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1 INTRODUCTION 

SUMMARY 
The model consists of a thin sheet of variable conductance in one horizontal 
direction above a conducting substructure of lateral uniformity. Transition ano
malies are permitted, i.e. the anomalous range of varying conductance may be 
bounded by uniform half sheets of different conductances. For E-polarization the 
inducing external source field may be non-uniform. Two complementary integral 
equations are derived in the frequency-distance domain, to find the anomalous 
electric field or alternatively to find the anomalous sheet current density for each 
polarization. The equations involve two sets of response functions for the normal 
structure outside the anomalous range. A first set generates for a given source field 
at ground level the internal magnetic field by induction and the normal electric field 
which serves as an input function for the derivation of the anomaious field. A second 
set accounts for the inductive coupling of the anomalous fields in sheet and 
substrucutre. Various tests are performed: for the compatibility of complementary 
solutions, for the correct asymptotic behaviour at infinity in the horizontal direction, 
and for the accuracy of numerical integrations as controlled by the grid-point 
spacing. The numerical solutions are also tested against analytical solutions and 
against numerical solutions by other methods, in particular with regard to the 
validity of the thin-sheet approximation. A comparison with results from integral 
equations, which involve conventional Green's functions, reveals in the case of 
B -polarization complications where a strong influx of currents exists from the 
substructure into the thin sheet. A source transfer function is introduced which 
allows the extension of the response function concept to induction by non-uniform 
sources. Two types are studied: a stationary jet field source and a travelling Sq 
source above a sedimentary basin and a coastline. Resulting magnetotelluric and 
geomagnetic deep sounding responses are compared with the respective responses, 
when the inducing field is quasi-uniform. 

Key words: conductance of oceans and sediments, electrojet and Sq induction, 
quasi-uniform and non-uniform sources, 2-D thin-sheet induction. 

Thin sheets and shells are convenient approximations to 
simplify model calculations in electromagnetic induction 
studies of the Earth's conductivity. At sufficiently low 
frequency they represent oceans and well-conducting 
geological strata on land which overlay more resistive 
crystalline rocks. This contribution extends earlier work on 
the subject (Schmucker 1970, 1971), with special emphasis 
on induction by non-uniform fields. If their spatial 
dimensions are of the same order as their penetration depth 
into the conducting Earth, then the source geometry cannot 
be ignored in the interpretation of data by models. 

Practical applications arise in the vicinity of auroral and 
dip-equatorial jets, when geomagnetic or magnetotelluric 
studies of the deep conductivity structure are performed 
with variations in the period range of hours. The smallness 
of source dimension and penetration depth in compprison 
with the Earth's radius allows the use of plane conductivity 
models in rectangular (x, y, z) coordinates, z positive down. 
The thin sheet, assumed to be of infinitely small thickness, 
occupies the z = 0 plane, with its upper surface at z = -0 
and its lower surface at z = +0. The air space above is 
non-conducting up to the height of the primary source 
region, the space below is conducting and carries together 
with the thin-sheet the secondary sources by induction. 
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Lateral changes of conductivity will be cor,fined to the 
thin sheet and here restricted to one horizontal direction. 
Following the convention for 2-D induction problems, x will 
be the strike direction of the structure. The depth-integrated 
conductivity of the sheet, henceforth referred to as 
conductance r(y), will be dependent on y within a bounded 
range and constant outside. The time-harmonic primary 
source has exp (+iwt) as time factor and is in the tangential 
electric mode. Its electric field is linearly polarized either in 
the x-direction (E-polarization) or In the y-direction 
(8 -polarization). 

Electromagnetic modelling, using the thin sheet or 
thin-shell approximation, has progressed beyond the 
restrictions imposed here. Thin sheets with a variable 
conductance in both horizontal directions are now part of 
standard modelling techniques, thanks to the work by 
Vasseur & Weidelt (1977) and Yegorov et at. (1983), among 
others. The usual limitation of such models is that the 
anomalous domain has to merge into the same normal 
structure in all directions. It has been overcome in the work 
of Dawson & Weaver (1979) and extended by McKirdy, 
Weaver & Dawson (1985). Spherical shells of variable 
conductance, enclosing a radially symmetric conducting 
Earth, have been studied extensively by Hobbs & Brignall 
(1976), Hewson-Browne (1978), and Zinger & Fainberg 
(1980). Their work has been summarized most recently by 
Fainberg, Kuvshinov & Singer (1990). 

Furthermore, it is not difficult to combine thin sheets or 
shells with a multidimensional substructure or to form stacks 
of thin sheets simulating such structures (Ranganayaki & 
Madden 1980). Finally, methods have been developed to 
extend the original Price approximation by allowing the 
electric field to be slightly different at the top and bottom of 
the thin sheet (Dmitriev 1969). Berdichevsky & Zhdanov 
(1984) present a summarizing overview on the subject in 
Chapter 2 of their treatise. 

In practical situations, however, there are not always 
enough observations to specify adequately the source field 
structure as well as the internal conductivity structure for 
such advanced models. In such cases the following simplified 
modelling concept may still be useful and illuminating, also 
in view of its more elementary theoretical foundations. An 
example is the accompanying contribution by Ogunade 
(1995). 

2 BASIC MODELLING CONCEPT 

The treatment follows Price's (1949) original concept that 
the tangential electric field within the thin sheet is 
sufficiently uniform to approximate it by a depth
independent vector Eh between its outer and inner surfaces. 
Hence, Ohm's law to derive the depth-integrated current 
density, hereafter termed sheet current density j, is j = rEh . 

The first field equation, when at sufficiently low 
frequencies displacement currents can be ignored in 
conducting matter, is curl B = /-Lot with B as magnetic flux 
density and t as current density. Integration over the 
thickness of the thin sheet yields that the difference of the 
tangential components of B on the upper (-) and lower 
( + ) surface is given by the depth-integrated current flowing 
in the sheet: 

(1) 

for E-polarization and 

(2) 

for B-polarization. The vertical magnetic field Bc (in the 
case of E-polarization) is again depth-independent as readily 
inferred from the continuity of E in rotc E = -iwBc. The 
anomalous vertical electric field Eac (in the case of 
B-polarization) needs special consideration. 

Magnetic and electric fields which appear in these Price 
equations will be connected by conditions at infinity. The 
downward diffusing total field in the lower half-space must 
vanish for z -> +x, and the upward propagating secondary 
field must vanish for z -> - x. Satisfying these conditions 
solves the thin-sheet induction problem. Both fields will be 
split into normal and anomalous parts in the sense that the 
conductance to the left of the anomalous range defines the 
conductance rn of the normal structure (Fig. 1). Transition 
anomalies are permitted, i.e. the conductance rN to the right 
of that range may be different from r". The subscript n 
identifies the normal field for induction in the normal 
structure. Its components in the z = 0 plane are 

for E-polarization, assumed to be complex-valued functions 
of frequency wand distance y, and 
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Figure 1. (Top) the thin-sheet model; (below) normal and 
anomalous field vectors, assuming a non-uniform source in 
E-polarization and a quasi-uniform source in B-polarization. Note 
the same vertical magnetic components at the upper and lower 
surfaces for E-polarization, but different vertical electric com
ponents for B-polarization. 



for B -polarization, assumed to be only functions of 
frequency for reasons given later. 

The subscript a identifies the anomalous field which arises 
from the variable conductance in the anomalous range: a 
tangential electric field for E-polarization and a tangential 
magnetic field for B-polarization. 

Both modes obey the field equations rot Ba = IHa and 
rot E" = -iwB", yielding with d/dX = 0 

(3) 

for B -polarization (in the quasi-stationary approximation) 
and 

aE"x _. B 
ay -lW,,, (4) 

for E-polarization. The sum of normal and anomalous fields 
is the total field without subscript. 

Equation (3) implies that Bax is constant or zero in the 
non-conducting free space above the thin sheet and that no 
current leaves the thin sheet through its upper surface, even 
though E,,, here is not necessarily zero. Since Ea for 
B-polarization above the thin sheet is a potential field of 
accumulated charges on z = 0, a Hilbert transformation 
connects E", with E"" at any level z < 0, e.g. E",(y, -0) = 

K(y) * E",(y, 0) with the notation of eq. (15). But there is 
no need to consider Ea, any further. 

The remaining anomalous field components in the z = 0 
plane are 

for E-polarization and, with the condition Bax = 0, 

for B -polarization, all being functions of wand y (Fig. I). 
A final note on the validity range of the thin-sheet 

concept follows. A conducting layer of thickness d and 
conductivity u, underlain by a laterally uniform conductive 
substructure, may be regarded as thin in the above sense, if 
at the considered frequency wand wavenumber k two 
conditions are met: first, the layer must be thin enough that 
d is much smaller than the skin depth p = Y2/ WJ./,oU, when 
kp «1. or IKI- 1 in general with K = Y2i I p2 + e as the 
vertical wavenumber; second, the substructure must be 
resistive enough that the penetration depth into it is much 
larger than d. 

These conditions are readily inferred from the diffusion 
formula of layered structures, expressing the downward 
attenuation of a tangential electric field by conducting 
matter. Let E- denote the field at the upper boundary of the 
layer, and E' the attenuated field at its lower boundary. 
Then (Schmucker 1970; eqs 5.43 and 5.47) 

E+ = KC+ E-
KC+ cosh a + sinh a ' 

where a = Kd; C' , as a measure of the penetration depth. is 
the C-response of the substructure below the lower 
boundary, defining in E; = iwC+ B,: the impedance relation 
on this boundary. 

The first condition d« p ensures that cosh a "" 1 and 
sinh a "" a, the second condition IC 'I» d that IKC 'I» lal, 
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which yields E' = E . Since IEI decreases monotonically 
downward, the required quasi-uniformity of the tangential 
electric field within the layer is established. The arguments 
can be generalized to non-uniform layers, provided that 
lateral field changes on its boundaries are sufficiently 
smooth. 

3 ELECTROMAGNETIC RESPONSE 
FUNCTIONS FOR THE NORMAL 
STRUCTURE 

The equations, which will be formulated for the anomalous 
field in the next section, involve certain response functions 
in reference to the normal structure. They are complex
valued functions of frequency wand distance y, defined as 
Fourier transforms of corresponding response functions in 
the frequency-wavenumber domain, and will be related to 
conventional Green's functions. 

Let Z (w, k) = iwJ./,o C (w, k), defined as a function of w 

and wavenumber k, be the impedance at z = -0 of the 
normal structure for tangential electric fields. The 
C-response function introduced in this manner will be used 
exclusively hereafter. It can be derived by standard 
methods, for example with Wait's algorithm for layered 
structures. Let En(w, kJ, B~(iV, k,,) be Fourier transforms 
of the normal field vectors En( w, y), B,; (w, y), with 
exp [i(k,y + wt)] as the common time-distance factor and 
k = Ik, I. Their relations in the (w, k) domain arc 

(5) 

The convention used here for Fourier transforms is 

j(k,) = r,x f(y)exp(ik,y)dy, 

fey) = 2~ fxX j(kv) exp( -ikv y) dkv. 

Let the normal magnetic field vector for E-polarization at 
z = -0 be split into an external primary part Be and an 
internal secondary part B" the latter from induced currents 
in the normal structure. The Q-response, given by 
(Schmucker 1970, eq. 5.37) 

l-kC (w,k) 
Q(w, k) = 1 + kC (w, k)' (6) 

defines then the internal field components in terms of those 
of the external field: 

(7) 

Combining eqs (5) to (7) connects the normal electric'Mleld 
within the thin sheet to the external source field: 

~ _ 2C-
Enx = iwC (I + Q)Bey = iw 1 + kC Bey· (8) 

Now a Fourier transformation back into the (w, y) domain is 
performed with eqs (7) and (8). It leads to 

(9) 
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and 

(10) 

with P and 5 representing the Fourier transforms of Q and 
C /(1 + kC-), respectively. The sign * implies convolution, 
e.g. the expression B i , = P * Bn stands for 

Since Q and C depend on k and thus are even functions of 
k" they can be written as one-sided cosine transforms: 

If' P(w,y)=- Q(w,k)coskydk, 
n " 

(11 ) 

1 f7 C(w, k) 
S-(w,y)=- C ( coskydk. 

n " 1+ k w. k) 
(12) 

Once these response functions in the (w, y) domain have 
been found for a given normal structure, the normal internal 
magnetic and normal electric fields follow for any specified 
source field at ground level z = -0 from eqs (9) and (10). 

Three additional notes: 

(I) The physical implications of P and 5 can be 
visualized as follows: let Be, be the field of a narrow sheet 
current of width E just above the thin sheet at point y", 
flowing with density j., or total strength EL in the negative 
x-direction. Then for a point source of infinitely small width 

Insertion into eqs (9) and (10) identifies P( w, y) as the 
magnetic field of currents, which a point source at z" = -0 
induces in the normal structure, and iwfJ.-"S (w, y) as its 
electric field, both for field points at z = O. In this way S 
can be regarded as a Green's function for the specified levels 
of source and field points, while P involves a differentiation 
of this function with respect to z. 

(2) The inverse transformation of eqs (11) and (12) for 
wavenumber k = 0 shows that 

f<' pew, y) dy = Q(w, 0) = 1 (13) 

and that 

(14) 

(3) The external magnetic field in the lower air space is a 
potential field in the quasi-stationary approximation. Hence 
its components are Hilbert transforms of each other (Kertz 
1954). With the correct sign for fields of external origin they 
read at ground level 

( IS) 

with the convolution kernel K(y) = I/ny as the sme 
transform of -ik,/k (c! eq. (27». 

The remaining response functions are related to the 

anomalous field and its diffusion into the substructure below 
the thin sheet. Let C (w, k) be the C -response at the top of 
this substructure and let 

(16) 

be the respective impedance and admittance relations at 
z = +0. A distinction has to be made between the 
C -response of the tangential electric anomalous field for 
E-polarization (TE) and the C-response of the tangential 
magnetic anomalous field for B-polarization (TM), rr+ 

denoting the conductivity at the very top of the substructure. 
In writing these relations the definitions Cn = -E,,,/E;', 
and C'M = - 8 a.! 8 :,' arc used with f';" = -iw8,,,. and 
8;', = + fJ.-"rr' Ea, from the quoted field equations for the 
anomalous field, the prime denoting derivatives with respect 
to z. 

The vertical components of the respective poloidal modes, 
expressed in terms of their tangential fields, are: 

( 17) 

as seen from eqs (16) and (20) below. Note that E,;, in 
contrast to B,~, differs from E,~" as already discussed, which 
is the vertical component of a potential field and given by 
-i(k,/k) Ea,. in analogy to eq. (18). 

Finally, the internal origin of the anomalous magnetic 
potential has to be observed, yielding in analogy to the 
external magnetic field, but with reversed signs, 

B",. = -K * Ba, and Ba, = +K * B,,, 

or 

(18) 

These relations are now combined with the field equations 
for the anomalous field in the (w, k) domain. The 
depth-integrated first field equations for E- and B-polari
zation are 

( 19) 

observing that the anomalous magnetic field Ba, is zero, 
while it follows from eqs (3) and (4) that 

(20) 

Expressing 8", in eq. (19) for E-polarization in terms of 8a" 

using eqs (17) and (18), and then replacing 8,,, by 
(k,./ w) Eax> we can connect the anomalous sheet current 
density and the anomalous electric field as follows: 

~ . C;F ~ 
E",=-IWfJ.-"I+kC' j",. 

TI' 

(21 ) 

The Fourier transforms of eqs (16) and (17) for 
B-polarization and eqs (17), (18) and (21) for E-polarization 
into the (w, y) domain are 

Bay = -K * Brr;:, 

(22) 

(23) 

(24) 



with response functions introduced as follows: 

1 J' N(w, y) = - C;M(W, k) cos ky dk, 
lr " 

(25) 

1 J'-L(w.y)=- [ke'(w,k)] 'sinkydk, 
lr " 

(20) 

1 J' 1 K(y)= hm - exp(-kE)sinkydk=-, 
1-'''''''''-+ () Jr () lfY 

(27) 

. , I J' C;d w. k) S (w. v) = - . , cos kv dk. 
. lr" I +kCII(w,k) . 

(2~) 

In eq. (26) C~E and C;M are used for the responses LTF and 
L TM , respectively. In deriving K and L by sine transforms it 
has been noted that sgn (k,.) and k, C' are odd functions of 
k, .. Again 

(29) 

J ',' S' (w, y) dy = C;\(w, 0) 

in correspondence to eq. (14). In the case of layered 
substructures the C' responses can be derived with the same 
algorithm for both modes, when in the TE case the 
continuity of the impedance and in the TM case the 
continuity of the admittance, as expressed by eq. (16), are 
observed (cl Schmucker 1971, Appendix A). 

In the numerical evaluation of the convolution integrals 
the following characteristics of the response functions have 
to be observed: for y ~ ± x all responses except L approach 
zero on a distance scale which is given by the 
zero-wavenumber response C'(w,O). This response also 
determines the finite limiting value of L, which is 

L(w,y)~[2C'(w,()] I for y-->x. (30) 

For y --> 0 all responses, except P, become singular, with 
logarithmic singularities for the even responses Sand N, and 
1 I y singularities for the odd responses K and L. They can be 
overcome by expressing the field which is to be convolved as 
a Taylor series in the vicinity of the singularities, and by 
integrating term by term (cf Schmucker 1971, Appendix B). 

Similarly, the characteristics of the C-response have to be 
observed, when deriving the (w, y)-domain responses by 
Fourier transformations. For k --> x the C-response of any 
layered structure approaches 1 I k and for k --> 0 it merges 
into the zero wavenumber response with flC I iJk = O. Hence, 
the required cosine transforms for P, Nand S are readily 
performed, making use of tabulated cosine integrals for 
k ~k",ax and C+ = Ilk. The numerical evaluation of the sine 
transform for the derivation of L, however, has to he 
modified to avoid problems when k hecomes large. This is 
done by separating the Hilbert transform kernel, i.e. by 
setting L = K + L'. The integrand of the sine transform for 
L' then becomes (like' -1), which vanishes for k-->x. 

In a few special cases the transformations can be carried 
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out analytically. For a uniform suhstructure of conductivity 
(T it follows from C' = I IVf2'+ i~/-L,,(T that 

1 
N(w, y) = - K"CY(ij.Lou Iyl), 

lr 
(31) 

with Ko as a modified Bessel function of the second kind and 
zero order. For a non-conducting substructure down to 
depth h. where it becomes perfectly conducting, Cn equals 
tanh (kh)1 k, from which follows 

L ,F =[2htanh(lru)] I and S'=[2lrh(l+uC)] I (32) 

with 11 = 211 Iy. No anomalous field in B -polarization exists 
because in this model the thin sheet is also insulated from 
below and currents can neither enter nor leave the sheet. 

4 INTEGRAL EQUATIONS FOR THE 
ANOMALOUS ELECTRIC FIEt.DS AND 
CURRENTS 

Starting with E-polarization, the relevant Price equation is 

(33) 

and the depth-integrated Ohm's law is 

(34) 

" with r,,=r-rn and j",=j,-j"" jm=rnEn,. For a 
non-uniform source the normal electric field En, depends on 
y and has to be inferred from eq. (10) for a specitled 
external source Held at ground level. The normal magnetic 
field with the components Bn, and Bnc follows from eq. (9) 
as the sum of external and internal parts. 

If the source field is quasi-uniform in the sense that its 
penetration depth is small in comparison with its lateral 
spatial dimensions, then eqs (13) and (14) imply that the 
normal horizontal field B",. is just twice the external source 
field, while Bnc is zero, and that En, = iwC (w, O)B",. which 
is the Cagniand-Tikhonov approximation of magneto
tellurics. 

Hence, En,(w, y) in eq. (34) can be assumed to be known. 
Inserting E,,, from eq. (24) leads to an integral equation for 
the anomalous current density: 

(35) 

Alternatively, replacement of B",. and B,;, in eq. (33) by Ba, 
according to eq. (23) gives for the anomalous electric field, 
when Ba.- is substituted with eq. (4): 

fiE", . , 
-(K + LnJ * ay = IW/-Lo(r"E n , + rE",). (36) 

Integration hy parts, as discussed in the following section, 
converts the convolution integral on the left into a 
convolution of E,,, with the derivatives of K and 1_ ",ith 
respect to y and thus transforms eq. (36) into an integral 
equation for Ea,' 

Once j,,, or E,,, have been found, the undetermined 
quantity can he derived with Ohm's law. Differentiating E,,, 
yields B,,, and a suhsequent Hilhert transformation gives 
B,,,. = - K * B",. Adding these anomalous fields to the 
normal field yields the total magnetic field B on the upper 
surface and in E, = En, + E", the total electric field. If the 
magnetic field at the lower surface is sought, for instance for 
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a comparison with magnetic sea-floor observations, B,' is 
readily inferred from Price's eq. (33). 

The B-polarization case can be treated in a corresponding 
way. To keep the induction problem 2-D, the source must 
be quasi-uniform in the sense described above, i.e. 
E", = -iwC (w,O)B",. Inserting B ,;, from eq. (22) into the 
form of the Price equation B,;, = /-Loj",. relevant here, yields 
with the depth-integrated Ohm's law i", = r"E", + rE", 

(37) 

as a first integral equation for E,,,, 

Equation (3) implies in conjunction with the Price 
equation that at z = +0, but already within the substructure, 

(T f E 1_ = _ !!i~. 
/I, ay , 

where E,;, accounts for the fact that in B-polarization 
induced currents enter and leave the thin sheet from below. 
Let E", in Ohm's law be replaced by LrM * E,;, according to 
eg. (22), and E,;._ hy iiim/ay according to the above relation. 
This gives in 

( LrM * iij"')/(J' = (r"E", - i,,·)/r 
fly 

(38) 

a second integral equation, now for j",,. Again two 
alternative methods exist to solve the thin-sheet B
polarization modelling problem. 

The accommodation of transition anomalies is readily 
seen. The integrals to be evaluated involve either derivatives 
of the anomalous field or current, which in any case 
disappear at great distance from the anomalous range or 
response functions which are readily evaluated with constant 
asymptotic fields and currents by virtue of eq. (29). It should 
be noted that eqs (36) and (37) can be written explicitly for 
r" and thus provide direct solutions of the 2-D thin-sheet 
inverse problem: to find its conductance from an observed 
electric field for a given normal structure (and source). 

It will be interesting to add integral equations for the 
horizontal electric fields which evolve from Green's 
theorem. Their important distinctions are that (l) the 
integration is limited to the anomalous range [-a, a] in y 
(which must be bounded), (2) the remaining anomalous field 
components can be derived also from integral equations, 
involving differentiated Green's functions with respect to 
fieldpoint coordinates, (3) the anomalous field outside the 
thin sheet is included. The E-polarization integral equation 
is 

f'" 
-iw/-Lo _a r,,(y')E,(y', 0) GTE(y, z;y', 0) dy' = E",(y, z), 

(39) 

to be solved for z = 0 with C rr• as the cosine transform of 

(40) 

Except for an additional source layer term in the 
denominator it resembles the transform of S' in eq. (35). 

Furthermore, C" is identical with the response function S 
of Section 3. From 

it follows readily that 

iW/-LornC;,. = C~,/CII-1 

which when inserted into eq. (40) reveals G II as the cosine 
transform of Cn /(1 + kCn) in accordance with the 
definition of S in eq. (12). 

The B -polarization integral equation for Z 2: +0 is 

I'" 
r,,(y ')E,.(y', O)GrM(y, z: y', 0) dy' = r"B", (y, z)1 /-Lo, 

" 
(41 ) 

to be solved for z = +0 with GrM as the cosine transform of 

(T'C;M 
--------
l+if'C;M/rn 

(42) 

reflecting the transform of if+ N in eq. (37). Let R = 1/ r 
denote the reciprocal thin-sheet conductance and R" = 
R - 1/ rn its anomalous part. Then with i", = B,;.1 /-LII and 
r" = -R"r" r eq. (41) is conveniently reformulated as an 
integral equation for the sheet current density j, = rE, which 
in contrast to E, is continuous in y: 

I
t" 

- "R,,(y')j,(y')CrM(y, +O;y, 0) dy' = j", .. (43) 

The case when a strong influx of currents from a 
well-conducting substructure occurs deserves special atten
tion. If in that case the inequality IC;Mif t I » rn holds for any 
wavenumber, for which C;M has not yet reached its 
asymptotic value 1/ k, the Green's function approaches 

1 IX 1 rn - --I ~cos [key' - y)] dk = (J' g(a) 
lC f) r"k/if + 1 

as a limiting static value with 

g(a) = -cos aCi(ex) - sin a[~ - Si(a) ] 

and ex = IY' - yl (J' Ir". Here Ci(a) and Si(ex) denote the 
cosine and sine integrals. Because g( ex) varies then on a 
distance scale given by r"1 (J +, the numerical evaluation of 
integral equation (43) may require a much finer grid spacing 
than the evaluation of eqs (37) and (38). The distance scale 
of their kernel function is solely determined by C;M for 
k = 0, assumed to be large against rnl (J'. 

In conclusion, it will be shown how the last two integral 
equations, based on Green's functions GTE and GTM in their 
conventional definition for the IOlal normal structure, 
connect to those derived earlier in this section which use the 



response functions S' and N in reference to the substructure 
alone. The demonstration will be carried out in the 
wavenumber domain with 

GT! 
I + kC, + iWJLo'''C;, 

and 

as the cosine transforms of G n and G ,M . 
Multiply in the case of E-polarization eq. (21) with 

(I + kC~rJ and replace ]a, by ,,,E,,, + T" * E, according to 
Ohm's law: r,,(k) denotes the Fourier transform of ,,,(y). 
This gives 

or, with the notation from above, 

which is the Fourier transform of the first integral equation 
(39). Rewrite in the same manner eq. (16) for B-polarization 
with fj ,;, = JLo]", and E,,, = R.L + it * ],' when R" = 1/,,,, 
yielding 

and thereby in 

'" ............. A 

j",. = -GTM R" * j,. 

the Fourier transform of the second integral equation (43). 

5 NUMERICAL SOLUTION OF THE 
INTEGRAL EQUATIONS 

Anomalous field values are calculated for a sequence of N 
grid points along the y-axis, extending beyond the 
anomalous range into adjacent sections of constant 
conductance. These normal sections must be wide enough 
that the numerical solutions come sufficiently close to their 
respective limiting values at infinity. As a rule this requires a 
width of several penetration depths into the substructure, 
taking as a measure for this depth the real part of the 
zero-wave number C' -response in the relevant mode. The 
conductance within the anomalous range is assumed to be 
piecewise constant between grid points and the mean of 
adjacent sections is assigned to the grid points themselves: 
the arithmetic mean for E-polarization and the harmonic 
mean for B-polarization. This implies a certain smoothing of 
the numerical solutions. 

The integrals are approximated by finite sums and the 
trapezoidal rule is used except for a range of one grid-point 
spacing to either side of the singularity of the convolution 
kernels. Within this range the integrals are evaluated 
analytically with a Taylor series expansion of the field, as 
discussed in Section 3 and below. The distance h between 
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grid points should be small enough that even in the best 
conducting section the dimensionless parameter 

TJh = WJLo ,h 

is less than unity. For a thin sheet of thickness cl and 
conductivity (I' this parameter measures the cross-section dh 
of the numerical solution in relation to the squared skin 
depth p' = 2/ WJLo(T. Because the response functions 
involved vary on a distance scale determined by the 
C-response of the substructure, a second independent 
condition requires that the grid-point spacing is sufficiently 
small to yield h« IC' (w, 0)1. 

The result is a system of N linear equations for the 
anomalous electric field and current at the chosen grid 
points. Because of the rapid decrease of the response 
functions with increasing distance from their singular points 
the matrix of coefficients is band-structured. Hence, rather 
than using a direct solution it can be more efficient to use 
approximate solutions, by limiting the number of off
diagonals. This is done by setting the responses formally to 
zero beyond a certain distance from the singular points. The 
more convenient solution with a band-shaped matrix gives 
preliminary field values, from which the omitted portions of 
the convolution integrals are calculated. Adding these 
portions to the knowns of the integral equations leads to 
modified right-hand sides of the N equations which are 
solved again. The iterative process is repeated until it 
converges. If it does not converge sufficiently fast within, 
say, 10 iterations, the number of off-diagonals must be 
increased. 

The required convolutions with derivatives of the 
anomalous field and current in eqs (36) and (38) are 
performed as follows: in the vicinity of the 1/ y singularities 
of K and L these derivatives are developed into Taylor 
series, preferably to high order, with a term-by-term 
integration. Outside this vicinity the convolution integrals 
are integrated by parts, leading to a convolution of the 
anomalous fields and currents themselves with the 
derivatives of K and L. This has the advantage that aK / ay 
and aLlay diminish even more rapidly than K and Land 
that numerical differentiations of Ea, or j", are avoided 
altogether «(f Schmucker 1986, pp. 40-43). 

Special precautions are needed, if in the case of transition 
anomalies and quasi-uniform sources the L response is 
applied to a constant anomalous field. Clearly, the 
anomalous fields B,;, for E-polarization and E", for 
B -polarization have to merge for y ~ +:x; into the constant 
differences of two normal solutions which are without 
vertical components. Hence, appropriate constants have to 
be added to the convolution integrals in eqs (22) and (23) as 
follows. 1 

Let Cn be the zero-wavenumber C-response of the 
normal structure with 'n as surface sheet conductance and 
C N be the same response with 'N, different from '". Let 
EN, and B.~r denote the corresponding electric and magnetic 
fields at y ~ +x, the latter at the lower surface. Then the 
anomalous fields B,;, and Ea" have, for y ~ + x, the limiting 
values 
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and 

B'~l - B~x 
J.tueT' C;M ' 

as seen from eq. (16), with 

and 

B~x - B:, = J.to(j,,,, - jn,.} 

= -iWJ.to(TNCN - TnCn)B~, 

from the impedance and Price equation. For y -> -x, B,;, 
and E." approach zero by definition. Noting that the limiting 
value of L for y -> x is (2C') " the following expressions 
have to be added to the convolution integrals involving L 
(cl Schmucker 1986, pp. 11-12): 

. C N - Cn 
-IW 2C;!' - B n , to the left-hand side of eq. (36), 

. TNCN - TnC~- _ 
-IW " Bn , to the left-hand side of eq. (38). 

2eT CTM 

No correction is needed if a non-uniform source in 
E-polarization is stationary because it is assumed that its 
ground field does not extend beyond the range of the 
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Figure 2. Test models with positions of the line and band currents, 
when non-uniform sources are studied (Section 6). 

numerical solution. Travelling non-uniform sources need 
special consideration (cl Section 8). 

6 TEST OF NUMERICAL SOLUTIONS 

Figure 2 presents two test models. In the symmetrical model 
1 the anomalous range is 300 km in width and has a uniform 
conductance of 1000 Siemens (S) for sediments against a 
normal value Tn = 10 S for basement rocks. The transition 
model 2 consists of two half-sheets, with Tn = 10 000 S for 
oceans and TN = 10 S for basement rocks on continents. The 
substructure is a uniform half-space of 100 Qm, for 
simplicity. 

The number of grid points is N = 81, their spacing 
h = 10 km except for the last 10 points at either end, where 
the grid spacing is increased to 50 km. Hence, the distance 
between the first and last points measures 1600 km with 
650 km normal sections on either side in model 1 and with 
800 km for each of the half-sheets in model 2. The linear 
system has been solved with 12 off-diagonals to either side 
of the diagonal. Five to ten iterations were needed to 
determine the respective field quantity with a relative 
numerical accuracy of 10 4. 

Noting that the zero-wave number response of the uniform 
substructure with skin-depth p + is C' = P + 12( 1 - i), or here 
150(1 - i)vTkm, when the period T = 2nlw is measured in 
hours, the normal sections should have the required width 
for periods up to a few hours. The grid-spacing parameter is 
TJh = O.OII for T = 1000 Sand 0.11 for 10 000 S with the 
frequency I = liT in c.p.h. This should be adequate for 
frequencies up to a few cycles per hour, when the condition 
h « IC I I is also satisfied. 

The degree of induction in uniform thin sheets versus 
induction in the substructure is controlled by the inductive 
coupling parameter 

with TJn = 0.003v]' for Tn = 10 Sand 3v]' for Tn = ]() 000 S. 
Hence, for periods around 1 hr the normal induction 
currents flow in the substructure on the continental side and 
mostly in the thin sheet on the oceanic side. The following 
tests are for frequencies between 0.1 and 100 c.p.h. and 
assume quasi-uniform source fields unless stated otherwise. 
Fig. 3 shows the resulting anomalous fields in all 
components, illustrating their behaviour near the selected 
test points. 

The first test concerns the compatibility of solutions, when 
the integral equations are solved either for the anomalous 
current or the anomalous electric field. Table I presents the 
complementary solutions for model I. Listed values are the 
normalized tangential electric fields for both polarizations at 
sensitive grid-points (Fig. 3). For E-polarization the selected 
point lies in the centre of the conducting slab, where E, goes 
through a minimum. For B -polarization two points are 
chosen, 10 km to either side of the boundary of the slab, 
where E" should change discontinuously by a factor of 
1000: 10. Since the anomalous field is here almost in-phase 
with the normal field, only real parts of the ratios are 
quoted. 

Table 2 contains the same comparison for model 2, using 
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Figure 3. Anomalous field components for model I (left) and model 
2 (right) for induction by quasi-uniform sources in E- and 
B-polarization at I c.p.h. The magnetic components are normalized 
with respect to B~v' the electric components with respect to En, and 
En,' respectively. 21/,. (large dots) and .'ltn (small dots): real and 
imaginary parts of ratios Ba) Bn,. etc. Boundary points are 
y = ISO km (model I) and y = 0 km (model 2). The influx of 
in-phase currents from the substructure into the sheet occurs where 
;Yi" (E,;J is positive and vice versa. Discontinuities and singularities 
are smoothed out in the numerical solution. 

for B-polarizations again two points at 10 km distance from 
the 'coastline'. In addition the solutions of both polariza
tions are tested at the last grid point against their asymptotic 

Table 1. Compatibility test of solutions. model 1. 

Ex/ Enx E-Pal. 

y =0 km 

f (cph) Eq. (35) Eg. (36) 
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values at infinity. Note that with 1)" = 10 the grid spacing is 
definitely too coarse on the oceanic half plate for lOO c.p.h . 
In addition, the penetration depth ift" (C+) = 15 km into the 
substructure at this frequency hardly exceeds the grid-point 
spacing . 

Price (1949) suggested that the solution for the sheet 
current is the preferable one at low frequencies, when 
self-induction is small, i.e. when in E-polarization Ea, 
disappears and ja, assumes its static value TaEn" At high 
frequencies, in contrast, the solution for the electric field 
should be sought, merging into its variable J -0 local value . 
The test demonstrates that a wide overlap of compatible 
solutions exists, even close to critical points of discontinuous 
changes. The same overlap applies to their correct 
asymptotic behaviour in the case of transition anomalies. It 
should be noted, however, that the solutions which involve 
convolutions with derivatives are systematically closer to the 
asymptotic values. Tests with more grid points support the 
impression that these solutions are indeed superior. 
Otherwise the greatest discrepancies are found at high 
frequencies, as to be expected . 

The second test examines the influence of grid-point 
spacing. Suppose that in E-polarization eq. (35) has been 
solved for ja, and that Ea, has been derived from it with eq. 
(34). Numerical differentiation,of Ea, with respect to y yields 
Ba, according to eq. (4) and thereby in (K + LTd * Ba, (eqs 
23 and 33) a second solution j;, for testing the grid-point 
spacing. The degree of agreement indicates how well the 
convolution integrals with either even (S j) or odd (K, L) 
kernel functions are approximated by sums and the 
derivatives of Ea, by finite differences. In the same way the 
solutions for EH, from eq. (37) can be tested with 
E,;, = -(aiavlay)/;"+ and E:v = LTM * E,;, , obtained from 
eqns (3), (22) and the Price equation. 

Table 3 presents the results, using the same test points as 
in Table 1. For E-polarization discrepancies of less than 1 
per cent verify the cited rules for adequate grid-point 
distances except at the lowest frequency, when ia'!in, is too 
close to its limiting static value Tal Tn = 99. The range of the 
numerical solution is then not large enough for a correct 
reconstruction of Bav from Ba, by convolution with K. The 
entries for B-polarization show the expected tendency that 
discrepancies increase with frequency. Their substantial size 
at all frequencies reflects the problematic derivation of E:v 
from E,;, near to its logarithmic boundary singularity. where 
a much finer grid-spacing would be needed (cl Fig. 3, 
bottom). 

In a third test, numerical solutions are compared with 

Re(E~/ En.) B-Pal. 

Y = 140 km Y = 160 km 

Eg. (37) (38) Eq. (37) (38) 

0.10 0.9911 - 0.0317i 0.9947 - 0.0312i 2.866 2.818 0.3553 0.3551 
0.32 9694 787 9723 809 2.820 2.790 3502 3515 
1.00 8969 1725 8972 1741 2.737 2.701 3388 3401 
3.16 7082 2824 7090 2827 2.529 2.481 3111 3102 
10.0 4365 2766 4338 2803 2.152 2.123 2563 2588 
31.6 2644 1860 2580 1869 1.790 1.766 1997 2017 
100. 1597 1238 1523 1230 1.455 1.472 1432 1477 
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Table 2. Compatibility test of solutions, model 2. 

Ey/Eny B-Pol. 

y =-lO km y=+lO km 

f (cph) Eq. (37) Eq. ( 38) Eq. Dn Eq. (38) 

0.10 0.2176 + 0.0519i 0.2165 + 0.0486i 14.83 + 3.61i 14.50 + 3.34i 
0.32 2602 750 2544 750 17.79 5.31 17.43 5.22 
1.00 3224 1042 3227 1044 22.18 7.63 21.81 7.51 
3.16 4089 1378 4089 1378 28.49 10.74 27.97 10.55 
10.0 5206 1711 5216 1715 37.20 15.04 36.52 14.74 
31.6 6622 1952 6610 1942 49.55 21.24 48.36 26.77 
100. 8177 1909 8154 1848 66.91 30.29 64.83 30·20 

Eax/ Enx E-Pol. Eax/ Enx I; Eay/ En. 
y = 800 km Y -4 +00 

f (cph) Eq. (35 ) Eq. (36) 

0.10 cph 1.67 + 0.91i 1.92 + 0.96i 2.05 + 1.04i 
0.32 2.37 1.81 2.65 1.76 2.86 1.85 
1.00 3.81 3.43 4.03 3.22 4.31 3.29 
3.16 6.43 6.24 6.58 5.77 6.88 5.81 
10.0 11.05 11.52 11.12 10.20 11.46 10.24 
31.6 19.28 21.84 19.79 17.97 19.59 17.93 
100. 34.36 42.23 33.72 31.68 34.01 30.96 

Eay/ Eny B-Pol. Eax/Enx .t Eay/En. 
y=800km y -4 +00 

f (cph) Eq. (37) Eq. (38) 

0.10 cph 2.04 + 0.84i 2.10 + 0.99i 2.05 + 1.04i 
0.32 2.73 1.58 2.86 1.81 2.86 1.85 
1.00 4.13 2.93 4.30 3.29 4.31 3.29 
3.16 6.49 4.92 6.88 5.82 6.88 5.81 
10.0 10.56 8.11 11.45 10.20 11.46 10.24 
31.6 17.24 13.02 19.51 17.82 19.59 17.93 
100. 28.49 20.13 33.54 30.47 34.01 30.96 

analytical solutions. Weidelt (1971) gives such a solution for 
transition models in E-polarization. His model consists of 
two uniform half sheets above a substructure which is 
non-conducting down to a certain depth and then perfectly 
conducting. Fig. 4 presents a comparison of solutions for the 
magnetic field, utilizing in the numerical solution the 
analytical expressions of eq. (32) for the convolution kernels 
LTE and S+. It should be noted that the discontinuous 
change of j", at the boundary of the two half sheets implies 
corresponding discontinuities of B", and B,:", while B", at 
this point has a logarithmic singularity. The numerical 
solutions naturally can reproduce these discontinuities and 
singularities only in a smoothed fashion, the degree of 

approximation depending on the chosen grid-point distance. 
Unsuccessful tests have been made with more grid-points in 
order to improve the agreement for the out-of-phase part of 
B", on the oceanic half sheet. These and other minor 
discrepancies remain unexplained. 

Bailey (1977) presents an analytical solution of the same 
problem in B-polarization. He allows necessarily for a 
substructure of finite conductivity (assumed to be uniform), 
overlain now by only one half sheet which is perfectly 
conducting. The finite conductances of model 2 are 
sufficiently extreme to attempt a comparison. As evident 
from Fig. 5 this model can reproduce Bailey'S results quite 
well. The field components which are compared are the 

Table 3. Grid-point spacing test, model I. 

y = 0 km Eq. (35) E-Pol. y = 160 km Eq. (38 ) B-Pol. 

f (cph) jax/jnx j;x/jnx Eay/En. E:y/ En. 

0.10 98.11 - 3.17i 95.88 - 1.74i 1.818 - 0.031i 1.204 - 0.022i 
0.32 95.94 7.87 94.05 6.87 1.790 90 1.184 67 
1.00 88.70 17.25 88.32 16.74 1.702 222 1.119 167 
3.16 69.83 28.24 70.44 28.30 1.481 376 0.952 282 
10.0 42.65 27.66 42.31 27.48 1.123 465 0.684 347 
31.6 25.44 18.60 25.38 18.55 0.766 433 0.420 317 
100. 14.97 12.38 14.84 12.29 0.472 352 0.275 159 
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Figure 4. Comparison of Weidelt's analytic solution (1971, Fig. 6) 
with the numerical solution of eq. (36), using 81 grid points over a 
range of 1600 km. In the displayed central section the grid-point 
spacing is 10 km. The thin-sheet model has half sheets of 1600 S 
(v < 0) and 400 S (v> 0). meeting at y = O. The substructure is 
non-conducting down to 200 km depth and then perfectly 
conducting. Induction is by a quasi-uniform source field in 
E-polarization at 1 c.p.h. At the boundary line B", changes 
discontinuously and Baz is singular in response to a discontinuous 
change of j",. Unresolved major discrepancies appear on the 
oceanic half sheet for .rtl!l (B"J and on the continental half sheet for 
.7/1' (B"J. both at some distance from y = O. The anomalous field is 
normalized to B",,, 

magnetic field B,' on the underside of the perfectly 
conducting half sheet, here also the vertical electric field E' 
which is responsible for the influx of deep induction currents 
into the sheet. In addition, E, is shown for the top of the 
uncovered part of the substructure. Numerical and analytical 
solutions disagree most in the out-of-phase part of B; and in 
the in-phase part of E;. This is not unexpected because the 
finite conductance of the oceanic sheet in model 2 limits the 
influx of currents from below and increases the overall phase 
of the sheet currents. An improved fit can be obtained by 
increasing the conductance ratio of the two sheets to 105

: 1. 
Bailey's model has been extended by Nicoll & Weaver 

(1977) by assuming a substructure which is terminated at a 
certain depth ,by a perfect conductor. If this depth is small 
against the skin depth of the matter between the thin sheet 
and perfect conductor, then the inland field E, and most 
notably the imaginary part of B: depend strongly on the 
depth of the perfect conductor, which has been reproduced 
numerically to the extent of Bailey's results. Raval, Weaver 
& Dawson (1981), in considering the E-polarization case of 
Bailey's model, provide a further analytical solution for 
testing, supplementing the test with Weidelt's model. 
However, the assumption of infinite conductivity has even 
more severe consequences in E-polarization, since E, drops 
to zero when approaching the coastline from the continent. 
Their tabulated numerical results on p. 122 have been 
confirmed, when the conductance of the well-conducting 
half sheet is given the highest permissible value for the 
chosen grid-point spacing. 

The test of numerical solutions is more difficult when the 
source field is non-uniform. The work of Peltier & 
Hermance (1971) provides the possibility to verify the result 
for the normal field, when the induction is by a Gaussian jet 
above a layered structure. For the anomalous field, testing is 
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Figure 5. Comparison of Bailey's analytical solution (1977, Fig. 2) 
with the numerical solution of eq. (38), using the same arrangement 
of grid points as in Fig. 4. Bailey's model has a perfectly conducting 
half sheet in y < 0 ahove a uniform half-space (here with 
0.01 Srn l). The numerical solutions are for model 2. the induction 
is hy a quasi-uniform source field in B-polarization at 1 c.p.h. (Top) 
the magnetic field at the underside of the perfectly conducting half 
sheet; (centre) the tangential electric field at the surface of the 
uncovered part of the half-space (in Bailey's model); (bottom) the 
vertical clectric field at the top of the half-space beneath the 
perfectly conducting half sheet, demonstrating the influx of currents 
from below. The use of linite thin-sheet conductances in model 2 
accounts at least partially for the observed discrepancies, most 
notably in ;fI1' (E;). 

restricted at present to a comparison with numerical 
solutions by others. Agarwal & Weaver (1990) consider the 
induction of a Gaussian jet above a coastline. Actually their 
modelling is in three dimensions, but it includes a 2-D case 
in their model 2. For the chosen frequency of 1 c.p.d. the 
induction is so weak, however, that even for the oceanic 
section the normal internal field reaches only one-fifth of the 
external field and the superimposed anomalous coast ~ffect 
is hardly visible at all. This limits a detailed comparison and 
restricts the test to total field ratios at one selected point and 
three periods as listed in Table 3(b) of the quoted reference. 
They have been reproduced, at least to the onc or two 
decimals which the authors supply. 

A concluding fourth test is designed to study the principal 
limitation of a thin-sheet approximation. For this purpose a 
finite thickness d of the top layer is assumed. Setting 
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d = 5 km implies for model I conductivities of 0.2 S m ' and 
0.002 S m' for the anomalous and normal sections, 
respectively. Using finite differences, the 2-D dilfusion 
equation for the anomalous field is solved numerically 
within the anomalous depth range [0, d]. At its upper and 
lower boundaries the finite-difference solution is combined 
with eqs (22) and (23) to satisfy conditions at infinity. 

The comparison with thin-sheet models is restricted to the 
most sensitive components with respect to finite thickness 
which are Ba, and E,;,. The chosen point is on the boundary 
of the conducting slab, where these components go through 
singularities. They are smoothed in both solutions in similar 
ways and thus should be comparable. The entries in Tahle 4 
demonstrate the generally ohserved tendency that the 
ignored finite depth of induction currents in the thin-sheet 
approximation exaggerates the extrema of the anomalous 
vertical fields. Fig. 6 shows how the total toroidal fields for 
E- and B -polarization would change with depth, if the thin 
sheets were given a finite thickness. Even though hoth 
conditions for a thin-sheet approximation are clearly 
violated at lOO c.p.h. as pointed out above, the mean fields 
in the top layer are well represented by the indicated 
thin-sheet solutions. Therefore it is not surprising that the 
tests have not yielded any deficiencies up to lOO c.p.h., 
except for E,;, in critically close distance to its boundary 
singularity. 

Finally, the numerical solutions are compared with the 
solution of integral equations (39) and (43), based on 
Green's theorem. Naturally this test is limited to model I 
with a hounded anomalous range. Table 5 contains for one 
frequency the respective continuous quantities in each 
polarization. The selected field points are the central point 
with maximum deviation from the normal value and three 
boundary points, when E, and j, undergo their strongest 
change with distance. 

Matching results are obtained for E-polarization, hut 
substantial discrepancies appear in B -polarizations. They 
reflect the already discussed problematic situation, when the 
influx of currents into the well-conducting part of the thin 
sheet is strong and Green's function G rM close to its limiting 
static value. The adopted grid-point spacing of 10 km is 
much too coarse in comparison with the scaling, which 
rol (J t provides with I km, and good agreement is obtained 
only by lowering (J' two orders of magnitude. Experiments 
with finer grid-point spacings could not resolve the 
inconsistency of solutions. Those for eqs (37) and (3S) 
proved to be quite invariant, while no stable solution 
emerged for eq. (43) down to a minimum spacing of 1 km. 
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Figure 6. Total fields E, for E-polarization and B, for 
B-polarization as functions of depth for model 1 at grid point y = 0, 
derived from model calculations with a finite thickness of the top 
layer of 5 km with 0.20 S m '. It is underlain by a uniform 
conductor of 0.01 S m- '. At 1 c.p.h. and a skin depth of 67 km the 
change of E, between top and hottom is less than 2 per cent while 
B, decreases more or less linearly with depth. implying a 
correspondingly almost constant Et. The thin-sheet approximation 
is justified and yields solutions which are in near perfect agreement. 
At 100c.p.h. and a skin depth of 6.7 km, the effect of finite 
thickness becomes visible in a substantial attenuation of E, and in a 
slight curvature in the decrease of B,. The thin-sheet approximation 
still provides acceptahle approximations for E, within the sheet and 
for B: at the bottom. 

7 TRANSFER FUNCTIONS 

The surface field of models has to be normalized to yield 
theoretical transfer or response functions for a comparison 
with observations. In the case of quasi-uniform sources the 
normalization is straightforward: transfer functions relate 
the tangential electric field and the magnetic field in all 
components at a given site to the tangential magnetic field at 
infinity, or at some chosen reference site, or at the site of 
observation. For non-uniform sources the concept of 
transfer functions is practicable only when time-independent 
linear relations exist between the external field components 
at different sites. 

In the 2-D case relevant here, let Yo denote the position of 
a reference site and let Bey( w, Yo) be the external source 
field at that site for E-polarization. Then the external field 
of any other site should be derivable from a source transfer 

Table 4. Test of thin-sheet approximation for point y = 150 km, model 1. 

Baz/ H;;.y E-Pol. E~z/Eny km B-Pol. 

f (cph) thin sheet fini te thickness thin sheet finite thickness 

0.10 0.077 + 0.071 0.070 + 0.066i 1.920 - 0.021i 1.390 - 0.018i 
0.32 140 113 129 109 1.901 63 1.375 49 
1.00 247 156 236 149 1.840 158 1.328 121 
3.16 392 156 358 144 1.678 284 1.206 218 
10.0 506 96 474 90 1.400 373 0.994 287 
31.6 560 05 527 +13 1. 092 384 0.757 298 
100. 497 -137 484 -90 0.798 363 0.531 283 
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Table 5. Compatioility test of solutions of integral equations with response functions 
for the suoslruclurc (S ' , N) and with Green's functions for the lolal normal struclun: 
(Gn ., GTM ), model 1. 

Ex/Enx E-Pol. 

y (km) Eq. (36) Eq. (39) 

0 0.8972 - 0.1725i 0.8989 - 0.1679i 
140 9134 1265 9131 1265 
150 9163 1138 9160 1139 
160 9192 1010 9189 1012 

}y/jny 

a+ = 0.01 S/m 

y (km) Eq. (38 ) Eq. (43) 

0 59.9 - 5.5 i 27.9 - 1. 5 i 
140 25.9 2.1 16.2 0.62 
150 5.00 0.40 3.35 0.12 
160 1.77 0.14 1.42 0.05 

function a defined hy Be,'( w, v) = a( w, y I yo)Be,.( w, Yo). 
Since empirical responses are estimated from ohservations 
within one or more time segments of finite length, the stated 
relationship need exist only at certain times, for example 
during daylight hours. During those hours it is expressed hy 
time-independent cross-covariances, connecting B,., at y and 
Yo in the time domain. 

Two special cases may be useful to clarify the condition 
imposed on the source. Suppose the source function a is real 
and independent of frequency. Then the source field is 
stationary, for example the field of a line current jet of 
variable strength but fixed position during all analysed time 
segments. If in contrast a = exp [ik,,(y - Yo)] is complex and 
sinusoidal, then the source field travels with constant speed 
w/kY' in the negative y-direction, as, for example; the field 
of diurnal variations which move 15 degrees per hour 
westwards. 

Once a linear relation in the above sense has heen 
established, eqs (9) and (10) show that the normal electric 
and internal magnetic fields are also linearly derivable from 
Bey, even though now convolutions of inductive responses 
with source functions are involved and the normal fields at a 
given site generally are related to Bev at all sites. The same 
applies to the anomalous field and thereby to the total field, 
as evident from the linearity of the integral equations with 
regard to Eax and jar 

In this way any of the field components can be normalized 
to the source field, the normal field or even the total field at 
a fixed reference site by transfer functions. As for 
quasi-uniform sources, a convenient choice for normaliza
tion is the tangential magnetic field, defining generalized 
transfer functions for the electric and magnetic field in 
reference to Bn( w, Yo), Bm·( w, Yo), Ev( w, Yo) or even locally 
to B,(w, y), but then only for E, and B,. The last two 
options allow direct empirical estimates from observations. 

8 STATIONARY AND TRAVELLING NON· 
UNIFORM SOURCE FIELDS 

Stationary source fields are split into two parts: a 
quasi-uniform 'background' field B~v and a non-uniform 'jet' 

B-Pol. 

a+ = 0.0001 S/m 

Eq. (38) Eq. (43) 

2.908 - 0.014 i 2.855 - 0.019 i 
2.208 11 2.1549 14 
2.001 10 1.995 13 
1.810 9 1.770 11 

field B:., (y), which has to he confined to the range of the 
numerical solutions, i.e. B~, must tend to zero within its 
limits. The two parts are treated separately when deriving 
the normal field for a given normal structure, utilizing for 
the background field the fundamental equations (13) and 
(14). With the notations of Sections 3 and 4 the normal field 
components are 

En, = 2iw(C B~, + S * B~,.), 
B n , = 2B~, + B~, + P * Bt" 

Bn , = B:., - P * B~" 
(44) 

where B~, = - K * B~,. This shows how the background field 
and the jet field contribute jointly when the anomalous field 
for E-polarization is derived from the respective integral 
equation. The same test models of Fig. 2 will be used as in 
Section O. Ogunade (1995) discusses results with more 
realistic earth models. 

The first modelling example simulates the induction by 
daytime fluctuations in equatorial regions. In the vicinity of 
the dip equator they undergo a strong electrojet 
enhancement over their nearly uniform amplitudes in 
adjacent low latitudes. The chosen frequency is 1 c.p.h. The 
ionospheric jet will be approximated either by a line current 
of fluctuating strength Ix at height H above the line of zero 
dip y = 0 or, more realistically, by a band current of the 
sheet current density j~ at height h and of width 2w. The 
band current is symmetrical with regard to the line of zero 
dip, extending from y = -w to y = +w. Both currents flow 
in the negative x-direction at zero phase (Fig. 2). \ 

The respective heights are chosen in such a way that the 
extrema of B~, occur at the same distance y = ±H. Line 
currents and band currents are in this sense equivalent, 
when H2 = h 2 + w2 (Kertz 1954). Current strength and 
current density are set to produce a horizontal field of 1 nT 
at y = O. Source parameters are H = 300 km and h = 100 km, 
yielding w = 283 km for an equivalent band current. 

Figure 7 shows the resulting source fields, derived from 
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Figure 7. Normal field components for non-uniform stationary jet 
sources at 1 c.p.h. (ef Fig. 2 for source position and strength). Zero 
phase refers to currents in the negative x-direction. The resulting 
purely in-phase source field components BC,. and Bcc arc shown 
together with those of the normal field, when the normal internal 
parts are added. Two sets of normal field components are displayed, 
onc for an oceanic thin sheet of 10 000 S and the second for a 
continental thin sheet of 10 S. In the ocean model, induction is close 
to its upper limit, doubling the horizontal and cancelling the vertical 
in-phase source field. Out-of-phase fields are negligible. In the 
continental model, induction is far below this limit and substantial 
out-of-phase fields occur. However, at great distance BC,. is more 
than doubled by induction and Bc, greatly reduced (ef text for 
discussion of En,.)' 

for the line current and from 

B~, = /LOj~[arctan (u ,/h) - arctan (u /h)] 
21C 

for the band current; 11, = Y + wand 11 = Y - w. To obtain 
Bc, = 1 nT at y = 0 requires I, = 10 "21C/ /Loll = 1500 A for 
the line current and I: = 10 "1C / /L" arctan (w / h) = 

2.03 A km I for the band current. 
The resulting jet fields in Fig. 7 refer either to a normal 

'continental' model with Tn = 10 S for model 1 or to a 

normal 'oceanic' model with Tn = 10 000 S for model 2. They 
exemplify the degree of induction by non-uniform sources, 
which is controlled by their penelI ation depth (as measured 
by the zero-wavenumber C response) in relation to the 
source dimensions (here presented by the height H of the 
line current). 

In the continental model with C = (124-I07i) km, both 
scales are of comparable magnitude and the induction is far 
below its limit for a perfect conductor. Hence, Bi , is much 
smaller and smoother than Bn with a far reaching 
out-of-phase component. The reduction of the vertical 
source field by internal currents is only minor. For the 
oceanic model and C = (6.7-37.4i) km, the penetration 
depth is small against 11 and the induction is close to the 
limit of a perfect conductor, implying that the horizontal 
component is nearly doubled by induction and the vertical 
component is almost reduced to zero. 

Consequently, the normal electric field of the oceanic 
model follows closely the normal field that yields a nearly 
constant magnetotelluric ratio En.! Bm at all sites close to 
the value produced by a quasi-uniform field. In contrast this 
ratio is quite variable for the continental model and clearly 
source-dependent in phase and amplitude. Comparing the 
resulting normal magnetic fields of the line and band 
current, the sharp B~,-extrema at the boundaries of the band 
currents are slightly smoothed by induction, notably in the 
oceanic model. But they are still visible in the normal field. 
The same applies to the sharp decline of the horizontal band 
current field at 300 km. preserving the difference between 
the two source fields in the sum of external and internal 
parts. 

The resulting anomalous fields are shown in Fig. 8. The 
anomalous field of a quasi-uniform source with B~-,. = 1 nT is 
added to demonstrate the influence of finite source 
dimensions. It should be recalled that the relevant 
C' -response for the coupling of the anomalous field with the 
substructure is 150(1 - i) km, and therefore is comparable 
with source dimensions. This strengthens their influence 
which consists mainly in the reduction of the in-phase part 
of the anomalous field components, while the out-of-phase 
part stays the same or becomes even greater. Hence, the 
weakened induction by finite source dimensions manifests 
itself also in substantially increased phases. Otherwise the 
characteristics of the anomalous field remain essentially 
unchanged: the B,,,-extrema at conductance boundaries, 
positive B",.-anomalies above well-conducting sections and 
negative B",.-anomalies where the thin-sheet conductance is 
low. Now the induction by a travelling source will be 
considered. 

Sources which are periodic in space will in general consist 
of a mixture of standing and travelling parts. In the 
frequency-space domain they are expressed in the form of 
line spectra, each spectral term of amplitude a(w, kJ with 
exp [i(wt + k,.y)] as the time-distance factor. Standing parts 
evolve if, at a certain frequency and wave number, two terms 
of the same amplitude. but with opposite signs of k,., are 
added. The total normal field is derived by summation over 
the spectra of the electric and internal magnetic field, which 
are found as follows: let C (w, k) be the C -response of the 
normal structure at frequency wand wavenumber k = IkJ 
Then, as seen from eqs (6)-(8), a single spectral source 
term with Bc,'(w, y) = a(w, k,) exp (ik,.y) as ground field has 
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Figure 8. Anomalous magnetic fields for model 1 (top) and model 2 
(bottom) at I c.p.h. derived with the normal fields Enx of Fig. 7. 
This figure compares the quasi-uniform source solution for 
B~,. = I nT with non-uniform source solutions for line and band 
current jets. Finite source dimensions reduce Ba, above 
well-conducting sections and also the edge anomalies of Ba;, but 
only in their real parts which implies a considerable increase of 
phases. Note that in the coastline model. the decrease in Ba; 
towards inland is more rapid for jet sources than for a quasi-uniform 
source, which reflects the decreasing strength of the inducing field 
with distance from the coast and jet centre. The out-of-phasc part of 
B,,, preserves its complicated behaviour, but with an overall upward 
shift. Line and band current jets of equivalent dimensions (cf text) 
produce nearly the same anomalous fields. See Fig. 10 for apparent 
resistivities and phases from local magnetotelluric ratios. 

the normal field components 

2C 
E", = iwJ+. kC ~ Bc'" 

B~ = 2 B 
01' 1 +kC' cv' 

(45) 

2kC 
B = B '" 1+ kC c; 

with Bc; = ik) kBc"" The sum over all spectral constituents 
provides the normal field for subsequent calculations of the 
anomalous field. In the case of transition anomalies it has to 
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be noted that the anomalous field has to merge for y -> + x 

into an oscillatory difference of two normal solutions. 
Therefore the numerical convolutions in both integral 
equations (35) and (36) are extended several penetration 
depths beyond the last grid point. inserting here for the 
anomalous current density or the anomalous electric field 
the known difference of their two normal solutions. 

The following example refers to the special case of a 
travelling sinusoidal source as expressed by a single spectral 
term, here in correspondence to the third time-harmonic of 
daily variations. moving with the Sun over the Earth's 
surface. The chosen wavenumber is k = 6.614 X 10. 4 km - , 
for a wavelength A = 2n / k of 9500 km which is one-third of 
the circle of latitude at 45". At frequency f = 0.125 c.p.h. this 
gives the ground field the required speed AI of roughly 
1200 km h' or 15 degrees longitude per hour. 

Since daily variations move westwards. the positive y-axis 
is towards the east and x towards the north. when k,. is 
positive. and vice versa. The non-uniformity of daily 
variations in the meridional direction. which is actually more 
important. must be ignored. For a less restrictive treatment 
of the Se! induction problem the reader is referred to the 
publications on spherical earth models already cited, also to 
the works by Roden (1964), Parker (l96~). and Bullard & 
Parker (1970). 

The C( w, k )-responses to, be used are C' = (457 -
390i) km for the uniform substructure of 100 Qm. C~ = 

456 - 390i km for the normal continental structure (T" = 

10 S). and C = (78 - 236i) km for the normal oceanic 
structure (T" = 10000 S). All are still far off their limiting 
values of no induction which is k '= 1512 km_ The 
C-response of the third harmonic of daily variation actually 
observed when observatory data on continents are analysed 
is (400 - 300i) km. and is thus quite similar. In any case, 
source dimensions, as expressed in this example by the 
reciprocal wavenumber. are about three times larger than 
penetration depths. while in the previous example of 
daytime fluctuations under the equatorial electrojet this 
ratio was two to one. Accordingly a reduced source effect on 
the anomalous field can be expected_ 

The external field amplitude is set to a = I nT which yields 
from eq. (45) with the quoted response values 

En< = (97 + 172i) f.l. V km '. 

Bm = (1.48 + 0.29i) nT, 

B,,; = (0.29 + O.52i) sgn (k,.) nT 

for continents and 

Enx = (91 + 46i) f.l. V km ~, , 

Bm = (1.86 + 0.28i) nT, 

Bn; = (0.28 + 0.14i) sgn (k,) nT 

for oceans. The common distance factor exp (ik,.y) has been 
omitted. For a quasi-uniform source (k'» IC I) the normal 
electric fields would have been 102 + 30i f.l. V km ' for 
oceans and (186 + 185i) f.l. V km 'for continents, while Bm is 
2 nT and Bn; zero in either case. The quoted values 
demonstrate how the finite source dimensions reduce the 
size of the secondary field and increase its phase with 
respect to the primary field. 
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Figure 9. Anomalous magnetic fields for model 2 at 3 c.p.h. and a 
travelling source. It resembles the motion of the third harmonic of 
daily variations with the Sun around the Earth. Arrows indicate the 
travelling direction. cl text for amplitude and phase of the normal 
field components. Again the quasi-uniform source solution for 
B~v = 1 nT is added for comparison. Note that the displayed 
distance range is small against the source wavelength of 9500 km, 
i.e. the source field variations within this range are small: 
Bn = 0.7 nT at ±200 km versus Bn = 1 nT at y = O. But because of 
the large penetration depth of 400 km, finite source dimensions 
strongly influence the anomalous field. The in-phase fields arc 
reduced in similar ways as has been observed for stationary jet 
sources «(j Fig. R and text), hut the out-of-phase fields are now 
even more enhanced with characteristic differences in dependence 
on the direction in which the source travels (cl text for further 
discussion). Note that away from the coast on the continental side 
(y>O) the anomalous field starts to merge into the oscillating 
difference of normal solutions for continents and oceans. 

Figure 9 shows the resulting anomalous magnetic fields for 
model 2, in comparison with the anomalous fields for a 
quasi-uniform source field. In order to accentuate the source 
effect, the calculations have been carried out with both signs 
of kv' For k" > 0 the source field approaches the coastline 
from the continent, for k, < 0 from the ocean. It is clearly 
seen how in the first case the presence of the ocean 
accelerates the internal field before actually reaching the 
coast. In the second case the internal field slows down well 
offshore, adjusting itself still in the ocean to the increased 
phase on land. 

With regard to the electric fields which have been ignored 
so far, they are not presented here as such, but as local 
magnetotelluric ratios Exl B; which would be observed' 
beneath the stationary jet sources discussed in model 2 at 

1 c.p.h. Offshore the field on the underside of the oceanic 
sheet is taken, simulating in the ratio E, 1 B,~ magneto telluric 
sea-bottom observations. Fig. 10 shows the resulting ratios 
in the form of apparent resistivities Po = ILol w IE,I Bvl 2 and 
phases 'P = arg (EJ BJ. 

The concentration of oceanic induction currents beginning 
far offshore lowers IB: I and produces po-values far in excess 
of the normal value, here lOO Urn. This reduction of B,: 
outweighs the concurrent smooth increase of E,. 
Approaching the coastline B,~ in its real part changes sign 
and continues to decrease. causing Po to drop below the 
normal level. to which it returns slowly on land. The 
sea-bottom phases. emerging from an offshore minimum, 
rise sharply near the coast passing 900

• while the continental 
surface phases do not deviate much from their normal 
half-space value of 4SO. The influence of finite source 
dimensions on this magnetotelluric coast effect can be 
described as follows: the weakened induction by jets leads to 
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Figure 10. Local total field magnetotelluric ratio, in the form of 
apparent resistivities and phases, for model 2 at 1 c.p.h. and 
stationary jet sources. On the oceanic side y < 0 apparent 
resistivities and phases refer to the sea-bottom ratio E,/ B ,: . on the 
continental side y > 0 to the surface ratio E, / B , .. Deviations from 
the normal levels of 100 Qm and 45° shown reflect the combined 
influence of coastlines on Ex and Bv' Large deviations occur for Pa 
on the oceanic side, in particular when the source is quasi-uniform. 
On the continent p" and cp return to their normal levels within the 
shown distance range (cl text for further discussion). 



a smoother sea-bottom field B ,: and brings thereby p" 
offshore closer to the normal level. The same applies to the 
magnetotelluric phase. 

Correspondingly, a generalized Z: H response can be 
defined from the local B) B, ratio. This geomagnetic deep 
sounding response for layered structures utilizes the 
non-uniformity of the sources, which must be known, to 
determine C. As readily seen from eq. (45), Bn) Bm for such 
normal structures equals C (w, k )ik", if an oscillatory 
source field at a given frequency is adequately described by 
a single spectral term of wavenumber k. In the general case 
the source non-uniformity may be approximated by locally 
derived derivatives of the tangential magnetic field, 
replacing in the 2-D case ik" by (aB",./ay)IB",. 

The following modelling example concerns the influence 
of coastlines on geomagnetic deep sounding studies with 
diurnal variations, here with its third harmonic and thus a 
well-defined wavenumber as specified above and with the 
anomalous field of Fig. 9. Again sea-floor observations B: 
will be inserted offshore and land-based observations 8, 
inland, yielding 

c+ = (B,/B'nlik, 

as the locally determined C-responses. Noting that at 
3 c.p.d. the continental thin sheet has hardly any effect, the 
undisturbed C-responses on either side of the coast are 
about the same and given by C+ (w, k) for the underlying 
half-space as quoted above. Fig. 11 demonstrates to which 
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Figure 11. Local total field geomagnetic Z: J/ ratio, in the form of 
C-responses for model 2 at 3 ep.d, and a travelling Sq source. The 
resulting coast effect on the response is distinctly non-symmetric 
with respect to the coastline at y = 0 and depends on the indicated 
direction of travel. It extends in either case to distances of several 
substructure penetration depths into the continent and ocean (et: 
text for further discussion). 
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distances from the coast the Z: 11 response deviates from the 
normal level thus defined. 

These distances depend on the direction of propagation, 
in correspondence to the directional dependence of the 
anomalous field as outlined above. If daily variations 
approach a coastline from the continent (such as the 
Atlantic coast from the European mainland), then the coast 
effect on the real part of the Z: H ratio and thereby the 
imaginary part of C± extends to, say, 1600 km out at sea. but 
only 800 km inland. This is reversed, when the westward 
travelling source approaches a coastline from the ocean 
(such as the Atlantic coast on the American side), while the 
real part of C' shows a more complicated behaviour. The 
quoted distances are to be seen in relation to the C' 
response of the substructure at the relevant period and 
wavenumber. allowing a generalization to more realistic 
earth models and other Sq harmonics. 

9 CONCLUDING REMARKS 

The numerical procedures for thin-sheet modelling in two 
dimensions described above combine the advantage of 
solving integral equations with the possibility of including 
transition anomalies. In this respect a correspondence exists 
to the integral equation mt]thod of Dawson & Weaver 
(1979). Their equations generate, how,ever, the total field 
directly from a given source field rather than in two 
computational steps, first, the normal field from the source 
field and then secondly the anomalous field from the normal 
field, as done in this paper. In this respect an analogy exists 
to the integral equation method of Vasseur & Weidelt 
( 1977). 

A special advantage of the method presented here lies in 
the possibility of self-correction with two complementary 
solutions. Countless conceptual and programming errors 
have been found this way. Thin sheets in general offer the 
unique opportunity of analytical solutions for testing, not 
only in two dimensions as used here but also in three 
dimensions (Price 1949; Ashour 1974), 

The thin-sheet inverse problem for interpreting data can 
be formulated in two ways: to find the anomalous 
conductance for a given normal structure. or vice versa to 
find the normal substructure response for a known surface 
conductance. For the first problem explicit expressions are 
possible in both polarizations for the unknown anomalous 
conductance. An application in three dimensions has been 
performed by Singer et al. (1984). The second problem 
requires an iterative approach, since the inductive coupling 
with the substructure involves both the normal and the 
anomalous fields. An example is the investigation of the 
crusta I structure beneath the Rhein Graben. using the fairly 
well-known conductance of the Rhein Graben sediments 
(Winter 1974). 

An extension to three dimensions of the modelling 
technique presented here may be feasible, It is not difficult 
to formulate the response function for 3-D fields which 
would generate the normal field from a given source Held 
and which would provide the coupling of the anomalous 
field to the substructure. It is also no1 difficult to generalize 
the conditions at the upper surface of the thin sheet because 
here only the poloidal parts of the now two modes of the 
anomalous magnetic field are present. In contrast the 
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coupling conditions at the underside of the sheet involve 
anomalous tangential fields which are of dual origin with 
different responses for their tangential electric and their 
tangential magnetic modes. 
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