁgl wave number, yieldingrﬁnz = 0. Only with this con-
straint is flow of eddy currents confined to vertical planes

x = const. and the resulting anomalous field will be a TM-field
with zero magnetic field above the ground:

(0, an, Eaz)

1"

E
~a

H = (H_, 0, 0).

This polarisation of the primary field is termed "H-polarisation®.

‘For three-dimensional structures
0 = 0{X,¥+2) = cn(z) + ca(x,y,z)

the anomaly of the induced field will be composed of TE-and TM-
fields which cannot be separated by a special choice of coordinates.
There is, however, the following possibility to suppfess in model

calculation the TM-mode of the anomalous field:



Suppose the lateral variations o, are confined to a "thin sheet™.
This sheet may be imbedded into a layered conductor from which it
must be separated by thin non-conducting layers. Then no currents
can leave or enter the non-~uniform sheet and the TM-mode of the

induced field is suppressed. Such models are used to describe the

induction in oceans, assumed to be separated from zones of high
mantle conductivity by a non-conducting crust.

Schematic summary:

i

éi/ﬂy Source field Induced field
YT . normal anocmalous
S PR : TE TE 0
ST A TM ™™ 0
G z
QA
NN . TE_ = 0)
S NN NY TE TE { nx
T™M(E = 0)
4 S S s ety Ry nx
@, (Y S “a (x\'a7 ) '
s 17 {_ 7 - TE+TM(general)
AN /1 -, /) TE TE {
r——— ___f_'_'_—_::’-’ £ _ TE {thin sheet)
/' A 7 | A ,““—-\ - )

*Appénﬁik—fo‘v;gt Recurrence formula for the calculation of the

depth of penetration C for a 1ayefed substratum (cf. chapter 2)

. P
e e o o
Definition: C = 5?;732
. 2%P
Differential equation to be solved: ~4;9 = {iwuoc + ]k[z)Po
' 9z
which satisfies V%P = iwp o P .,

Continuity condictions:

1. TE-field: H and E must be continuous which implies
that C is continuous

2. TM-field: H and (EX,Ey,cEZ) are continuous which implies

that oC is continuous.
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! . = 3 PV 2
c., h., a = h YIwu o+ [k]
A g T &_ ._mef\w_*__-_ﬂ
p& ‘§v l—‘z'
R g, = ¢
N
i i - : = - 1 2
Solgtlon for uniform half-space: C; Crr iwp o+ |}
(o = 02 \

Recurrence formula for layered half—space‘{Cn = C(zn)}:

+"1kl2

Cyyp, = Crpp = Visngog
%n
CIn+1 N tanh(an)
C - n+1
In .. 9
Kn{c + CI K tanh(a )}
n+1l n+1 n
o Corner K Y tanh(a )
C L=
ITn : )
Kn{l + CIIn+1 Kn tanh(an)

The TE-field within the n'th layer at the depth z = z t+ €,

zn < zn + g < 7 can be calculated from its surface value

n+1?’
according to:

Ex(zn+e)é{g(zl,zz)-g(zz,zg) . g(zn,zn+e)} + E (0)

Hx(zn+e)i{h(zi,zz)‘h(22,23) . h(zngzn+e)} '.Hx(O)

I}

with gﬁ;r,zs) cosh B - sinh Brs/(KrCr)

1]

hiz_ sz )
r’s

cosh B - sinh B « X C
rs rs r

for s-<n

1

and glz_, z_+€) cosh(K_eg)-sinh(X e)/K C
n® “n n n nn

t

h(z_ .z _+e) cosh(X e)-sinh(K g) » K C
Il n n n

nn
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8 = K{(z -z
rs r s r
K; = /lwp o, + k|2

The formula for Ex applies also to Ey and HZ,'the formula for

H
X

also to H. .

7.4 Penetration depth of various types of geomagnetic variations

and the overall distribution of conductivity within the Earth

Three types of conduction which vary by orders of magnitude have

to
1.

be distinguished:

Conduction through rock forming minerals

Conduction through fluids in pores and cracks between rockfor-
ming minerals

Metallic conducticon

Since the minerals of crustal and mantle material are expected
to be silicates, the conduction through these minerals will
be that of semi-conductors. Their resistivity is in the order
5
of 10

according to

im at room temperature but decreases with temperature

G(T) = o, e—A/kT

*

T is the absoclute temperate, k Boltzmann's constant; c, and A
are pressure-dependent and composition-~dependent constants
within a limited temperature range, for which one specific
‘mechanism of semi-conduction is predominant. Hence, in plots
of 1ln ¢ versus T'_1 the o-T dependence should be represented
by joining segments of straight lines. Laboratory experiments
with rocks and minervals at high temperature and varying
pressure have confirmed this piece-wise linear dependence of

Inc from T_l. Furthermore, they showed that the composition-

~ dependence of ¢ is mainly contained in the pre-exponential
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parameter I, and that the pressure dependence of 00 and A should
not be the determining factor for the conductivity down the depth
of several hundred kilometers. _

T & ¢ The o-T dependence of Olivin (Mg,
h2o0 ?oo foo - PeII)? SiOu has been extensively
. invesfigated by various authors

for temperaturs up to 1400°C and
pressures up to 30 kbar. This
mineral is thought to be the main
constituent of the upper mantle
with a Mg : Fe ratio of § : 1

Mgy 4 Fe0.1)2 §i0, . The diagram

, , Duba 1975 7 shows the range of o(T)-curves

as cobtained for 0livin with 90%

Forsterite (MgQSiOu). It is believed that the discrepancies among -

the curves over orders of magnitude are mainly due to different

degrees of oxydation of FelI to FeIII within the olivin samples
used for the measurement., In fact, the samples may have been oxy-
dized in some cases during the heating experiment as evidenced by

the irreproducibility of the o(T)-curves. However, the range of

. possible conductivities for olivin with 10% forsterite is greatly
p ¥

narrowed in at the high temperature end, where we may expect a

‘resistivity of 10 to 100 @m for 1HOOOC, corresponding to a depth

of 100 to 200 km within the mantle.

:Electrolytic conduction through salty solutions, filling pores and

cracks of unconsolidated rocks, gives clastic sediments resistivi-
ties from 1 to 50 @m. The resistivity of sea water with 3.5 gr
NaCl/liter is 0.25 @m. There should be an increase of resistivity
by one or two orders of magnitude at the top of the crystalline

basement beneath sedimentary basins.

Near to the surface the conduction in cerystalline rocks is also

‘electrolytic. Their resistivity may be here as low as 500 Om, but

it increases rapidly with depth, when the cracks and pores close
under increasing pressure. Below the Mohorovicic-discontinuity
the conduction through grains can be expected to be more effective

than the conduction through pore fluids. 1If, however, partial
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melting occurs, the conduetion through even a minor molten
fraction of crystalline rocks could kower the resistivity by,

say, one order of magnitude.

Metallic conduction is expected to give the material in the oute
core a resistivity of 10'"5 Qm. This low value is reguired by
dynamo theories for the explanation of the main field of the

Earth.
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The frequency spectrum of geomagnetic variations which can be

utilized for induction studles extends from frequencies of
fractions of a cycle per day to frequencies of 10 to 100 cycles
per second. At the low frequency end an overlap with the
spectrum of secular variations occurs which diffuse upwards

" from primary sources in the Earth's core.

Schematic spectrum of geomagnetic variations:
™
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Dy (=disturbed)-variations: After magnetic storms the horizontal

H-component of the Earth's magnetic field shows a worldwide de-
crease. Within a week after stormbeginn H returns asymptotically
to its pre-storm level. This so~called D5t~phase of gtorms shows
negligible longitudinal dependence, while its latitude dependence
is well described in geomagnetic coordinates by

H (¢) = — H_ cosd;
Dg ¢ o] |
$ is the geomagnetic latitude of the location considered. The

source of the D_,~phase may be visualized as an equatorial ring
current (ERC) which encircles the Earth in the equatorial plane

in geomagnetic coordinates:

P #5°

If the interior of the Earth were a perfect insulator and no eddy
currents were induced, the vertical Dst—component would be ZDst =
Ho sin ¢. In reality, only one fourth to one fifth of this value
is observed due to the field of eddy currents which oppose in 7

? . . the primary field of the ERC. Let LDst denote the inductive scale

i§W‘?=qg length of D a be the Earth's radius, then for & = y5°

: 2C

- Dst H
Dst a Dst:*

st?

Z

(cf. sec. 8.2)

Hence, with Z
km.

[H 2 0.2 the depth of penetration will be 600

Dst™ " Dst



SQ (solar quiet) variations: On the day-1it side of the Earth thermal
convection in combination with tidal motions generate large-scale
wind-systems in the high atmosphere. In the ionosphere these winds
produce electric currents which - for an observer fixed to the
Earth - move with the sun around the Earth. During equinoxes there
will be two current vortices of equal strength in the northern and
southern hemisphere, their centers being at roughly 30°N and 30°s.
Due.to these currents locél~time dependent geomagnetic variations
will be observed at a fixed site at the Earth's surface. They are
repeated from day to day in similar form and are called "diurnal"

or Sq-variations:

Sq err.,,-.) ‘7 J}"ﬂ'\f‘f
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Again the ZSQfAmplitude is much smaller than to be expected from
DSQ for an insulating Earth. If Zég)and Dég) denote the amplitudes
of the m'th subharmonic of the diurnal variations (m=1,2,3,%

corresponding to the periods T = 24, 12, 8, 6 hours) and Cég) the

inductive scale length of this subharnonic,

Z(m) - CSQ (m+i)(m+2) H(m)

S5Q a m sing 3Q

(cf. 8.2)
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with ¢ as geographic latitude. ¥rom the ZSQ : HSQ ratio of continental
stations a depth of penetration between 300 and 500 km is inferred.

The penetration depth of 8¢ in the ocean basins 1s still uncertain.

Bays and Polar Substorms: During the night hours "“bay-shaped" de-

flections of the Earth's magnetic field from the normal level are

observed from time to time, lasting about one hour. Their amplitude
increases steadily from south to north, reaching its highest wvalue
in the auroral zone. Similar variations, but much more intense and
rapid, occur during the main phase of magnetic storms, until about

one day after stormbegin.

The source of these so-called “"polar substorms" is a shifting and
oscillating current lineament in the ionosphere of the aurora zone.
The current willbe partly closed through field alligned currents

in the magnetosphere, partly by wide~spread ionospheric return '

currents in mid latitudes:
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If the Earth were non—conducting, we would observe south of the
polar electrojet PEJ stréng Z-variations during polar substorms.
They would represent the field of a line curprent and be comparable

+in amplitude to H- and D-variations, arising from overhead "return

curprents® in mid-latitudes. In reality, the Z-amplitude during
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polar substorms is in mid-latitudes (e.g. Denmark, Germany) much
smaller than the ampli{udes of H and D because the vertical field
of induction currents nearly cancels the vertical field of the

polar jet. Under "normal condistions" the Z:H ratio is about 1:10.
Assuming for the mid-latitude substorm field an effective wave
number of 10~ 20 000 km, yielding k, * 3-6:10 ' as wavenumber, depth

of penetration is

yA
le, | = 722 L~ 150 to 300 km.
y . hay "x .

There are indications that the penetration depth of bays into the
oceanic substructure is substantially smaller. The ocean itself
produces an attenuation of the H-amplitude of about 75% at the
ocean bottom, deep basins filled with unconsolidated sediments can

yield a comparable attenuation (e.g. North German basin).

‘Pulsations and VLF-emissions: Raplid oscillations of the Earth's fiel

with periods between 5 minutes and 1 second are called pulsations.
Their amplitude increases like the amplitude of substorms strongly
when approaching the auroral zone. Their typical midlatitude
amplitude is 1 gamma. The source field structure of bays and pul-
sations is similar, the depth of penetration of pulsations being
largely dependent on the near—surfacé conductivity. It may range
from many kilometers in exposed shield areas to a few hundred

meters and less in sedimentgry basins.

The “normal® Z:H ratio of pulsations is too small to be determined
with any reliability outside of the auroral zone. However, "anomalo:
Z-pulsations. are frequent and usually of very local charakter. if
pulsations occur in the form of lasting harmonic oscillations, oftel
with a beat-frequency, they are called "pulsation trains"” pt, sirgle
pulsation events are'cailed "pi", pulsations which mark the be-

ginning of a bay-disturbance are called "pc®. All three types have

a clear local time dependence, occuring almost daily: g7
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Very rapid oscillations with frequencies between 1 and, say, 100 cps
(=Hz) are called - from the radio enginieers point of view -

"very low frequency emissions: VLF. Their amplitudes lie well below
1y. They occur usually intermittendly in "bursts" and are controlled
in their intensity by the general magnetic activity. In exposed
shield areas they may peﬁetrate downward a few kilometers, but
everywhere else they will be totally attenuated within the very

surface layers.

Sudden storm commencements and sclar flare effects: The begin of a

magnetic storm is usually marked by strong deflections in H and Z
up to 100y within one or two minutes. This so-called "sudden storm
commencement' SSC, signals the inward motion of the magnetopause
(separating the magnetosphere from the interplanetary space) under
the impact of a suddenly increased solar wind intensity. SSC's

are a world wide, simultaneously occuring phenomenon. They are,
however, too rarely occuring events (1 per month) for induction
studies.

" The momentarily increased solar wave radiation, caused by sun spot
eruptions, produces a shortlived (5 minutes) intensification of the
 Sg-system, its magnetic effect is called a “"solar flare event". It
measures a few gammas and like the ssc is a rarely observed varia-
tion type.
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. Overall depth distribution Depth of penetation

of resistivity

(0): oceans

Ko g (Srém d?wa) S (s): sedimentary basins
3 _ (¢): exposed crystalline
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8. Data Collection and Analysis

8.1 Instruments

Magnetic sensors for geomagnetic induction work on land should meet

as many as possible of the following requirements: |

(1) Sufficient sensitivity and time resolution

(2) Directional characteristics which allow observation of the
magnetic variation vector in wellwdefined, preferably ortho-
gonal components. -

(3) Stable compensation of the Earth's permanent field, if re;
quired. The sensors should not show "drift" on a time scale
comparable to the slowest variations to be analysed.

(4) Compensation of temperature effects or linear temperature de-
pendence with well defined temperature coefficients for subse-
quent corrections.

(5) Low power consumption to allow field operations on wet or dry-
cell batteries (less than 100 mA at 10 to 20 Volts DC con-
tinuous power drain).

(6) Minimum maintenance, allowing unattended operations over days,
weeks or months, depending on the period range to be investi-
gated. |

(7) Electric ouﬁsput signal, adaptable for digital recording

No single sensor system can possibly meet all requirements over the
full frequency range of natural geomagnetic variations and the
choice of instruments will depend on the type of variations under
investigation. They record either the total field H :SHO + &H as
sum of the steady field Ho and the variation field GHfby compensa-
Fion of Ho’ the tize~derivative i = 6 or a combination of &H and

6H., In geomagnetic latitudes the spectral amplitude distribution of
§H and Sﬁ, averagedover extended periods of moderate maonetic acti:
vity,'is the following:

* the variation field &H only

e CCOH P o

mid—~ A0 -
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The next diagram shows the resulting spectral range of adeqguate

sensitivity and stability for various magnetic sensors, suitable for

geomagnetic studies: ) Performance on
: : point (2) to (7)
Dst Sq Bays . Puls. VLF Obsv. 2 3 & 5 6
Torsion fibre .
magnetometer : 2. _
(Askania vario= ' —_— = §H + o+ o+

graph, Gough-
Reitzel vario-
graph 1.)

Fluxgate magne- : .
' §H R T

tometer (Toer- 5 : ‘
ster Sonde) 3.) i i g :
j ‘ | :
| % .
Grenet-vario- § : SH,8H + - o+ 4
meter 1.) ! ;
Induction ceils ‘ i : i + -+ 4

Proton precé- | = . .
ssion magneto- HO+5H .
meter 3.)

1
“~
“+

t

]

Rb-vapor magne—: - HO+6H
tometer 3.) ’
‘1.) Compensation of H, by mechaniceal torque‘
2.} Bobrov—quartsz variometers) Jovilet variometers
3.) Compensation of Ho with bias fields

The.horizontal components of the surface electric field E which is
connected to §H and 6H can be estimated either from the knowledge
of the depth of penetration C at the period 1 or from the knowledge
of the resistivity p of the upper layers, assumed to be uniform.

Measuring H in (y), C in (km), 1 in (se¢) and p in (Qm) gives

. . ' ) my
E = wu  CH =2TCH =V 3R'H ().
o T T .
. ' . Be
Using the spectral amplitudes as given above and C from’previous
gsection, the following spectral amplitudes of E/H and E are obtained

for mid-latitudes during moderate magnetic activity:
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A horizontal electric field component in the direction s is observed

as the fluctuating voltage Es*d between two electrodes in a distance
d parallel to g. Due to possible self-polarisation of the electrodes
a quasi-steady voltage of considerable size may be superimposed

upon the fluctuating voltage, truly connected to geomagnetic varia-

tions. This self-potential amounts for electrodes in a salt solu-

tion comparable to ocean water to:

> 1 volt for unprotected iron rodes
100 mV Cu*CuSON electrodes -

10 mv Kalomel (= biophysical) electiro
0.1 mV AgwAgClP(zoceanographic)electro

It may vary slowly under changing conditions in the waterbearing sol
Hence, it should be as small as possible in comparison te the voltag
truly connected to §H and §H. This applies in particular to periods
of one hour and more. There are two options to aveid these unwanted
electrode effects: Large electrode spacing (d > 10 km), high-quality
electrodes. Preference should be given to the second option, using
electrode spacings of, say, 100 m. The use of a large electrcde
spacing does not imply necessarily that a mean electric field,
averaged over local near—-surface non-uniformities, will be observed,
since the observed voltage may still be largely determined by local
conditions near to either one of the electrodes. In any case, the
site of the electrode installation should be surveyed with dipol-
soundings or DC-geoelectrics to ensure layered conditions at and

between electrodes.
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8.2 Orpganisation and objectives c¢f field operations

Geomagnetic induction work can be carried out PY (i) single-site
soundings., (ii) simultaneous observations along profiles, (iii)
simultaneous observations in arrays covering extended areas. It may
be possible to replace simultaneous by non-simultaneous observations,
provided that the variation field can be "normalized" with respect
to the mean regional variation field. This "normal" field may be

the field at one fixed site with no indications for the presence of
lateral non-uniformities, or it may be the averaged field obtained
from distant permanent observatories. Usually the normalisation is
performed in the frequency domain, introducing sets of transfer

functions.

Single site vertical sounding:

The resistivity structure within the depth-distance range of penetra-
tion is regarded a sole function depth: p = p(z). Its extent 1is

given by the modulus of the inductive scale length C(w) at the con-

o ety wibh, 1A - tP . < s s .
ooty vib oficl on wmepeore o sidered frequency, which increases with

L1

twomaly s i the increasing period. If a vertical
with e /\E“““7 g geomagnetic sounding is to be carried
Hast o ;mwm~uwﬂwmi;:‘i¥“ ) out, the source field wave-number struc-
*“?q?% So s e ke as function of frequency, ko= k(w),
o

must be known (cf, Sect. 7.3 ).

For diurnal Sg-variations, for instance, wave-numbers are derivable
from the fact that the Sq-field of the equinoxes is symmetric to
the equator and moving with local time from east to west. Hence,
the east-west wave-number of the m'th subhavmonic of Sq will be

m/a with a denoting the Eanrth's radius.

Magneto~telluric scundings are independent of the wave number, pro-

vided that the depth of penetration is sufficiently small in com-
parison to k_lz [kC| << 1. Taking the general dependence of C on k
into account,it 1s preferable to sfay with vertical soundings in

the range in which C(w) is independent of k.
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For a data reduction in the frequency domain (cf. Sec. 8.3) the

following set of transfer or response functions will be defined:

H = A_H E = 7 H
nz n - nx nx Xy ny

H = B_ H E = 7 H
nz n ny ny yx nx

For a frequency-space factor of the source field

ex?{i(wt + k R)}

the response function Clw) = Cn which characterises the downward
depth of penetration is connected to these transferfunctions accor-
ding to
A Z
c = 2 - XY
iy lkx 10U
B ~-Z '
c = . oo YX
n ik iwy
y o

The Cagniard apparent resistivity if given by
o 2
pa(w) = eu, [Cn(w)l )

the phase of the impedance by

T
¢lw) = arg(ny) = arg(C ) + =5 >

the modified apparent resistivity by

p*(w) = 2 wu {In(Cc )}*

which can be used as an estimator of the true resistivity at the
depth, '
5 () = Ré{Cn}. (cf. Sec. 2.5 and 9,1)

A comparison of the various equivalent respense functiens for a

given substructur%gives the following display:
: W
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Tests for the assumption of a layered distribution and the source

field wavenumber are given by
A
Z_. = -2 =2 =
Xy Xy an

xz14w

In addition there are certain constraints with regard to modulus,
phase and frequency dependence of the transfer functions. (cf. Sec.
2.6). | | _
The compatability of MTS and GDS vertical sounding results can be
tested by the requirement that

th = muo{kx Eny - ky Enx}

asreadily seen form the second field equation rotgn = —iwuoﬁn.

If the wave-number structure of the source field is not known, a

Horizontal Gradiént GDS can be formed: Observing that

. : aEny BEDX
~1quan T % Y, i
the differentation of E = C_ iwu H with respect to y and of
i _ nx n 0 TNy
'Eny = —1wuocn an with respect to x yilelds
- oH aH
H = ¢ {—2% ., Y3,
nz nsx . 9y

Since the electric surface field may be distorted by lateral non-
uniformities even when their scale length and depth is small in
comparison to the depth of- penetration, the E-field observations
may be replaced by observing the tangenfial-magnetic field also

at some depth d below the surface, i.e. by conducting a Vbrﬁicql

Gradient GDS. No knowledge of the wave-number structure of the

source field will be required, but the resistivity p_ between the
Y Pq

" surface and the subsurface points of observations will be required.

Assume that the lateral gradients of Hn are small in comparison

to the vertical gradients of Hny and Hny in view of the condition

[xC| << 1. Then it follows readily from the first field%quation
wd

rot yn =0, Eﬂ for d < z < 0 that

oH oH -aH : aH

ny _ na ~ ny . . nx _ _
9z Ay T 3z pr/po and 9% Eny/po‘
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Let g be the tranfer function between an(Hny) at the surface and

an(Hny) at the depth z = d:

H (d) = q H (0 ‘ where |[q| < 1.
Then e - ‘ "
nx ~ -1 and C_ = T“Q“”iﬁ .
9% A d n 1muocod

Single site geomagnetic structural sounding: The source field is re-

garded as quasi-uniform (k = 0} and the vertical magnetic component
therefore as anomalous, arising solely from lateral changes of the
resistivity within the depth-distance range of penetration, where

p = pn(z) + pa(x,y,z)\

In this special case the resulting anomalous magnetic vector

: ﬁa = (Hax’ Hay’ Haz = Hz) is linearly dependent on ‘the guasi-uniform
normal magnetic vector H = (H _, H _, 0) in the frequency-distance
. -n nx® ‘ny
domain:
= W H
—a -n
;{e re W W
XX Xy
W =W W
yx Yy
W zy

denotes a matrix of linear transfer functions as functions of fre-
quency and surface location. This implies that also linear relations

exlst beltween HZ and the total (=observed) horizontal variations:
H = AH 4+ BH
az X y
with
H = H + H H = H + H
3 nx ax Ty ny ay

W__=A(3+W__)+BW W =B(i+W __)+AW

These alternative transfer functions A and B can be derived now from
observations at a single site. Their graphical display in the form
of Parkinson-Wiese induction arrows indicates the trend of the sub-
surface resistivity structure which is responsible for the appearance

of anomalous Z-variations: .
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The in-phase induction arrow is defined by (in Parkinson's sense of
orientation) by
‘ p =~ Relx A + y B}
and the out of-phase arrow by

q " + Tmag{X A + § B}
where x and § are unit vectors in x- and y-direction. Generally
speaking, the in-phase arrows point towards internal concentrations
of induced currents, i.e. to zones of lower than “normal" re-
sistivity at one particular depth.Th€¥may point also away from high

~resistivity zones around which the induced currents are diverted.

Vertical soundings with station arrays:

The resistivity structure is regarded as layered, p = p(z),but the
inducing source field as non-uniform. Inducing and induced fields
will have matching wave-number spectren with well defined ratios
between spectral components in accordance to the subsurface re-
sistivity structure. Beneasth -Fhe-gtalbiop—array—under—eonsiderations,,
even-though-this—lateral-uniformity-mnay-be pequired—only—Lor—a
limi$eé~dep%h~@angeﬂéﬂ~whiehm%he—iﬂéueeé—eﬂﬁwen$9mmaéﬂ%y—£}ew-

. Cgeomagnetie—sounding—nagnetotellurie—sounding-in—E~polarisation
wi-th—respeet-to-gurface-gtroctyres,

Let U and V be field components of the surface field in the frequency

distance domain: U = U(w,R), V = V(w,R). They are decompcsed into

the wave-number spectren G(w,ﬁ), %(w,ﬁ) according to

o ikR
Ulw,R) = £ F Ulw,kle dk_ dk
- ® — y x
Viw,R) = ...
with “
ﬁ(m,k) = Eﬁﬁiﬁi

V (w5, k)
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as transfer function between A and B in the wave number domain, which
contains the information about the internal resistivity distribution.
A vertical sounding of this distribution is made by considering

R as a function of frequency, k being fixed, or vice versa.

If the array covers the whole globe, the spheficity of the Earth re-
quires the veplacement of the ftrigonometric functions by spherical

harmonics in spherical coordinates (r,8,A):
. © 7 .
Ulw,8,A,r=a) = & I Ug(w) PP(cosp)e™™
n=1 m=o n

Py

a: Earth's radius; PE(COS@): Associated spherical function. The trans-

fer functions have then the form
' V™M w)
n

Rg(w) s - .
vV {w)-

n

The first and still basic investigations of the Earth's deep conduc-

tivity structure have been carried out by this approach (SCHUSTER,

CHAPMAN and PRICE). ‘

If the avray of stations covers only a regilon of limited extent, it
may be impracticable to decompose the observed field into wave~
spectral components or it may be even impossible because only a small
section of the source field structure has been observed. In that

case vertical array soundings are carried out preferably with response

functions in the frequency-distance domain.

Suppose the source field is quasi-uniform 4in one horizontal direc-
tion, say, . '
U = Ulw,y) and V = V(w,y). Let
LLa PN ik

I N y
- Rlw,y). = o i R(w,ky)e dk

y

"~ ~

be the inverse Fourier transform of R, Then, if V is given by the
“product of R with U in the (w,k) domain, V will be given by a

“convolution of R with U in the (w,y) domain:

V(m,ky) = R(w,kyJ'UCw,ky) + Vlw,y) = Rlw,y) = Ulw,y)

+$oo
with R =xU = [ Rw,y-n) Uln)dn.
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If, for instance Ex = V and H = U, the magnetotelluric relation

Ey = Wi C Hy of the k~w domain will transformé into

E (w,y) = iwuo[N(m,y) x:Hy(m,y)]

with N(w,y) as Fourier transform of C(w,k). Observe that reversely

e -ik
Clw,k) = f Nlw,yle Y dy

-

and therefore

200

Clw,0) = J Nlw,y)dy.

-—C0

‘Hence, if Hy is quasi-uniform within the range of the kernel N,

Ex(w,y) = iwuo Clw,0) Hy(m,y)
which is the CAGNIARD-TIKHONOV relaticn commonly used for single
site sounding:sa

In a similar way the magnetic ratio of vertical to horizontal va-
riations can be generalized to

H (w,y) = Mw,y) = H (w,y)

v sY sy y »Y

with M(w,y) as Fourier transform of iky Clw,k ).
The response functions N and M have their highest valuesr close to

y = 0 and approach zero for distances y which are larpe in compari-

son to the modulus of C(w,k=0): isTowee,  domel, s
. WA Ot b e e € Lo < cw;f\:‘: o Ny )r ¢ ;h%“):"”;
{Cfw,00) A ;IC( o b
k : X hat Il !
L1 2% A\
Ct el INT ™ I+
“\-“_'\(
I - ’— e ‘ .
Lo A N o /

Hence, as to be expected, only the field within a certain distance
from the point or area of interest influences the relations between
field components used for geomagnetic or magnetotelluric vertical
soundings. Consequently, the requirement of a layered structure
applies only to this limited depth~distance range as characterized
by |Clw,0)].
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Structural soundings with station arrays: If not only the source

field but also the resistivity structure are laterally non-uniform,
no generally valid linear relations between normal and anomalous
field components exist. In the following it will be assumed that
the source field is either quasi-uniform or for a given frequenc§
well represented by a single set of wave numbers, Then the rela-
tions between the various field components can be expressed by
linear transfer functions in the frequency-distance (w,R) domain.
They can be formulated either for the "normal" horizontal field of
the whole array or, if necessary, also for the local horizontal
field only. In either case it is necessary to remove from the ob-
served vertical magnetic component its normal part in accordance
to the normal resistivity distribution and the source field struc-
ture. It is assumed that the normal depth of penetration is small
in comparison to the scale ISEEFE“?Esggﬁ uniformity of the source
field, i.e. an << Hny’ H gam@ 1he internal distribution of eddy

currents will be independent of the source field structure.

Under these constraints the following linear relations can be for-

mulated:
H W W
ax XX Xy H
H = H -— H = - w w ® nx
—a = —n ay ¥yXx ¥y
H- W W Hhy
az zZX Y
E yA Z H
( X i} ( %X Xy . nx
E Z 7 H
y yx Yy ny
or alternatively ‘
"H = AH +BH
az X y
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These sets of transfeﬂ%unctions represent the input for the nodel
calculations to explain the anomalous fields ﬂa or E_ in terms of
a resistivity anomaly

po{xy52) = p ~ p (2],

pn(z) being known.

There exist various constraints about acceptable sets of transfer
functions, for examples the functions in either one column of W
must describe a magnetic field of solely internal origin as dis-

cussed below.

The basic complication in the presence of 3-dimensional structures
is due to the fact that the TE and TM mode of the anomalous field
cannot be separated. This separation is possible, however, if the

resistivity structure is 2-dimensicnal, say

KA x"-‘\‘
If then the normal E-field is linearly - ‘_ n}#?- ;ﬁty
polarised in x'-direction, the anonaly ﬁuwﬂu}ﬁlfifzwnu-$
contains only TE modes with Ea parallel ' fi%;;?' ) #?l

to x' and Ea in planes x'=-constant:

E-polarisation, If the normal magnetic field is parallel to x', the

anomalous field is in the TM mode wilh zero magnetic fields above
the ground. Hence, Ea = 0 for =z = 0 and Ea lies in planes x'-

const.: H-polarisation (ecf. Sect. 7. 3). The new sets of transfer

functions in (x',y',z) coordinates are given by

0 0
0 wx‘y‘ = By \
| - - | - .
W' o= 0 wyy( = wn“ ' = }
0 wzy‘ - ‘“Z;l vﬂ!ylx‘ = Z_L . 0

where the subscript ({ ) refers to E-polarisation and the subscript
(L) to H-polarisation. The resulting symmetry relations for W and

Z in general (x.y,z) coordinates can be derived as follows: Let
o, e s c s O©
T:( . LT =(—s o o)
) H o o 1

be rotation matrices, transforming E and H from (x,y.z} to (x',y',z)

coordinates, ¢ = coso and & = sina:
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TH

| I | S | I——
..E-:. - .'—r- E -I—_I.h - _— ‘};]_a - TH Hn .
Since ' ‘
E' = Z'H' = Z'TH_ = TZH_,
= -n ~n -n
it follows that
7 =1t g T,
In a similar way it is readily verified that
. m—1 t .
W = TH W'T.
Hence,
2
+ s W - scW :
hil hi 2 2,
t ~cs |2, +2, | S ER
= - i Z = '
i Y iy ( 2 2 -
c“Z, - s°% es|Z2y+Z, |
- W W Lo i VRO
CTOR Ea ¢ Yo
which implies that.
- . - 7 _
wxx + wyy = Wh“ and ny Zyx Z” ;L

- are invariant against rotations and that

- W __ =0, Z
yX

XX

+ Z

yy

W 0.
Xy

"Skew" parameters which characterise the deriation from trus 2-

dimensionality are the moduli of the expressions

Wy Wox Zxxtﬁxy
Wi and =y
XX Yy

xy “yx
If a geomagnetic sounding at a single site has been performed near

sich a 2-dimensional structure, the relations which connect A and

~B with W and W reduce to
) ZX zy
- . 2
W.,c=B+W, (B’ - A sc).
z il hii -

is multiplied by ¢ and the second relation by
both is taken, it follows that

If the first relation

s and then the sum of

Ac + Bs = 0 or B/A = - tgo.

This implies that the in-phase and out-of-phase induction arrous
will be everywhere perpendicular to the trend of the structure,

whiéh can thus been found.
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In magnetotelluric soundings information about the trend comes from
the fact that
-22 2 7

XX .
+Z4. L, *2Z
yx  “xy"fyx

ny = tg 2o,
However, after Z has been rotated into Z' for the thus found angle o,
no distinction is possible which one of the off-diagonal elements of
Z' vefers to E- and H-polarisation. If in addition the direction of
the geomagnetic induction arrow is known, such a distinction becomes
possible. Furthermore [2,|.> |Z,|,if the structure is better conduc-
ting than its environment and vice versa. Hence, it can be decided
whether the induction arrow pdints toward a well conducting zone or

away from a poorly conducting zone.

The distinction between the impedances of E- and H-polarisation is
'émportant, if for a first estimate a 1~dimensional interpretation of
Z by a layered substratum is made. Such an interpretation may give
meaningful results for Zy, but in general no® for Z,. A test for the
proper choice of the impedance element for a i-dimensional interpre-
tation comes from the fact that within a given area 7, varies less
from place to place than Z; .

A test for self-consistency of the transfer functions Wh and wz alony
a profile y' perpendicular to the strike of a 2-~dimensional struc-

ture arises from the purely internal origin of the anomaliy:

WZ = K = Wh and Wh = ~-K = WZ

where
177w
Kx f = -ﬂ-_- ___o{' f({-t _)/(Y'“n'}d’ﬂ‘

denotes a convolution of wh (or Wy) with the kernel function 1/7y.

- 8.3 Spectral Analysis of Geomagnetic Induction Data

The objective of the data reduction in the frequency domain is the
calculation of transfer functions. They linearly relate functions
of frequencyhﬁ field component Z to one or more other fiel@ﬁbmp@—
nents X, Y, ... . Let 2(t), ¥(t) and Y(t) be the observed time va-

riations of 7, X, Y during a time intervall of length T either {rom
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the same or from different sites. Let Z(w), %(w), §(w) be the Fourier
transforms of Z(t), X{(t) and ¥(t). Then a linear relation of the
form 5 N . N N -

Z(w) = Alw) X(w) + Blw) Y(w) + 8Z(w)

-~ ~

is established in which A and B represent the desired transfer func-
tions between 7Z on the one side and X and Y on the other side; 8§72 is

the uncorrelated "nolse" in Z., assuming X and Y to be noise-free.
s g

As the best fitting transfer functions will be considered those whicl
produce minimum noise < [§%|2? > in the statistical average. Here the
average‘is to be taken either over a number of records or within
extended frequency bands of the width Af which is L times greater
than the ultimate spacing 1/T of individual spectral estimates. The

"noise: signal ratio defines the regidual e(w);w?atio of related to

observed signeal the coherence R(w):

ezzil-via—zﬁ—) " RZ =1 - g?
<{z]?> ' :

The coherence in conjunction with the degree of freedom of the

averaging procedure establishes confidence limits for the transfer

functions A and ﬁ.

The averaged products of Fourier transforms are denoted as

SZZ = <22 % > power spectrum of Z.
Szy =< 7Y™ >: cross spectrum between Z and Y
with 8§ = 87 .
zy yz

In summary, the data reduction involves the following steps
~(a) Fourier transformation of time records
(b) Calculations of power and cross-spectra
(¢) Calculation of transfer functions
(d) Calculation of confidence limits for the trans-
ferfunctions. : '

Steps (a) and (b) can be substituted by the following alternatives:

(a®): Calculate auto-correlation functions RZZCT), ... and cross-—
correlation functions Rzy(T)’ ... wWith v being a time lag,
T << Tt

max
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st

Tet Zm be the Fourier transform of Z(t) for the frequency f = £

[P S o S AN i S i e 5 R s e <7 Sl 00 e 6 e heE € e m P 14 P pt s i
bt N 4 st . A ape . b wbmihid s wwniafl

R (1) = f Z(x-t) Z(t)at
z2Z T
R (1) = J Z(t-t) Y(t)dt
zy T
with 0 < 1T < 7 .
. max
(bx): Take the Fourier transforms of the corvelation functions

and obtain as in (b) power—~ and cross-spectral estimates,
if the averaging is done within frequency bands of the

width AFf. There is a formal correspondence between the

N — —1
aximu and Af .
maximum lag T nax

The actual performance of the steps (a) to (d) with one or more

~sets of records is now described in detail.

a, Fourier transformation. The time series and their spectra are

given, respectively to be found, at discrete values of t and w,

which are equally spaced in time and frequency. Let Zn etc., be an

"instantenuous value of Z(t) for t = tn, n =0,1,2, ... N with

At = tn+1

Z2{(t)_is assumed to be zero.

-t Outside of the record, extending from t, to Ty

Because of the finite length T of the record the lowest resolvaﬁle
frequency and theveby the frequency spacing will be given by

% - Af - £, and f, has to be a multiple of Af. Because Z{t) is
given at discrete instances of time, At apart, the highest resol-

vable frequency, called the Nyhhuist frequency, will be the reci-

procal of (At-2), i.e.

£=f,m =01,2, ... M with fouq — = AF
. } “' ) 1 _ -
and fM = 5xg © MAT.
-1
< (2 41) >
kbfzmnl
% — -
|71
?@ |
B AN ! I |




The Fourier integral
- +o ~-iw_t
Zw ) = J Z(tle 7 at =

-

-iw t
Z(t)e ngt

QO

will be evaluated numerically according to the trapezoidal formula

of approximation. Setting

- 1 %
z, = 5lact ) + 2r )]

and observing that .ot {"
ot = 2m £t = 200 B
mn mn I
-‘h_’

N\
the diserete Fourier transform of Z{t) is
- N-1

. 2mTnm . . ?m7nm '
Z = At {n§1 z (cos =~ - i sin—j Y} om o= 0,1, ... M

A linesar trend of the record within the chosen interval may be
written as '
T,
Z

d
' - -+ -
ARG T(‘t ‘LO )~ t <t < t

with . d = Z(tN) - Z(t ).
o

A correction for this trend in the frequency domain implies that
the imaginary Fourier transform of 2'(t),

dT

rm T 1,2, ... M

Efcfm> = (-1H)™ 1 5

is substracted from Zm

A second correction arises from the fact that Z(t) does not vanish
necessarily outside of the chosen intervall. In that case the
original time function can be multiplied in the time domain with a
weight function W(t) which is zero for t < t_ and t > ty- The
Fourier transform of the product

wit) » z2{t)

~

is given by a convolution of Z with the Fouwrier transform of W:

Wiw) 2 Z(w) = % 5 W

-~ ~

~ ~
n—im Zm

in

A frequently used weight function is

wit) ='%[1 + cos 3%(tmton %f]
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which has the Fourier transform % for m = O
-~ - . T .
W(f=f ) = i for m = 1
Tl f
T 0 for m > 1
~ RN :
A\ AN
V““’ \
N L
o} 4 3’3_‘»--‘) I
- {7 .
The convolution of W with descrete values of Z reduces then to
r%(zé 4 Zif m= 9
ot 1 iy - K 1,0 -
7 > = = T At A ™ fowrt —{" 1 = £ P =
<?m T z wm_m Zm~ 5 Zm+ 7 m+1+Zm—i)3 m 1, 2, M1
Yz 479 m o= M
2 "M-1 M

~

where < Zm > is the discr®te Fourier transform of W(t) « Z{t). This
smoothing proceduve of the original spectrum is called “hanning"

after Julius von Hann.

In certain cases it will be necessary to apply a numerical filter

to the time series to be analysed before the Fourier transformation.

This filtering process consists in a convolution of Z(t) with a

filter function WTE) in the time domain and thus corresponds to &

multiplication of Z with W in the frequency domain. But because

the fiitering procedure is intended to prepare the time series for

the Fourier transformation it must be carried out in the time domain

If Wn denotes. the filter weight for t = tn, the discrete form of

the convolution is
: +n

Wx 4=

-1
Max

e
Max . Ga
n—-n n

Usually even filters are employed, W(t) = W(-t) to preserve the
correct phase of the Fourier components. The transform of W is chose
in such a way that it acts as a heigh-, low~ or bandpass filter for

frequency-independent (="white") spectra:

{ \( bcwc"@w.ss ]’\‘ff'x;’fv”

N 7
SIGEYS P
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The weight function W is then found by calculating in Fourier trans-
Form of W: '
teo .

S W e+1wt

W = dw .

1
2

-0

The purpose of filtering the time series befokre making a Fourier

transformation is

(a) a prewhitening of the spectrum, levelling off pezks and compen-
sating spectral trends

(b) a reduction of unwanted larger spectral values close to zero
freguency, arising from a background trend in the time series

{c) a suppression of spectral power beyond the Nyquist fregquency

to avoid "aliasing". Spectral values for the freguencies

fopeps Tpo@nd Toy 0’ fyps fin,  etes
are undistinguishable"(r = 0,152, .., M=1):
< At > e— At ;
. ) t
2 (&) \ f=dn /\ /\ /A[
| Al \ —
: !
é——a ' _:) \:f i

'4 B 3‘4i4.

"b. Calculation of power and cross spectra: Let Pm denote a product
-~ o~ - . - o - . .
LmZm ZmYm etc. for a Irequency fm, m= 1,2 ....M. The calculation

of power and cross spectral estimates from yeal data requires that

such products are averaged with w certain degreesof freedom, ¥«

Suppose that the available record length just gives the desired re-

so]utlon Af = Tul for the transfer functions to be determined. In
'ihlb case spectral products Pm have to be derived for a number of

individual records and then to be averaged. Average the spectral

products and not the spectral values! The resulting mean value

S = <P >
m m

is the desired power or cross spectral estimate., If L records have
been used, ¥ = 2L bedause the sine- and cosine transforms of the time

series contribute independently to the calculations of S
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If the record length T allows a frequency resolution Af = Tnl which
is much smaller than a'méaningful resolution AT for the transfer
functions under consideration, then P can be averayed over

L = Af/Af spectral values within (M/L 1) frequency bands of width
AT between I = 0 and fM = MAL.

Taking the average of Pm within frequency bands implies that & nu-
merical filter Q(f) is applied to P(f), yielding the desired power-

cross spectrum by convolution:
+M

:QXP»:A-f“% th;\an\~

m m

(P__ ='P§). The filters to be used are even functions of f, bel-
shaped and with zero values outside a range which is smaller then
M Af. Setting Q(f) = 0 for f > fQ,

m
= i Q ~ A o~
S = ML LT QP B P ) ¥ QP

M.H&f "

3
|
N

i

O { — {1 | { — in

o,

The resulting smoothed spectral estimates-Sﬁ have been derived with
roughly L = AT/Af degrees of freedom. The effective degrees of free-
dom ¥ may be somewhat smaller, depending on the frequency dependence
of the filter. They are defined as

2?2 var{u)
var {(uq)

.W:
where var(u) denotes the variance (=dispersion) of a random variable
ul{f) and varf{uq) the variance of Q 2 u, hence

a - |

e .

J QT EHar

0
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Two convenient filters are

sinx
(S22

the Parzen filter Q(f) = % .
the Bartlett filter Q(£) = % (Sinxye
Cwith x = % f 1. The bandwidth is given by ¥ (Parzen filter),
respectivity by 2/1 (Bartlett filter). For the Parzen filter the
degrees of freedom are ¥ = 1.84 L and fQ = 2/1,
0.75 = - FPQA—u“ f,— 6{"4 Gag S "EG—(“‘,&’ﬁ. f.'(’:'f'&(
A . - N
Qi) L\ ayy - N
A\ .
R ! - '\\
AU I YAl
R ™ ‘k S~
N, N~ N =
o - 2 “ z
- I
‘e, Calculation of transfer functions
The non~correlated part of Zn is
82 =72 ~A X - B ¥
m m m m I

for the frequency ﬁm' In the average over L adjacent frequencies

or L individual records the power-spectrum of the non-correlated

part in Z shall be a minimun;

_ - T3 -_ -
SGZGZ = < (SZn‘x 6Zn9 > = Min!

Hence, the derivatives of 86 with respect to the real and ima-

] z8 7
ginary parts of the Transfer functions Anlamd Bn7have to bhe zero:

85 9S8 .
dRe¢A ) dTm(A ) n
n n’
Sxx Syx N a SZX
S S S
Xy vy B 2y
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using the notations as introduced above. The subscripts m are ommitted
Elimination of either A or B yields the basic formuldks for the de-

termination of transfer functions in geomagnetic and magnetotelluric

soundings:
~ S 5 - S 8
A = ZX YY 2y ¥X
S .S - [s_.|*
xx"yy Xy
. ~ S S - S S
o B = _ZY_ XX Zy Xy |
S .S~ |s_|*?
XX Yy Xy

The coherence can be derived from
2:~ +~
R (ASXz BSyZ)/SZZ
as it is readily seen from '
Sézéz ® Sy T Asxz - Bsyz'
If only a relation between 7 and X or Y-is scught or if X and Y
are linearly independent (SXy = 0), then the above derived relations

reduce to

N S?X - Szg
A = == B =
Syx Syy

[s__1? s 1*?
R® = 55 R® = g4 —

xx"z% ‘ Syy ZZ !

‘ s.. s _1? s 1?2
R = Y 7% %X zy
S S

d. Calculation of confidence limits for the transfer functions

‘zn grdér to establish confidence limits for the transfer functions
A, B of the previous section it is necessary to find the probability
density function (*pd £") of their deviations from their "true"
values Ao, BO. We assume that estimates of R and B according to the
least~square method of the previous section are without bias, i.e.
without systematic errors (E = expected value): '

~

E = - ~, =
(M) AO, E(B) BO

Henceforth, random variables will be written with capital letters
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(e.g. X), their realizations by observation with lower case letters

(e.g. %), and their true values with the subscript "O0" (e.g. xo)°

Let f(X) be the pdf of a variable X. Then the probability that a

realisation x exceeds a value G is

- 7 £00ax . |
o] éf(X)d)\. ' /{Cx) ‘ P\ ,__o{
Hence, there is a "confidence" of QN *9'&gg\
B = (1-a) + 100% that x does not | . &
exceed G. )

The following pdf{s will be needed in this section:
(1) The "Gaussian Normal Distribution" of a normalized variable

with the dispersion 1 and zero mean value:

) -
£,00,12) = A A

27 '

(2) The x®-distribution for v degrees of freedom:
2

- X
: 2 Y .
f ) = —1— (2 The ?
X (L - 1)1
2
" (3) The Fisher-distribution for 21 and Vz‘degrees of freedom:
v v \Y
v, +V A 2 dgy
1 72 2 2 2
( L1 v .
F 1’72 Vi v2 (v1+v2)/2
— = 1 (= 431!
A« 7 1)1 ¢ 5 i).(v2 + viP)

1
These distributions are encountered in the following problems:'
Consider a random variable X which is normally distributed with

a dispersion

]
[}

E(][X - xolz) = var(X).

Let
p
g 1t

=R
[T o ]

X =
' 1
be the realized sample mean value of n realizations of X. These
mean values are also normally distributed with the dispersion

: - . g?
EC(|X - x_|%) = i ¥ ovap(X) = ~=
9] I 2 i n

according to the "central limit theorem".
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Let
s2 = 2 % (x,-%)2
n-1 s i

be the realized dispersicen within a sample of n observations.
Then the normalized dispersion

. {n-1)s*

SZ

O

U

will be a random variable with a ¥? distribution for v = n-1
degrees of freedom. Let Si and SS be the dispersions within

1 and n2 observations of two different variables

Xl and X2. Then the ratio of their normalized dispersions

samples of n

z 2

F = 517351
2 2
S2/502

will have a Fisher~probability density distribution fF(n—l,n—Q).

We regard now the Fourier transforms %, X, ¥ as random variables
Z, ¥, Y and denote their realization for a single record or a
single frequency component as %X, y, 2. In a similar way, a and b
shall be the realized transfer functions for a limited number of
records or a limited frequency band Af, their true values being
a, and bo. We assume now that Z depends linearly only on X and

that X is observed error-free:
E(X) = X

Then

z = a =xr_ + 6z
(o] O (o]

Gzo is the "realized" not correlated part of z for a single
record. The wvariable Z shall be normally distributed with the
dispersion

var (Z2) = sg,

which will be also the dispersion of §%Z:

E(Z2%) = E(82 82%*) = s;

By minimizing the uncorrelated power <8z82z%> = Sﬁzﬁz for a number
of records or for a number of frequency lines within a frequency
band of the width AT a realization of the transfer function A is

obtained:
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Observe that the residual, of which the power has been brought to
a minimum, 1is

8z = ax_ - &
o}

in contrast to the "“true" residual
= X - Z.
6Zo 25%0
The random variable

n <{sz_[* >
U =

82

0

has a y*~distribution with n degrees of freedom, where n is the
number of records or the number of lines used to obtain the

averaga.

If a variable U with a X’~distribution of V degrees of freedom is
decomnosed into two components U1 and U2,

U = U1 + Uz’

i 2 )
degrees of freedom will be V:

Vo=V + v
1

U, and U, will be likewise Xz—distributed and the sum of their

This decomposition will be carried out now with U as defined

above: Clearly,
<[62 [*> = <|2 - agx [*> = <[2 -~ Ax_+ (A - a))x_|?>.

The power of the averaged residual has been minimised by setting

<z - Ax)x, > = 0.
{ence,
<|sz |?> = <|oz]*> + A - a_|* <|x 1* >+ 0

implying that

U = 5_162' %_:.).,_’D,
1 52
)
has a y?-distribution of n - 2 degrees of freedom because
. 0 - 2 2
u, = 2_|A aOI <|xol >

S

O
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must be a Xz—distribution of 2 degrees of freedom in view of the

real and imaginary part of (A - ao). The ratio

. U2f2 . lA*aolz flxolz > n-2
Ui/(n"‘g) ‘ <16212> 2
has a Fisher-distribution fF(Q, n-2). Using the notations from
above,
72y - .2
<fez|®> = 55262 S,z
E 2 - N
<qx 12> =8
and observing that
B S
lAlz = Zx - Rz . Z2Z
' (s_.)? XX
XX
with R* = |s _[?/(s » S_ ), the Fisher-distributed ratio becomes
ZX Z 7 XX
_ 2
p o D2 |A-a, | R?
2 [Alz g2

We have found now the pdf of the deviation of A from its true value

to be in terms of its modulus

_ é 2
iA - ao[ = |AI ﬁ / H:§ P,
Let a
g = J fF(Z, n-2)dr
O

be the probability that F does not exceed the value F = G, observing
that fF is a one~sided pdf. Then there will be the probability B8

that the modulus of A lies within the confidence limits’

: - £y _2_ S
IAAﬁl - IA[ R / n—7 G Qéﬂ?
—— ) :"' .\ :k--'":?
.lW\{AJ RN A
in the complex plane. ‘u)fif“'
: R
The threshold value G for a desired value ///
of B can be obtained in closed form because i
~ e [ AY
- oy . oo ymEL L . n-%
fp(2, n-2) = =) with m = ,

Hence,

L — M. — .,_].ﬂ.-- m
fF(Z_3 n-2)dr = 1 (m+G)

frs)
t
O =M
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or 2 1

Example: n = 12 and B = 956%:

2 ]
—~— G = 20” - 1 = 0.82
n-2
or - . E . '
[AAﬁI |a| = 0.91
e 1
n = 12 and 8 = 99%: vV G = VY1005 - 1 = /1.5 = 1.22
n-2 = 4 -
~— _ 3 jp—
n=12and8=50%:1"1;?5(3:‘/2—1: <15 = 0.39
For large n and m >> 1lny (y = E%EJ; the following approximations are
valid:
2 ~ 2
nz &~ o§ Ay
laa,| = |a] —&= - /Iny% .
B RvVn |

This approximation:exemplifies the general propagation-of-error law,
namely that the errors are reduced proportional to the square root

of the number of observations.

In the more genevral case that 72 depends on X and Y with a non-zero
coherence between X and Y confidence limits can be obtained in a
similar way: Let

Zz =ax + by + 8z ,
o o o’ o e

assuming that now X and Y are realized error free, Then the Fisher-
distributed ratio, involving the deviation of A and B from ag and
bog turns out 1o be

- 2 - 2 . —a b Yy .
. | A aO] 5., *+ (B bo[ sW + Rc{sty(A a_)(B-b )7} n-
ST L

EZSZZ
which has a fF(Ha n-4) distribution. The confidence limits for A and
B cannot be calculated individually, unless of course SX' is taken
to be zero. On the other hand, if we assume that ]Avaol and !B~bol
are equal, then

o ~foa
v 8oyt Ro{zsxy} -

S
F = |a-a |2 2%
ol

L2
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which allows the determination of combined confidence limits for
A and B. The threshold value of P for a given probability £ can

be derived from

2G*w—) T(—2) with m =

(1 + 26y 1+ 2¢ m+2G
m m

n-Li
—5

g.4, Data analysis in the time domain, pilot studies

'Suppose the time functions to be vrelated linearly to each other are
not oscillatory but more like a one~sided asymtotic return to the

undisturbed normal level after a step-wise deflection from it:

-

It may then be preferable to avoid a Fourier transformation and tlo

derive inductive response functions in the time domain.

If 72 depends linearly only on X, i.e.
Z(w) = Alw) + XCw) + 8%(w)

in the frequency domain, then Z(t) will be derived from X(t) in
the time_domain by- a convolution of X(t) with the Fourier trans-

form of A, L
ALY = 5o I Alw) e

-0

1ot dw.

Since 7(t) cannot depend on X{(t) at some future time T > T, the
response function A(t) must be zero for t < O, yielding

«

Z(fﬁ)"(’izct) = ACEY=X(L) = }A(_'i:”-’[)“}((ft)d’f-mf ACEUIX (L=t )gt! .

-0
o



As a consequence, the real and imaginary part of Alw) will be related
as functions of frequency by a dispersion relation:
Re{A) = K % Im(A}

: L
with K{w) = el

The time-domain response A(t) is now determined from a given record
of Z(t) between t = 0 and t = T by minimizing {8Z(t)}? within this

intervall:

T i w0 . .
J {2¢ty - f ACEY) X(t=t')dtf}?dt = Mint
o o

It is assumed that X{(t) is known also for t < 0. Differentation with

respect to Alt=1) gives

o T . ~ T "~
SOACENY] S XCe-t' ) «X(t-t)datddtt = f Z2(1) X(¥-t)dt.
0 0 ' 3}

L.et again Zn = Z{t = n+*At) denote the value of 7 at equally spaced
instances and let An' be the value of A(L') for t' = n'At. Then the
replacement of the integrals by sums yields & system of linear

equations for the determination of the An" n' = 0,1, ... N:

Z. X __~

N
L
- n - n-n

O

forn = 0,1,2, ... N.

s

Chosing N < N, the response values can be determined by a least~
square fit. Otherwise a generalized inversion of the system of

egyuations can be performed.

Consider the limiting cases that

(1) the frequency response is real and independent of
frequency,
(2) the frequency response is imagimary and proportional
to w
. . .

A= - 9
Ay = ag . &y = 35

The first case is realized by the inductive scale length C, above

a perfect cenductor at the depth 2> or by the impedance for a thin
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sheet of the conductance T above a non-conducting substratum:
%o - .
Cn =z, Ln = 1/1. The second case can be realized by the same

models, interchanging Cn and o (cf. Sec. 9.12:

. N
. R L .
n iwp,T C n 1wy
The Fourier transforms of Ai and A2 are
- e . g Sinwt |
Ai(t) = a, §Ct-0) ' 32(1) = boum‘ = sgn(t)ﬂbo
or A (t) = 2mb [1 + sgn(t)]
2 2 o =
RAKY L N S
i R - Tm {A',} N
. ~
(a3 L = ....,.: j‘_....._.__....
i r
AH AN A& }
1§ N |
- M —_—— e F
°© ¢ ot

Hence, in the first case 2 depends on X at the same instance of
time only, in the second case on X with equal weight during the
entire past:
_ t

2,0t = a B (1) L L (E) = “DO—i X(t*)dt!
These simple relations are very useful to conduct a pilot reduction
of sounding data. Case (1) applies to magnetotelluric soundings in
sedimentary basins, underlain by a crystalline basement, tc ver-
tical geomagnefic soundings with very long periods, reaching the
conductive pért of the mantle, and to structural geomagnetic soun-
" dings where the perturbed flow of induction currents is in-phase

with the normal magnetic field.

The basic linear relation for structural geomagnetic soundings can

be written then simply by products in the time.domain:

Haz(t) = A - ﬂx(t) + B . Hy(t).



This relation implies that the local geomagnetic disturbance vector
H = (Hx, Hy’ Haz) lies at all instances of time in a plane which

is fixed in space. The intersecting line g of this plane with the
(x,y)-plane gives that polarisation of the normal field vector, for
which no anomalous vertical variations are produced. In the case

of 2-dimensional structures, this would be the direction of their

trends (cf. Sect. 8.2).

Vapibus graphical methods have been developed to find the orienta-
tion of this "preferred plane! for the local geomagnetic distur-
bance vector. In a "Parkinson-plot" the crientation of this vector
is displayed for individual events on a unit sphere. They tend

to fall onto a plane intersecting the sphere. The projection of the
unit vector normal to this plane defines the length and direction

of the "Parkinson induction arrow" at the considered site. The
orientation is chosen in such a manner that a horizontal disturbance

in the direction of the induction arrow is connected with a posi-

tive {=downward) ancmalous Ha
N

.

are plotted in (x,y)—-coordinates for individual events,u in x-
direction and v and y-direction. The points (u,v) tend to fall

onto a straight line, having the equation . ?

j. : A s 1 + va:‘
i . | . A
from which the coefficents A and B J

can be caleulated. The "Wiese-induc-—

tion" arrow with A as x-component and

B as y-component is opposite to the Parkinson arrow.
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In an "Untiedt diagram" the endpoints of the horizontal distuvbance
vector (HXHy) are drawn as a curve in {(x,y)-coordinates during a
single event. Lines which connect time instances of equal vertical
disturbance Haz will then be parallel to the.intersecting line of
the preferved plane with the - (x,y)~plane. The "induction arrows"
are normal to these lines and their length is given by the ratio

of H,  to the simultaneous horizontal disturbance vector, projected

a

onto the direction normal to the connecting lines.

CO‘nM‘L";“'ﬁ

Liae f‘l H H

n$ *‘Cn-. [, ) ' g i %

“1 %“-‘- § Sune, “‘_ ‘ :

Zs \M/ 7

“Parkinson and Wiese diagrams which utilize the Haz’ Hx’ Hy relation:
of numerous individual events can be employed also in the case of
2-dimensional structures with an anomalous field which is not
exactly in~phase with the normal field. Then more or less sinusoida
variations are chosen with readings at well defired times, e.g. at

the time of maximum deviation of Haz Trom the undisturbed level.
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8. Data interpretation on the basis of selected models

9.1 Layered Half-space

The interpretation of geomagnetic sounding data by a layered re-
sistivity distribution p = pn(z) is appropiate at those single
sites or for those arrays which do not show anomalous magnetic
9-Variations and which have a polarisation~independent magneto-
telluric impedance:

' | lb ZAL
W = 0. : Z = ( .

The transfer functions to be used for the interpretation are

the inductive scale length C (w,0)

for zero wavenumber n )

the impedance 7 = iwp C
n o n

the ratio of internal to i - kCn

external parts in the
wavenumber domain

3]
!

n i+ kC
n

The transfer function of the ¥Y-algorithm to be used for the lineari-

sation of the inverse problem is

Y, = 2 ln(ﬁlwu07po Cn)

where Py is arbitrary reference resistivity (cf. chap. 6.4).

Considering these transfer functions at one particular frequency)
the parameters of the following models can be derived directlly
from them. These parameters may then be used to resemble as func-
tions of frequency certain characteristics of the true resistivity
distribution. All formulas are readily derivéd from the formulas

for TE-fields at zero wavenumber in chap. 7.3, annex.

(a) Single frequency interpretation of the modulus of transfer-
functions (Cagniard-Tikhonov}: the model consists. of a uniform

half-space. Its resistivity is

' - P ) ]anz Exr-
PN P ewlelt - B 0wl e,
DN . . . 0 Y
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if the period T is measured in seconds, Ex in mV/km and H_ in y.
N is the "Cagniard apparent resistivity" of the substratum at
the considered frequency.

(b) Single frequency interpretation of the real part of Cn

The model consists of a perfect conductor at

NN R

g the depth z = 2" beneath a non-conducting ‘top
g.moo 4 layer.
Y 3¢ ) Im(Zn)
N ;; o ~ N N 2" = Re{ Cn} = e
\g \.\'\\\ '\\‘ Wy

‘ N . &
is the depth of the "perfect substitute conductor" at the con-
sidered frequency, indicating the depth of penetration into

the substratum at that frequency.

(e¢) Single frequency interpretation of the imaginary part of C

T The model consists of a thin conductive top
_quzn ______.  layer of the conductance % = ? o(z)dz,
) \ \ covering a non—cbnducting halfgspaCe. This
. S’g<vi N \\\\ apparent conductance is given by
- fIm(Cn) _ ~Im(C) . Re(Zn) .
o le 12 o, 1Bl

(d) Single frequency interpretation of amplitude and phase of response
functions; ¢ = arg{Zn}; 1* 0 < ¢ < w/4%: The model consists of
a thin top layer of the conductance 1* above a uniform substra-
tum of resistivity p"x:

—c’* ~Im(C_) - Real(C_ ) Re(zn> - Im(z_)

\““’ “”“; o~
\\\\\\\

2! /4% < ¢ < w/2: the model consists of a non-conducting top -

S 2 7 2
| wu {C | |z,

1+ cot?d

p a.' 2

layer of thickness h above a uniform substratum of the re-

sistaivity p ¢ In(Z ) Re (7 )
m n - e .:n

TS h = Real(cn) 4 Im(cn) - -
. )
§ = b

* 2 wué{Im(Cn)}z S S

3 \\ 1+tan?¢
S’
\\\ NN \\\

-
©
1

ad



(e)

R BV RO R

The "modified apparent resistivity" p”® can be used as an estimator

of the resistivity at the depth z'= Re{Cn] = h + % * with
®
px = ‘G%M as apparent skin-depth of the substratum. The representation

of the thue resistivity distribution p{z) by the modified apparent
resistivity distribution pk(zx)ﬁis usually adequate, if p decreases
with increasing depth. It is-less satisfactory, if p increases with
depth.

Multiple frequency interpretation with a three~layer model?

This interpretation combines the single

7 frequency interpretations (b) ‘and (e), i.e.
S the model consists of a thin top layer with
7 oo \ hH the conductance 7, a non—-conducting inter-
v .
\ NN - mediate layer of the thickness h above a
AN N A perfectly conducting substratum. Then
N h :
Ch T3 ing )
2 h di
n, = quTh.= is the induction parameter of the model with di
‘ _ p? R
as thickness of the top layer and p, = J/aﬁgf'as its skin-depth
o

with the requirement that py << 4.

If ng >> 1, implying that h >>> P> the induction is predominantly
in the surface sheet, the response functions
3

Cn = iwuoT ’ Zn =

SRR

arve independent of h, thus allowing a unique determination of T.

In particular,

a o2
Hence, if y = log pa/po and x = log T/TO (T = period; oo and TO
are reference values), then

pO .
y = x = log(2my 5= ),
o

T.e. the 0, vs, period curve in log-log presentation is a straight

¥ with w as curve parameter

e O e o R e R A TR AT AT L % A T T i T R T e e S T e . T L PSR e
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line ascending under U457, its intersection point on the x-axis

given by : o
- _0 .2
Xp = 1og(2ﬂuo T T )
o
or ‘ —_—
T //f
T o= V/ég;lm~ = 357 v/ £ (a™h
U Py Ps
X
with TI = TO . 10 L in seconds and o in Qm.

Tf, on the other hand, n_ << 1, there will be effectively no inducticn

in the thin sheet and

- ; ) 2
Cn = h, p wuo h=.

The log-log plot of p, Vs. T is again a straight line, now descen-

ding under TN

_ 27y h?
¥y o= =X t log(*—,f—ow——).
P
oo

The depth h is determined by the intersecting point X7 with the

x-axis: N ' ‘
/T p— .
_ J o _ .
h =V P, 0.357 /iqpo (km)
P
T m’.L.
S

)’:/KOQ{K/Eo}

il L.\ (%Ml\

0
0 thfog TTVT:%'TT”
T, = “1 5 C.,
C,. [h
T { € /K Y
\\\¢‘
\‘
\\‘m\\
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Exercise

Geomagnetic variations. in H (north component), D (east component)
and 7 (vertical component) have been fecorded at Goettingen from
September 5, 17 h to September 6, 2h @GMT 1957. During the same time
intervall records have been obtained also of the telluric field in
its northcomponent EN and its eastcomponent EE' Scale values and

directions of positive change are indicated.

(1) Determine the magneto~ﬁelluric impedances EN/D and EE/H for
fast (period I 10 min) and slow (period X 1 hour) variations,
evaluating peak value readings of pronounced deflections from
the smoothed undisturbed level.

Calculate the apparent resistivity Py and estimate the phase ¢
of the impedance (OO, i'uso, * 900).Interpret P and ¢ with
one or two layer models for the tﬁo period groups separately.
Then search for a model which could explain both period groups
by calculating the response function y and solving a system

of two to four linear equations.

(2} The magnetogram shows pronounced variations in % which in view
of the low latitude of Goettingen can be interpreted as being
due to a reéistivity anomaly. Check the correlation of Z with
H and D by visual inspection. Then choose effects with
distinctly different H : D ratios and determine the coefficient
A and B for the anomalous vertical field Z = AH + BD.

Interpret the result. | '
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§.2 Layered Sphere

The sphericity oﬁ the real Earth has to be taken into account,
if for the considered ffequency the depth of penetration is
‘comparable to the Earth's radius a divided by N. Here N is the
highest value of the degree n of spherical surface harmonics
which describe the surface field as functions of latitude and
longitude. There is a formal correspondence between the wave

number k and n/a or better vn(n+l)/a (5. below).

Only the long-period variations Sq and Dst penetrate deeply enough
to make a spherical correction of their plane-earth response

functions necessary. The DS source field is effectively of the

degree n = 1, while the Sq zource field contains spherical har-
monics up to N = 5, In fact, the surface field of the m'th Sq
subharmonic is well described by a spherical harmonic of the

degree n = m + 1 when m ranges from one to four. The ratiocs a/N

" and 3000 to 1200 km for Sg.
These values have to be set in relation to the depth of penetration
of Dst from 600 to 1000 km and to the depth of penetration of Sq
from 300 to 500 km.

Hence, in either case there will be the need of a spherical correc-

are therefore roughly 6000 km for DS

tion, but it should be noted that it will be bigger for'Sq because
the greater spatial non-uniformity of Sq outweights the effect
of deeper peqetration of D -
The theory of electromagnetic induction in conductors of spherical
- symmetry surrounded by non;conducting matter can be summarized
as follows. Let

H = (H H) O E-=(E

r

E,, O)

e) H}\’ 85 }\J

be the magnetié and electric field vectors of time-harmonic TE-
mode fields in spherical geocentric coordinates; I is the geo-
centric distancg, A the angle of longitude and 6 the angle of

co-latitude (= 90° minus latitude) on a spherical surface. The
diffusion véctor'from Sec. '7.3 points from external sources

radially inwards toward r = 0O:
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. 3 Pr 1 b PP 1 . 1 9 Pr

SV
21 ~ D pasa Op
rot rotps r(aear > gin® 9A8r* sine{sine Az +88L81n8 98 ]})

'Pr'is expressed on a surface r = const. by a series of spherical

surface harmonics. The diffusion equation 92P = iwuodv P within
the v'the shell is then solvable by & separation of variables
(K2 = dwp o J):

v 0"V

N 1 )
Pr = iK z I v £ P:(cosﬂ)e
n=l1l m=o n

imi

where the characteristic radial function fﬁ satisfies the ordinary

second order differential eguation

azf’ ar™ -
2 +2r —2 ~{(n+1dn + Ké} fﬁ = 0,

T d“z dr

Its general solution are spherical Besselfunctions jn and n, of

the first and second kind,
m P B m .
fn(r) = An ]n(lKvP) + Bn nn(ler)

with AE and Bﬂ as complex-valued constants of integration. They
decribe the in-going (Bﬂ) and out-going (Aﬂ) solution, the latter
being zero hRelow the ultimate shells, surrounding an uniform
inner core, because n_ has a siﬁgularity at » = o while jn + 0O
for r + 0. '

The characteristic scale length of penetration is defined as £

¢™ = p Mg

n n n
with dlp fm)

gh & —p D .

no dr
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The field within the conducting sphere, r < a, is derived from P
as described in Sec. 7.3. Observing that the radial component of
rot rot P reduces by the use of spherical harmonics to
iK ' .
—Y % 3 n(n+1) £ P e M
n n
n m
the field components of the spherical harmonic of degree n and

order m are:

= S m -
HB = g, dPn[dB
imA
_oom . m, . e
ﬁl = g, im Pn/51n8 b iwuor
H = M n(n+1) PO
r n no
angd
Egy = = £ im P /sino
n n imh
e
E, = + £ dP"/sine
A n n
E_ =0.
T

The impedance of the field at spherical surfaces, expressed in

terms of Cg, is then as in the case of plane conductors given by
5

- . I m
n - EA/HG = EG/HA lwp Cn

For the field outside of the conducting sphere, r > a, the solu~

tion of the radial function is (in quasi~stationary approximation)

Hence, the surface value of the characteristic scale length for

r = a is found to be

""" (A+BYa _a 1+ A/B

. Cm: = * R
n A+B-(n+i)A+nB nt+i 1 - B __ a/B
ntl

The ratio of internal to external parts of the magnetic surface

field is by definition
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sz - n A" / (n+1)BY,
n n n
yielding
1 - n+l g
e - _& n no
n n+l it Sm
n

The ratio of internal to external parts is therefore derived from

Ci according to

n  n+l . m

L n
which demonstrates the role of n/a, respectively (n+l1)/a, as equi-
valent wavenumber of the source field in spherical coordinates
(cf. Sec. 9.1).

The spherical version of the input function for the inverse problem,
based on a linearisation according to the ¥-algorithm, is con-

veniently defined as

m _ : m
Y, 2 1n{KO cn}

-with Kg = iwuo/po. It will be shown that the spherical ccrpection
is of the order (n[C|[/a)?, if the conductivity is more or less
uniform.

If degree and order of the spherical harmonic representation of
the source field are independent of frequency (this is true for Dst
but not for Sq), the inverse problem can be solved by deriving

from spherical response functions a preliminary plane-earth model

B(%). This model i1s subsequently transformed into a spherical Earth

model p(r) with WEIDELT's transformation Fformula:

olr) = £%(r/a) » p(2)

with
(n+1)(%)n + n(g)n+1

f{r/fa) =

2n 4+ 1
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and al (D" - (DM

f(r/lfa)-(2n+1)

An algorithm for the direct problem for spherical conductors can
be formulated as follows. It is designed not to give the transfer
function CE for a given model itself but an auxilary transfer
function

m . m
am(r) _ i, An jn ¥ Bn nn

Ko o ia™ 3 + B"

v n ]n~1 n n-1

3

)

as a direct equivalent to the tranfer function C of plane con-
ductors. To see its connection to. C differentiate the characteristic
depth function f with respect to r, observing that the differen-
tiation of spherlcal Besselfunctions with respect to their argu-

ment u 1is

djn s _n+ 1.
du = In-1 u In !
and the same for nn. Then
d f '
_ 3 m _ nhtl . m
d;— = iK (A Jooq B ) H—(A i, v By n ).
Hence, g £m
g = oy p B = (/e - )
n n d n n
or ~m
. . . nC '
Ms ™. (1 - -
n n

Fal
. il . B
with nCn/r as "spherical correction .

Contlnu1Ly of the tangential componenis of ihe electric and
magnetic field requires that C and thereby Cn as well are con-
tinuous functions of depth. Let T be the radius of the inner

core of conductivity o surrounded by (L-1) uniform shells, the

]
th L -
Y shell between r  and » (v = 1,2, ... L.
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Then

ey = Lo nttD)

n L K 1 jn_i(uL)
with U F iKL Ty because the in-going solutions are zero within
the core, But Cn for r = rL can be expressed also in terms of

the general solution of the (L-1)fth shell:

m . ' m '
An ]n (uL) * Bn nn (uL)

(ui)}

“m( y = 1

n L Ki_q 3p 0 - ' m
L~1 1{An I (uL) + Bn n._4

N ~
. . m .
with u! = iK r As a conseqguence, Cn for » = r; 4 18 now ex-
N : -

L L-1 "L’
pressible in terms of CE(FL) and thus an algorithm can be esta-

~

blished for the calculation of the surface value C?(r1 = a). In
numerical evaluation it is preferable not to derive the spherical
Besselfunctions for the arguments u, and u; themseives, but to
reformulate the algorithm by expressing_jn and nn‘in terms of
hyperbolic functions (cf. Dover Handbook of Mathematical Function,

Formule 10.2.12):

jn(u)- in{gn(z) sinh(z) f g 5-1(2) cosh(z)}

in+1{g_n_1 sinh(z) + gn(z) cosh(z)}

1

qn(u)

with u = iz and the following recurrence formula for the

gn(n = o0, £ 1, £ 2 ,..):

-t ' -2 - _ 2n+1
Bo T2 » & > Bhiq T 8p-g Z n
I [z[ >> 1, the approximations gn < zui forn = £2, * 4, ... and
g, ~ -z* « (n+1)'n/2 for n = & 3, + 5, ... are valid; g_, = O.

¢

By making use of the addition theorems of hyperbolic functions
the algorithm can be given a form simular to the recurrvence for-

mula of plane conductors (cf. Appendix to Sec.7.3)
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'Em(r - 1 Bv ay + €y + tanh(czr){a2 + BUEZ}
nov K _
v a, + Bve3 + tanh(ar){svau+eq}
with
o = (r -1 YK B = Em(r )X
v v v+i v v n  vtl v
A o f“ll\\
LT v
and a, = L - gt _ - : ~.
1" By Bn T Bpoq Bpg . Ve O T e, ‘
.// : <¢:" B
) S t -
a, = g 8 - 8.4 8 Y e T
2 n n n 1 —n"j. \“‘ / .i ‘/r‘i’pw:__-z.\ \ \!“ Q‘C\
R ; iﬁ”‘g. g*\ N 5
- | 1 . : = 3 TR
a3 * &, &y €n~1 &-n-1 \ ; é&x; e i
. ‘ ."\0;5.\: "’ ; _‘f.' .
— 1 — 1 N 3 N ‘:‘ .-',’ £ !.-’ .
qy T 8n BopnT Sp-1 Bpog _ AR 4
N , s
= LI ! L =
€4 Bon-1 &n gn Eon~1 P, ! G=o
£, = g g!.. - g g Q—)& sowvc..é.i’ ‘ ““‘-\
2 ~n=31 “=n n “n-1 :
_ 1 . 1
€3 % Bpn-1 By T By Bpog
- 1 _ 1
€y T Bp-q Bp En B-n-1
. o s i . s ik .
The argument of g, 1s u, lKuru’ the argument of g, 1s u, 1Yvru+1

If iuv[ and [u&[ are large compared to unity, i.e. if the mean
radius is much larger than the skin-depth of the v'th shell, the
cgefficients ay are of the order i(E usili, thfisphfgiéal correc-
tion coefficients €, of the order u,, us or u u; .

~ Consider for example the case of a uniform sphere of the radius a,

the conductivity o, K = iwuoo and u = iKa. Then

ctog v tanh(u)

1 :
K ) :
g tg_ v tanh(w

cM(p=a) =
n
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Assuming the skin-depth to be small in comparison to a,
({u] »> 1), tanh(u) Z'1 and with z = u/i = Ka

. n{n+1)
l.—-

~m ~ 1 2z ~ 1 _n
Cn(a) Ky oLnin-l) 7 K,(1 z°
2z

The resulting approximate spherical transfer function

1 -~ nfz
1 n‘n/z(i—n/z)

S PR ~ 1
Cn(a) = o

Rf

has its plane-halfspace value except for a spherical correction
of the order (n/z)?*.

9.3. ¥on-uniform thin sheets above a layered substructure

The thin-sheet approximation has been introduced by

PRICE to geomagnetic induction problems. It applies to those
variation anomalies for which there is reason to believe that
they arise from lateral changes of fesistivity close to the
surface. For instance, highly resistive basement rocks may be
covered by well conducting sediments of fairly uniform re-

sistivity o, but variable thickness d.

Two conditions have to be satisfied, if this surface cover 1is
to be treated as a "thin sheet" of variable conductance.

T = d/psf

(i) Its skin-depth /ZpS/wuo at the considered frequency mugt

exceed the maximum thickness dm « by at least a factor of 2.

a
(ii) The inductive scala~length Cn(w,O) for the matter below the
suriace cover, assumed to be a layered half-space, must be

1 ] to d .
large in comparison > dax

Under these conditions the electric field within the "thin sheet!
may: be regarded as constant for 0 < z < d, reducing the first

field equation to its thin-sheet approximation
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with

+
g

H is the tangential magnetic field
above the sheet at z = 0, E;g the tangential magnetic field

as sheet current density;

below the sheet at z = dj z is the unit vector downward.

':4’//4
ST
2 —>
z
v
| g, l
Consider for example a sedimentary cover with P, = 28im,nowhere

excéeding 4 km in thickness. Then condition (i) willl be satis-
fied for periods up to 2 minutes and condition (ii) for deep

resistivities in excess of, say, 50 Qm.

The response functions for the normal field above the sheet at
z = 0 are readily found from

-+ —
+ ...Zn Cn

Cn T oiw
Ho

1 + iquTnC_

whefe Tn is the constant normal part of T, while C; has to be
derived from the given substructure resistivity profile. The
field equations, to be considered for the evaluation of the va-
riation anomaly are

ot - _2 .
ﬂatg Ea'tg - g * da
with
i, = B, T, t Ea (rt + 1)
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The second field equation implies that the vertical magnetic
field is also to be regarded as a constant between z = 0 and

z = d.

In addition there are boundary conditions for the anomalous field,
arising Ffrom the fact that its primary sourced lie within the
sheet.

Pilot interpretation: In many cases the anomalous field has no

inductive coupling with the substructure because its half-width
is small in comparison- to [CQ{. In that case no currents are in-
duced by H_ in the substructure and the anomalous magnetic field
is solely due to the anomalous sheet current J within the sheet.
For reasons of symmetry

.!. _ - -—
Hatg - Hatg
or
+ _ 2 L)
Hotg =72 {lz x (B, 7, +E, D}

Observe that the inductive coupling of the normal field has not
been neglected, i.e. its internal sources lie within the sheet

as well as within the substructure. Assuming that T is known

and that it is possible to identify the normal part of the total
electric field E = E ¢ Ea either by.calculation or by observations
outside of the anomaly, the anomalous part of the conductance T _

is readily found from observations of E;tg and ga' In this way,
using the example from above,the variable depth of the basement

below the sediments,

d = dn_+ a, = pS(Tn T ),

can be estimated.

If an elongated structure is in H-polarisation with respect to

the normal field, the magnetic variation anomaly will disappear
(cf. Sec.7.3). The pilot investigation of the conductance is doOne nc
even more simply because the sheet current density must be a

constant in ithe direction normal to the trend:
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This approach has been used by HAACK to obtain a fairly reliable

conductance cross—-section through the Rhinegraben.

In the case of E-polarisation a different kind of simplification
may be in order: Suppose thHe half-width of the anomaly is '
sufficiently small in comparison to (wuoT)—i everwhere. Then no
significant local self-induction due to H ., which produces E_
takes places, i.e. the electric field driving the anomalous
current will be the large-scale induced normal field only:

+ la

H =

ot 5 (z % En Y.

i

Assuming gnlagain to be known, the conductance anomaly 1s now

i
derived from the observation of the tangential magnetic variation

anomaly normal to the trend,

In the actual performance with real data all field components
may be expressed in terms of their transfer functions W and Z

and thus be normalised with regard to H;tg
_ 1

Let T be variable only in one horizontal direction, say, in y-
direction which implies that the anomalous field is also variable

only in that direction, obeying the field equations

(E-polarisation) (H-polarisation)
DA AT T - - B =3
ay ay ax ax ax ay
with
] = E + B 71 3= E + B T
ax nx a ax ay ny a ay
and

BEaxlay = dew H BHaX/By = -0, E .

=4
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Here o denotes the conductivity at the top of the substratum
and E;Z the anomalous vertical field at z = d which is responsible
for driving currents upwards from the substructure to the sheet

and vice versa.

The boundary conditions, reflecting the "thin-sheet originﬁ of the

~variation anomaly, are

(E-polarisation) (H-polarisation)
for z = 0: H _ = -X = H | #¥ = o,
A ay az . ax
for z = d: Hay = LII % Haz an = LI x Laz'
The kernel function of the convolution integrals are ' £y
. H: = 7 K ¥ I“‘ a= h +
K(y) = 2= Tor Bl LTl
-n-y s‘_\ J\.L_... 3 g o i Sl fee Bl e '_F__:___} 3/
A . - = L— S H I ”'h
g e sinly k) GCL)? Hay? T2 Man 7
Lo (w,y) = = f Y dx . HY
1T ™ N - Vi - hd mx
0 lk CnII(w ,]{ ) E: - HK# E . H&’:O ";: 7
y . ":,h"’ Z’;(]f_\ “: Gy 6% \i \;,E‘n
. J_“‘_‘;_x.:n:.,“ T L Y, wirn T wil B SOTLS S teel .-.........‘.:
o sin(y ky) ¢, L . )
LI_(w )y) =T I . - d ky * G,('?-’-) 3 E‘u‘_? g ‘LI " EG»Y- Hraﬂ. = —Gc'
o ik, C I(w,k ) 4 AR
y 'n y { %
Here C;II is the response function of the substructure for the
anomalous TE-field in the case of E-polarisation and C;I the

response function of the substructure for the anomalous TM-field

in the case of H-polarisation.

The kernel K is the separation kernel, introduced in Sec.5.1. It
connects H;y and Haz in such a manner that the source of the
anomaly is "internal" when seen from above the sheet. The kernels
L. are the Fourier transforms of the response fuﬁctions, intro-
~duced in Sec.7.3, which connect the tangential and horizontal
field components above a layered half-space. Their application

' to the anomalous field at z = & implies that Ea and E, diffuse
downward into the substructure anddisappear for z + «. They re-
present the- -inductive coupling of the anomalous field with the

substructure
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Field equations and boundary condition together constitute a set
of four linear equations. for an equal number of unknown field
components. They are uniquely determined in this way. A solution
toward the anomalous tangential electric field in E~polarisation,
for instance, gives

o
ax

Ay

~(LII+K) %® = 1wu0(EnXTa + EaXT}.
A similar solution toward the anomalous current density.in H-

polarisation gives

. Ta . ajaz) T
ay ~ dny T T (Lp = dy 7 E; )

o

For a given model~-distribution these equations are solved numeri-
cally by setting up a system of linear equations for the unknown
field components at a finite number of grid points along y. The
convolution integrals, involving derivatives of the unknown field
componentsjwith respect to y, are preferably treated by partial
integration which in effect leads to a convolution of the unknown
field components themselves with the derivatives of the kernels.
It should be noted that the kernels L approach for y + = finite

limiting values, given by‘{QCQ(w,O)}-i.

Inverse prioblen for two-dimensional structures

It is' also possible to consider the ancomalous conductance T, @8

the unknown gquantity to be determined from an observed elongated
variation anomaly, in the actual calculations to be represented by a
set of respective transfer functions. The normal sheet conductance
T and the resistivity of the substructure, for which the kernels

L have to be determined, enter into the calculations as free model
parameters. They can be varied to get the best agreement in Ta(y)

when using more than one frequency of the variation anomaly.
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Another point of concern is the reality of the resulting numeri-
cal values of T _. Usually empirical data will pgive complex values
and the free parameters should be adjusted also to minimize the

imaginary part of the calculated conductance.
In E~polarisation the elimination of H;y gives

+ 8
< . Tay B LII * Haz B E‘ax "n

a E + E :
o nx ax .

? if T, is to be determined

from anomalous electric field)or we can derive Ta from the anoma-

We can then eliminate either Hé& and Ha

lous magnetic field by observing that

el +? H (y~§) . sgn(§)d§
5 o az -

EaX(Y) =

by integration
of the second field equation. The normal electric field is

derived from the normal magnetic field by setting

E = oy CF (w,0) Y
- X ¢ n ny

when the source field is quasi-uniform and

+ .

E = AU NII % Hny

nx
when the source field is non-uniform; NII(w,y) is the Fourier

transform of quI(w’k)‘ Cf. Sec.8.2, "Vertical soundings with

station arrays".

In H-polarisation only the anomalous electric field is observable
at the surface. For the elimination of the anomalous magnetic
field at the lower face of the sheet from the field equations

we use the generalized impedance boundary condition for the ano-
malous TM-field at the surface of the substructure (cf. Sec.7.3
und 8.2):



Hax = jay 5 - Uo(NI 3 an}

with NI(m,y) being the Fourier transform of C;I(w’ky)' Insertion.

above gives

T
ay n

9.4 Non-uniform layers:aEOVe and within a layered structure

The source of the surface variation anomaly is assumed to be an
anomalous slab between =z :.zo and z = 2 + D in which the re-
sistivity changes in vertical ggg horizontal direction:'p:pn+pa.
. The region above and below the slab are taken to be layered,

0= P being here a sole function of depth (c¢f. Sec.3).
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The response functions for the normal variation field are defined
for the normal structure as given by Py If the anomaly lies at
the transition between two extended normal regions, two normal
solutions have to be formulated. It should be noted that in that
case the anomalous field will not disappear but converge outside

of the anomaly toward the difference of the two normal solutions.

Henceforth, the normal structure , the normal response functionsJ
and the normal fields’ﬁn and En will be assumed to be known
_throughout the lower conducting half-space. The source-field will

 be regarded as quasi-uniform except for source fields in E-polari-
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sation in the case of longated anomalies when a non-uniform

" source can be permitted (cf. Sec. 8.3, calculation of B from
H

1
ny.).

‘The principal problem in basing the interpretation of actual
field data on this type of model consists in a proper choice
of the upper and lower bounds of the anomalous slab. The following

arguments may be useful for a sensible choice:

The anomalous region must be reached by the normal variation
fieldJ'i.e. Z should not be made larger than the depth of pene-
tration of the normal field as given by [Cn(w,O)] at the highest
frequency of an anomalous response. A lower bound for the depth
of the slab is not as readly formulated'becausg the anomalous
response does not disappear necessarily when the depth of pene~
tration is much larger than z, + D, i.e. when no significant
normal induction takes places within the anomalous slab. Only

if the anomaly is elongated and the source field in E-pclarisa-
tion, can it be said that the depth z, + D must be at least com-
parable to the normal depth of penetration at the lowest fre-

quency of an anomalous response.

Pilol studies: In section 8.2 the general properties of the im-

padance tensor Z above a non-layered structure have been discussed
and the following rule for elongated anomalies was established:
The impedance for E-~polarisation does not diverge markedly from
the impedance of a hjpothetical one-dimensjional response for the
local resistivity-depth profile, while the impedance for H-pola-
risation will do so unless the depth of penetration is small in
comparison to the depth of the internal resistivity anomaly and

the inductive response nearly normal anyway.

Suppose then that an impedance tensor has been obtained at a lo-
cation v on a profile across a.quasi—tWOdimensional anomaly which
by rotation of coordinates has zero or almost zero diagonal ele-
ments and that a distinction of the offdiagonal elements for E- and
H-polarisation can be made (c¢f.Sec.8.2). Regarding the E-polari-
satidn response for a first approximation as quasi-normal, a local
inductive scale length

Cp (@sy) = o By (usy)/H, (0,y)

lap,



- 1bY4 -

is calculated as function of frequency and location. It is

converted into an apparent CAGNIARD resistivity and phase:
_ 5 ‘
(w,y) = C ( } = arg{C

or alternatively into the depth of a perfect substitute conductor

and a modified apparent resistivity :

% o % _ | 2
z“(w,y) = Re{q} . pﬁ(w,y) = Zmuo(Im{C“})

which can be combined 'into a local depth versus apparent resisti-

vity profile pﬁ(zﬁ s YD

If the magnetic variation anomaly rather than the geoelectric

field has been observed, the anomalous part of Ejp can be derived

by integration over the anomaly of the vertical magnetic variations,
while the normal part of Ey is calculated from the normal impédance
outside of the anomaly or derived theoretically for a hypothetical
normal resistivity model: |

E“(w,y)_= imué{Can + E: Sgn(y"§) Haz(g) d§}
or in terms of transfer functions with respect to HnJ. R
, Foo ~ N ~
C“(w,y) = iwué{Cn S sgn(yfy) Wzﬁ(y) dv}

‘using for the transfer function of B_, the notations of page 113,
Magnetgptelluric and geomagnetic depth sounding data along a
profile are in this way readily converted either into CAGNIARD
resistivity 'and phase-~contours in frequency-distance coordinates,
into lines of depth~of-penetration 2* at a given frequency,
or into modified apparent-resistivity-contours in a 2 ~distance
cross-—section Either one of these plots will outline the frequency
range, respectively the depth range, in which the source of the
anomaly can be expected to lie, and provide a rough idea about the

resistivities likely to occur within the anomalous zone,.
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Single frequency interpretation by perfect conductors at

variable depth

Geomagnetic variations anomalies show frequently nearly zero
phase with respect to the normal field, the transfer functions
which connect the components of ga and En being real functions
of frequency and locations. This applies in particular to two-
types of anomalies. Firstly to those which arise from a non-
uniform surface layer, thin enough to allow the "thin-sheet”
approximation of the previous section with predominant induction
within the sheet (n8>>1). Secondly, it applies to anomalies
above a highly conductive subsurface layer at variable depth

beneath an effectively non-conducting cover.

In the first case En will be in-phase with Hn’ in the second.
case out-of-phase (cf,Sec.9.1), But it is important to note that

the anomalous variation field Ha will be in either case roughly

in-phase with Hn.
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Both types of anomaly can be explained at a given frequency by
the undulating surface S.of'a perfect conductor below non-con-
ducting matter., Its variable depth below the surface point (x,y)
will be denoted as h¥(x,y). Outside of the anomaly h* shall be
constant and equal to the real part of Cn at the considered fre-

quency.

This kind of interpretation is intended to demonstrate the effect
of lateral changes of internal resistivity on the depth of penetra-
tion as a funetion of frequency and location. It does not provide,
however, quantitative information about the resistivities involved
nor does it allow a distinction of the two types of anomalies

mentioned above.
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Clearly, the magnetlc field below S must be zero and the magnetic
field vector on S tangential with respect to S because the con-

« - . norpal . .
tinuity condition for the field component tgwgarequ1res that this

component vanishes just above S,

" Direct model problem: For a given shape of S the anomalous surface

field can be found with the methods of potential field theory,
since H will be irrotational and of internal origin above S. If
in partlcular S has a simple shape 1ndepenaﬂnt of =x, the field
" lines for E- polarlsatlon in the (y,z)-plane for z < h (]) can be

found by conformal mapping as follows

Let wly,z) = y(y',z') + i-z(y',z') be an analytic function which
maps the line z'=0 of rectangular (y',z') coordinates into the line
z=h¥(y) of rectangular (y,z) coordinates. Lines z' = const, are in-
terpreted as magnetic field lines of a uniform field above a perfect
conductor at constant depth, their image in the (y,z)-plane as field

lines of a distorted field above a perfect conductor at the variable
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depth h™ (y), the image of the ultimate field line z'=0 being tangen-

tial to the surface of the conductor as required,

If H = (B
=n ny

point in the original (y',z') coordinates, the components of the

,0) denotes the uniform horizontal field vector at a

field vector H= (Hy,Hz) at the image point in the (y,z) coordinates

can be shown to be given by

' 1 _ 1
By, = AL Ly no= Z2203Y g
y " n z » n
with . ' -
2

]

r (By/ay‘)2 + (3z/8y‘)2 e

The difference H - En represents the anomalous field to be

detefmined.
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Inverse problem: The shape of the surface S can be found inversely

from a given surface anomaly by constructing the internal field
lines of the field H +H . Field lines which have at some distance of
the apgmaly the required normal depth Re(Cn).define the surface &,
provided of course that the surface thus found does not intersect

the Earth's surface anywhere,

The actual calculation of internal field lines requires a downward

extension of the anomaly through the non-conducting matter above

* the perfect conductor, using the well developed methods of potential

,field continuation towards its sources, In order to obtain sufficien:
stability of the numerical process, the anomaly has to be low-pass
filtered pricr to the downward continuation with a cut-off at a
reciprocal spatial wave number comparable to the maximum depth of

intended downward extrapolation,
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and the entire field line is thenconstructed by numerical integras
tion.

An analytically solvable inverse problem: Suppose Tthe observed
anomaly is 2-dimensional and sinuscidal,

Hay(y,z=0) = ¢ sin(k.y) Hny-'
Because of the internal origin of the anomaly

Haz(y,z) = ~Q cos(k.y)Hny .

the internal field increasing exponentially with depth,

T Y i . k‘z
H, (y,z) = H, (v,0) e .

Hence, the slope of field lines at the depth z is

dz -c cos(k-y)-ek'z

dy l+e sin(k:y)-e

ez 2

yielding by integration

z(y) =z - c/ke 81n(k y)»ek aly)

as the implicit solution with z. as the constant of integration.
Here it will be chosen in such a way that the highest point of the

field line is still below the Earth's surface z=0.

We infer from the field line equation z{y) that field lines above
sinusoidal anomalies oscillate non-symmetrically around the depth

. . . . +
277 with L=2n/k as spatial wave length., Thezxr deepest points z=z

are at y=zL/u »SL/i,d......., their highest points z=z at
y= -L/4,3L/4 “.... . N
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Suppose the spatial wave length of the anomaly - is large in' com-
. ' . . + .
parison to the deepest point of penetration z . Then the approxi-

mate field line equation

Z ~c/kesin(k-y)

z(y) =
1 + crsin(ksy)

can be used with the requirement that Z is eqgual to or larger
than ¢/k. The mean amplitude of the field line oscillations is
readily expressed now in terms of. the amplitude of the observed
surface anomaly as given by the factor ¢, namely

% (zt-27) = —y (z .+ Xk

1 -c

If, for example, a meoderate anomaly has the amplitude C=Q.25 and
a wave length of 628 km, the mean amplitude of the field line
oscillations are given by (zo+100)/4'km, z.> 25 km, Using zozso km
gives a mean amplitude of 33 km and the field line oscillates
between 4 km and 70 km. This numerical example demonstrates that
even minor anomalies require rather large undulations in the depth

of a perfect substitute conductor.

‘Multi-frequency interpretation by local induction in isolated

bodies

Most geomagnetic induction anomalies arise from a local reavrrange-
ment of large-scale induced currents, In some cases, however, it
may be justified to assume that the source of the anomaly is a
conducting body which is isoclated by non-conducting matter from
the large-scale current systems. Such a body ean be, for instance,
a crustal lense of high conductivity within the normally highly

resistive crust,

The direct problem: Consider a body of (variable) conductivity

between 2224 and Z=q The surrounding matter at the same depth is
effectively non-conducting at the considered frequency, i.e, large-

~scale induced currents which flow in the normal structure above and
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below can neither enter nor leave this body.
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The inducing field is the normal field Hé between z, and Zo
regarded as. uniform, For simplicity it is assumed that the nor-
mal structure between z=0 and z, represents a "thin sheet" of the
conductance T Then the attenuation of Hﬁ with respect to the

normal field Hn at the surface z=0 is given by

It

(H_ - H%)/Hn

o 1n8/(1 + 1n8)

"

Ny quCnTn

as thin-sheet induction parameter (Sect.9.3 and Appendix to 7.3),

Three aspects of the arising induction problem have to be con-
sidered: (i) the local induction by HA within the body, (ii) the
electromagnetic coupling of this body with the normal substructure

below z (iii) the coupling of the body with the surface coverabove

?
In ordei'to make problem (i) solvable in a straightforward manner
uniform bodies of simple shape such as spheres and horizontal
eylinders of infinite length have To be selected, The anomalous
field due to the induction in these bodies is of frequeﬁcymindepen—
dent geometry. This fact permits simple solutions of the inverse

problem as seen below.

Consider the case of a horizontal cylinder of infinite length, the

radius R and the conductivity o its axis 1is parallel to x and

>
intersects the (y,z)-plane at tie point (O,zo). The normal horizorn-
tal field is parallel to y and produces by induction currents which
flow parallel to x in the upper halve and anti-parallel to x in the
lower halve of the cylinder. Their magnetic field outside the cy-

linder is the field of a central 2-dimensional dipole of the moment
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m antiparallel to y. It has the components

-2 . : -2
Hay(j,z) = m cos(28).r 7, Haz(y,z) = -m sin(20)«n

with r? = y? + (zosz2 and cosf = z /v, sind = y/r,

The dependence of the dipole moment on the inducing field will
be expressed in terms of a response function. Let m_ be the
dipol moment of a perfectly conducting cylinder which shields
the external fieldceompletely from its interior. Hence, the in-
duced field at the point (0, zo~R) just above the cylinden
must be equal to Hﬁ, i.e,

_ .p2 1
m =R H
oo n’

which implies that it cancels Hﬁ within the cylinder as required.

The response function of the cylinder with respect to a uniform
inducing field perpendicular to the axis is now defined as the

'complex“valued ratio
f(nZ) = m/m_

which can be shown to be a sole function of the dimensionless

induction parameter

- 2
nZ = wuocz R=

. The modulus of f(nz) will approach zero for n, << 1 and unity for
Ny >> 1, its argument changing from 50° for n, > 0 to 0° for

Ny * . Hence, at sufficiently high freguencies the anomalous
field from the cylinder will be in-phase with Hﬁ and not in-
crease beyond a certain "inductive 1limit", while at sufficiently
low frequencies the anomalous field will be cut-of-phase and

small in compariscon to the field at the inductive limit.
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The transfer function between the anomalous and normal field
are now readily expressed in terms of a frequency-dependent

. response function, a frequency-independent geometric factor,
and a frequency-dependent attenuation factor Q' for the normal
field:

1t

Hay £(n,) cos(26)+(R/r)?+Q" Hy

4

I

4, = ~Eng) sin(20)(R/r)*+Q" H_

with
-1

An approximate sclution of problem (ii) can be obtained by re-
presenting the conductive substructure below the surface sheet
by a perfect conductor at the (frequency-dependent) depth Re(C;)
and by adding to the anomalous dipole field the field of an

image dipole of the moment R®H] at the depth 2°Re(C;)—on
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Problem (iii) involves mainly the attenuation of the upward
diffusing anomaly ﬁa by uniform surface layers. This attenuation
is, however, a second order effect and can be neglected, if

at the considered freguency the widespread normal field pene-
trates the surface layers to any extent, i.e. if the modulus

of Q' is sufficiently close to unity.

The inverse'problem: Assuming the anomalous beody to be a uniform
cylindef, the model parameters zo,‘R, Op can be uniquely in-
ferred from surface observations, providing the transfer func-
tions for Hay and Haz are_known for at least two locations and
frequencies. Forming here the ratios

Haz/Hay = tan(2@)

the angles 6 and thereby the positicn of the cylinder can be
found, The depth of the cylinder axis being kncown, the dipole
moment R%f£(n) can be calculated. Its argument fixes the size

of the induction parameter Ny and two detefminations of Ny at ‘
different frequencies the radius R and the conductivity .+ Now
R and Z being known, the field of the image dipole can be cal-
culated. The inverse procedure is repeated now with the observed
surface anomaly minus the field of the image dipole until con-

vergence of the model parameters has been reached.

Interpretation with BIOTfSAVART'S law

Let i_be the current density vector within a volume dV at the
point ﬁ = (%, §, z). Then according to BIOT-SAVART's law in SI
units the magnetic field vector at the point r =(x, y, z) due

Fad
to the line-current element idV is

o e
‘/\ ~ X R : 1 i % (E - ?—)
I L e
N H= iz av.

EIE
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This law can be used to interpret an observed surface anomaly
of geomagnetic variations in terms of a subsurface distribution
of anomalous induction currents, which in turn are related to
an internal conductivity anomaly S i,e. to local deviations

of ¢ from a normal layered distribution Un(z).

It has been pointed out in Sec.8.3 that the anomalous part of
the geomagnetic and geoelectric variation field can be split
into TE and TM modes (= tangential electric and tangential
magnetic modes) and that only the TE modes produce an observable
magnetic variation anomaly at the Earth's surface. Consequently,
only a TE anomalous current density distribution iaII can be
related to the anomalous magnetic surface field §a° the sub-
seript "II" refering to the solution II of the diffusion
-equation,
iaII

Fal
iay’ the components of the anomalous surface field are given

Denoting the tangential components of simply with Eax and

> ~
” H_ _(x Q) = 1_ f ) lax;f_dv
ax ?yb L‘l"ﬁ V rz ¥
. oy
1 i, 2
Hay(x,y,O) = 5 f mmiz_ ay
- V i
iy ~ 1 (x=5
1 ax ay
H LO) = e av
az (%300 = o7 é 2
with r? = (x=%)% + (y-¥)% + 22, The inverse problem, namely to

find from a given surface anomaly the internal anomalous current
distribution, has no unique solution. Within certain consiraints,
however, it can be made unique, at least in principle. For in-
stance, it is assumed that the anomalous current flow is limited
to a certain depth range which implies that the matter between
this depth range and the syrface is regarded as non-conducting

at the considered frequency.

The surface anomaly can be extended now downward to the top of

the anomalous depth range with standard methods which require
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only adequate smoothing of the observed anomalous surface field.
Then a certain well defined depth dependence of the anomalous
current density is adopted as discussed below and the anomalous

current distribution can be derived in a straightforward mannerp.

Suppose an observed anomaly Ea at a given frequency has been ex~
plained in this way by a distribution of anomalous internal
currents. Its connection to the internal conductivity is esta-~
blished by the normal and anomalous electric field vector accor-

ding to

larz 7 95 Ep t Cop v 0g) t Egpp e

Assuming the normal conductivity distribution Un(z) to be known,
E as a function of depth 1s readily calculated. There is no
simple way, however, to derive the anomalous electric field of
the TE mode except by numerical models as discussed below. There
is in particular no justification to regard it as small in com-
parison to the normal electric field and thus to drop the second
term in the above relation. Instead the following argumentation

has to be used:

The anomalous electric field in the TE mode can be thought to

- contain two distinct components. The first component may be re-
garded as the result of local self-induction due to ﬂaII' I
can. be neglected at sufficiently low freguencies, when the half-
width of the anomaly is small in comparison to the minimum skin-

depth value within the anomalous zone.

The second component arises from electric charges alt boundaries
and in zones of gradually changing conductivity. These charges
produce a quasi-static electric field normal to boundaries and
parallel to internal conductivity gradients which ensures the
continuity of the current across boundaries and internal gradient
zones. Hence, this second component of the anomalous electric

field does not disappear, when the frequency becomes small.

It vanishes, however, if anomalous internal currents do not cross
boundaries of gradient zones, i.e. when the normal field is in

E-polarisation with respect to the trend of elongated structures.
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Only in this special case will be justification to neglect the
term oE_ at low freguencies and to use the approximation

a1 T %a En
to calculate the internal conductivity anomaly o, from the ano-
malous current density and the normal electric field, It will
be advisable to regard here o, as a sole function of x and y

and thus to postulate the same depth dependence for the anomalous

current and the normal electric field.

Interpretation with numerical models

So far idealized models for a laterally non—uniform ;ubstructure
have been considered. They allowed a simplified treatment of

the induction problem and had in common that only few free para-
meters were involved. Once numerical values were attached to
them, the observed surface anomaly of the variation field could
be converted rather easily into variable model parameters to
characterize the internal change of subsurface conductivity at

some given depth from site to site.

The introduction of more realistic models leads to a substantial
increase of the numerical work involved and should be considered
only, if transfer functicns for the anomalous surface field are
known with high accuracy. The inverse problem to derive a set

of variable model parameters directly from observations can be
solved by linearisation, i.e. by the introduction of a linear
data kernel, connecting changes of the surface response to

changes in the subsurface conductivity structure (cf. Sec.8).

As before a normal structure o, outside of the anomaly is given,
the variable model parameters representing only lateral changes

of ¢ with respect to o, within the range of the anomaly. Unless



stated otherwise, source fields of lateral homogeneity are
assumed, yielding in conjunction with o the normal fields H

and E_ as known functions of depth.

Conductivity anomalies o, =0~ 0 are restricted to an anoma-
lous slab above or within a laterally uniform structure, exten-
ding in depth from z4 to z,. Within this slab two basic types
of conductivity anomalies may be distinguished:

(i) slabs with gradually changing conductivities in horizontal
direction or (ii) slabs which consist of uniform blocs or re-

~gions, separated by plane or curved boundaries.

In the first case electric changes are distributed within the
slab, yielding closed current circuits divi = 0 as required in

- quasi-stationary approximation. Consequently, divE = -(E<grado)/c
will not be zero. In the second case only bloc boundaries carry
free surface changes and the electric field will be non-diwvergent
within the blocs. In either case a solution of the aiffusion
equation for H  or E_ has to be found under the condition that
the anomalous field approaches zero with increasing distance

from the anomalcus slab.

Numerical methods for the actual solution of the direct problem,

when G is given and A, or E_ are to be found, have been dis~
cussed in Sec. 2 and 3. Here some additional comments: Models
should be set up in such a way that either the shape of the ano-
malous body or the anomalous conductivity is the variable to

be described by a set of model parameters. After fixing the free
the model parameters for

parametlers, in particular z, and =z

i 2°
the descripticn of the anomaly are varied until agreement is

reached between the observed and calculated transfer functions,

Suppose that models of type (ii) are used, that only vertical
and horizontal boundaries are permitted, and that the anomalous
slab is subdivided by equally spaced.horizontal boundaries into
layers, Then the'variable model parameters are either the po-

sitions of vertical boundaries, enclosing a body of constant
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If the search for a best fitting set of model parameters is to

be done by an iterative inverse method rather than by trial-and-

errorfhlinear data kernel matrix G :(gnm) has to be found for

an initial model. In this matrix the element g.n represents the

<

change Yn of the anomalous transfer function at a certain surface
point and frequency R which arises in linear approximation
from a change X of the model parameter in the m'th bloc of the
starting model. The resulting system of linear equations

y, = i Eom *n is solved with the methods of Sec.B. Its sclution
represents the improvement of the initial model, if Yn is the
misfit between observed and calculated transfer functions for
the initial model. The process is repeated with the improved

- models until the necessary improvements %, are small enough to

justify a linear approximation.

Which complications arise in the general case that not only the
internal conductivity structure but also the inducing source
field are laterally non-uniform? First of all, in addition to 9,

(e) of the external

as a function of depth the magnetic field H
source must be a known function of surface location. In the

special case of the equatorial jet field this source field con-
figuration will be more or less the same for all day-time variations

and thus a normaligsation of the observed surface field by the
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field at some distinguished surface point will be possible, for

instance by the horizontal field at the dip equator,

The conversion formulas ofgSec. 5.2 and the methods described

in Sec. 8.2 ("Vertical soundings with station arrays') are now
()
n

-and the normal electric field En as functions of the surface

used to find the internal part H of the normal magnetic field

location and freq%ingy. Finally, the normal surface field is ex-
¢ oruts tlracduera,
tended downwardVwith the spatial Fourier transforms of the down-

ward extension factors as given in the Appendix to Sec. 7.3.

Now the normal field within the anomalous slab 1s known and the
diffusion equation for the anomaloué field can be solved numeri-
cally in the same way as before, when the slab or the anomalous
region themselves are chosen as basic domains for the numerical
calculations. Here a final schematic summary of the various steps
of the calculations, when the source is the combined field of the

equatorial jet and the low-latitude Sq:
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Interpretation with scale model experiments

Numerical model'calculations may be too elaborate, if the induc-
tion by a non-uniform source in a three-dimensional anomalous
structure has to be considered. An example 1s the coast effect
of the equatorial jet, when the dip equator crosses the coast-.
line under an angle. — No complications arise at those places,
when the dip equator is parallel to the coast and the jet field

in E-polarisation (s, above). -

In situation of great complexity the qualitative and even quan-
titative understanding of surface observations may be furthered
by laboratory scale model experiments, simulating the natural

v

induction process on a reduced scale. Invariance of the electro-
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the product wol? constant with L denoting the length scale,

The primary inducing field is produced by an oscillating dipole
source or by extended current Loops, situated as "ionospheric
sources" above an arrangement of conductors which represent

the conducting material below the Earth's surface. Alternatively;
the conductors as a whole can be placed into the interior of
coils, say Helmholtz coils, and thus be exposed to a uniform

soﬁrce field. \
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The magnetic source field at the surfaée of the conductors is
exactly known. Hence, by substrating it from the observed field;
measured with small triaxial pick-up coils, the induced field
from the conductors can be investigated. The electric field can

be measured also by submerging, for instance, an arrangement

.of metalic conductors into a much less conducting electrolyte

{s. below).

A basic difficulty in conducting a scale model experiment, which
is truly equivalent to the induction process in nature, arises
from the necessarily finite dimensions of the conductors in the

scale model. If the conductors are placed below the source of

"~ the inducing field, their finite downward extent represents no

problem because the ultimate conductor can be dimensioned in
such a way that the electromagnetic field is completely shielded
from the space beneath the gcale model. Their finite length and
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width, however, forces the induced currents to flow in loops
which in strength and phase may be totally controlled by the
edges of the conductor. In order to avoid this unwanted effect
the source field at the level of the conductors should die away
before reaching the edges of the scale model. For instance, if ‘
a line current source is used, the half-width of the line current
field on the surface of the scale model should be considerably
smaller then the width of the model..
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These complications do not arise of course, when no attempt is
made to simulate local anomalies of a large-scale induced current
system, i.e. when the scale model is placed into the interior

of coils in order to simulate local induction in isolated bodies

(cf. subsection on this topic in Sec. 9.4).

Here are to mention the scale model experiments by GRENET and
LAUNAY who showed how a large-scale induction can be simulated
also by the induction in the interior of coils. Their objective
-was to make a scale model of the coast effect at complicated
coastlines. They noted that the inductive coupling between the
ocean and highly conducting material at some depth within the
Earth is well represented by a system of image currents at the
level 2.h™ below the ocean. Here h¥ is again the depth of a
perfect substitute conductor for the oceanic substructure at the

considered frequency.

GRENET and LAUNAY use as model conductors two thin metallic plates

which are connected along two edges by vertical conducting strips.
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One of the thin plates represents the occean and one of its
edges is given the shape of a certain coastline to be studied.
The second plate represents the level of the image currents.

The whole arrangement of conductors is ﬁlaced into a Helmholtsz
céil in such a way that the vertical strips are parallel to

the magnetic field. Plates and strips now form a loop normal

to the magnetic flux within the Helmholtz coil and thus currents

are induced which flow in the "oceanic" plate parallel to the

"ecoastline'.
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In SPITTA's arrangement for the study of the coast effect the con-
ductors are plaéed below a horizontal band-current closed by

a large vertical loop. The oceanic and continental substructure
is represented by a thick metalic plate, the oceans by a thin
metalic sheet which ﬁartially covers the plate. The thickness
of the plate is large in comparison to the skin depth and its
width about twice the half-width of the field 6f the band-
current at the level of the plate. The induced current systems
form closed loops within plate and sheet and can be assumed
to be largely horizontal. By placing one edge of the covering
sheet below the center of the band-current the coast effect of

an ionospheric jet can be studied for any angle between coast
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The ratio of the length-scales model: nature should be in the
order 1 : 10% or 1 : 107
1000 km in nature can be reproduced. In SPITTA's experiment the

ratio of length-scales is 1 : H-iOS. A 4 km thick ccean is re-

. In this Way current loops of some

presented by an aluminium sheet of 1 mm thickness, a highly con-
ducting layer i?n the mantle at 360 km depth by an aluminum plate
8 cm below the sheet. The width of this plate is 2 m and is

equivalent to 8000 km in nature.

Model conductors may be chosen from the following matepials:

Cu =~ AL - Pb ' 7 e 0.5'107 (ﬂm)ni
Graphite . o 3e10t "
(saturated) .
NaCl solution 20 ) h
H,S0,, HNO, HCl-solution 60 = | ‘ oo
(concentration of maximum

conductivity)

In SPITTA's experiment the conductivity-ratio model: nature is

2.107 i1, Hence, with a ratio of length scales of 1/4<107°% a

frequency of 1 kHz in the model corresponds to 1/32-10"2 Hz “i1ecph

- in nature.

- DOSS0 uses graphite to represent the oceans and highly conduc-
ting material in the deeper mantle, saturated NaCl-solution to

represent the continental surface layers and the poorly conduc-

ting portions of crust and uppermost mantle. Since his model
frequencies are only slightly higher (1 to 60 kHz),.a one order
of magnitude greater ratiO'of length-scales (1:105) has to be
used to simulate natural frequencies between 1 cph and 1 cpm.
A

The lists of available model conductors shows that it is diffi-
cult to simulate conductivity contrasts of 1:10 or 1:100 which
are of particular importance in the natural induction process.
Only salt solutions of variable concentration could provide a

sufficient range in model conductivity, but their vrelatively
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low conductivity requires the use of very high frequencies

(103 kHz) and extremely large model dimensions (10 m).

In conclusion it should be pointed out that even those scale
model experiments which do not reproduce the natural induction

in a strict quantitative sense may be useful for a descriptive

interpretation of complicated variation fields. In those cases
only the impedance or the relative changes of the magnetic
field with respect to the field at one distinguished point above
the model will be considered and compared with actual data.

10. Geophysical and geological relevance of geomagnetic

~induction studies

In exploiation geophysics the magnetotelluric method, preferably
in combination with geomagnetic depth sounding, has been applied
with some success to investigate the conductivity structure of
sedimentary basins. Electromagnetic soundings with artificial
sources as well as DC soundings which truly penetrate through

a sedimentary cover of even moderate thickness are difficult

to conduct on a routine basis. Hence, it seems that electro-
magnetic soundings with natural fields are more efficient than
-any other geoelectric methods in exploring the overall distri-

bution of conductivity in deep basins. :

In ﬁartiéular the integrated conductivity T of sediments above
a crystalline basement is well defined by the inductive surface
response to natural EM fields and can be mapped by a survey
with magnetic and geoelectric recording stations. If in addi-
tion some estimate about the mean conductivity of the sediments

.can be made from high frequency soundings, the depth of the

crystalline follows directly from t.

If structural details of sedimentary basins are the main interest

of the exploration, a mapping of the electric field only accor-

ding to strength and direction for a given polarisation of the

regional horizontal magnetic field will be adequate. The inter-
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pretation is handled like a direct current problem in a thin
conducting plate of variable conductivity. This so-called
"telluric method" represents a very simple kind of inductive
sounding®, but the preferential directien of the superficial
currents thus found usually gives a surprisingly clear im-
pression about the trend of structural elements like grabens,
anticlines etc. The usefulness of this method arises from the
fact thaf these structural elements can be detected even when
they are buried beneath an undisturbed cover of younger sedi-~

ments.

Curvent distomdion Ba se el enen ‘I'Cwe
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Geomagnetic and magnetotelluric soundings are less useful for
exploration in areas oi high surface resistivity, in particular
in crystalline regions. Even pulsations penetrate here too
deeply to yield enough resolution in the shallow depth range of
interest for mining. Audio—frequency soundings with artificial
or even natural sources will be better adapted and are widely

used in mineral exploration.

The probing of deeper parts of crust and mantle with natural
electromagnetic fields will eventually lead to a detailed
knowledge of the internal conductivity distribution down to
about 1000 km depth. Its relation to the downward rise in
temperature is obvious, in fact electromagnetic soundings pro-
vide the only, even though indirect method to derive ?resent—

day temperatures in the upper mantle.
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Other derivable properties of mantle material like density and
elastic parameters are. largely determined by the downward in-
-grease in pressure with only a second-order dependence on
temperature, which is hardly of any use for estimates of mantle

temperatures.

The remarkable rise of conductivity between 600 and 800 km depth,
however, should not be understood as temperature-related but

as indication for a gradual phase change of the mantle minerals,
possibly with a minor change in chemical composition, this is
with a slight increase of the Fe:Mg ratio of the olivine-

spinell mineral assembly.

The conductivity beneath the continental upper mantle from 100 km

down to about 600 km is suprisingly uniform and seems to indi-
cate that in this ~depth range -the temperature gradient cannot
be far away from its adiabatic value of roughly 0.5° C/km. The
aysterious appearance of highly conducting layers in the upper-
" most mantle may be connected to magma chambers of partially
molten material and to regional mantle zones of higher +than
normal temperatures in general., The expected correlation of high
mantle conductivity, high terrestrial heatflow and magmatic

activity clearly exists in the Rocky Mountains of North America.

There are also some indication for high conductivities beneath
" local thermal areas. The Geysers in California, Owens Valley in
Nevada, possibly Yellowstone and the Hungarian plains are
examples. It should be pointed out, however, that there exist
also regions of high subcrustal conductivity with absolutely no
correlation to high heatflow or recent magmatic activity. The
most prominentinland ancmaly of geomagnetic variations, which
has been found so far, namely the Great Plains or Black Hills
anomaly in North America,lécks still any reasonable explanation

Oor correlation to other geophysical observations.

One - _great unsolved problem in geomagnetic inductions
studies is the depth of penetration of slow variations into the

mantle below ocean basins. There are definite reasons to believe
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that the upper mantle beneath oceans is hotter than the mantle
beneath continents down to a depth of a few hundred kilometers.
If this is so, a correspbndingly higher conductivity should exist
beneath oceans which could be recognised from a reduced depth

of penetratiorn in comparison to continents. Once a characteristic
conductivity difference between an oceanic and a continental
substructure has been established, this could be used td recog-
nize former oceanic mantle material beneath present-day con-

tinents and vice versa.

First soundings with reéording instruments at the bottom of the
sea have been carried out. They confirmed to some extent the
expectation of high conductivities at extremely shallow depth,
but these punctual soundings may not be representative for the
oceans as a whole. Here the development of new experimental
techniques for expedient seafloor operations of magnetic and

geolectric instruments has_ to be awaited.

Observations.-on, mid-oceanic islands provide a less expelsive
way‘to study the induction in the oceans which in the case of
substorms and Sq is strongly.coupled to the crustal and sub-
crustal conductivities beneatﬁh? oceapst again oceanic islands
are usually volcanic and their substructure may differ from that
of ordinary parts of ocean bhasins. ‘

The island-effect itself is no obstacle for soundings into the
deep structure. In fact, this effect represents a powerful tool
to investigate the inductive response in the surrounding open
‘ocean, since the-theoretical distortion of the variation fields
due to the islands can be regarded at sufficiently low frequency
as a direct cufrent problem for a given pattern of oceanic in-
duction currents at sbme distance from the island. Setting the
.“&eﬁsity of these currents in relation to the observed magnetic
field on the island gives the impedance of the variation field

- for the surrounding ocean of known integrated conductivity. To a
first approximation induced currents in the ocean do not contri-
bute to the horizontal magnetic field on the island. Hence, by
knowing their density the horizontal magnetic £ield on the sea
floor can be calculated from which the inductive response function

for the oceanic substructure follows.
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