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SUMMARY
Inductive responses are derived for six harmonics of geomagnetic daily variations,
ranging from 24 to 4 hr in period and from 650 to 350 km in penetration depth z*.
Simultaneous data from up to 90 magnetic observatories are involved, and the final
results are least-squares estimates with 123 quiet days in a new definition of magnetic
quietness. They utilize the potential method of geomagnetic deep sounding, based on
series expansions of the magnetic surface field into spherical harmonics, and thus lead
to global response estimates in reference to the Earth as a whole.

The analysis is carried out as a univariate linear regression, either between expansion
coefficients for the vertical field component and the unseparated potential, or between
internal and external potential coefficients, involving assemblages of single days or
months. Attempts have been made to remove contamination by lunar daily variations
and by internal induction anomalies. The analysis yields response estimates for all
spherical harmonic terms in the series, and in the final analysis 12 terms are used for
each time harmonic. Estimates for four local-time terms are similar, while those for
eight general terms are scattered for the first harmonic, but converge towards higher
harmonics. Anomalous effects, as predominantly expected from induction in the oceans,
seem to concentrate on low-order time and spherical harmonics, and some degree of
lateral uniformity of conductivity apparently exists within the depth range into which
daily variations penetrate. This conclusion may be biased towards continents in the
northern hemisphere, where most observatories of this study are situated.

The results obtained are nearly the same, whether single days or monthly averages
are analysed and whether all days or only quiet days are used. The derived responses
for the principal terms of the six time harmonics are compatible with local estimates
from other methods, averaged over continental sites, but they are more precise. They
agree with responses of a three-layered earth model from a previous joint interpretation
of combined Sq and Dst results. Problems arise with the fifth and sixth time harmonics,
which in their spatial structure seem to be detached from the global pattern of daily
variations.

Expansion coefficients for the local-time terms on quiet days show a distinct
seasonal variability in the form of annual and semi-annual variations, for both their
external and their internal parts, which are closely correlated on a day-by-day basis.
External coefficients, representative of the four seasons and with corrections for lunar
daily variations, are tabulated. Their equivalent currents are displayed on global maps.
Special attention is paid herein to the zero reference level in the hypothetical absence
of any transient variation field.

Key words: electromagnetic induction, geomagnetic daily variations, Sq source
currents.
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uniform sphere of 2.38 S m−1 (0.42 V m). The model gives the
1 INTRODUCTION

best-fitting three-layer interpretation to the responses of the
first four Sq harmonics in combination with five Dst responsesA companion article, henceforth referred to as Part I

(Schmucker 1999), presented guidelines for the procedure for periods from 32 hr to 25 days, all obtained with the Z : Y

methods and involving Z at 13 selected continental sitesadopted in this article for the time harmonic and subsequent
spherical harmonic analysis of daily variations. The latter (Schmucker 1985).
provides sets of expansion coefficients to approximate, for a

given time harmonic, the potential and the vertical field by
2 INDUCTIVE RESPONSE ESTIMATEStwo series of spherical harmonics. The analysis is carried
WITH THE POTENTIAL METHODout either with the time harmonics of daily variations on a

single day or with the time harmonics of mean monthly daily
2.1 Basic formulations of the series expansions and of thevariations.
univariate linear expressions defining responsesSection 2 is concerned with the results of the first objective

of this study: the derivation of global response estimates with The series expansions to be utilized were formulated in
the potential method. Various tests are performed to optimize Section 4 of Part I: for the magnetic potential U in eq. (6) and
the choices of days and spherical harmonic terms to be for the vertical magnetic field component Z in eq. (7). Their
included, and also to check the influence of the changing coefficients were defined in eqs (8): um

n
( p) for U and zm

p
( p) for

distribution of observatories having data on a specific day or Z, with n and m denoting degree and order of the respective
in a specific month, before final results are presented and spherical harmonic, while p indicates the time harmonic, whose
compared with results from other methods. Subsequently, in Fourier coefficients have been expanded. All spherical harmonic
Section 3 attention is directed to the second objective: the and time harmonic coefficients are to be understood as complex-
time–space structure of daily variations, separated into external valued quantities, the latter with local midnight as zero time
and internal parts during quiet times. reference. The usual order of summations is reversed; that is,

This introduction is concluded with a brief review of earth the first summation in the series is over order and the second
models, which have evolved from global induction research. over degree, with m fixed.
All of them assume a solely depth-dependent conductivity. It ‘Local-time terms’ are those of order m=p and degrees
is not clear how representative such models are for the real n=p, n=p+1,… , p+K−1, hereafter with the choice K=4,
Earth, with its definite deviations from radial symmetry, at least and thus K terms in the second summation. They depend on
in the outermost shell of continents and oceans. The potential (geographical) co-latitude h only, and express the dominant
method, in its first applications by Schuster and Chapman to part of daily variations depending on local solar time. The
daily variations (see Part I), revealed unambiguously that the second local-time term with n=p+1 is called hereafter the
Earth’s interior down to some depth is fairly insulating. This ‘principal term’, because it is present at all times of the year in
could be expected for silicate and oxide-bearing rocks at low more or less the same size and determines the source field
to moderate temperatures. They found that below this depth, structure during equinoxes. All other terms, not following local
however, an unexpected rise in conductivity by orders of time, are summarily denoted as ‘general terms’, with exp(±ill)
magnitude must occur. and l=1, 2, … , L for their dependence on (geographical )

Chapman’s (1919) estimates, based on the response for longitude l. Again K terms of ascending degree are used for
the best-determined second Sq harmonic, were 250 km for the each order m=p±l, starting with n=m. Hence, the choice of
thickness of the outer non-conducting layer, and a uniform a second series parameter L =0, 1, … defines in [ p−L , p+L ]
conductivity of 0.034 S m−1 (28 V m) below. Lahiri & Price the range of orders m for the first summation. Together with
(1939) found it necessary to add an outermost thin conducting the choice of K it yields in M=K(1+2L ) the total number
shell to accommodate, besides Sq, also Dst response estimates. of terms.
In one of their model options for the deep structure, the non- Response functions with relevance to internal conductivity
conducting region extends downwards to 600 km depth, with can be defined in various ways. For the potential method an
any conductivity greater than 1 S m−1 below. However a more obvious choice from considerations of causality is a (complex)
gradual increase of conductivity with depth would also have response function qm

n
(v) , which expresses secondary internal

been compatible with the data. coefficients im
n

in terms of primary external coefficients em
n
, for

Modern estimates with different methods, but still utilizing a given frequency v and spherical harmonic of degree n and
only magnetic data, and with Dst responses now over a much order m. The resulting linear expression is
enlarged frequency range, confirm the essentials of these early

im
n
(v)=qm

n
(v)em

n
(v)+dim

n
(v) , (1)studies, even though there is no longer a stringent requirement

for a thin surface shell. Eventually, more structural details may
where

evolve from magnetotelluric response estimates at comparable

long periods, even though it appears at present that land-
im
n
=

num
n
−zm

n
2n+1

and em
n
=

(n+1)um
n
+zm

n
2n+1

(2)based observations can add only information on phases, and
thus lack absolute scaling capability in depth and conductivity.

In the forthcoming analysis, it will occasionally be necessary are the separated internal and external parts of the potential
coefficient um

n
=em

n
+ im

n
, as seen from the Gauss eqs (9) into refer to a simple representative spherical earth model. The

chosen model consists of three layers and is shown in Fig. 1. Part I. By allowing for an internal residual dim
n

an univariate

linear problem has been formulated, which can be solved byIt comprises an outer shell of 500 km thickness with a con-
ductivity of 0.014 S m−1 (70 V m), an intermediate shell of least squares for an assemblage of single-day or mean monthly

time harmonics. The resulting estimates of qm
n

are the desired250 km thickness with 0.063 S m−1 (16 V m), and an inner
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responses at frequencies v=2pp day−1 with p=1 to p=6. sequence of model responses indicates that if empirical response

estimates cm
n

of varying degrees for the same time harmonicAppendix A gives details of the least-squares analysis, including
errors and weights. are not very different, 3-D effects on the internal part must

be small.A numerical problem could arise from the fact that the

separation formulas eqs (2) involve coefficients from two series
expansions of very different quality in the fit to the data, as

2.2 Physical implications of response estimates obtained
shown in Section 6 of Part I. The problem can be avoided by

with the potential method, and overview of existing results
relating the expansion coefficients directly, without separation.
Using zm

n
as the response to um

n
, the new linear expression is Response estimates of the potential method, qm

n
or cm

n
, differ in

their implications for internal conductivity from those of anywritten as

other method. First, they refer to the Earth as a whole, at least
zm
n
(v)=[n(n+1)/R]cm

n
(v)um

n
(v)+dzm

n
(v) , (3)

formally, and are not localized responses for a specific point
of observation. Second, numerous estimates are possible forwhere R denotes the radius of the Earth. In this alter-

native formulation, residuals are assigned exclusively to the the same frequency. However, it must be cautioned that the
univariate formulations in the above definitions of qm

n
and cm

n
coefficients of the series expansion for Z, which has the inferior
fit to the data. It is readily verified with eqs (2) that the are fundamentally deficient for 3-D earth models. Each external

term generates then a full spectrum of internal terms to accountformulas connecting the old and new responses, including
errors of their moduli, are for different spatial structures of external and internal parts,

the latter being partially determined by possible deviations

from radial symmetry in the deep conductivity distribution
and by the presence of oceans.

cm
n
=

R

n+1

1− (n+1)/nΩqm
n

1+qm
n

,

qm
n
=

n

n+1

1− (n+1)Ωcm
n
/R

1+ncm
n
/R

,

(4)
Conversely, each internal term has to be related to all

external terms, and a multivariate rather than an univariate
linear problem has to be solved. The presumed linearity follows

and in a linear approximation from the linearity of Maxwell’s equations. Even in the special
case that the inducing source is expressed by one single
spherical harmonic, the resulting univariate problem is different

from those formulated in eqs (1) and (3) because internal

Dcm
n
=

(2n+1)R

n(n+1)

Dqm
n

|1+qm
n
|2

,

Dqm
n
=

(2n+1)n

n+1

Dcm
n
/R

|1+ncm
n
/R|2

.

(5)
coefficients of all degrees and orders have to be related to the
external coefficient of degree and order of the source. Hence

it could appear as if the subsequently derived univariateFor earth models of radial symmetry, the new response cm
n
,

responses qm
n

or cm
n

are physically meaningful only under thea length, is identical with the C-response, C
n
(v), in its usual

restrictive assumption of a 1-D earth model, when the postulateddefinition for spherical conductors. Hence, ivC
n
(v) is the

one-to-one relationship holds between internal and externalsurface impedance for external source terms of degree n
coefficients of the same degree and order.(see Schmucker 1970; Section 5.2), independent of their orders

Various attempts will be made to overcome this basic short-m. This relates the above-introduced responses qm
n

and cm
n

of
coming of the method in the special case of daily variations: firstthe potential method to response estimates obtained by other
on the basis that their spectrum of spherical harmonics ismethods, including magnetotellurics, but only in the 1-D case.
dominated by a single term for a given time harmonic, andAs is well known, dependence on degree n is not critical as
second from the unique opportunity that these variations offerlong as n|C

n
|/R is much less than 1; that is, the depth of

with respect to the elimination of anomalous internal effects.penetration is small in comparison to the Earth’s radius divided
Since these are fixed to the Earth, the westward-travellingby n. Since this will be an important point in the following
source of daily variations tends to collect the normal responsediscourse, Table 1 contains representative model responses for
for a certain average earth model of radial symmetry.the second time harmonic and varying degrees. Their range

These considerations underline the importance of evaluatingcorresponds to the henceforth used series expansions with 12
all terms of the series expansions. It seems, however, that soterms (K=4, L =1), which have n=6 as the highest degree
far, terms other than the principal terms have received littlefor p=2. For completeness, the zero-wavenumber response for
attention, at least in the context of induction. There are twoa plane earth model is added as an asymptotic value, when
notable exceptions. Chapman, in a joint analysis of summern|C

n
(v)|/R approaches zero with R�2 for fixed n. This

and winter data, considered also the external-to-internal ratios

of local-time terms with n=p and n=p+2, in the form ofTable 1. Inductive response C
n
(v) of a spherical three-layer earth

their means and semi-differences, which he called ‘solstitialmodel (Fig. 1), calculated for the second time harmonic of daily
mean’ and ‘solstitial inequality’, respectively. Their ratios werevariations and ascending degrees n of the spherical harmonic source
found to agree with those of the principal terms (see Chapmanterm, in kilometres. In the first rows the zero-wavenumber response

of an equivalent plane earth model (R=6371 km). & Bartels 1940; Table 4 in chapter XX). Second, Campbell &
Anderssen (1983) derived cm

n
values from ratios zm

n
/um
n

according
n C

n
n|C

n
|/R to eq. (3) for a multitude of spherical terms, with orders up to

m=4 and degrees up to n=12. They rejected terms with |um
n
|

(0) 536-287i (0.0) below a certain threshold or with arguments of the internal-
2 532-274i 0.188

to-external ratio close to zero or even negative. The responses
4 522-247i 0.363

retained were converted into depths and conductivities of
6 505-210i 0.514

uniform substitute conductors, provided that the argument of
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zm
n
/um
n

was negative and above −p/4. The results for all terms why the estimates from Parkinson’s analysis diverge so strongly

for all harmonics, deviating from other results far beyondand harmonics were then displayed jointly in conductivity
versus depth diagrams. In this way the authors obtained a error limits and with no improvements with linear regression.

Parkinson’s original internal-to-external ratios, which hefairly consistent conductivity structure for the upper mantle,

even though some scatter of individual estimates existed. tabulated month by month and season by season in his
Tables VII A–V, give no indication that the disagreementCampbell & Schiffmacher (1988) extended the work by deriving

similar depth profiles separately for a number of continents, could be connected to any particular month or season.

The last column contains the internal-to-external ratios forconducting a special form of spherical harmonic analysis with
data from the respective continent only. In the last-mentioned the three-layer earth model of Fig. 1. It is fully supported by

the response estimates of this study. Their real parts reproduceinvestigations, however, only ratios for individual data sets

were derived, rather than least-squares estimates for assemblages. correctly a postulated maximum at the second and third
harmonics, while their imaginary parts increase monotonicallyFor an overview of existing results, Table 2 lists internal-

to-external ratios for the principal terms of the first four time with frequency, corresponding to an increasing phase lead of

internal from external parts from about 10° at periods of 24 hrharmonics. It begins with Chapman’s results. As he gave
expansion coefficients zm

n
and um

n
separately for the two years to about 30° at periods of 6 hr.

analysed, the latter from Y only, a rudimentary regression

analysis has been conducted, with two data points. The
2.3 Tests with respect to the choice of days, observatories

resulting qm
n

estimates are listed together with errors of marginal
and spherical harmonic terms

significance. Parkinson (1977) tabulated his coefficients

monthly, and the entries in Table 2 are likewise recalculated Now the results of this study will be presented in full detail.
They are, as a rule, in the form of complex-valued cm

n
responsesleast-squares results for the 18 months of the IGY and thus

have more meaningful confidence limits. Malin (1973) and in the definition of eq. (4), in units of kilometres. Errors at the

68 per cent confidence level follow in parentheses. They referWinch (1981) only presented coefficients for the full time spans
of their analyses, and the respective table entries are ratios to errors of the moduli or to phase errors in radians. Further

table entries are the squared coherencies and the number ofim
n
/em
n
. For comparison, the penultimate column contains the

final results from this study. days, N. In the case of a weighted single-day analysis, the
number of days effectively used, N*, is quoted. It representsThe overall impression gained from Table 2 is not unfavour-

able for the potential method, allowing for the fact that different the sum of weights and is followed by N in parentheses to
indicate the degree to which outliers have been excluded (seedata, different observatories and very different ways of analysing

the data are involved. Chapman’s and Malin’s results, for Appendix A).

The first test concerns the selection of days and whetherinstance, are not far from the best global response estimates
available now, except for the fourth harmonic. In Winch’s mean monthly daily variations or daily variations on single

days should be analysed. Table 3 contains a pertinent collectionanalysis, problems start with the third harmonic. It is not clear

Table 2. Internal to external potential ratios or response estimates qm
n
( p), derived for the principal

terms of order m=p, degree n=p+1 and the four time harmonics of daily variations, p=1 to p=4.

M is the number of (complex) spherical harmonic terms in the series expansions, and N the number

of observatories. Errors refer to the 68 per cent confidence level.
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Table 3. Principal-term responses cm
n
( p) with m=2, n=3 for the second time harmonic p=2

of daily variations during the IQSY, in kilometres. Errors in parentheses and squared coherencies

are for a linear regression with N or effectively N* days. Results are from six different data sets.

Notes i.e. all days: all days except the five most disturbed D-days of the month; Q-days: the five

quietest Q-days of the month; Q*-days: all quiet days with magnetic activity below a certain

threshold (see Part I, Section 3).

of principal-term responses for the second time harmonic, The second test examines the influence of observatory
involving days of variable magnetic activity. In addition to the positions on the derived responses. A partial answer provides
conventional distinction between the five D- and Q-days of a a comparison of results separately for 1964 and 1965. There
given month, a new and more flexible measure for magnetic exists an overlap of 73 observatories with data in both years,
quietness was formulated in Section 5 of Part I. Days which but two have data for 1964 only and 16 for 1965 only. Response
qualify under this measure as ‘quiet’ are hereinafter called estimates for the principal terms of the four time harmonics
Q*-day. With 123 Q*-days and 120 Q-days during the IQSY, are listed in the first columns of Table 4 for each year.
quiet days by both definitions are of comparable frequency. In some cases disagreements now exceed confidence limits

Not surprisingly, the analysis of single days leads to more and indicate the presence of systematic errors depending on
precise results, but within the same set they all agree in real the choice of observing points. They could arise first from a
and imaginary parts within the quoted error limits. It should basic deficiency in approximating the global Sq field with only
not be overlooked, however, that the single-day analysis leads 12 spherical harmonics, or second from localized internal
to systematically larger real parts. Because coherencies are anomalies at sites with data for one year only.
slightly smaller this cannot be a bias effect. A more likely The second columns gives the results for a spherical harmonic
interpretation is that the monthly means average over changing analysis with variable weights for the observatories as given
spatial structures, with unpredictable consequences for the in Table 1 of Part I. Almost all estimates increase as if a
response estimates. The smallness of errors should not be downward bias had been removed. Even though southern
overvalued in any case, since they represent the statistical sites with highly anomalous vertical fields now receive double
errors. Still, coherencies close to unity testify to an excellent

weights, there is almost no reduction in coherency. Hereafter
term-by-term correlation between the expansion coefficients of

all reported results are with observatory weights in the spherical
the two series. Even though differences in quality hardly exist,

harmonic analysis.
all further results refer to a single-day analysis of Q*-days.

It may now be asked, whether comparable results could
It may have been noted that, with N* close to N, barely

have been obtained with fewer days. This is indeed possible
any outliers were encountered when single days were used;

and is demonstrated in the third columns, with responses from
that is, the residuals relative to the starting estimates, with

the seven Q*-days in September 1964 and the nine Q*-days
unit weights for all days, already have a Gaussian distribution.

in October 1965, respectively. Evidently a few quiet daysThis is a surprising result of general validity and in clear
are sufficient to allow fairly accurate estimates, in overallcontrast to experiences with other methods, using for instance
agreement with those for an entire year.as data the locally observed Z in the Z : Y method. It appears

The third test is the most crucial one for methods thatthat expansions into spherical harmonics have not only a spatial
involve non-orthogonal series expansions: the influence of thesmoothing effect, but they also remove spatially uncorrelated
truncation level, here the number M of spherical harmonicportions in all components.
terms in the series. Table 5 demonstrates how the estimate forAs an example, the distribution of squared absolute residuals
the principal-term response is affected, if this number is variedwill be examined after the first execution, with the analysis
from M=1 for a single local-time term analysis to M=20,carried out with all days except the 120 D-days of the IQSY.
involving series with four local-time and 16 general terms. ItEach of the remaining 611 days is assigned to one of eight
seems as if a break occurs beyond 12 terms, with decliningclasses from I=0 (best fit) to I=8 (worst fit), as described in
coherencies and with a systematic reduction of absolute values.Appendix A, eq. (A5). The following numbers are the days
Both can be ascribed to the onset of numerical instability,contained in the specified class I, with the expected values,
which seems to add noise not only to the expansion coefficientsrounded off to the nearest integer, following in parentheses:
for the vertical field, lowering coherencies, but also to potential

coefficients, leading to a downward bias of moduli. This test
I= 0

432 (418)

1

115 (132)

2

42 (42)

3

12 (13)

4

5(4)

>4

5(2) verifies the conclusions of Section 7 of Part I. Hereafter all

results refer uniformly to expansion with 12 spherical harmonicObviously, in this representative example, weights have to be
terms, that is, with expansion parameters K=4 and L =1, asassigned mainly to those five days in the highest classes, and
a compromise between the desirable allowance of some degreein the final execution the effective number of days is merely

reduced from N=611 to N*=604. of longitude dependence and numerical stability.
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Table 4. Principal-term responses cm
n
( p) with m=p, n=p+1 for time harmonics p=1 to p=4 of

daily variations on Q*-days. Series expansions are with 12 spherical harmonic terms. Separate least-

squares estimates are with N=76 observatories in 1964 and N=90 in 1965. If observatory weights

are used, the sum of weights is given in parentheses below. Errors refer to the 68 per cent confidence

level. All entries are in kilometres. Column 1: all Q*-days of the respective year, unit weights for all

observatories; columns 2: same, with variable observatory weights; columns 3: same as in column 2,

but only Q*-days of one month are used.

Table 5. Principal-term responses cm
n
( p) with m=p, n=p+1 for the pth time harmonics

of daily variations, p=1 to p=4, derived from 123 Q*-days during the IQSY, in

kilometres. Response estimates are for four different series expansions with M=1 to

M=20 spherical harmonic terms. Errors are added in parentheses, and squared

coherencies are below responses.

to be higher than between unseparated expansion coefficients.2.4 Tests with alternative univariate linear expressions to
For the first four harmonics these improvements are small andderive response estimates, including the complete
the response estimates of the two sets are nearly the same. Forspectrum of spherical harmonics
the fifth and sixth harmonics, however, differences become
substantial. It appears as if the new solution removes under-A last point which needs clarification concerns the formulation

of the least-squares problem itself. So far, eq. (3) has been used estimations of moduli, which occur when eq. (3) is used.
Therefore, the final results of this study in Tables 7 and 8 areto derive cm

n
estimates by relating unseparated expansion

coefficients zm
n

and um
n
. The justification given for this preference cm

n
responses, derived from qm

n
estimates according to eq. (4).

Finally, attention is focused on the complete spectrum ofwill now be tested by evaluating in the same way and with
the same data the alternative formulation eq. (1), in which the spherical harmonics. Figs 3 and 4 give an impression about

the day-to-day correlation between internal and externalqm
n
-response connects separated expansion coefficients im

n
and

em
n
. Table 6 lists for six time harmonics the resulting two sets coefficients in the case of the first time harmonic. For the

second time harmonic, the response estimates of the 12of principal-term responses. Quite unexpectedly, the coherency
between separated internal and external coefficients turns out spherical harmonic terms can be found in the upper part of
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Table 6. Principal-term responses (m=p, n=p+1) for the time harmonics p=1 to p=6 of daily

variations, derived from 123 Q*-days during the IQSY. Series expansions are with 12 spherical

harmonic terms for each time harmonic. Left column: dimensionless qm
n

response estimates from a

regression analysis between internal and external potential coefficients according to eq. (1). right

column: cm
n

response estimates, in kilometres, from a regression analysis between unseparated series

coefficients according to eq. (3). Errors are added in parentheses, followed by coherencies. To

facilitate a comparison, the responses from the first analysis are also listed as converted cm
n

responses, without errors.

Table 7. Response estimates cm
n
( p) for the complete spectrum of 12 spherical harmonic

terms, derived for the second time harmonics p=2 of daily variations on 123 Q*-days

during the IQSY, in kilometres Top: results from a univariate analysis according to eq. (1);

bottom: results from a bi-variate analysis according to eq. (8). Responses qm
n

have been

converted into cm
n

responses with eq. (4). Errors are added in parentheses, and squared

coherencies are below responses.

Table 7. The first column contains the results for the local- unexpected in view of the smallness of many terms, as evident

from Figs 3 and 4. Also, the imaginary parts of the local-timetime terms (m=p=2); the second and third columns, those
for general terms, travelling faster (m=3) and slower (m=1) terms agree among themselves, while those of the general terms

show systematic deviations. Still, with similar results for thethan the Sun. The effective number of days N* (not listed) in

all estimates is very close to N=123, which is the number of other time harmonics, it can be concluded that the response
is predominantly 1-D and that the univariate term-by-termQ*-days in 1964–1965.

The overall agreement in real parts is remarkable and totally analysis has a sound physical basis. The cited encouraging
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results of Chapman (1919) and Campbell & Anderssen (1983) Appendix C, the travelling mode of the superposition of both

terms ishave thus been confirmed. Attempts to derive responses for
the complete spectrum from the tabulated coefficients in
Malin’s (1973) and Winch’s (1981) works were, however, ( |um

n
|−|u−m

n
|)

um
n

|um
n
|
exp{i(ml+pt)} ,

unsuccessful (Schmucker 1984; pp. 18–19). It will be seen in
Section 3 that most spherical terms have a distinct seasonal moving westward, whereas the standing mode, with the
dependence and that the use of mean daily variations for an notation of Appendix C, is
entire year leads to uncertain results.

2|u−m
n

| cos(ml+d) exp{i( pt+s)} .

It is reasonable to assume that travelling modes, provided they2.5 Attempts to improve response estimates for the
move westwards with the Sun, are not substantially affectedprincipal term
by internal induction anomalies due to oceans and possibly

In conclusion, three attempts are described to improve results. other deep-seated sources of anomalous induction, which are
The first concerns contributions by lunar daily variations. In both fixed to the Earth.
the analysis of mean monthly daily variations it can be assumed A repetition of the analysis with solely westward-travelling
that such contributions disappear in the average over five or modes, however, lowered the coherencies of the response
more days of randomly varying lunar phases. This will not be estimates severely. Here the major obstacle seems to be the
so in the analysis of single days, when each day has its own restriction in the permissible number of spherical terms. To
distinct lunar phase n, henceforth to be understood as lunar obtain pairs of westward and eastward waves, the series
phase at noon of the respective day. expansions had to be reformulated, noting that with the chosen

With the symbols S and L for solar and lunar daily series parameter L =1 not a single eastward wave is included.
variations, respectively, the expansion coefficients of a given Various attempts to express both the external field and the
single day and time harmonic are decomposed as follows: anomalous internal field with about 12 terms have been

unsuccessful. Hence, the intended separation of normal and
um
n
=um

n
(S)+um

n
(L ) e−2in , zm

n
=zm

n
(S)+zm

n
(L ) e−2in . (6)

anomalous internal parts has to await analyses with more
The lunar phase factor is for ‘phase-law tides’, with one solar spherical terms and thus the establishment of a more suitable
day as the fundamental period. Details of the underlying distribution of observing points. Under the given circum-
physical concept can be found in Appendix B. Even though stances, similar responses for different spherical terms for the
lunar coefficients are one order of magnitude smaller than same time harmonic have to suffice as evidence that the derived
solar coefficients in amplitude, they contribute a certain responses are essentially ‘normal’, and thereby consistent with
amount of noise to both sides of eqs (3). Assuming that the spherically symmetric earth models.
same coefficients um

n
(L ) can be used for all days, the lunear The third attempt also concerns anomalous internal effects.

contamination has a deterministic amplitude, but random phase. Under the simplifying assumption that these effects are linearly
It should lower coherencies and lead to underestimations of related primarily to the leading principal source term, eq. (1)
the response moduli. will be replaced for the pth time harmonic by the bi-variate

Counting days from n
D
=1 for 1 January 1964 to n

D
=731 expression.

for 31 December 1965, the lunar phase on the n
D
th day at

im
n
=q̄m

n
em
n
+qmp

np+1epp+1+dım
n

. (8)
Greenwich noon is

It yields for all terms, except the principal term, separate least-
n(n

D
)=v0+12°.19075n

D
, (7)

square estimates of ‘normal responses’ q̄m
n

and ‘anomalous
with n0=59°.09 as the phase of the Moon on 31 December responses’ qmp

np+1 with respect to the principal source term. For
1963. The accuracy is quite sufficient for the intended use, this term itself, normal and anomalous responses are inseparable.
noting that the lunar phase increases by about 12° from In order to give an idea of how this attempted decomposition
midnight to midnight. Hence, the evaluation of eq. (6) with modifies the results, normal responses from the bi-variate
eq. (7) and a given set of lunar coefficients for zero phase, here analysis are listed in the lower part of Table 7, after a conver-
from Winch’s (1981) analysis, readily reduces empirical sion into cm

n
responses. A comparison with the univariate results

coefficients to those which on the respective day represent in the same Table 7 shows that the bi-variate formulation
exclusively solar daily variations. improves coherencies in all cases and removes all inconsistencies

However, a repetition of the analysis with lunar-corrected in the form of positive imaginary parts. Errors are larger now,
spherical terms left the resulting coherencies essentially but this was to be expected from the reduced degrees of
unchanged, and no indications existed for any removed bias freedom of the analysis. In spite of this partial success, the
in the response estimates. This negative result may reflect to overall usefulness of the bi-variate analysis remains in doubt as
some extent the use of the same lunar coefficients for all long as it has not been tested with 3-D spherical earth models.
seasons. A second deficiency is the substantial difference in the
choice of spherical harmonic terms in Winch’s analysis and

2.6 Global responses, apparent resistivities and phases in
this study. Both have led to the decision to abstain in this

comparison with the results of the Z : Y method
context from any further experiments to remove lunar effects.

The second attempted improvement concerns the separation This section closes with a critical examination of the response
estimates, which have been finally obtained for the principalof travelling and standing modes in pairs of westward- and

eastward-moving waves, that is with longitude factors exp(iml) terms. They are listed in the second column of Table 8.
Statistical errors up to the fourth harmonic are of the orderand exp(−iml), respectively. If with |um

n
|>|u−m

n
| the westward-

moving wave has the larger amplitude then, as shown in of a few per cent, and the results are in excellent agreement
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Table 8. Inductive response estimates of daily variations for periods between 24 hr ( p=1) and 4 hr

( p=6 ). Listed are the principal-term responses cm
n
( p) for the potential method, and mean continental

C0(vp
) responses for the Z : Y method; m=p, n=p+1, v

p
=2pp day−1 . N

D
is the number of

analysed days, M the number of spherical harmonic terms in the series expansions, NSHA the number

of observatories for the spherical harmonic analysis, with their effective number in parentheses, and

N
Z

the number of observatories used for deriving continental means. Errors refer to the 68 per cent

confidence level. C-responses are in km, apparent resistivities ra in V m, and phases w of the

impedance in degrees.

with the model responses in the last column, demonstrating are above those of any other method. This implies that
systematic errors should be small, if they occur at all.their high quality and overall compatibility with a radially

symmetric earth. Notable disagreements exist only for the The sharp drop in coherency for the fifth and sixth time
harmonics was to be expected, not only from the smallness ofimaginary part of the first harmonic which is smaller than

expected, and the phase of the sixth harmonic. Coherencies their amplitudes, but also from the fact that in the series

© 1999 RAS, GJI 136, 455–476

Potential method Z:Ymethod Model 

Chapman (1919) This study This study Olsen( 1998) 

No 362 123 123 1650 
M 1 12 12 120 
NSHA 21 74(50)-90(61) I 74(50)-90(61) 90 
Nz 59 24 

p=l Re 763 673 643 608 660 
-lm 205 146 226 247 219 

error (227) (11) (43) (23) 
24 hrs coh2 0.988 0.839 0.94 

Pa 57.0 (32.8) 43.3 (lA) 42.5 (5A) 39A (5.5) 44.2 
q> 75.0 (16.5) 77.8 (0.9) 70.6 (3.6) 67.9 (2.0) 71.6 

p=2 Re 462 512 477 500 528 
-Im 249 264 283 239 262 
error (76) (10) (34) (25) 

12 hrs coh2 0.984 0.814 0.92 
Pa 50.3 (14.6) 60.7(2.1) 56.2 (6.9) 56.1 (51) 63.5 
q> 61.7 (8.3) 62.7 (1.0) 59.3 (3.5) 64.5 (2.6) 63.6 

p=3 Re 455 434 382 432 434 
-lm 209 246 244 244 262 
error (32) (12) (34) (20) 

8 hrs coh2 0.963 0.692 0.86 
Pa 68.7 (8.8) 68.2 (3.3) 56.3 (8A) 67.5 (5A) 70.5 
q> 65.3 (3.7) 60.5 (lA) 57A (4.3) 60.5 (2.3) 58.9 

p=4 Re 349 387 334 389 371 
-lm 124 260 215 240 247 
error (224) (18) (48) (17) 

6 hrs coh2 0.888 OA55 0.71 
Pa 50.1 (60.6) 79.5(6.1) 57.7 (13.9) 76A (5.7) 72.5 
q> 70A (34.7) 56.1 (2.2) 57.2 (6.9) 58.3 (2.1) 56.3 

p=5 Re 357 293 348 326 
-lm 285 116 247 230 
error (42) (76) (18) 

4.8 hrs coh2 0.533 0.183 0.56 
Pa 95.3 (17.5) 51.8 (23.3) 83.2 (7.0) 72.9 
q> 51.4 (5.3) 60.5 (13.0) 54.6 (2A) 54.9 

p=6 Re 353 262 325 295 
-lm 173 115 246 213 
error (39) (85) (19) 

4 hrs coh2 OA91 0.115 OA7 
Pa 84.7 (16.8) 44.9 (26.7) 91.1 (8.5) 72.7 
q> 63.9 (5.7) 66.3 (17.0) 52.9 (2.7) 54.2 
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expansions the dominance of the second local-time term is one-half of the available data have to be excluded before an
completely lost (see Fig. 5 in Part I). These harmonics appear acceptable distribution of residuals is obtained. For the higher
as disconnected from the westward-moving global source. harmonics the exclusions are less stringent, but still well above
From their lowered coherencies it follows that the moduli the level required in the potential method. Their smallest
could be slightly underestimated. In the case of the sixth number is N−N*=21 exclusions for p=6. The quoted values
harmonic, with the lowest coherency of all, the phase also for N* refer to an average over all N

Z
observatories.

seems to be in disarray. Since the Z : Y method does not involve a spherical harmonic
The remaining entries in Table 8 are the following. The first analysis of Z, all calculations have been repeated with M=20

column contains re-calculated C-responses from Chapman’s potential terms, which is still within the tested range of
analysis (see Table 2). The best-determined response for the numerical stability. However, this improved global approxi-
third time harmonic is in remarkably good agreement with all mation to the horizontal components does not change the
others. In the first harmonic the real response appears as too outcome to any measurable degree. Furthermore, a repetition
large, and in the fourth harmonic the imaginary response as with the 24 European observatories in Olsen’s (1998) analysis
too small, even though the deviations are within the cited wide has led to essentially the same results.
(and unrealistic) error limits. It may be of interest to recall Olsen’s results have been added in the fourth column of
that the model calculations of Lahiri & Price (1939) were Table 8 to allow for a comparison with an independently
based on these Sq responses. derived set of responses. They are reproduced from Table 3 of

In the third and fourth columns of Table 8, results are given the cited publication, after a few computational corrections.
from a different method: the Z : Y method, as outlined in The quoted coherencies are from Olsen’s Table 2 for the
Appendix D. It is based on the locally observed vertical field observatory Fürstenfeldbruck. Since this is a typical continental
and thus yields local rather than global response estimates. To site, they should be equivalent to the coherencies obtained in
allow for a comparison with estimates from the potential this study. Olsen analysed many more days, including those
method, table entries represent mean responses for selected of this study, and found it necessary to lower substantially
groups of N

Z
observatories. For their derivation, the required their effective number by weights. The spherical harmonic

Fourier products in eqs (A2) and (A3) are summed first over analysis of horizontal components was carried out with a
all days with weights, and then over all selected observatories comparable set of observatories, but Olsen increased the
without weights. The quoted errors do not refer to confidence number of spherical terms by a factor of 10, which forced him
limits of the listed mean responses. They are to be under- to use a generalized inverse of the normal equation matrix, a
stood as mean standard deviations of individual observatory complication deliberately avoided in this study. Errors refer
responses from the tabulated mean response, in the sense that again to standard deviations with respect to the listed mean
they have been derived with responses of 24 European observatories, all of them continental.

In spite of the fact that Olsen’s results were obtained in an2=2 ∑
k

N*
k
/N

Z
−2 (9)

very different way, up to the fourth harmonic the agreement

with this study is good. Only the (negative) imaginary responseas degrees of freedom in the F-distribution (see Appendix A).
of the first harmonic is significantly larger, even though it shouldN*

k
is the effective number of days at the kth observatory,

be noted that it varies greatly among subsets of observatories,k=1, 2, … , N
Z
.

from less than 200 km to almost 400 km, as seen in Olsen’sThe Z : Y method requires a spherical harmonic analysis of
Fig. 4. Coherencies are slightly above those obtained with thethe horizontal field components, and for the comparison the

same set of potential coefficients has been used as in the Z : Y method in this study, but they still do not reach the
potential method. For Z all 59 observatories are included, coherencies that are attainable with the potential method. The
which are classified as ‘continental’ in Table 1 of Part I. In thus established agreement of global and averaged local
this way, the entries in the second and third columns arise responses is not self-evident and is an indication for a laterally
from the same data except that the Z : Y method does not use rather uniform upper mantle. However this notion should be
Z on islands or coastlines. Since the excluded observatories treated with the reservation that geomagnetic surface fields
are well known for their anomalous daily variations in Z, as represent the tangential electric mode of the induced fields
evident from Fig. 2 of Part I, it might be expected that the and thus may not be too sensitive to lateral non-uniformities
Z : Y method leads to systematically different and also to more at depth.
reliable response estimates. Olsen’s reponses are not directly comparable as far as

However this is definitely not the case. Not only do both absolute values are concerned. He has multiplied his least-
sets of estimates agree mostly within error limits, but the squares estimates with certain (real ) factors f (g)>1 to reduce
coherencies for the potential methods are clearly above those systematic underestimations from presumed errors in the input
of the Z : Y method. Furthermore, the linear relation between variable Y , adopting a certain ratio g of errors in Y and Z.
expansion coefficients, as used in the potential method, seems For a given coherency this factor is
to be far more consistent on a day-by-day basis. This is
indicated by the smaller number of excluded outliers. For the

f (g)=
1−g

2
+SA1+g

2 B2+gb with b=1/coh2−1 ,N=123 Q*-days analysed the effective number of exclusions
is N−N*=4, or less for all six harmonics, when the potential
method is used. Hence, its residuals already are more or less (10)
normally distributed without weights, indicating about the

corresponding to Olsen’s eq. (23).same degree of correlation on all days. In contrast, a substantial
In the case of the first three time harmonics, coherencies areday-by-day variability of correlation exists for the Z : Y method.

In the case of the first harmonic, with N*=56, more than so close to unity that bias corrections hardly matter, when
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with b� 0 and with Olsen’s well-founded choice of g=0.25
the correction factors approach one.

Now an attempt will be made to correct the response
estimates of this study for the last three harmonics, which have
coherencies well below unity, adopting the cited value for g.
Observing that phases remain unchanged, the real parts of the
corrected responses, that is to say the depth values z*, are
quoted, in kilometres, for p=4 to p=6. In the case of the
potential method they increase from 387, 357, 353 to
450, 412, 416, and in the case of the Z : Y method from
334, 293, 262 to 404, 439, 498. Evidently, the bias correction
restores to some extent the agreement among estimates, but
it destroys their compatibility with 1-D models in the sense
that z* should decrease with increasing frequency. Hence, no
bias-correction will be used.

For completeness, Table 8 also contains for each response the
apparent resistivity and phase of the impedance in the definitions

ra=vm0 |C|2 and Q=p/2+arg{C} , (11)

including errors Dra=2raDC/|C| and DQ=DC/|C|; C stands
for cm

n
or C

n
. Fig. 1 provides a visual display of all results in

the form of a r*(z*) diagram, in which for each harmonic

r*=ra2 cos2 Q(Q≥p/4) or r*=ra/[2 sin2 Q](Q<p/4)

(12)
associates a resistivity estimate r* with the depth z*=Re{C}
of a perfect substitute conductor. The three-layer model and
its responses are also shown.

The data points demonstrate most clearly the well-established
Figure 1. Global response estimates of this study for the six time

transition in mantle resistivity between 400 km and 800 km
harmonics of daily variations, from p=1 (24 hr period) to p=6

depth from values near to 100 V m to values below 1 V m. It (4 hr period), obtained with the application of the potential method
may occur in two steps at 500 km and 750 km depth, as in the to the principal spherical harmonic term of each time harmonic. Also
model, or in one single step around 600 km, or with a smooth displayed are Chapman’s (1919) results and responses for a spherical
descent starting at 400 km and ending below 800 km. For the three-layer earth model, shown in the lower right corner. The newly

derived responses improve the overall compatibility with 1-D modelsfirst harmonic, scattered r* values again indicate problems
and extend the estimates to p=6. Best agreements between calculatedwith phase determinations, and general uncertainties exist with
and empirical responses exist from the second to the fourth harmonic,the last two harmonics. For the second to fourth harmonics,
for the adopted model. Divergent r*-values for the first harmonic.empirical and model values in z* and r* are in almost perfect
Mean continental responses from the Z : Y method are added foragreement.
comparison, omitting error bars. Dots represent Olsen’s results; crosses,So far, only responses for the principal terms have been
results from this study. All the responses shown are listed in Table 8.

examined. Fig. 2 provides an overview of responses for the
The display is in the form of apparent resistivity versus depth profiles,

complete set of evaluated terms: 11 for the first time harmonic
in which for each harmonic a resistivity r* is assigned to the depth z*

and 12 for each of the higher harmonics, yielding a total of of a perfect substitute conductor. (See text for details.)
71 response estimates for six frequencies. They are from a
bi-variate analysis according to eq. (8) and are shown in the time harmonics, noting that in the case of the pth harmonic
same style of r*–z* diagrams as in Fig. 1, but to avoid con- the lowest degree and order are p−1.
fusion separately for each time harmonic. The principal responses From Fig. 2 it is also evident that local-time term responses
determined by univariate regression and already displayed are tend to be clustered around model responses. An exception
added for completeness. Points on the depth axes refer to is the wide range of r*-values for p=1, where again the
those two estimates of cm

n
for which r* is below 1 V m. problem lies with uncertain phase determinations. Hence, the

Even though data points are scattered, it is impressive to unfavourable impression of strongly divergent results in Fig. 2
observe how they gradually converge when p and thereby the arises mainly from the general terms. It is also noteworthy
frequency increases. It seems as if internal induction anomalies, that up to p=4 the principal term has by far the best
presumably mostly from oceans, contribute mainly to spherical determined response, but that for p>4 this distinction is lost,
terms of low orders and degrees, when the penetration depth with error bars of about the same length for all local-time terms.
is large and the anomalous effects spatially widespread. Higher
harmonics, in contrast, show much more uniform responses,

3 EXTERNAL AND INTERNAL FIELD
which are in overall agreement with the respective 1-D model

PRESENTATIONS
responses. In the apparent absence of ocean effects, this could
suggest a high degree of lateral uniformity within the penetrated There are two possible ways of finding the external part em

n
of

depth range of the Earth’s uppermost continental mantle. a given unseparated potential coefficient um
n
=em

n
+ im

n
: (1) by

However it should be cautioned that low-order and low-degree converting also the vertical component Z into series of spherical
harmonics, which allows the use of Gauss’s separation formulaspherical harmonics were not used in the analysis of higher
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Figure 2. Response estimates for the complete spectra of spherical harmonics, presented in similar r*−z* diagrams to in Fig. 1. There are 12

spherical harmonic terms for each time harmonic p=1 to p=6: four local-time terms of order m=p with error bars (open circles), eight general

terms without error bars (crosses), i.e. four terms with m=p+1(+) and four terms with m=p−1 (×). Principal-term responses (m=p, n=p+1)

are marked by a dot within the circle. Up to p=3 there is good agreement among the four local-time term responses except for some phase

problems with the first harmonic. Converging responses for all terms beyond p=3 indicate diminishing anomalous effects from oceans and possibly

other lateral non-uniformities in the upper mantle.

eq. (2); (2) by assuming an earth model of radial symmetry, dependence in Universal time. The reason for the scatter is
which with Q

n
= im

n
/em
n

as internal to external model ratio yields unclear, but contributions from the Dst continuum at the 24 hr
in em

n
=um

n
/(1+Q

n
) the desired external part. Both options period would be a possibility. Noteworthy in Figs 3 and 4 is the

have been tested and only marginal differences were found. well-correlated seasonal variation of external and internal parts,
Hereafter all cited results have been obtained with the even to small details in day-by-day changes, which corresponds
assumption-free first option. Internal coefficients from Gauss’s to the high degree of coherency found in the statistical analysis.
second formula are added for completeness. One further preliminary note is necessary with regard to the

For an overview, Fig. 3 presents external and internal absolute term in the time harmonic analysis, which is here
potential coefficients for the analysed sequence of 123 Q*-days identical to daily means measured from the local midnight
during the IQSY, displaying the real parts of these coefficients level. For a physically meaningful representation of external
day after day for the four local-time terms of the first time source fields these absolute terms have to be taken into account
harmonic. Even though some scatter exists, a distinct seasonal and likewise separated into external and internal parts after a
modulation is visible. For the equator-symmetric terms with spherical harmonic analysis. This point has been thoroughly
P1
1

and P1
3

it occurs in the form of annual variations, and for dealt with in Appendix A to Part I. For the analysis the same
the equator-antisymmetric terms with P1

2
and P1

4
, in the form expansion series will be used as formulated for the time

of weak semi-annual variations, which are superimposed on harmonics, setting p=0 in eqs (6) and (7) of Part I and
time-constant major portions. Most impressive is the strong observing that the absolute terms are real quantities. Hence,
seasonal variability of the P1

1
term, which passes through zero expansion coefficients of positive and negative orders must be

during equinoxes and thus is responsible for most of the complex conjugates, and the series can be restricted to positive
hemispherical imbalance during solstices. At these times the orders. This leads to the formulation
P1
1

term exceeds in size even the principal second term P1
2
.

U0 (h, l)Within the two years analysed, the coefficients of the seven
general terms also undergo some systematic seasonal changes, as

=RG ∑
K−1
n=1

u0
n
P
n
(cos h)+ ∑

L

m=1
∑

m+K−1
n=m

Re[um
n

eiml]Pm
n
(cos h)Hseen in Fig. 4. The overall impression is that all coefficients vary

smoothly with progressing time, except for their scattered appear-
ance in the case of the P0

1
term, which has no longitude (13)
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Figure 3. Day-to-day and seasonal variability of potential coefficients of daily variations during the IQSY 1964–1965. Shown are the real parts of

external (em
n
) and internal (im

n
) coefficients of four local-time terms, for the first time harmonic on 123 Q*-days. Coefficients for the first P1

1
and third

P1
3

term display seasonal changes in the form of annual variations. Those of the second principal term P1
2

are roughly constant, except for a small

semi-annual modulation, which also appears in the fourth term P1
4
. Noteworthy is the good correspondence between seasonal and day-to-day

changes of external and internal potential coefficients in all four displays.

for the absolute term of the potential, with a corresponding be derived for a least-squares fit to globally observed absolute

values X0 , Y0 and Z0 .series for Z0 . Obviously, the coefficients u0
n

(and z0
n
) are real

valued. Hence with the same choices K=4 and L =1 as series In this context no further detailed studies of Sq sources and
their seasonal changes are intended. Instead, four representativeparameters, three real and four complex coefficients have to
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Figure 4. Day-to-day and seasonal variability of potential coefficients of daily variations during the IQSY 1964–1965, as in Fig. 3, but for the

eight general terms, which take account of dependencies on longitude. The seasonal changes are less systematic than for local-time term coefficients,

but the good correlation between changing external and internal coefficients is preserved. Scattered results for the Universal-time term P0
1

may

reflect transient contributions from Dst.
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days are chosen during prolonged times of extreme magnetic currents in a thin shell just below the Earth’s surface, are

quietness, one for each season. They resemble quiet-time solar
daily variations Sq as closely as possible during equinoxes and wm

n
=+(R/m0 )

2n+1

n
im
n
= (R/m0 ) [umn−zm

n
/n] (17)

solstices, here in years of minimum solar activity. Disturbed

periods are at least four days away and any still-existing Dst or, alternatively,
contribution should have been eliminated by the non-cyclic

wm
n
= (R/m0 )[1− (n+1)C

n
/R]um

n
. (18)

change corrections (see Section 3 of Part I). Furthermore, lunar
Hence, except for a change in sign, nearly the same currentcorrections have been applied in an attempt to represent truly
function can be expected as for the external part, since thesolar daily variations on the chosen days (see Appendix B).
penetration depth will be small enough to give (n+1)C

n
|%RThe chosen dates and the respective eight three-hourly Kp

for all terms.indices for activity can be found in Table 9.
The global display of the current function refers in the usualIn the thus established absence of activity, contaminations

manner to the external field at a certain instant in Universalby S
D

or substorms should be negligible. Table 10 lists the
time t. Hence, a combined spherical and time harmonicexternal coefficients for these days, including those for the
synthesis is required to derive Y at this time for a specifiedabsolute terms. It may be added that with the choice of single
global mesh of surface locations. With t in angular measure,days, rather than monthly or seasonal means, an attempt has

been made to avoid any complications by taking an average
Y(t, h, l)=Y0 (h, l)+ ∑

6

p=1
Re{Y

p
(h, l) eipt} , (19)over a possibly changing spatial structure from day to day.

Figs 3 and 4 demonstrate that even within a single month
wheresubstantial changes can occur, notably in the P1

1
local-time term.

For visualization of the table entries, contours of a current Y0 (h, l)=∑
n

w0
n
(0)P

n
(cos h)+ ∑

m,n
Re{wm

n
(0) eiml}Pm

n
(cos h) ,

function Y will be displayed in a sequence of global maps.

This function depicts in j=−r̂×grad Y the sheet current Y
p
(h, l)= ∑

m,n
wm
n
( p) eimlPm

n
(cos h) . (20)

density of fictitious currents which flow in a thin shell just

above the Earth’s surface and could account for the external The summations are those of eq. (13) of this article and eq. (6)
part of the surface field. With r̂ as unit vector in the radial of Part I. The resulting contours in Fig. 5 are for the time
direction, these ‘equivalent’ currents flow parallel to contours instant t=p, corresponding to noon in Universal time, and
Y=const—clockwise around minima and anticlockwise are shown on a global map which extends from local midnight
around maxima of Y. to local midnight at that hour, with local noon on the

Assuming that U and Y are expressed by series of spherical Greenwich meridian in the centre. In carrying out the time
harmonics of matching degrees and orders, the conversion of harmonic synthesis it has been observed that, for the calculated
the external potential coefficients into those of the current Fourier coefficients, zero time is one-half hour past midnight.
function can be carried out term by term according to The contour lines on the four chosen days resemble very

faithfully the well-known pattern of Sq source currents in the
wm
n
=−(R/m0 )

2n+1

n+1
em
n
, (14) four seasons. As in Parkinson’s (1977) analysis, an attempt

has been made to refer them to a genuine true zero level of

no overhead currents, provided the underlying assumption iswhere wm
n

denotes the expansion coefficients for Y (see Chapman
& Bartels 1940; Section 17.18). With m0=4p×10−7V s A−1m−1 correct that any deviations from this level at local midnight

are caused solely by internal currents. This differs fromand R=6371 km as the Earth’s radius, R/m0=5070 A nT−1.
The insertion of em

n
from eq. (2) yields wm

n
directly in terms of the common practice to add, quite arbitrarily, a longitude-

independent value to the current function in all latitudes tothe series coefficients for U and Z:
obtain a constant Y along the midnight meridians of the display.

wm
n
=−(R/m0 )[umn +zm

n
/(n+1)] (15)

Except for the chosen December day, the night hours are
indeed relatively free from overhead currents, which on theor, alternatively, with an earth model response
daylight side form two current loops north and south of

wm
n
=−(R/m0 )[1+nC

n
/R]um

n
. (16)

the equator, with centres one hour before noon. The cause of
the late evening currents on the December day is not clear.The last relation is readily inferred from eq. (4), replacing cm

n
by C

n
for a laterally uniform earth. It suggests relatively small They may be an artefact, arising from deficiences in the

separation of absolute terms and thus faulty zero levels. Totalcontributions from the Z expansion coefficients, noting that
for the principal terms n|C

n
| is between one-fifth and one-third currents, inferred from the difference between maximum and

minimum values of the current function, are more or less ofof R, as seen from Table 8.
The complementary conversion formulas, when the internal the same strength in all four seasons, but a certain enhancement

during equinoxes is indicated. Even though no data from thepart of the surface field is to be represented by fictitious

Table 9. Dates and 3-hourly magnetic activity indices Kp of the four quiet days, for which

external potential coefficients are listed in Table 10.
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Table 10. External potential coefficients em
n
( p) of lunar-corrected daily variations on four single quiet

days during equinoxes and solstices (cf . Table 9). 12 (11) complex coefficients are listed for each of the

four time harmonics p=1 to p=4, three real and four complex coefficients for the absolute term p=0.

Series expansion according to eqs (6) and (8) of Part I, with em
n

for um
n
. Coefficients are in nT and refer to

quasi-normalized spherical functions according to A. Schmidt.

1964 Sep 20 1964 Dec 23 1965 Mch 19 1965 Jun 21

p=1 n m

1 1 349+1001i −5541−1994i −174+ 878i 5193+1915i
2 1 4488+1810i 5858+3135i 6947+2218i 4893+1828i
3 1 −649− 706i −2125− 413i 120− 140i 1476− 131i
4 1 −1406− 276i −973+ 269i −1780+ 286i −1019− 285i
2 2 199+1181i 242+2077i −761+ 927i −524− 334i
3 2 −359+ 870i −1121+ 177i 172+ 786i 482− 286i
4 2 358− 951i 627−1008i −229−1131i 205− 551i
5 2 422+ 380i −43+ 452i 329+ 219i −164+ 295i
1 0 1689− 509i 182+ 783i −940−1999i 497+ 275i
2 0 −518+1663i −884+1983i −734+2735i 249+ 389i
3 0 113+ 19i 682− 170i 344− 367i −281−1192i

p=2 n m

2 2 725− 999i 100+ 743i −40− 270i −622−1998i
3 2 −1877−1860i −2796−2362i −3235−1699i −2549−1662i
4 2 241+ 637i 813+ 489i −325− 154i −1054− 383i
5 2 233+ 417i 475+ 302i 239+ 383i −47+ 6i

3 3 −561− 504i 230− 898i 364− 2i 355+ 360i
4 3 697− 163i 732− 45i 199− 503i −217+ 82i
5 3 −632+ 427i −338+ 414i −167+ 573i −140+ 371i
6 3 30− 275i −33− 227i −14− 508i 165− 387i

1 1 −599− 606i 66+3423i 280+1600i −539+ 443i
2 1 −1000+ 82i 36− 323i −175− 157i 0+ 24i
3 1 −59− 875i −83− 707i 542− 787i −192− 186i
4 1 −266− 110i −12− 151i 175− 68i 224+ 409i

p=3 n m

3 3 −979+ 578i 161− 338i 121+ 133i −533+ 925i
4 3 631+1376i 1004+1716i 1299+1460i 806+ 680i
5 3 −144− 423i −339− 282i 7+ 201i 113+ 144i
6 3 75+ 52i −136− 172i 24+ 34i 266+ 52i

4 4 141+ 373i −364+ 241i −190− 255i −9− 153i
5 4 −250+ 51i −211+ 2i 20+ 64i 146− 76i
6 4 442− 99i 141− 234i 159− 183i 163− 98i
7 4 −190+ 142i −29+ 173i −82+ 164i −174+ 159i

2 2 −264+ 346i −455− 768i −96− 170i 91+ 124i
3 2 413+ 50i −282− 171i 164+ 219i 221− 17i
4 2 −269+ 374i 17+ 175i −456+ 150i −44+ 271i
5 2 237+ 122i −36+ 141i 233+ 19i −33− 202i

p=4 n m

4 4 286− 48i −172− 367i −222+ 11i 456− 141i
5 4 −2− 544i −42− 620i −273− 609i −23+ 9i
6 4 132+ 159i 46− 58i 86− 82i 177+ 8i
7 4 −5− 131i −62+ 89i −57+ 2i −143− 41i

5 5 −18− 148i 258− 36i −42+ 218i −42− 40i
6 5 43+ 5i 115+ 43i −19− 41i −85+ 39i
7 5 −209− 67i −104+ 41i −168+ 64i −77+ 66i
8 5 95− 86i −30− 102i 98− 92i 106− 23i

3 3 64− 69i −43+ 342i −26− 92i −104− 52i
4 3 −117+ 13i 134+ 110i 136− 92i −177− 71i
5 3 196− 100i −115− 15i 220− 60i 28− 157i
6 3 −166− 41i 37− 60i −75− 92i 22+ 75i

p=0 n m

1 0 −2690 −3777 −3782 −3817
2 0 657 178 17 839
3 0 2768 1909 3992 2754

1 1 −40− 464i −651−2525i 281− 386i −36− 54i
2 1 −508−1223i 464+ 127i −218−1014i −438+ 63i
3 1 −231+1443i −284+1337i −294+2043i −773+ 54i
4 1 −474− 12i −226− 376i −424− 303i −326− 704i
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Figure 5. Equivalent currents for the external part of daily variations on four quiet days during equinoxes (upper diagrams) and solstices

( lower diagrams). The global maps show contour lines of the current function at 12 hours Universal time and extend from midnight to midnight

meridians. The time harmonic synthesis involves an absolute term and six Fourier coefficients, the preceding spherical harmonic synthesis 12

spherical harmonic terms for each Fourier coefficient. Large integer numbers on the upper right of each map give the total current between

extrema, in kA, followed by smaller decimal numbers for the current between contour lines. The inclusion of separated absolute terms yields

current loops, which are limited to the daytime hours in each hemisphere, with spurious and presumably unrealistic currents during the night.

Current loop centres lie between 10.4 hours for the chosen day in mid-September and 11.1 hours for the chosen day in mid-March. Total currents

are slightly stronger during equinoxes than during solstices. The influence of the course of the dip equator between Africa and South America on

the external currents near noon is clearly seen. (cf . Fig. 1 in Part I.)

equatorial jet region were used, low-latitude currents near levels. The lower right map, finally, displays the associated
pattern of equivalent internal currents, which closely resemblesnoon follow the course of the dip equator from Africa across

the Atlantic (see Fig. 1 of Part I). Noting the well-established the external current flow, as expected. There is, however, a
reduction of their total strength to about one-half. Currentinfluence of the dip equator on the Sq system, this suggests

that the derived longitude-dependent general terms have indeed centres are displaced westwards by about 15°, which agrees

with the postulated phase lead of induced currents froma physical meaning.
Fig. 6 repeats the display of equivalent currents for the inducing currents.

No clear indications are visible for ocean effects or any otherchosen day in March in order to illustrate various points. In

the upper left map, the time instant of synthesis is shifted to localized distortions of the current flow to internal induction
anomalies. There is, however, evidence for the postulated flowzero hours and thus local noon is now at 180° longitude. The

total current is about the same as 12 hr later, but the current of internal currents across the midnight meridians. Their

presence verifies that the separation of absolute terms haspattern has changed to adapt most convincingly to the course
of the dip equator in the Pacific (cf . Fig. 1 of Part I). The indeed led to appropriate zero reference levels. It should be

added that the synthesis of the internal current function doeslower left map is the result of a spherical harmonic synthesis
with four local-time terms only and thereby does not refer to not include the internal part of the absolute terms. As time-

constant internal contributions, they are assigned to the Earth’sany particular instant in Universal time. The total current

remains unchanged, but low-latitude currents now flow parallel quasi-permanent field.
to the geographical equator and vividly reflect the missing
influence of corrective longitude-dependent general terms.

4 CONCLUDING REMARKS
In the remaining two maps, those terms are included again.

The upper right map, for a synthesis without absolute terms, The results are beyond expectations, which were low for
progress in global induction research. The critical part ofhas the purpose of showing the strong influence that these

terms have on the overall appearance of the contour lines. The the potential method applied here remains the necessity of
expressing the vertical component by a series of sphericalprominent, but misleading current loops during night hours

simply result from the choice of daily means as zero reference harmonics. Whereas time harmonics of horizontal components
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Figure 6. Equivalent currents as in Fig. 5 for daily variations on 19 March 1965. Upper left: external currents at zero hours Universal time UT, with

local noon at 180°, to demonstrate the influence of the changed course of the dip equator in the Pacific region. Lower left: external currents at any

hour UT, when only local-time terms are used in the spherical harmonic synthesis, demonstrating the physical significance of the omitted general

terms in including longitude dependence. Upper right: external currents at 12 hours UT, when the synthesis is carried out with time harmonics

only, omitting the absolute external term. Strong current loops during the night hours demonstrate the inappropriate choice of the daily means as

zero reference level for daily variations. Lower right: internal currents at 12 hours UT. Their total strength is reduced by one-third in comparison

to the external current on that day. Current centres in both hemispheres are shifted westwards to 10.2 hours local time, while external current

centres are at 11.1 hours, demonstrating the phase shift between inducing external and induced internal sources (cf . Fig. 5). Substantial internal

currents cross the midnight meridians (see text). There are no clear indications for ocean effects or other anomalies of internal origin.

appear as smoothly varying with latitude and longitude, those for those not in local time. These results emphasize the special
advantage that daily variations provide for global inductionof the vertical component are scattered, as to be expected from

their greater sensitivity to induction anomalies of internal studies. The fact that the analysis is concentrated on their
westward-propagating mode, moving with the speed of theorigin. In the southern hemisphere they are without any visible

indications of a large-scale global structure. Here almost all Sun, tends to suppress anomalous induction effects, fixed to

the earth, and to accentuate the response of an average earthobservatories are either on islands or coastlines and thus fully
exposed to anomalous effects from the ocean. Clearly, no of radial symmetry.

However, it is unclear how the derived results translate intopolynomial in latitude and longitude, with a realistic number

of terms, could reproduce such observations without large internal conductivities on a global scale, and the demonstrated
compatibility with a layered earth model cannot be more thanresiduals.

Still, it has been possible to establish statistically significant a first step of interpretation. Furthermore, results of this study

may be biased towards conditions below continents in theand physically meaningful relationships between all coefficients
of the two series, for the potential and the vertical component, northern hemisphere. It has to be left to on-going 3-D model

studies, as in the accompanying article by Kuvshinov et al.which in quite different proportions account for the observed
horizontal and vertical fields, respectively. High coherencies (1999), to determine how the presence of oceans influences

the sets of spherical harmonics derived here and whether thetestify to a surprising stability of these relations, even though

the spatial structure of the inducing source changes from day underlying upper mantle is indeed without traceable signs of
lateral non-uniformity in ocean-corrected response estimates.to day and with the seasons. The very fact that such generally

valid univariate term-by-term relations exist is a remarkable It is noteworthy already at this stage that responses for

the various terms of a given harmonic do not diverge withresult in itself and by no means self-evident.
The implication for the internal conductivity structure can increasing frequency, as one would expect for a spherical

conductor that deviates from radial symmetry mainly in itsonly be that neither ocean effects nor lateral non-uniformities

within the depth range of penetration of daily variations outermost layers, but that they converge, as if such non-
uniformities do not exist. The prospects are marginal, it seems,are strong enough to invalidate interpretations with radially

symmetric earth models, for local-time responses more so than of testing this conclusion with higher frequencies. Such an
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extension beyond 6 cpd would also be a prerequisite for learning collection for 1965. I am indebted to Dr Alexei V. Kuvshinov,

who initiated my return to the subject and was very instrumentalmore about mantle conductivities in the most interesting depth
range from, say, 100 km to 300 km depth, which includes in the ultimate completion of this work. Dr Nils Olsen and

four reviewers have made the most valuable comments andGutenberg’s seismic low-velocity layer. Experience has shown

that the typical time–space structure of daily variations ends pointed out numerous errors and obscure expressions. I am
grateful in particular to Dr Roger Banks for his help towith their fourth harmonic at 4 cpd. The adjoining frequencies

will reflect more and more spatially complicated source fields improve the original version of Part II.

from polar jet regions and thereby will be less adaptable to
global representation by spherical harmonics.

Disappointingly, two attempts failed to separate normal and REFERENCES
anomalous responses—first by splitting pairs of spherical
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u
n
=u

nL
to infinity, gives in u

nL
=2 log(1/b) an easily derivable

APPENDIX A: THE SINGLE-DAY
limit, which u

n
exceeds with probability b.

UNIVARIATE LINEAR REGRESSION
The days are now grouped into nine classes I=0, 1, 2, … , 8

ANALYSIS
according to the size of their weighted squared residuals, and
class assignments are chosen to beIn the linear expression

I=min{8, int[u
n
/log 10]} . (A5)y

n
(v
p
)=c(v

p
)x
n
(v
p
)+dy

n
(v
p
) (A1)

Hence, the chance that a day is in the open-ended last class of
the variables y

n
and x

n
are either complex time harmonic

the worst fit is with b8=1 : 10000 for u
n
≥8 log 10 exceedingly

or complex spherical harmonic coefficients. The subscript n
small, and, in the case of, say, 100 days very unlikely. Class

refers to the nth day, in an assemblage of N single days; the
I=0 of the best fit should contain about two-thirds of the

subscript p, to the pth time harmonic of daily variations with
days, with probability b0=1−1/√10=0.684 that u

n
is below

v
p
=2pp day−1 . The least-squares estimator for the transfer

log 10. Probabilities for the remaining classes are
function c(v

p
) and its error are

b
I
=10−I/2−10−(I+1)/2 . (A6)

All N
I
days in class I receive the weights q

n
=b

I
N*/N

I
, where

c=[yx*]/[xx*] ,

Dc2=|c|2e2[(1/b)1/m−1]/coh2 ,
(A2)

N* is the sum of weights from the previous cycle (N in the
initial cycle), and b

I
N* is the expected number of days in

with m=N−1, and with
class I. It has been found that, whenever a day is not within
the first four classes, it is usually assigned to the two highestcoh2=[ yx*]2/[xx*][yy*] ,

e2=1−coh2=[dydy*]/[yy*]
(A3) classes, which identifies this day as a clear outlier.

Following the rules of robust statistics, no weights greater
than unity are given and up to a certain threshold probabilityas the squared coherency and the squared residual of the linear
all days receive unit weights. After tests it has been decided toregression, respectively. Square brackets […] imply summation
use unit weights for days in the first three classes, with a jointof Fourier products over the N days, and (1−b) is the
probability b0+b1+b2=1−1/√1000=0.968 slightly aboveprobability that modulus |c| lies within error limits |c|±Dc.
the 2s limit of a normal distribution.Because unsmoothed Fourier products of harmonic coefficients

Other methods of weighting have been tried, but the methodare added, the degrees of freedom of the relevant F-distribution
described here, based on observed and expected occupanciesto estimate errors are n1=2 and n2=2m, which allows the
of classes, appears to be preferable. It follows Larsen’srequired integration of the pertinent probability density
approach of implementing data-adaptive weights (Larsen 1989;function f (q)=[m/(m+q)]m+1 to be carried out in closed
Section 3.3). In some cases more than one-half of the days had

form. The general formula to derive confidence intervals for
to be eliminated, even though this was experienced only in

the modulus of univariate transfer functions can be found as
applications of the Z : Y method.

eq. (10.3.18) in Jenkins & Watts (1968).
The required estimation of the variance s2 in eq. (A4) is has

The error estimate presumes that the residuals, transformed
follows. By extending the time harmonic analysis to the Nyquist

back into time series, are independent, normally distributed
frequency v

M
, Parseval’s theorem yields in the sum of squared

random variables of zero mean and of the same variance s2
residuals over all harmonics on a given day an estimate s2

n
for

at each of the P instants of time involved, here at P=24
s2 on that day, after division by two. In e2[qyy*], the sum of

hours. In order to strengthen the validity of the resulting
weighted squared residuals over all days is known from the

statistical error limits, all Fourier products are multiplied with
least-squares solution, as seen from eq. (A3). Hence, after

weights q
n
(v
p
) for a given day and time harmonic. The

changing the sequence of summations,
estimation of c(v

p
) begins with weights q

n
=1 for all days and

harmonics. From the resulting estimator c(0) and residuals
s2=

1

2
∑
M

p=1Ge2 (vp
)C ∑

N

n=1
q
n
(v
p
) |y

n
(v
p
) |2DNN*(v

p
)H (A7)

dy(0)
n
=y

n
−c(0)

n
x
n

a first set of weights is calculated, as
described below.

represents a weighted mean of variance estimates s2
n

on the N
The analysis is carried out again with weighted Fourier

days. It has been used as an estimator of s2, when the residuals
products and repeated until an unchanging set of weights

dy
n
are time harmonics, as in the Z : Y method.

evolves, which in this study never required more than four
For the reasons stated earlier, a Fourier synthesis towards

iterations. It has been decided to preserve weights once they
time-domain residuals is problematic in the case of the potential

have been derived; that is, if a certain day and harmonic
method. As a substitute, daily estimates s2

n
=M|dy

n
|2/2 are used

already has a weight from one or more previous cycles, then
by assuming that all time harmonics have the same residual

the weight for the next cycle will be the product of the old and
on a given day. Their weighted mean

newly derived weights.
If the (weighted) residuals dy

n
are the time harmonics of

s2 (v
p
)=

M

2
e2 (v

p
)C∑

n
…DNN*(v

p
) (A8)

random variables at P instances of time, then their real and
imaginary parts should be normally distributed with zero mean

provides then a frequency-dependent estimator for s2.
and variances s2/M, where M=P/2 and P=24. Thus, the

normalized sum of their squares,
APPENDIX B: LUNAR CORRECTIONS OF

u
n
=M|dy

n
|2/s2 with |dy

n
|2=q

n
|y
n
−cx

n
|2 , (A4) DAILY VARIATIONS

should be x2-distributed with two degrees of freedom. Its Two timescales are involved, both hereafter in angular measure:
local lunar time t and local solar time T =t+n, with nprobability density function exp{−u

n
/2}/2, integrated from
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denoting the phase of the Moon. For simplicity, this will
APPENDIX C: ON THE SEPARATION OF

be the lunar phase at local noon on the considered day.
TRAVELLING AND STANDING PARTS OF

Semi-diurnal lunar tides have time factors exp{2it}=
DAILY VARIATIONS

exp{2i[T −n]}, while ionospheric conductivity s
I
, a pre-

requisite for motion-induced currents, depends on local solar The following sum of westward- and eastward-travelling terms
in a spherical harmonic expansion will be considered, omittingtime. It will be expressed by a Fourier series
their common dependence on latitude:

s
I
(T )= ∑

N

n=−N
a
n
einT , (B1)

S=A ei(pt+ml+a)+B ei(pt−ml+b) (C1)

with a−n=a*
n

for a real-valued conductivity. with m=1, 2, … . The time factor exp(ipt) associates the sum
It has been found that lunar daily variations are best with spherical harmonics for the pth time harmonic; A and B

described by harmonics with time factors exp{i[(2+n)T−2n]}, are positive real amplitudes and l is longitude. With the
which is the product of the stated time factors for semi-diurnal notation
tides and ionospheric conductivity. For n=−1, 0, +1, … , N

s= (a+b)/2, d= (a−b)/2, c=d+ml (C2)
they are known as Chapman’s ‘phase-law’ tides. If the choice

is N≥3, then additional ‘partial’ tides, in Schneider’s the sum is transformed into
terminology, are present with n=−N, −N+1, … , −3. The

S=[A eic+B e−ic] ei(pt+s) (C3)
long periodic constituent with exp{−2in} for n=−2 and the

choice N≥2 has no connection to daily variations. in preparation for the intended separation. If A>B, S is then
Both tides contribute to daily variations in local solar readily decomposed into a westward travelling part with

time: phase-law tides with time factors exp{i[pT −2n]}, setting amplitude A−B and a standing part with amplitude 2B, and
p=2+n, and partial tides with exp{−i[pT +2n]}, setting vice versa for B>A. Explicitly, the sum becomes
p=−(2+n). It will be assumed that from global observations

S= (A−B) ei(pt+ml+a)+2B(cos c) ei(pt+s) (C4)
extracted lunar daily variations have been developed into series
of spherical harmonics and that for the pth time harmonic sets for A>B and
of lunar coefficients um

n
(L , p) and zm

n
(L , p) in reference to n=0

S= (B−A) ei(pt−ml+b)+2A(cos c) ei(pt+s) (C5)
are available. Multiplied by the appropriate phase factor,
which is exp{−2in} in the case of phase-law tides, they are for B>A.
the desired corrections for the coefficients um

n
( p) and zm

n
( p) at

lunar phase n. In this study, Winch’s coefficients for the IQSY
APPENDIX D: ON THE Z : Y METHOD

are used (Winch 1981; Table 8.4), including all available
coefficients for phase-law tides and one leading coefficient for Provided that the Earth is radially symmetric with respect

to conductivity, then for a frequency v
p

the same responsepartial tides, the latter for p=1, with n=1 and m=0. The
relative size of the applied lunar connections can be inferred cm

n
(v
p
)=C

n
(v
p
) applies to all spherical harmonic source terms

of degree n. Assuming this to be a valid supposition, a sphericalfrom Table 11.

Table 11. Unseparated potential coefficients um
n
( p) of daily variations (S and L ) on 16 October

1965, in comparison to coefficients um
n
(L , p) of lunar daily variations during the IQSY, for the

second time harmonic p=2 and 12 spherical harmonic terms. The lunar phase on the chosen

day is n=343°. Lunar coefficients for n=0 are from Winch’s (1981, Table 8.4) analysis. All

entries in pT.
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Table 12. Depth values of a perfect substitute conductor, in kilo-harmonic synthesis on either side of eq. (3), first over degrees
metres, for the first time harmonic of daily variations on 16 Octoberand then over orders, yields
1965, derived from synthesized vertical components and horizontal

gradients according to eq. (D6), with 12 spherical harmonic terms.
Z*
p
(h, l)=∑

n
(n+1)n

C
n
(v
p
)

R
Y
n
( p, h, l) , (D1)

Syntheses for 32 mid-attitude positions in both hemispheres.

where

Y
n
( p, h, l)=∑

m
um
n
( p)Pm

n
(cos h) eiml . (D2)

The asterisk (*) identifies Z
p

as the result of a spherical
harmonic synthesis. Time factors are exp(ipt) in reference to

Universal time t, and R is the Earth’s radius.
With the further assumption that within the range of degrees

involved the responses C
n
(v
p
) more or less agree, because n|C

n
|

is small compared with R in that range, they can be replaced
to visualise the degree of spatial uniformity of the depth ofby a degree-independent response C0 (vp

). It may approximate
penetration at the chosen frequency. Fainberg & Berdichevskyeither C

n
for the leading term or simply the zero-wavenumber

(1977) have in this way converted Malin’s (1973) mean annualresponse of a plane earth. This assumption reduces eq. (D1)
results for solar and lunar daily variations during the IGYto
into depth contours. Table 12 contains a similar map, but for

the results of a single quiet day.Z*
p
(h, l)=

C0 (vp
)

R
∑
n

n(n+1)Y
n
( p, h, l) . (D3)

Outside the omitted polar and equatorial regions, where Z
is too small for reliable determinations, more or less consistentThe identity
depths are derived. Their mean value of close to 600 km agrees
well with least-squares estimates. However no significance

∑
n

n(n+1)Y
n
=G∂(sin hB

h
)

∂h
+

∂B
l

∂l HNsin h (D4)
should be given to the displayed spatial variability of h

p
because it follows from the ratio of two synthesized field

connects eq. (D3) to the horizontal gradient method to derive quantities without the possibility of stating errors.
local response estimates. Eq. (D4) is readily verified by a term- To permit a statistical evaluation, the spherical harmonic
by-term differentiation of the series eq. (10) of Part I for synthesis of the vertical component is avoided, replacing Z*

pB
h
(=−X

p
) and B

l
(=Y

p
), using eq. (8) of Part I and observing by Z

p
from observations at a single site. This allows the

that for associated spherical harmonics reformulation of eq. (D1) as a univariate linear expression

d(sin hdPm
n
/dh)

sin hdh
+Cn(n+1)−

m2
sin2 hDPm

n
=0 . (D5) Z

p
(h, l)=

C0 (vp
)

R
∑
n

n(n+1)Y
n
( p, h, l)+dZ

p
(h, l) , (D7)

Berdichevsky et al. (1976) used eq. (D3) to derive, from a given between a locally observed Z
p

and in effect the horizontal
set of spherical harmonic coefficients for U and Z, the depth gradients of X

p
and Y

p
, synthesized from the spherical harmonics

of the global potential. It is solved by least squares towards a
h
p
(h, l)=R ReGZ*

p
(h, l)N∑

n
n(n+1)Y

n
( p, h, l)H (D6) best-fitting C

0
response estimate for an assemblage of events

(days). The resulting estimate may be regarded as a 1-D

approximation to the local inductive response at the pointof a perfect substitute conductor, which is the real part of C0 .
As indicated, this depth may vary for a given frequency from where Z has been observed. A correction factor c

n
=C

n
/C0 can

be included under the sum, calculated for an a priori layeredsurface point to surface point. Hence, the results of a spherical

harmonic analysis and subsequent synthesis can be represented earth model, to account for the usually weak dependence of
C
n
on degree n.by contours h

p
=const. on global maps, one for each frequency,
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