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ABSTRACT

The Generalized Magneto-telluric Method

by

Antonio de Sousa Neves

Submitted to the Department of Geolegy and Geophysics on August 19,

1957, in partial fulfillment of the requirements for the degree of

Doctor of Philosophy.

The magneto-telluric method for the determination of earth con-

ductivity at depth has been extended from layered media to arbitrary

media, in particular 2 dimensional geometries. By using geographical

coverage in the measurements and a semi-quantitative transform to plot

the data, the interpretation of sub-surface structure is made possible.

A finite difference method has been developed to treat electromagnetic

wave propagation in any two dimensional formation. In the particular

case of an inclined layer or composite wedge a formal analytic solution

was also obtained. Several inclined layer examples were solved by the

finite difference method and the geophysical significance of the

results considered. These results agreed generally with those of

laboratory scale model experiments.

The magneto-telluric method consists in finding the impedance

normal to the earth's surface by measuring, at several frequencies,

the horizontal components of the electric and magnetic vectors of the

magneto-telluric field, a naturally occurring electromagnetic field that



can be described in terms of plane waves incident on the earth. By

using geographical coverage in the measurements and a semi-quantitative

transform to plot the data the interpretation of sub-surface conductivity

is made possible. In the case of inclined layers the semi-quantitative

transform possesses characteristics that permiththe identification

of the geometry involved. Data obtained theoretically and from the

laboratory scale model experiments illustrate these features.

A finite difference method has been developed to treat electro-

magnetic wave propagation in any two-dimensional geological formations.

This method is made possible by the uniformity of the earth's surface

of the electromagnetic vector oriented parallel to the strike of an

arbitrary 2 dimensional structure and by the relatively strong

attenuation of electromagnetic waves within the earth. The solution

was carried out by relaxation procedures.

In the particular case of an inclined layer or composite finitely

conducting wedge a formal analytic solution was also obtained. It

consisted in starting from a general integral solution appropriate

for a wedge space and transforming it into a set of singular integral

equations by satisfying the boundary conditions on the composite wedge.

This system of simul taneous singular integral equations was solved then

by inversion through the use of Kontorovich-Lebedev transforms. The

final solution is presented in integral form.

A few examples of the response of inclined layers, computed by the

finite difference method, are presented. The angle of dip, rather than
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the conductivity contrast, determines the distance from the strike within

which the inclined layer affects the uniform field. Measurements of

magnitude and phase angle, taken separately, may lead to confusion

with layered media; simultaneous recordings of both quantities avoid

the possibility of mistaken interpretation. Sea effects on the magneto-

telluric field have also been shown to resemble the response of conductive

substrata whenever magnitude alone is measured.

A report on laboratory scale model work has been included. A small

one cubic foot tank was used. The model material consisted of brass

and brass filings. The plane wave field was simulated by having

current fed through two slightly buried horizontal rods, lying at

opposite edges of the tank. Data for a vertical layer model and for

a buried cylinder model is presented. These results show the same

general behavior as those obtained by the finite difference method.

Also, frequency response, heating, electromagnetic coupling and other

problems associated with the model material are discussed.
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CHAPTER I

SUMMARY AND HISTORICAL REVIEW

1.1 Summary

The magneto-telluric method is a geophysical procedure for the

determination of the sub-surface conductivity, especially at great

depths. The name magneto-telluric field was coined by Cagniard (1953)

to distinguish the short period variations (about 100 seconds and less)

of the earth's electric and magnetic field, which exhibit electro-

magnetic characteristics, from the long term oscillations which are

in the nature of static fields. No restrictions regarding the

origin of the radiation are implied; all phenomena having electromag-

netic properties are included. The main contributions to the magneto-

telluric field seem to arise from electromagnetic waves generated by

ionospheric current sheets and by lightning discharges. The first

produces a very low frequency spectrum with the most intense components

in the 0.01 to 1 cycle range (Cagniard, 1956) the second results in

oscillations in the audio range.

Extensive measurements point to the large scale uniformity of the

magneto-telluric field (Schlumberger & Kunets, 1948; Kunets, 1953,

1954) and calculations by Wait (1954) lead us to expect such behavior.

The uniformity of the magneto-telluric field over large areas

permits one to analyse the field by considering plane electromagnetic

waves incident on a plane earth. The geometry of the ionospheric layers
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and the frequencies of interest allow us to neglect the earth's

curvature. In other words, we are concerned with rather local effects.

In investigating the behavior of plane wave fields in the earth,

the enormous contrast between the magnitudes of the constant of

propagation of electromagnetic waves in the air and in the earth

materials, plays an important role. Because of this contrast, no

matter what the angle at which the wave may incide on the earth, the

refracted wave will propagate essentially vertically down. Such

property makes feasible the study of the magneto-telluric field

without having to track down the radiation sources, which would be

an impossibility. As far as the earth is concerned, all the wave

may have come at a normal incidence. Further, still by virtue of the

contrast in the propagation constants, the current flow across the

earth's surface is negligible. Therefore, if we have current flow

perpendicular to the strike of a two dimensional geological structure

(that is, the magnetic vector polarized parallel to the strike), then

the surface magnetic field is constant, even over regions of changing

conductivity. If instead the current flow runs parallel to the strike

of the two dimensional structure, then it is the electric field that

remains constant at the surface. These results may be summarized by

stating that when a plane wave incides on a two dimensional geologic

structure, the vector component parallel to the strike of the structure

is constant at the earth's surface. The importance of these results

in mathematical analysis is evident and indeed it contributed to

restrict the scope of this work to two dimensional structures* In

practical geophysics these properties sound a warning against trying

to detect buried structures by measuring the field polarized parallel

-EMEU
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to it, either electrical or magnetic.

This group of results simplify further the problem of analysis

of the magneto-telluric field over one or two dimensional geologic

formations. We had seen previously that we could study it by learning

about the behavior of plane waves incident on a plane earth. New we

see that we don't even have to consider the field in air. No matter

what the geometry of the changes in conductivity, the surface

polarized field will be constant and therefore we have to deal only

with the propagation of electromagnetic waves within the earth.

At this point, we may introduce the basic ideas of the magneto-

telluric method as developped by Cagniard (1953). The magneto-telluric

method could be called the impedance method because in fact it consists

in obtaining the impedance normal to the earth's surface by measuring

the horizontal electric and magnetic fields. This concept of impedance

of a region of space, although analogous to that of impedance of an

electrical circuit is not as familiar. Usually we define impedance

normal to a surface separating two media as the ratio of the tangential

electric intensity to the tangential magnetic intensity (Schelkunoff,

483, 1943). For a plane wave on a uniform earth, it is given by

Ej /4

where y increases with depth and the earth surface is defined by the

plane x-z at y: 0. As we see in (1-1), the ratio of Ez/Hx gives us

the conductivity T of the medium because the p, of geologic materials

can be considered constant and the radian frequency w is known.

Plane waves are attenuated exponentially within an uniform earth

and in some complicated manner in a non-uniform earth. Since this

m U
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attenuation becomes stronger for higher frequencies, by measuring E/H

at several frequencies we sample the conductivity at different depths.

An estimate of the depth measured is afforded by the skin depth p,

..1- (1-2)

The main contribution to the apparent conductivity measured at the

surface comes generally from depths y such that Y < P/3.

The generalized magneto-telluric method is the extension to an

arbitrary earth of the concept of impedance normal to the earth's

surface, employed by Cagniard (1953) in the analysis of a horizontally

stratified earth. However, as mentioned earlier, this investigation

will be restricted to two dimensional geometries.

While the one dimensional problem treated by Cagniard needed

only a spectrum of frequencies at one location, in two dimensional

structures we will need coverage along a line perpendicular to the

strike of the structure. At each successive points of this line,

measurements at a spectrum of frequencies are made, so that the vertical

and horizontal changes in conductivity may be detected.

Until some progress is made in the quantitative approach to the

interpretation or inverse boundary value problem, we will have to use

a mapping device to get a picture of the sub surface. A way in which we

may accomplish this is by plotting the apparent resistivities at

several frequencies, under the measuring point at a depth equal to

the skin depth for the frequency in question. An example of this type

of interpretation map is given in fig. 2-6.

The logical starting point for an investigation of two dimensional

geological structures is the problem of inclined layers. A diagram

of this type of geometry is shown in fig. 3-3. Although the simplest

-~ -
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case of two dimensional change in electrical parameters, this problem

belongs to a famous class of problems of mathematical physics, known

as the finitely conducting wedge problems. These problems have remained

not only unsolved, but actually impossible of setting up explicitly.

The reason for this situation resides in the nature of the solution

of the Helmolts equation

Va. + K = 0 (1-3)

in cylindrical coordinates r, 4b and s. The face of the wedge are

planes z - , so that in an inclined layer problem (which is a

composite wedge) the earth's surface is given by + = 0 and 4 = Tr

and the dipping bed is at + =at . New the general solution of

equations (1-3) is in terms of Hanekl and trigonometric functions, namely

U (A ) -+ H "(1)(A (M)Setn m4 + B(m) ccosr4)j (1-4)

The problem is to match ul (corresponding to (1-4) in medium of

propagation constant k1 ) to u2 along a boundary += at , in order to

determine the functionals A(m) and B(m). It turns out that the

solutions cannot be matched at a constant 4 boundary, because the Hankel
functions have different arguments from one wedge to the other. Or

rather, in order to match solutions, A(m) and B(m) would have also to be

functions of r which of course cannot be.

These obstacles were managed by starting out with an integral

solution for the solution of the Helmolts equation based on Dougall's

(1899), Green's function for a wedge space. This solution ensists

of an integral over the order of the Bessel functions to account for

the fact that the dipping layer may assume any angle,

5
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00

u.Cr, Qr) (1-5)u~r, =Za (I O S AscS+ s + 8(s) sink 54>) J5(15

where Y-in and Kj is the modified Bessel functions of first kind.

We will have of course one solution u, for one side and a solution u,

for the other side of the dipping layer geometry. Since we cannot

match integrands for the reasons discussed in the previous paragraph, we

match integrals and satisfy the conditions,

u =constant at the earth's surface, i.e., 4>=Oand 4=T
and

L*LL

at U ~ o (1-6)

Introduction of the two integrals like (1-5) (one for u, another for u. )
into the above equations, yield a system of 4 singular integral

equations in 4 unknowns A(s), B(s), C(s) and D(s).

This system is then solved by the repeated use of Kontorovich

Lebedev transforms (N. N. Lebedev, 1946) to invert the system of integral

equations into integrals which give explicitly the functionals A(s),

B(s), C(s) and D(s). The final solution for the field over an inclined

bed is given in equations (3-82) and (3-83) in terms of integrals.

The cumbersomeness of the analytical approach and its downright

impossibility when we need to analyse more complicated geometries

led to the development in chapter IV, of a finite difference treatment

which can be used on any 2 dimensional geological structure. The

difficulties arising from the fact that the solution to the Helmolts

equation (1-3) for wave propagation in the earth is a complex number,

are taken care of by splitting the Helmoltz equation into a system of

two differential equations in two unknowns,
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V#A - K' = (1-6)
V'B +K' A =0

where u = A +iB and k, 2 is real and equal to a . The system

(1-6) is then converted to finite differences as

4

jjAt -+A.- K k 6,-=

4

L - ++W A. =

and several boundary value problems of interest in connection with

plane waves incident on the earth are solved by relaxation techniques

(the reader is referred to figs. 4-4 and 4-5 for the mechanism of the

relaxation operators).

The use of finite difference methods is feasible on account of

the uniformity at the earth's surface of the polarized field as well as

on aecount of the strong attenuation of electromagnetic waves within

the earth. In this way we know that the field is constant at the

earth's surface, that it behaves in a known manner at a sufficiently

far horisontal distance from the region of changing conductivity and

also that it becomes "sero" at depth (to the accuracy carried in the

finite difference calculation). This gives us a set of homogeneous and

inhomogeneous Dirichlet conditions around a closed boundary which

make the problem determined.

The finite difference technique was applied to the solution of a

set of inclined layer problems. These covered the three dipping angles

of 450, 90o, and 1350, and for each inclination the electrically and
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magnetically polarised solutions were obtained. The conductivity contrast

was 4. Two other examples dealing with vertical beds, one in contact

with an infinitely conducting medium, the other in contact with a non--

conducting medium, were also solved to give us an idea of the behavior

of the field for very high conductivity contrasts.

The inelined layer problems were chosen because their finite difference

solution is more general than that of problems involving finite boundaries.

Known their reponse at one frequency, we can deduce from it the response

at all frequencies (conductivity contrast and angle of dip being constant).

In effect, if we plot the apparent resistivities at successive frequencies,

at a depth equal to the depth of penetration, all the lines of equal

apparent conductivity will go through the strike of the inclined bed.

This affords an interpretational procedure for such structures.

Using the solution for the vertical layer in contact with an

infinitely conducting medium as the medel, a study was made of the

effect of the sea coast on the apparent resistivity inland. It was

found that increases of the order of 2% on the apparent resistivities

occur between kr= 2.5 and kr =1.5, k being the propagation constant and

r the distance from the measuring station to the sea. When kr becomes

smaller than 1.5 the apparent resistivities fall very rapidly. This

response may simulate very closely that of a two layered earth with a

very conductive substratum.

The results for the inclined layer cases showed that the magneto-.

telluric field remains unaffected at a kr of 3.5 from the inclined

layer contact, either for magnetic or electric polarization. Each

polarization showed distinctive features.
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As we go across the inclined layer from the resistive to the

conductive side, electric polarized waves usually produce just a gradual

change from the apparent resistivity of one medium to that of the other

medium. However, small effects, towards higher resistivities on the

resistive side and lower resistivities on the conductive side proceed

and follow, respectively, the gradual transition of apparent resistivity.

For magnetic polarization, as we approach the strike from the

resistive side, the first effect felt is usually a lowering of apparent

resistivities around ke= 3. This develops in a minimum of apparent

resistivity which appears to become stronger for shallower angles (by

this we mean that the acute angle is on the resistive side). As we

proceed toward the boundary of the media, we run next into a zone of very

large apparent conductivities. For 450 and 1350 inclined layers the

apparent resistivities in this region were about twice that of the

resistive medium; for vertical beds the effect is smaller. Finally, as

we cross into the conductive medium, the apparent resistivities take values

slightly smaller than the resistivity of the conductive medium. These

effects disappear at a kr of 3 away from the strike, on the conductive side.

The results from the problems with infinite contrast show that the

conductivity contrast does not affect very much the location of these

regions of changing conductivity; rather, it is the inclination of the beds

that controls them.

In the appendix some modelling results are reported. A scale model

of a vertical layer and another of a buried cylinder were run with considerable

success. The data obtained confirms, where it is pertinent, the finite

difference results.



-10-

1.2 Historical notes

This investigation concerns primarily a geophysical method but

the main problems pertain to mathematical physics. Consequently,

its historical background lies both in geophysics and in mathematical

physics.

The basic ideas of the magneto-telluric method are a recent

development. They seem to have been motivated (Cagniard, 1956) by

the lack of correlation between the predictions of the spherical

harmonical analysis of the earth's magnetic field due to Schuster

(1889) and Chapman (1919), and the actual measurements at a number

of observatories. This fact and the increasing better knowledge of

the properties of geologic meterials led to the realization of the

important role played by local geologic structures. Almost simultaneously

while Tikhonov (1950) called attention for the possibilities of the

method as a tool for exploration of great depths, Kato and Kikuchi

(1950) made some measurements of the phase angle between the electric

and the magnetic field and showed that they could arise from

electromagnetic propagation on a two layer earth. A year later, in

one of his series of papers on the electrical state of the crust,

Rikitake (1951) showed that the electrical properties of the earth's

crust could be determined by analysing the changes in telluric

currents and in the geomagnetic field. The following year saw the

publication of another article by Tikhonov and Lipskaia (1952)

giving results for a two layer earth with an infinitely conductive

bottom layer. Lipskaia (1953) in a later paper elaborated the previous
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results and showed that they agreed with the data of the observatories

at Tucson (Arizona), Toyokhara (Japan), and Zuy (Eastern Siberia).

Finally Cagniard (1953) published a very comprehensive paper on the

magneto-telluric field over a horisontally layered earth, including

methods to deal with the interpretation problem. He also pointed out

the possible usefulness of the method as an exploration tool.

Since then there has been considerable activity in the study

of the magneto-telluric field. Papers by Bondarenko (1953, 1953)

dealt with the electromagnetic nature of the phenomena. In the U. S.

work is or has been in progress at the Institute of Geophysics of the

University of California, at the California Institute of Technology

and at M. I. T. The studies at N. I. T. have already produced

preliminary instrumentation for field measurements (Cunningham, 1957)

In this thesis an analytic formal solution was found to the

problem of dipping beds and a way of handling arbitrary two dimensional

geometries was developped through the use of finite differences. The

first problem is related to a whole series of famous problems in the

theory of the diffraction, which are sometimes known as wedge problems.

A particular case, the diffraction of electromagnetic wave by an

infinitely conducting half plate was solved originally in a most

ingineous manner by Sommerfeld (1896). Since then a few different

ways of approaching the problem have been developped (Kontorovich and

Lebedev, 1939; Clemmow, 1950; Stakgold, 1954; etc.) The more general

problem of a diffraction by a perfectly conductive wedge has been

solved rather recently by Grinberg (1948), Nomura (1951), Oberhettinger
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(1954). At the same time the radio engineers have been trying to

analyse the behavior of radio waves as they go over regions of dif-

ferent conductivities. Besides a number of empirical efforts, successful

approximate and exact solutions have been obtained by Gunberg (1943),

Alpert. and all (1953), Bremmer (1953), and Clemmow (1953). However,

in general their work cannot be adapted to our purposes because the

high frequency of the radio waves allows them to relax boundary

conditions at the contact of two 'media, a procedure that we cannot

follow in our case. The type of solution obtained in this text is

different from all mentioned above except for the fact that we start

from Dougall's (1899) Green's function which has also been used in an

orthodox fashion by Oberhettinger (1954) in his problem.

As to the finite difference approach to electromagnetic propagation

in arbitrary two dimensional structures, to the best knowledge of the

author it has not been considered in the literature. However, the

solution of systems of difference equations by relaxation methods

is mentioned by Shaw (1953) and Allen (1954).



CHAPTER II

GENERAL PROPERTIES OF PLANE WAVE FIELDS IN THE EARTH AND THE

MAGNETO-TELLURIC METHOD

2.1 The electromagnetic nature of the magneto-telluric field.

It is important to emphasize from the start that the magneto-

telluric field is an electromagnetic field. This is just a statement

of the scale involved, but it helps in putting the problem in its

proper perspective.

Early workers were not aware of this fact and their ideas have

not died down completely. Some thought that the variations in the

magnetic field were the Biot-Savart field of the telluric (electric)

currents in the ground. As such, both the electric and the magnetic

fields should be in phase. Anothier group attributed the telluric

currents to a rather simple case of induction by the existing magnetic

field. Accordingly, the fields might be expected to be 900 out of

phase. As we shall see, theory and experiment do not bear out these

ideas.

The old hypothese can only be explained in terms of lack of data

regarding the electrical properties of earth materials as well as

to the scarcity of simultaneous measurements of the electric and

magnetic fields of the earth. The oscillations to which the magneto-

telluric method applies have periods of the order of minutes and shorter,

up to a few hundred cycles. We know that the conductivities of rocks

- N=- I -A
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vary anywhere between 10-1 to 10-5 mhos/meter. The propagation of an

electromagnetic wave of frequency w in a medium of magnetic permeability

/. and conductivity <rcan be described by a Helmoltz equation.

V utk2 u=O

where k2 =j iAcj(displacement currents neglected). The early ideas of

static fields involve the assumption that k, the propagation constant,

can be neglected and the field described by Laplace's equation. With

the frequencies and conductivities in question, it is clear that we

cannot do this without mutilating the problem. This a priori conclusion

regarding the electromagnetic character of short period variations

of the electric and magnetic field in the earth has been confirmed

by an ever increasing amount of data (Schlumberger & Kunetz 1948;

Kunetz 1953, 1954). Among the most salient and diagnostic features

are (Cagniard, 1956):

a. similarity of simultaneous recordings at places separated by

thousands of miles (Madagascar, France, and Venezuela).

b. at the same time and place frequency spectrum of electric and

magnetic components is identical

c. uniformity of telluric currents over large areas.

d. the phase angle between the electric field vector and the magnetic

field vector, in a given place, are function of period.

e. Correlation of magneto-telluric activity with Sun and auroral activity

On the basis of these characteristics, the origin of the magneto-

telluric field is thought to be the motion of large current sheets in

the ionosphere. The electromagnetic waves of very large wavelength (as
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compared with the Earth's size) generated by these planetary currents,

upon inciding on the earth are reflected, refracted and diffracted

by geologic structures. It is the aim of magneto-telluric method

to deduce from the patterns of the surface electromagnetic field

the nature of the sub-surface material.

2.2 Uniformity of telluric current sheets.

The question of the uniformity of the magneto telluric field

has been examined critically by Wait (1954). By setting up the field

in the form of a spectrum of plane waves due to an aperture

distribution, he has shown that if the magneto-telluric field were

due to a dipole at about 100 km. high, uniformity might be expected in

a range of 35 km., at a frequency of 1 cycle. This is of course, the

most unfavorable situation possible. As Cagniard (1953, 1956)

has pointed out repeatedly, everything leads us to believe that

the magneto-telluric field is not set up by isolated dipoles ever

our heads, but rather by large current sheets of global scale. And

the fields set up by such large ionospheric motions are bound to be

uniform and resemble plane wave fields.

m~
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2.3 General properties of plane wave fields in the earth

From the previous sections, we have seen that the magneto-telluric

field is a plane electromagnetic field. Here we will consider certain

general features of such fields in two dimensional geological structures.

The results are of great importance not only in simplifying the

mathematical analysis, but also in bringing to light some unfavorable

conditions for field measurements.

The two dimensional geometries in question are those of interest

in geophysics and therefore are always bounded by the earth's surface

represented by a plane x-s at y o. All crossectiona x-y of the structures

are identical (see fig 2-1). The impinging plane waves will be arbitrarily

oriented. However, for purposes of analysis, we will consider such an

arbitrary wave to be the sum of two polarized waves: one, which we

will call magnetically polarized, will have the magnetic vector

oriented on the z direction, that is along the strike of the structure;

the other, which will be called electrically polarized will have the

electric vector aligned on the z direction also. By superposition,

we may combine these two waves to reconstruct any arbitrarily inciding

plane wave. However, for the purposes of this work we will consider

separately solutions for magnetic and for electric polarization.

The results to be shown refer to the arbitrariness of the angle

of incidence and to the uniformity of the surface polarized electro-

magnetic field. The first emphasizes the rather well known fact that

for the earth and at the low frequencies of interest in geophysics,

no matter what the incidence of the plane electromagnetic wave, it

will propagate essentially vertically down. The second property is

rather surprising, and it consists in the fact that the polarized field
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(electrical or magnetic) will be constant at the earth's surface, even

across regions of changing conductivity.

The importance of these properties is evident. Mathematically

it enables one to set up the problems dealing with propagation of plane

waves in the earth without reference to air, because instead of

continuity conditions at the earth's interface, we have inhomogeneous

Dirichlet conditions. The saving in algebra and mathematical dif-

ficulties is sizable. Further it makes possible the use of the

rather straightforward finite difference method developped in chapter

IV. From the practical viewpoint it sounds a warning against electrical

measurements over two dimensional structures when dealing with

electrical polarization, or magnetic measurements if by any chance

magnetic polarization exists; in both cases any sub-surface structure

would go undetected.

2.3.1 Arbitrariness of angle of incidence.

If we compare the propagation constants for air and for the earth

materials we have respectively

kair~Jl0-9

kearthi1l

Consequently, the phase velocity of an electromagnetic wave in air

is much greater than in the earth. If we have an incoming wave at any

incidence, in order to have continuity of electromagnetic components

across the earth's surface, the refraction at the interface forces the

wave in the earth to propagate essentially vertically down. The use,

for example, of Snell's law gives a quantitative idea of how close to

I,
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the normal the angle of refraction is. If + is the angle of refraction

in the earth, 4) the angle of incidence, and k and &k the propagation
constants for air and earth, respectively (angles measured from the

normal to the surface),

sin4=K sin# (2-1)

From equation (2-1) we see that even if 4 is a grazing incidence (making

sin4 .'), kAL is of the order of 10-5 . The angle whose sine is

10-5 is around a hundreth of one degree, and this is how far from the

vertical the wave propagated in the earth will ever get.

The advantages of this situation are evident. Even if we have

waves inciding simultaneously at several incidences, the field inside

the earth will never know it. As far as the earth is concerned, all

the waves may have incided normally and since previous sections have

brought out the uniformity of the magneto-telluric field over large

regions, we are free to study the phenomena by considering models with

normally incident waves.

2.3.2 The uniformity of the surface magnetic field

Let us assume a magnetically polarized plane wave inciding upon

a two dimensional structure (see fig. 2-1). The magnetic vector can be

described by one component along the z axis, Hz ; both H and Hx are

zero. The electrical vector however, will have components Ex and E .
As shown in 2.3.1, k (earth) >> k (air). So we may consider the

propagation constant k for air equal to zero in comparison with the

propagation constant for the earth. Then, there will be no vertical
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current flow at the surface of separation of air and earth and the

normal component of the electric field, Ey , will be zero there.

In order to make the discussion shorter, let us assume we are

dealing with a fault, with the understanding that the results are

applicable to any two dimensional structure. The fault will separate

two regions of different conductivities and propagation constants k1

and k a . New, wery far away from the fault boundary the field will

behave like over an homogeneous uniform earth. Accordingly, it can

be described by

. + k

or explicitly by

Hz,= c, e ikl as x 3 - 0.

Hg=caei'ky as ,

where the subscripts refer to the medium in which the field is being

considered. The corresponding total current at these points will be

given by

If we take a unit width of our structure and integrate the far away

magnetic fields through a path C as shown in fig. 2-3, we will have

at the surface
0o

T=4Hjz =C1

MIMEW - -- - I- = 5
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00

Now, since there is no current flow across the air-earth interface,

there will be conservation of total current. Therefore the current

flow across any crossection y-z is constant and we have

Ii= 12

or

Ci= C2

We may conclude then that the surface magnetic field, in the case

of magnetic polarization, is constant, even across regions of changing

conductivity. This property is restricted to two dimensional geologic

structures. It may be added that the condition of no normal current

flow corresponds to the vanishing of the tangential derivative of the

magnetic field at the earth's surface. i.e. in cartesian coordinates

E norma=

E = 'z- curl H
kz

E -i z 0
normal - ~ k (

which together with the electromagnetic boundary condition of continuity

of tangential H at the boundaries of different media, furnish an

alternative proof. If the surface magnetic field is uniform in both

sides of the fault and is required to be continuous across it, then

the field has to be uniform and equal over all the surface.
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2.3.3 The uniformity of the surface electric field

From the invariance of Maxwell's equations to the exchange of

E and H vectors in a constant physical setting, we might expect to find

for the case of electric polarization a property identical to the one

found for magnetic polarization in the previous section.

Considering again for simplicity the same fault geometry of fig.

2-3, we assume an electrically polarized incident wave; that is, the

field will be described by Es , Hy , Hz , all other electromagnetic

components being zero. The earth's surface is the plane z-x and the

fault plane is hinged on the z axis.

Referring to fig 2-4, consider the E field along the line A A'

(on the x direction). Since we are dealing with a.c. phenomena we may

consider this line the base line for any measurements of Ez . If we

drew another line B, defined by an equal- a.c. potential drop from A,

this equipotential line could either follow BB' or BB'"; in both

cases boundary conditions would be matched. However, the hypothesis

that we are dealing with an electrically polarized wave, which has no

y or x components, would be contradicted if the curved line BB' were

the equipotential line because then E would have to have at least y

components. Therefore, we conclude that for electrically polarized plane

waves, in two dimensional structures, the surface electrical field

is constant. Further, since from Maxwell's equations

Hy 3 E

Ex --
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we see that the vertical component of the magnetic field is also sore

at the earth's surface.

We note then that the properties of both polarizations are

syametrical as far as the interchange of E and H are concerned. We may

summarize 2.3.2 and 2.3.3 in the following table:

magnetic polarization electric polarization

field components H(1=O, HY=O, H;=const. HB= g(x), Hy=0, Hs=O

at the earth's Ex (x), 1 O, 0 =O , %=const

surface

.

2.4 The basic theory of the magneto-telluric method.

The basic concepts of the magneto-telluric method are due to

Tikhonov (1952) and Cagniard (1953). Cagniard's paper is a very

comprehensive discussion of the magneto-telluric field over a stratified

earth.

In order to introduce the main ideas, let us assume that we have a

plane wave inciding on a uniform earth. Define a cartesian coordinate

system as before, i.e. z into the paper, x horizontal and parallel to the

paper, and y vertical and parallel to the paper. From previous con-

siderations, it is clear that if, say, the E field has only a component

along z, the electric field is described by

_ kE = 0 (2-2)

where k2  T i or explicitly by

EZ(7) = Ae;KY (2-3)

Through Maxwell's equations, we get the corresponding magnetic field
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Now, if we consider the ratio

T/ (2-4)

we notice that the measurement of E. /H. at surface determines the

conductivity of the medium, since we know the frequency and for geologic

materials 1A can be considered constant. We note further that the

electric field increases proportionally to W) and that the magnetic field

lags behind the electric field 45? For a horizontally layered earth

the phase lag becomes dependent on frequency (see for example Cagniard,

1953).

The measurement of magnitudes E/H and the associated phase

difference at different frequencies are the characteristic feature of

the magneto-telluric method.

One of the great advantages of the method is in avoiding the

necessity of base points because we are only concerned with a relative

measurement. E and H can vary hourly, daily, or in any manner; magnetic

storms are welcomed because they enhance the magnitudes of the field;

no matter what the conditions, E/H and the phase difference will be

constant for a given place at a given frequency.

The added information due to measurements at a spectrum of frequencies

is related to the skin depth. As a wave penetrates into a uniform half

space, its magnitude is attenuated exponentially as shown in equation

(2-3). The skin depth is the depth at which this magnitude becomes

1/e of the surface value and is therefore given by
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b -

Consequently the E/H measurement, at a frequency w gives us mostly the

sampling of the conductivity above the corresponding skin depth. As

we lower the frequency we reach deeper strata. From the work for a

layered earth by Cagniard it can be generally stated that in a two

layered earth, the conductivity of the bottom layer at a depth h

becomes measurably only when p/h> 4 , the diagnostic values coming in

at / ~l ?- to 3 . The phase difference of E and H is more sensitive

and for /g4 >, O.9 the measurements are already diagnostic of the

conductivity of the lower layer.

To get an idea of the depths that can be investigated with the

magneto-telluric method, the reader is referred to fig. 2-5. It can

be seen that, at least in principle, for conductivities like those

of igneous and metamorphic rocks, depths of the order of 400 km.

can be reached at frequencies between 0.1 and 0.01 cycles / second.

However, in dealing with such huge vertical scale, we have to pay

attention to horizontal changes in conductivity which are bound to

occur in comparable horizontal distances. This makes imperative a study

of the effect of 2 dimensional changes in conductivity on the magneto-

telluric field.

2.5 The generalized magneto-telluric method.

The magneto-telluric method, as developped by Cagniard (Cagniard,

1953), was specifically designed for conditions of horizontal stratifi-

cation. However, non-horizontal structures are as common, or more common

£
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than horizontal ones. In attempting to carry the basic concepts of the

magneto-telluric method into the more general geological setting involving

horizontal as well as vertical changes of electrical properties, a

simple change in the field procedures will be necessary. While over a

stratified earth a measurement at one geographical location was suf-

ficient to determine the structure, for complex structures continuous

or nearly continuous coverage is needed. Here we will consider only

two dimensional structures and as such we will be supposed to have

data at the earth's surface along a line perpendicular to the strike

of the structure.

In considering any geophysical method of sub-surface investigation,

the question of the inverse boundary value problem must be kept in mind.

In other words, from the available surface data how do we narrow the

deduced structure toward a unique solution? As a general statement,

we may say that in the generalized magneto-telluric method, while the

successive stations at the surface will show the horizontal changes

in conductivity, the different frequencies at every station will afford

coverage of depth, the lower frequencies sampling greater depths. In

the case of the magneto-telluric field in two space dimensions the

inverse boundary value problem consists in solving an integral equation

(T. R. Madden, 1956) of the type

G (x,oI) JJG x,y'l) f[.(x', ) { e]A (2-6)

the two dimensional structure being in plane x, y, and y-o the earth's

surface. In the integral equation above u(x,ojw) is the measured field

at a radian frequency w, G is the Green's function, C(0,7') is the
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primary source distribution and (w) is the overall source distribution

which we want to find. If measurements were made at one frequency

only, the inverse problem would be generally undetermined, because in

effect we would be trying to solve a two dimensional problem with one

dimensional data. Considering the analogy between integral equations

and systems of algebraic equations we see that the one frequency

measurement would produce a situation resembling a system of n equations

in n?' unknowns. By using a spectrum of frequencies we tend to close

the gap between the number of equations and unknowns, provided we can

account for the frequency behavior of the right hand side of equation

(2-6). This can be done in cases involving infinite or semi-infinite

boundaries (see section 44), but rigorous studies for more general

cases are lacking. In the meanwhile, we must tackle the interpretation

problem (the inverse boundary value problem) from a purely qualitative

point of view. Since the use of a frequency spectrum of waves gives us

two dimensional spatial data, we may devise a crossectional mapping

device which is related to the inverse transform of the integral equation

(2-6) in a manner not exactly known. However the relationship must be

close enough so that it provides one with a semi-quantitative picture

of the sub-surface situation. Such concept has been employed very

successfully by the induced polarization group at M. I. T. (Hallef, Vosoff,

1957; T. R. Madden et. al, 1957) which used the separation between send-

ing and receiving dipoles as a criterium for mapping the properties

at depth. In the magneto-telluric field, the sampling of deeper strata

is accomplished by lowering frequencies and since this sampling is
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related to the amount of current at a given depth, we may use the skin

depth as a depth parameter in our mapping transform.

An example of this type of crossectional mapping for interpretation

purposes is shown in fig. 2-6. The data was obtained on a reduced

scale model of a buried clinder in a homogeneous earth, the conductivity

contrast being about 1000. As it will be discussed in detail in the

section on modelling, the material was not very homogeneous and the

measurements were plagued by many troubles which account for the scatter

of values in the homogeneous region as well as for some lack of symmetry.

The map was made by plotting the values of apparent resistivity at

depths equivalent to the skin depth in the homogeneous material, at the

several frequencies used, under the station at which the measurement

was made.

Before closing this section we may emphasize again that the trans-

form obtained by the mapping is a purely semi-quantitative guide to

interpretation. In the remaining chapters, we will deal with the

direct problem. Only when we understand more fully the direct problem

can we hope to have some success in solving the inverse problem.
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CHAPTER III

INCLINED LAYERS

3.1 Introduction

This chapter is devoted to the analytic treatment of the effect

of inclined layers on an incident plane electromagnetic wave. The

problem is two dimensional, with the earth's surface defined by angles

<p0 and 4:ir, and the line of contact between the media of different
conductivities at an arbitrary angle +=0( . This type of geometry is

an idealization of a rather common and important group of geologic

structures. Among them we may cite faults, dipping beds and sea-land

contacts.

In the following sections we obtain a formal solution for the

general inclined layer problem (i.e. the problem in which both media

have finite conductivites). As a step which serves to illustrate the

details of the method by which we obtain the solution to the general

problem, we solve also the problem of a wedge bounded by a non-

conductor on one face and a perfect conductor on the other face. This

problem of course, has considerable interest by itself, because it

can be used as a model for sea-land contacts and inclined layer

problems of large conductivity contrast.



3.2 The electromagnetic field vectors

As explained in 2.3 we will be dealing with an arbitrary incident

wave, having x, y, and z components therefore, and in order to make the

problem amenable to analysis, we break such a wave into a sum of two

electromagnetic waves, one magnetically polarized (i.e polarized parallel

to the structure, that is with the magnetic vector parallel to the S

axis), the other electrically polarized (?k" Ey=O, Ez= 0 ) and solve

separately for each type of wave. We may afterwards reconstruct

the arbitrary wave by superposition of both polarizations.

Although incidentally we deal with electric and with magnetic

line sources, our actual solutions will concern plane waves. In other

words, we are concerned with the field far away from sources. Because

of this and of the fact that much of the structure of the electromagnetic

field can be found by physical considerations, we will forego the use

of Hertz vectors and we will deal directly with the field vectors

E and H. Since according to the polarization we will have either Es

or Hz the rest of the field can be derived from Maxwell's equations.

This we proceed to do.

Let us consider first the case of magnetic polarization. The field

can be described by the scalar equation

IV ZH + K'H = 0 (3-1)
where H H a, az being a unit vector on the a direction. From Maxwell's

equations for periodic time variation

E = A curl H as
KZ (3-2)

I.
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In cartesian coordinates

- JH - Hcu ?( a.,, H =T ;) -Y

So that the field domponents are

W H(3-3)
E,= -ji

(3-4)

=- --

Therefore continuity of tangential E can be given either by

_Hz, - , H
k,' )y (3-5)

, D zz (3-6)

or at the x and y boundaries correspondingly. In cylindrical coordinates

we have -a

curL&zH =? -,i a4

(3-7)

E 
) 3H

+ r (3-8)

giving for the continuity of tangential component of E

(3-9)
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Now let us consider the case of electric polarization. The field this

time is described by the scalar equation

V E + k.E =0

where E =Eiz . Again from Maxwell's equation for periodic variation

we have

N L. ~LTtaLEJ
1/ILA)

In cartesian coordinates

(3-10)

(3.11)

In cylindrical coordinates

ii - I - _)

I/LLJ r

~ H

(3-12)

(3-13)

giving for the boundary condition of continuity of H tangential at a

boundary

(3-14)Hi

DEH-



$to

P

R

S*

SOURCE

FIG 3-1

R3

FIG 3-2



3.3 Wave solutions for a wedge space

In order to attack the solution of various types of dipping beds

problems, we have to express our wave solutions in a form compatible

with geometry under discussion. Before entering into the conditions

that force the solution to take special forms we may note that we are

using the cylindridal coordinate system, the wedge region being defined

by <=o and 4-=(, the direction of the angles being counterclockwise;

consequently the z axis is perpendicular to the plane of the paper

(fig. 3-1). We have seen that either for the magnetic or the electric

polarization, the field can be described in terms of an Helmolts equation.

Vgut K "--0 (3-15)

where Kt= -- a)<. We write equation (3-15) in cylindrical coordinates

IL 2.

a0LL D9-

Because no s dependence is involved, the above equation reduces to

XL+ --- + - "' -+ kVu. = 0 (3-16)) -e2 T r T ' Oz

Proceeding by the usual method of separation of variables, we assume

a solution

which substituted back into (3-16) gives

allowing us to set

r DR ) C

-31-
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and separate the R and I dependent equations

)P)+ ( xr *- ) R -0 (3-17)

(3-18)

The R equation is satisfied by linear combinations of the Hanka.

functions of first and second kind. Since we will be dealing with

divergent, outgoing waves, and do not desire solutions concerning

incoming convergent waves, which would produce singularities in places

where none exist, we will use only Hankel functions of the first

kind. As for the solutions of the j equation, they are easily

seen to be formed by combinations of cos m 4 and sin m< . That is

1Z(r) H H -

or

(, - e + 14 (1()(Kg) (3-19)

In order to obtain a representation of the two dimensional Green's

function appropriate to a wedge space (Dougall, 1899), we consider

the field of cylindrical waves produced by a line source (eventually by

removing the line source to infinity we produce plane waves). This

field can be represented by (Morse and Feshbach, 1323, 1953)

(6)

H, (Kit) A xo( (3-20)
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where -= K and R = r + rg -2rcoes ( 4 - 6). By using an addition

theorem for Bessel functions (Gray & Mathews, 103, 1922) we write (3-20) as

00

H(KR) -E m*) coS m (<b - 40) (3-21)
enr a

where r real and 0 <- 1K, ()and I ( gTo ) are the modified Bessel

functions of first and second kind respectively and

S)0

The necessary integral representation of H,, (k r) has to allow for the

fact that the angle of the wedge is arbitrary. Therefore, the integral

in question will have to be over the a variable. Expression (3-21)

shows clearly the potentiality of being transformed into such an

integral, having further the advantage of containing the needed

discontinuity. If we call S the integrand of the integral representation

of the Green's functions that we are looking for# from Cauchy's residue

theorem we know that

A = zTri ~jCIDue 5 zEm) km(r) 1m(yr) C05 m (- (3-22)
0 lt:=

Equality (3-22) requires function S to have poles at =sO, 1, 2,...

One such function is (m)/sin air which has a i residue (-) (a)

and where f (a) does not pesess any singularities in the complex plane.

Since our integral has to be equal to (3-21), we may suspect that the

numerator of S is

(i)gai (-#) cos m (4,) path, we w ic)

:so$ P-(1ir- ++ +.)K (gr) Im ( M.

By integrating S through the appropriate path, we will achieve the



-34-

double purpose of obtaining the needed integral representation and also

of checking that inded it yields the series of the addition theorem. The

integration in the complex plane can be written fully

.,- is* r r

$ Am + I Am = o (3-23)

with the convention that the positive direction is clockwise. The

The path of integration is shown in fig. 3-2.

As -+ 0

$ol m =.b . m K r)eyr)

As RaO, the integral along the large circle R vanishes and the only

contribution comes from the poles along the real axis ?

Therefore (3-23) reduces to

10 00

~ (y = i. (2- o) k(r) o~. cos (-,)

Where

$ = ce@s mT-+4)K f)T gT
stn nTr

Now if we let in the left hand side of equation (3-24) V#:swe
Ao

KO COAs O(r- 4t*4) ..5 r
Sinh s~r

Using the equalities

K= '-) L , ('r) -- Ti (-i)--
ES Z.'s i~ W

= K0(gr)

(3-24)

get

0.

s
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We get the final form for the integral representation of a line source

of cylindrical waves

K- cos i~- + K) s

Now that we have obtained the Green's function expression for a wedge

space, we may write the general solution to the unhomogeneous wave

equation in such a geometry as a sum of the source term plus the

homogeneous solution (3-19),

A = . ( source) - L (reftec$te)

(1) r W% t m- H. (Kr) + [ H1
4

-W, KI, K,. kg( .) Icos S (T~- ~ + + /\A O

In dealing with a problem consisting of several wedges, the solution

in the wedges without sources can be written

15e S -e J. (3-25)L~~~~~* =-.Ks( r e t Be (
17
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3.4 Difficulties in formulating the wedge problem

In most boundary value problems once the appropriate general solution

is found, the only difficulty usually arises on evaluating the integrals

obtained after the matching of boundary conditions. For the wedge

problem, besides the possible obstacles to the integration of the result,

we must add difficulties in matching boundary conditions. This may

account for the fact that the problem had not yet been formulated

exactly. Let us illustrate these difficulties. Suppose we are dealing

with the general inclined layer problem. Since our sources are in

air and we can describe the field completely in terms of the field

in the earth (due to the general properties of plane wave fields in the

earth discussed in section 2.3) we would have (see also fig. 3-3)

00

(L I is ( A (s) cosh 5+ B()si6k Sj (3-26)

LK.(C)c (s) Cosl sp + D(9) 54 j(

subject to boundary conditions

., tU. =constant at o,< T

1 - at.,~ -l (3-28)

The difficulty becomes immediately apparent. As we try to match

the integrands of (3-26) and (3-27) along boundary <. <x we see that this

is impossible because the factor in the integrand connected with the

--.-- - I.



radial dependence consists of Bessel functions which have different

arguments from one side to the other of the boundary. Since the

Bessel functions don't match at the boundary and we cannot introduce

any further radial dependence on the solution, the integrands cannot

ever match at a + constant boundary.

The same happens even for the simpler conditions at +=0 and

where ul and u2 cannot be constant due to the r dependence. Indeed

it turns out that for the above formulation only homogeneous Dirichlet

or Neuman conditions will enable us to use the simple procedure of

finding the functionals A and B from algebraic equations involving the

integrands.

The impossibility of matching the boundary conditions in a simple

way is basically the result of the form assumed by the two -dimensional

Helmolts equation combined with the use of the method of separation of

variables. No trouble would arise, for example, if the term containing

k2 in the Helmolts equation could be lumped together with the <# dependent

equation and the solution for the R equation contained only the separation

variable m. A very interesting attempt at bypassing this obstacle was

carried by Kontorovich and Lebedev (1939), who developped a transform pair

which enabled one to transform the Helmolts equation in cylindrical coordinates

into a one dimensional unhomogeneous equation in < . Unfortunately, restrictions

placed on the behavior of the solution at zero and infinity as well as

the dependence of the transform on the propagation constant k do not

permit the use of this approach in our problem.

In face of the failure to develop means to avoid the problems

-37-
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connected with the behavior of the radial solution, we are forced to

tackle the wedge problem head on. That is, since we cannot match

integrands, we will have to match integrals. The result is that we

are drawn into the attempt of solution of systems of singular integral

equations with several unknowns. This comprises the following sections.

3.5 Inclined layers with infinite contrast

We begin by considering the case of inclined layers where one of

the media posesses an infinite conductivity. This is an appropriate

model for cases of large contrasts between dipping beds in the earth

or for the *ase of the effects of the sea on the magneto-telluric field.

From equation (3-25) we know that the solution is given by

u. (',#) = K1 (i r) [A() Cos s4+ t (s) sink 54) 5  (3-29)

Since one of the media is infinitely conductive the electromagnetic

field is zero at its boundary. So the boundary conditions are,

u * h - constant at<= 0

UO at O/C (3-30)

In order for (3-29) to satisfy (3-30), A(s) and B(s) have to satisfy

the following pair of simultaneous singular integral equations

A is (3-31)

(3-32)
P 0<J4+
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Very little is known presently about the solution of systems of singular

integral equations. Therefore, rather than attempt a direct solution

of (3-31) and (3-32) we try to find an integral transform that will

convert our integral equations into integrals. One transform that

is appropriate for this end is the Lebedev transform (N. N. Lebedev,

1946). The transform pair can be written as

F'>) () Kis(x) Ax (3-33)

(3-34)
K (x) ns k sr F(s) JIS

provided that Lesbesque integrals of first class for x2 f(x) and x f-'(x)

exist.

In order to identify (3-31) with (3-34) we let

>f Y x , Fs (3-35)

Then A(s) is given by the following integral

A(s) = 5 'OW% Tr S < Q Jr (3-36)

To evaluate (3-36) we begin by expressing it in terms of Bessel functions

of the first kind. Using the equalities (H. T. F. II, 1953, 4 and 5)

(3-37)

y (Z) .I, (Z) - (, (z) e)
i s Y (3-38)
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and also recalling that -U= or K we get

Ka(yr)= e a gr)-Z (Kr) e V] (339
sink T(3-39)

and therefore integral (3-36) becomes

e E 2I'a J J r

Equation (3-40) has the form of an Hankel integral transform whose

inverse is known (T. I. T., II, 1953, 7), so we can write directly

A(s) = 2 TT cosh 5 (3-41)

B(s) still remains to be found. However u vanishes identically at

and from (3-32) we see that B(s) has to satisfy

A(s) cos sc. + 5(s) 5i4k Sa( 0 (3-42)

from which

2 (Wo3-4z)S (-43
sinkset

Therefore the solution to the problem of dipping layers with infinite

conductivity can be written

9O50 
LS C CA 4qv (LA

-k[ '1 (YrCoA 1r5cosh 50 -K (3-")
Ir

Integrals of the type of the first term of (3-44) were studied by

Ramanujan and his results quoted by several authors (H. T. F. II, 54)

WkD4 LL +U.O~*(-5

Eq o ( 5 d) cosh s l cans swv = Ces (K Sin g

Equation (3-45) describes a downgoing plane wave as well as a upgoing
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wave. This last wave cannot of course exist because it would be a

violation of the conditions at infinity; next we will show how the

second term of the integral contains the factor that cancels this

exponentially increasing wave.

The second term of (3-44) is

K, tk~Lcoko Ln 4J5 (3-46)

Expanding co5s5s cli i/ s , (3-46) becomes

n04h t i-Z1bdrt t5jS (34)
th= Ks ) 7T s6nkS#t 50 S45A s(-7

The second term of (3-47) is again one of the integrals of the type

studied by Ramanujan (H. T. F. II, 53) and we may write

which makes the solution

LL(1r, )= e 5in SO (3-48)

Equation (3-48) gives then the polarized field in terms of an incident

vertically propagating plane wave minus the field which will arise

from reflection and refraction effects.

If we consider the fact that the Lebedev transform of cosk S(-x)

is given by .!! e we see that equation (3-48) satisfied the

boundary conditions reducing the h at the surface and to zero at

4.
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We will be satisfied here to leave the solution in integral form,

showing thus that the problem can be solved by the application of

fairly simple procedures. The evaluation of the integral in (3-48)

is another problem in itself, which we choose not to deal with. We

might add that if we tried to reduce the integral of (3-48) to an

infinite series by use of Cauchy's theorem, this series would be

divergent. The possibility of evaluating the integral by numerical

methods is exceedingly laborious because there are no tables of

modified Bessel functions of imaginary order, and further, because

usually the numerical integration of complex functions requires an

enormous amount of computation. However, the cases of interest connected

with equation (3-48) have been solved by the numerical method of

chapter IV and the results presented in section 4.6.
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3.6 The general inclined layer problem.

By the general inclined layer problem we understand the problem

of finding the field associated with plane electromagnetic waves inciding

normally to the earth's surface, when the earth is composed of two

regions of different but finite conductivity. These two regions meet

at a semi-infinite planar contact i.e. a fault or a bedding plane

(see fig. 3-3)

The general inclined layer structure is a special case of the

problem known in mathematical physics as the composite wedge problem.

This problem, to the best knowledge of the author, had not been solved

yet either in physics or in geophysics. I would like to mention that I

am indebted to professor S. M. SimpsonJr. for the suggestion of extending

the methods of section 3.5 to the general problem.

In the following, we will treat specifically the case of electrical

polarization, but the case of magnetic polarization is identical with

the exception of the constants in the derivative boundary conditions.

Referring back to equation (3-24) and fig. 3-3, we see that the problem

consists in solving

J $ (3-50)

2 , K. qr)Cs) "sk s (3-51)

subject to the boundary conditions

L = cons aaf at < 0 (3-52)

LLZ LLO Con s.rt,Lt al' I =
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and

(3-53)ar * =m
ULL. 4 L

where u, is the electrical field in medium 1, u. the electrical field

in medium 2, 4= o and #:f i, the earth's surface and <P=o( is the fault

or inclined layer plane. Introducing (3-50) and (3-51) into (3-53), (3-52)

we get a system of 4 simultaneous integral equations in 4 unknowns

A(s), B(s), C(s) and D(s)

o

00

OoLc C 4
7.

1K ( ) A() - K1(fr) C( S (3-58)

O= s soK 4 5 (gr (s) - ,(p') V(A5 +

(3-59)

+ 4cL~Os SO 4r) 5Ws) - 1/I,'ir1) i(s)J} ds5

Now if we define E (S) = c(s) c.os r+ D() sZ..L sT,-

- m

(3-60)
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equation (3-57) becomes

o6

which is similar to equation (3-56)

But back in 3.5 we solved an integral equation of the type of

(3-56) and (3-57) by using the Lebedev transform (see equation (3-33)

and (3-34))and therefore we know immediately that the solution to

(3-56) and (3-57) is

A 0)
0 s(3-62)

E (s)5

Introducing (3-62) in (3-60)we obtain

,)- C(s) ceiLsir (3--63)
06)r s4ik STT

Therefore we have reduced the number of integral equations and unknowns

from 4 to 2; A(s) and D(s) are known now. So the system of integral

equations becomes,

jW( )fcosMs- c Kt ) (p() SinksOc 6(s) s =

(3-64)

JK4r) osLsa - Ka (rr) A (S) s = W (1, r)

s r) Lake -- cs5oC(s)- Ki-j( k)osksa. 8(s) s(=
0

LL V (3-65)

which can be written

-4
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(s) C (s) - K;,,( ,r) s se k(s)) 1 s

v(41j ,;T)= Jr)Of-ss C-s) 6 ( 3-)s c

where
&.asl sf 1

sink ir
'sdabt k 5o' (3-6S)

(3-69)(whe )Lbe tans m S a be wi
Now the Lebedev transform pair can be written

F() rrz
K,% (A

(i ,(x) 5 1ak5r F(s) d s

So that if we multiply (3-66) and (3-67) by ) and integrate between

o and o0 , we get

Ko's(K,T) ArJ K1 QY h

Oe

0K (YZr) 5C i- si-as__
-sinksj

(3-70)
*0

rJ
jo

s5 K.5Q')J) C (S) j - -r, -~Z . sn~sf

00

J
(3-71)

We are now in position of eliminating the functional B(s) between

(3-70) and (3-71)

=

(36)

)
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K )is (f 5'co s(s) - s sin S'oC (5)] K,(pr) C(s) JS =

* a (3-72)

00

Defining

(', s) o C e '(s) - i foo(s) (3-73)

(5'5) S 'cosk s'K J s{,rr)0 (3-74)

we write (3-72) as

Kj y~r)K -(tr)S (5,(s') Kg,(r) C (s) cs Jt (5' Jr (3-75)

The above integral equation will then be satisfied if

FOOD )(3-76 )

Using again the Lebedev transform pair (equation (3-33) and (3-34) )

we solve integral equation (3-75) obtaining

5 L(5,rrz,r) (3-77)

where we have dropped the subscripts of s' because now there is no

need to distinguish one s from the other.

Following the same procedure as above, we may eliminate C(s) from

equation (3-66) and (3-77) and get

-- w.
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(- i (gj) J-r (3-78)

wth

wist cos set (5') - 5 (S) sin o st (3-79)

L * , y , r ) = s ' ( ') ,-g ( s ') V ( , ,r ( 3 -8 0 )

By substituting (3-62), (3-77) and (3-78) into (3-50) and (3-51)

we obtain the solution to the problem of inclined layers in an explicit

form,

[U~w C

* (3-81)

W C r

,a.Tr Ce si k < (3-82)

The full expressions abbreviated by h*, 1*, h and 1 are given

respectively by (3-80), (3-81), (3-73) and (3-74).

Since in the next chapter we will study by a finite difference

technique the response of arbitrary structures, including inclined

layers, we will leave the solution of the general inclined layer problem

in the integral form of equations (3-81) and (3-82).

-- -3.



CHAPTER IV

ARBITRARY 'IWO DIMENSIONAL GEOMETRIES

4.1 A finite difference approach

The difficulties associated with the inclined layer problem--

the simplest problem with conductivity variation in two dimensions--

give us an idea of the enormous mathematical obstacles which arise as

soon as we depart from one dimensional variation of the electrical

parameters. Further, as soon as we go beyond geometries which happen

to coincide with coordinates systems in which the wave equation is

separable, purely analytic solutions are generally impossible.

However, such complex phenomena are the rule in geophysics. This

immediately suggests the use of something more versatile than analytic

expressions, namely, finite differences. Plane wave problems in two

dimensions are emminently suitable to treatment by such methods for

several reasons. First, plane wave fields can be described by a scalar

in two dimensions. Second, from the discussion in chapter 2.3, we

know that this scalar is constant at the surface of the ground, enabling

us to discuss the field in terms only of its behavior inside the earth.

Since the electromagnetic field damps rather rapidly within the earth,

attenuating quickly reflection and diffraction effects, a short

distance from the disturbing region we find ourselves in a region where
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the waves behave like on a homogeneous medium (or like on a stratified

medium or any sort of structure for which we know the analytic solution).

These characteristics allow us to use finite difference nets which cover

a relatively small space dimension.

In this manner, we can approximate the problem having boundaries

at infinity by a perfectly determined boundary value problem with finite

boundaries. The boundary values are that the field is constant at the

earth's surface, sero at a finite depth and that it behaves in a known

manner (like over a homogeneous or stratified earth) far away from the

region of changing conductivity. Dirichlet inhomogeneous and homogeneous

conditions are then given on a closed boundary, while across the

boundaries of changing conductivity electromagnetic continuity

conditions are to be upheld.

It is clear that with such a model, simple progression procedures

cannot work properly. Rather, this is the type of finite difference

problem for which relaxation methods are suited. The following

sections develop a technique to handle by finite differences the

Helmoltz equation with the application of the relaxation method to the

resulting equation.

- -- 4
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4.2 The method of solution

The reduction of a problem involving infinite boundaries to a

problem dealing with finite boundaries, involves certain approximations.

In the present section, we will proceed to specify and justify these

approximations.

We may start by recalling two characteristics of plane waves in

the earth, discussed in section 2.3. First, in the case of a uniform

earth, it was found that the electromagnetic waves propagated essentially

vertically downward, no matter what the angle of incidence was. Second,

for an earth having arbitrary two dimensional changes of conductivity,

it was found that the electromagnetic field vector polarized along

the strike of the structures would have a constant surface value.

This polarized electromagnetis field vector is exactly the same vector

which will be used to describe the field in finite differences, because

its polarization allows it to be treated as a scalar. To these two

properties of plane waves in the earth, we may add a third that

results from the fact that the earth is a dissipative medium; namely,

that the electromagnetic field will be attenuated exponentially with

depth in a uniform earth. This is an extremely important characteristic

because it guarantees the rather rapid damping in the earth of electro-

magnetic waves, which as we wil see makes possible our method. (As

referred previously the far away picture does not have to be that of

a uniform earth. We adopt it here for simplicity of discussion, and

because we are interested mostly in solving inclined layer problems.

However, this is just a device to allow the specification of Dirichlet

-- - U.



conditions necessary to make the problem definite. Any other appropriate

set up could be used for the far away field).

Let us examine how we use the above properties to convert the

infinite boundary problem into a finite boundary problem amenable

therefore to finite difference techniques. The top boundary will be the

earth's surface where we know that the polarized field assumes a constant

value. The bottom boundary will be the depth for which the polarized

field becomes exponentially "zero", to the order of significant

figures carried in the computation. This bottom boundary does not

have to be parallel to the earth's surface. It certainly won't be in

cases of quarter spaces of different conductivities in contact, i.e.

for faults and inclined beds. For such cases the lower boundary, which

is characterized by the vanishing of the polarized field, may be assumed

to be as pictured in fig. 4-1. The validity of this procedure is

based on the fact, to be discussed in detail in section 4.5.3, that the

near surface field (which is the one in which we are interested) is

negligibly affected by the depth at which we assume it to "become zero",

as long as at this depth Kr., 4. Finally as we go far away along the

earth's surface from the region where the changes in conductivity occur,

the field will tend to that of a uniform earth; in other words, the

diffracted field is attenuated geometrically and by absorption away

from the diffracting region and very soon becomes negligible compared

with the incident field. The incident field will behave like

Lt = C e . (4-1)

at a point of the earth's surface infi'itely far away from the region

-52-
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of diffraction. Actually, the total field becomes essentially described

by equation (4-1) at distances of only a few kr from the region of

changing conductivity.

In this manner we have changed the infinite boundary problem into

a finite boundary problem. The space under consideration is now the

closed region bounded by the earth's surface, by the depth at which the

field goes to zero within the accuracy of the calculation, and by the

horizontal distance from the diffracting region at which the field ,

becomes essentially described by a vertically propagating plane wave.

At the top and lateral boundaries we have unhomogeneous Dirichlet conditions,

at the bottom homogeneous Dirichlet conditions and across the bodies of

different conductivities contained within the bounded region we will

have to satisfy electromagnetic continuity conditions.

In order to obtain an idea of the distances along the surface

for which the diffracted field becomes negligible, we will consider,

say, a vertical fault separating regions of different conductivities.

The argument could be carried for any two dimensional structure,

but to make the exposition brief, we assume the geometric simplttidy of

a vertical fault. Now we know that the solution far away from the

boundary is

t,~ -- C e

C C L(4-2)

As we approach the fault boundary from too we come under the influence

of diffraction effects. Diffraction ffects behave very much like

- U.
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induced sources disposed along the fault boundary. These sources

distort the simple uni-directional field of equation (4-2) and the

field near the boundary becomes dependent en both x and y coordinates.

Mathematically, this arises from the necessity of satisfying

continuity conditions for E and H tangential at the boundary. The

field in the diffraction region will have the general form

L&(,, )= A (X, Y) ee W(XI

Our concern therefore is to determine at what distance from the

fault boundary equation (4-3) becomes equal to equation (4-2) within

a specified order of accuracy. A way of obtaining a conservative

estimate of such a distance is to consider the attenuation of a one

dimensional wave, under the assumption that such wave is due to "sources"

at the fault boundary. Referring to table I we note that for a

distance x, such that R2e [ =K4 Sthe plane wave attenuates to 0.7%

of the initial value; for another distance x, such that Re [ =7

the plane wave amplitude reduces to 0.09% of the initial magnitude,

and so on. Now, if the "sources" at the fault boundary produced a field

of magnitude equal to that of the incident (primary) field, at this

distance where Ke[Kx1 S-the diffracted field would contribute slightly

less than 0.7% of the total field; if we want farther away to x such

that Kebx =7, the contribution would be less than 0.09%. (We may

note that the wave length of an electromagnetic wave corresponds to a

distance for which Re[Kx] is slightly larger than 6 ) All these

estimates are conservative because in our problem the "sources" at the

boundary will never create fields equajL to the incident field. Further

the "strength" of these "sources" is very likely to decrease in an

U.
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approximately exponential manner with depth.

Using the criteria described above, we can safely choose a distance

x, away from the fault boundary, where the diffraction field becomes

sero to the order of accuracy carried; from such a distance out the

field will behave uni-directionally as on a uniform, homogeneous earth.

This will be the situation existing previous to the application of

relaxation procedures to the problem. If indeed the choice is conservative

after the solution by relaxation methods, the unidirectional behavior

of the field will be extended some more towards the fault boundary,

past the initial estimate.

Summarizing, the problem becomes that of finding the electromagnetic

field throughout media . and 2, given

1) u,= u,= constant for all x, at y 0

2) u,= u,-= O for allx, at a certain depth y =y,

3) u,= uz

. a, -- at x =O

4) u, = at x =-x, for all y=0

5) uz= c e at x = x for all y = 0

This is the situation for a vertical fault at x= 0. For any other

geometry the treatment is S imilarly straightforward

-U __
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4.3 The Helmolts equation in finite differences

4.3.1 The Helmoltz equation in homogeneous media

We will be dealing with phenomena obeying the Helmoltz equation

U. L4K a. LA. =0C

where K LA W f', d. the magnetic permittivity, w the radian frequency

of the electromagnetic wave and (~ the conductivity of the media. As

usually we neglect displacement currents and sinusoidal time dependence

e has been assumed.

In order to be able to treat the complex scalar L. by finite

differences, we obtain from (4-4) two equations dealing with real

variables in the following way. Let '.-= A4 f
(A+ 8) + v'4A cr (A+' ) =0 (4-5)

from which we get by separating real and imaginary parts

B +14W r-A =0

These two coupled equations can be written in cartesian coordinates

(4-7)

D% + Ds+p-w 'A = o

To obtain the finite difference representation of these differential

equations, we consider the representation of a function in a Taylor

series about a point



-57-

10)f~ = 1(.) (4-8)

Then for {(o.+L) and (&-k (see diagram 4.2) we get, neglecting 4th

and higher order terms

2
(o-)~~-~- -(4-9)

Similarly, neglecting third order terms and higher, we obtain for the

first derivative the expression

-( (4-10)

Writing for the successive points in the x direction , and +

instead of (a.- k), () and (o+ L) , and for the points on the y

direction +1 we can express (4-7) as

141i n

M+1 rMImn+

a.3
3 0

FIG. 4-2. F6&. 4-3m
4

- -
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If we let hx: hy, we can simplify the above equation to

A +A + W"n.i4A"%j 1 (4-12)

If for easier reading we use subscripts 0, 1, 2, 3 and 4 instead of

(a, n), (m+-1, n), (a, n+ 1), (m-1, n) and (a, n-1) (see fig. 4-3)

we rewrite equations (4-11) and (4-12) as

A, A z+ A -3 + A I 4A - crA B.= (4-13)

-6, B z + ig + f>4 - 4 Bo + w ar o A o (U.1/)

where the 5 first terms in each equation can be recognised as the

taplacian operator in finite differences. We see from (4-13) and (4-14)

that at every point of the region under consideration, we have to satisfy

a system of two finite difference equations in two unknowns. Consequently

at every point of the finite difference net, we will have two solutions,

one for A another for B.

The solution of the system of equations in A and B is not going

to give us directly the quantities in which we are interested, that is,

the components of the electromagnetic field. However, there is a

simple relationship which we will show presently.

If we attempted to solve the problem analytically, we would

express it in terms of the field component, E or H, which would be

aligned parallel to the s axis (and parallel therefore to the generatrix

of the geologic structure). This component would satisfy Vzu + Kk= o

where k is complex, and the solution of this differential equation would be
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S(7) = M (x,y) e /(XY

where M is the magnitude and W the phase angle of the field component.

In the finite difference set of equations we have an A and a B

at every point of the net so that the solution is given by

3- (4-16)

In order to relate the solution of the finite difference

equations to that of the differential equation, it is sufficient to

expand (4-15) and equate it to (4-16), from which we get

CosWh L)

We may note that the equality sign is not very rigorous insofar as the

finite difference solution will always be slightly different from the

differential solution, but we use it with this understanding. Therefore

the magnitude and phase of the field component (E or H) at every point

of the finite difference net will be given by

(4-18)

The other field component can be deduced from Maxwell's curl

equations. As we have shown in 2.3 and 3.1, at the earth's surface the

curl reduces, for both magnetic and electric polarizations, to the

vertical derivative of the polarized field. Since our interest is

basically in obtaining the non-polarized field at the surface, we wfll
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have to make sure that the finite difference solution posesses a reliable

vertical derivative, at least near the surface; this subject will be

discussed further in an appropriate place.

4.3.2 Relaxation operators in homogeneous media

The unit relaxation operators corresponding to the Helmolts

equation are readily derived from equations (4-13) and (4-15) and are

shown in fig. 4-4. As fig. 4-5 illustrates, each equation and operator

posesses one term in the plane of the variable not included in the

Laplacian operator. Therefore a change in one of the variables, besides

affecting its own Laplacian, is transmitted to the equation with the

Laplacian in the other variable. Convergence in Ouch a system can be

delicate. From equation (4-13) and (4-14) we may note that this "feed-

back" effect depends solely on kZ h' , a quantity which is the measure

of fineness of the net. In general the convergence of the relaxation

is slower the finer the net size. This is because, with decreasing

net sizes, changes in one of the variables affects the equation with the

Laplacian on the other variable increasingly less. It should not be

thought though, that for differential intervals the coupling between

the equation disappears completely; this is not so. Whatever the

interval, as long as the relaxation process is far from the solution,

although k h may be very small, the necessary change in the variable

will be perforce large, cancelling thus the effect of weak coupling.

The slowing down of convergence only comes in when we approach the

solution and then there may be some tendency for oscillatory convergence.

-i ;_0 M -
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For large net sizes the convergence is very fast because

relaxation can be effected in a manner such that by the change of one

variable we achieve liquidation of the residuals of both the A and B

equations.

Up to this point we have been speaking of the simultaneous

convergence of both equations. Yet we have also to consider the

convergence of each equation per se, which becomes important as the

coupling weakens, that is, as the net size becomes smaller. This type

of convergence can be speeded up by the use of relaxation operators

which operate mainly at the node, little affecting the neighboring

points. Such procedure is sometimes called "block relaxation" and

any block relaxation operator can be formed by superposition of the

simple operators described by equation (4-13) and (4-14), and fig. 4-4.

A rather convenient operator of this type is despicted in fig. 4-6.

Generally, block relaxation is useful only when dealing with fine

grids or media of low conductivity (in contrast with another of

higher conductivity). Otherwise its cumbersomeness does not make up

for the added speed.
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4.3.3 Relaxation operators for boundary conditions.

All the previous relaxation operators were developped for a hemo-

geneous mediu. As such they cannot be used at boundaries of media of

different electrical properties, where continuity of normal derivaties

or of some multiple of the derivatives are required. This impossibility

arises of course from the need to compute residuals at the boundary

points, which would lead to the inclusion of a point beyond the region

where the operator used is valid.

The problems in which we are interested deal with more than one

medium. Since continuity of E and H tangential have to be satisfied at

the boundaries of the media, and since in our formulation E or H can

be obtained as derivatives of H or E,,every problem to be considered

will involve continuity of derivative conditions. In order to exemplify

the procedure used to find the relaxation operators valid at boundaries,

we will present the development of two important types of boundary

operators: operators for straight boundaries (coinciding with nodes)

and operators for boundaries in the shape of a corner.

a. relaxation operator for the straight boundaries

As an illustration of the changes undergone by the operators of

equation (4-13) and (4-14) at a straight boundary coinciding with the

nodes, we will consider a vertical boundary between two media. Let us

say that the electromagnetic field is magnetically polarized, so our

scalar component is the magnetic field. We may notice that this is the

type of boundary operator for the problem of vertical layers or fault.

As seen previously in that problem we need not consider the boundary

the earth's surface. There, the specification of a constant polarized

m
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field, implies no vertical component of the non-polarized field vector,

so that one boundary value actually satisfied both electric and magnetic

boundary conditions. The continuity conditions are to be used at the

interval boundaries of the bounded region, namely at the vertical inter-

face.

The conditions, in the case of magnetic polarization are

UA. I = U

I Dx DUZ.3

where ' (for electric polarization simple equality of normal

derivatives is required)

Let us first consider the continuity of multiples of the normal

derivatives

2iA'" T -L [ A -W6)

or

K~z Ko o

where I(-f(a ', and also where the superscripts or subscripts in

parentheses indicate the medium in which the function is defined. In

finite differences, we write the above equations as

K(6Z) '~ 3 (fA , -- A3

k) (S 1- B1" = B- 63) (4-20)

-U
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Fig. 4-7 shows the position in the finite difference and indicated by

() () (.1 (a)
the subscripts 1, 2, 3, 4. Clearly then A1  , B, and A. and B, are

ficticious points, that is, they are not in the region where the functions

u and u are defined, respectively.

Recalling the expression for the Helmoltz equation in homogeneous

media

0g) () () (I) bI a 0)
A, + At+A 3 +A 4 -4Ao- V( ,=o

S+ + ( 1 + ( 4 (+K ) = 0 medium 1 (4-21)
3+5 + 3 te 4 -4 Bo+ K~jj LA 0O

Li co a (.&) (ZL KA, +A, A3tA 4 -4A. -K(Z)

&C1 (ZI (23~ cz W 2- 0
+3M t () Aedium 2 (4-22)

we elliminate between equations (4-19), (4-20) and (4-21), (4-22) the
(1) (1) (a) (Z)

ficticious points A, , B1 , A3  and B. (Southwell, 1946; Allen,

1954) ebtaining

(4A*+ Ki) A - = K A, +A +A4, - 4A,- ,f % )

K (416-k1 A- 68 - 64 283 )= ,(B +$ 54 ,+K

The additional conditions specifying the continuity of tangential H

require

a ()0) (a)
A0 A01 B.= B.

A) = 13 (4-24)

A 4  Ah q4
at the boundary. This reduces equati in (4-23) to
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4A( + ()+ 2 Q K .- A V(A(~' A)4- A-2 K, A I=

(4-25)

4(S,+)± -1  Kj K(o IA.- (KL(z- K) 6z- (kIt+K ) z 2 - z KK ) ,5

where the components without supercripts (or subscripts) in parentheses

are understood to be at the boundary of the medium. We may write equations

(4-25) in a more familiar form

2. L (1
.Z W ~ (Ka*~J) -I (- 2) 2. -5 = C

" A ±A A(4-26)

2 w W2 KW(z (48 + ________1_- D=+ 2+ - L2 3 3 + 4  A,
Considering equation (4-26) we see that the first row of nodes adjacent

to the boundaries is affected by the weighing factor of the normal

components of the Laplacian. Therefore, in order te keep the operators

of this transitional nodes consistents we must also weigh one of the

components of their Laplacian. From (4-26) and (4-21), (4-22) it is

easily deduced that the operator for the row of adjacent nodes will

be in medium 1

K .A, - 4 A. - K( C =
Uz (2

(4-29)
(.) Ko~ 0) 2. 6

Ki+- )A+ A O+ L 8-480 +1 A

U.
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and for medium 2

At +tA,,+A4+ A3 Ao Koz
PC( + K

(4-28)

(Z-) (M W z. K( _ 4B.+ (z 0
51,+ 132+--8344+ K--L& 83

The graphical pattern of these operators i despicted in fig. 4-9.

b. relaxation operators at right angle wedge shaped boundaries

The right angle wedge shaped boundary is very useful in the

idealization of buried structures, i.e. finite bodies of rectangular

shape, dikes, step like structures (which could be used to study the

effects of roots of mountains or the effect of abrupt change in depth

from an oceanic to a continental crust), etc. We will show presently

that a possible type of operator for such "corner" points is one that

probably could be written down intuitively from the results for the

straight line boundary.

If we assume again that we are dealing with magnetic polarization

and considering now fig. 4-10, we see that at point 0 we have to satisfy

K' K 

as well as continuity of A and B. But from the chain rule for partial

derivatives and from the type of symmetry under consideration, we also

-66--w
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have

where u stands for any of the field components A, A, B, or B; then we

can express the boundary condition in finite differences as

Wt[A,-A 3 ,A+A4j Kl A'- A; -A' t-A'
(4-29)

k'. [6, - 5 3- 134] K yt[e,- 6- S+

From the Helmoltz equation for homogeneous media

i5 + K'4=Ajo t4 61+ k, TAO=A0

we have that

(A ' = + A 4A.- WC' '58

(A, +-A 4 ) =-A-A 34+4A,+ < L8

and similarly for B and B. Substituting this back into equation (4-29)

we get

z K LA+ 6I + Z. + 6ZoK +K 4A
Z 1 LKL Z KZ O L

Lz ____, 8 + AK14 - 4Aor-r O

K J& *K KI L K4 3 Ia g W+#, #C

(4-30)

These operators are shown in fig. 4-11. At the adjacent nodes 1, 2, 3

and 4 , the regular operators will have also to be modified in a
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manner similar to that illustrated by equations (4-27) and (4-28) in

the case of straight boundaries.

4.3.4 Graded nets

The problem in which we are interested will commonly deal with

two regions between which there will be a sharp contrast in electrical

properties. As a result, in one of the media, or even in part of one and

the whole region of the other we may have to describe the field by

closer nets in order to obtain a sufficiently accurate solution.

A way of making the transition from a coarser to a finer net is by the

use of the so-called graded net technique (Southwell 98, 1946; Allen

69, 1954)

We will make the transition usually away from the effect of

boundary operators and in the media where the solution is more accurate

(by reason of the finer net size). In this manner we will minimise the

inaccuracies due to finite difference approximation.

The manner in which the change in spacing is accomplished is

illustrated in fig. 4-12; for the coarse grid the finite difference

equations are known to be

H A -- 0k ,
(4-31)

1496 + K''A.4

where H denotes the Laplacian operator. For the finer grid the above

equations are altered to the extent that instead of h we have h/s.

Consequently in the region with smaller grid spacing, we have



-69-

-oA - 4 0 (4-32)

FI+ , Ao=O
4

Equations (4-31) and (4-32) refer then to the nodes marked ] and

respectively. To write the equations for the intermediate nodes, we

invoke the property of invariance of the operator V with respect to

a rotation of the axes of coordinates. Since at these intermediate

nodes (denoted by 0 in fig. 4-12) the spacing is h/2, their finite difference

equations are

RA - -ao
z

~ ± I±}A~o(4-33)

Although the above equations would correspond to the solutions of the

Helmelts equation in homogeneous regions composed exclusively of nodes

like [ , 0 and 0, the fact that we are dealing with a transition

region introduces nodes where careful application of the above operators

is necessary. We have to keep in mind that the unit operator at a

given node will be affected by all other nodes in the calculation of which

residuals it enters. Consider for example, the node called A in fig.

4-12. Equations (4-31), (4-32) and (4-33) show that this node enters

in the calculation of residuals at nodes B and C. Accordingly, the

relaxation operator at A will contain points B and C as shown in fig.

4-13. The same applies for nodes like B, C, D, E and F which have the

relaxation operators shown in figs. 4-15 to 4-18. All other nodes will

-1.9& - .---
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have either the coarse net operator of equation 4-31 or the finer net

operator of equation (4- 32 )

The technique illustrated here for a change of net size starting

at a straight vertical line of nodes can be easily adapted to horizontal

line of nodes or extended to a two dimensional change of net size,

i.e. when the transition line is a right angle corner.

4.3.5 Propagation constant and node separation

In problems of potential theory, which are the most comonly

solved by finite differences, one gets used to have the node separation

solely dependent on h. In problems involving the electromagnetic low

frequency Helmoltz equation, the size of a finite difference net is

tied down to the propagation constant as well as to the quantity h.

Abbreviating the Laplacian operator by

4

H u. =L m. - 4"L.

We write the Helmoltz equation as

H-A - <Z. 1=0

4 ( +KLA* = 0

It is of course the dimensionless quantity kz hl , which is analogous

to the differential (kx)a or (kr) , that dictates the node separation.

As we have seen previously, the Helmoltz equation assumes the above form

for equidimensional x and y separations. If, for example k h=2,

solving for h we have h =I2/k, which is the expression for the skin

-70-
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depth (see equation 2-5). The node separation in this case is equal

to the skin depth or slightly less than a sixth of the wavelength.

It is interesting to note how the finite difference formulation brings

out the importance of the quantity kh. This is very closely related

to the ideas of electrodynamic similitude discussed in next section.

4.4 Generality of the finite difference solution.

In obtaining finite difference solutions, which are on the form

of contour maps of the function being investigated, one is interested

in knowing how general a given solution is. Does it hold for all

frequencies and inductivities? How do we convert from one conductivity

to the other? What restrictions must be obeyed? And so on. Clearly

this can be studied by the use of the concepts of electrodynamic

similitude (Stratton, 488, 1941; Cagniard, 1953; Sinclair, 1948)

In general a given solution is valid for all similar geometries

provided certain relationships are upheld in going from structure to

structure. These can be easily deduced if we consider two structures,

which are geometrically similar; then an electromagnetic field in one

of the structures is described by

V4 TT i K' T = O (4-34)
whereas in the other structure we will have

V ir'+ K' =O (4-35)
TT being the Hertz vector. One aim is to investigate how the

quantities involved can be changed in one of the structures while

keeping ~1V and TF'at corresponding points of both structures invariant.

- 1.
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Equations (4-34) and (4-35) contain three variable quantities namely

time, length and conductivity. (We are assuming the magnetic permeability,

/IA- constant.) Let us suppose that they are related from one structure

to the other by the constants of proportionality K,., KL, K r

that is

L K(LL

T'= KTO~

T'= KT

where L is the length dimension, 0~ the conductivity dimension and

T the time dimension. Substituting these relationships into (4-35)

we get

KT

So that, in order to preserve invariance of -II and 7T'we need to keep

This fundamental relationship for electrodynamic similitude when

displacement currents are negligible, also tells us that if we are

dealing with a geometry having components of different conductivities,

the ratios of the conductivities in one of the structures have to be

equal to the ratio of conductivities in the other structure; only in

this way invariance can be preserved.

Therefore, in the general case, we can transform a given finite

difference solution to a different size, conductivity or frequency by

applying equation (4-36); if the problem concerns a structure having

regions of different conductivities, the conductivity contrasts have to

be kept during the transformation.
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However, in geometries without finite dimensions, the finite

difference solution is much more general. Such geometries are of

great importance in geology because they comprehend faults and dipping

beds, a rather common feature. In effect, since these geologic

features, from the analytic standpoint, do not have finite boundaries,

only semi-infinite ones, from a dimensional point of view, there is no

way of fixing the length scale without bringing the electromagnetic

wave for comparison. In other words, in a semi-infinite structure, the

conductivity of the medium and the frequency of the wave fix our

length dimension. As a result in this class of problems the only

parameters to be varied are the inclination of the layers and the

conductivity contrasts. For a given conductivity contrast and dip

we could, for example, obtain the complete frequency response of the

structure from one map only. Referring to equation (4-36) it can be

seen that this could be done simply by changing isotropically the

scale of the map.

In geometries having finite dimensions the finite difference

solution becomes much less general. The length dimension is not

arbitrary any more and as such the frequency response of a structure

cannot be obtained from one single solution. The fundamental similitude

relationship loses its previous freedom and becomes completely constrained.

If we change the scale we actually change the structure and we obtain

the response of a scaled up or down (but different) structure at either

another frequency or conductivity, or both. Because of this lack

of generality in the solution, no computation of fields over such
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structures will be carried in this work. The need to compute the

magneto-telluric field at different frequencies plus the combinations

of size necessary to give an idea of the trends, would become prohibitive

for desk calculator calculation. We may have to wait for the adapt-

ation of the method to digital computers.

4.5 The method of approximation and the Helmoltz equation

Up to now we have been developping the technique of finite

difference solution of plane electromagnetic problems without reference

to the errors and inaccuracies inherent to the finite difference approach.

In this section, we will pay attention to this aspect of the problem.

Four types of approximation have been included in the previous

discussion. First, we should consider the truncation errors, that is,

the errors introduced by representing a differential equation by a

finite difference equation. Second, during the solution of the various

boundary value problems, the residuals will never become completely

zero; this is another source of error. Third, when we constrain the

Helmoltz equation to become zero at a given depth, we must choose this

depth so that the error is negligible. And fourth, since the non-

polarized surface field is obtained through a numerical differentiation,

it is convenient to study the accuracy of this operation.

Graphical and numerical presentation of the behavior of the one

dimensional Helmoltz equation can be found at the end of section 4.5.3.

-U.
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4.5.1 The finite difference approximation

Let us assume that a and b are the solution to the differential

equations

Va -Ka6 6o
(4-36)

V + za =o

Call the finite difference Laplacian operator H and the finite difference

solutions A and B

HA -K'A8. =0

14 6 + K LA,=0 (4-37)

Recalling the way in which the second derivative expression in finite

differences was developped (see equation (4-8) and (4-9) ) we see that the

main term of the truncation error is

and similarly for B. We have then that

Subtracting (4-36) from (4-37) we find the finite difference error to be

tL [aA a!A
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These results show that for net sizes corresponding to one skin

depth the solution will be in error by less than 16%, while for

separations equal to half the skin depth the finite difference error

should not exceed 0.2%. The first estimate is too high for most of

the region under consideration (computed values are usually within

10% for the one dimensional equation) while the second is too low,

because of course, it is based on the assumption that the relaxation

is carried to complete liquidation of residuals. By carrying sufficient

significant figures and spending enough time, this accuracy could be

approached. In our case relaxation will be taken to within 0.5% to

2.5% of the differential solution in mest cases.

4.5.2 The relaxation approximation

In practice, the relaxation process is never led to the point

where all residuals are zero. Therefore, if the exact solution of the

difference equations is

HA -x'kI =0

H6 B+KWA =0

where H is the Laplacian operator, then the solution obtained by

relaxation methods would be

HA'- K?4'1'= r

FIB"+ K" IA'= S

and the error introduced at the node and surrounding points would

have to satisfy
Hes - KZ

H ,+ VS
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where C5=A A and 6, = 8 . We may obtain a conservative estimate of

the error involved if we assume that the errors in the points around

the node add up to zero, so that all the error is concentrated in the

node. In this case, solution of the equations for Cs and Er give

rt- 4 _L)

If the residuals r and s are of the same magnitude, say m, the above

equations become

4 ( a) .

4+(5L)

4.5.3 Zero cut-off at depth approximation

The finite difference solution of the electromagnetic problems

related to the magneto-telluric field depends on the ability to transform

infinite boundary problems into finite boundary problems. This was

accomplished by considering the field to become zero beyond the depth

where its magnitude became smaller than the significant figures carried

in the calculation. From a physical point of view constraining the field

to go to zero at a given depth is equivalent to placing an infinitely

conducting layer at that depth. In order to see how the depth at which
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the layer is, affects the surface field, we may set up the boundary

value problem

U= Ae - seif

U. at y0

UZo at y=a

which is easily seen to yield

LA. 4. inI (-a
5in ka.

where kAirWd. Now the field at the surface of a uniform earth is

LL =ke y

and a magneto-telluric measurement would be characterized by

Similarly, the ma-gneto-telluric measurement over a two layered earth

(with the bottom layer being infinitely conducting) yields

E -
.

and at the surface

E Z . Ka

defining z

En ,a(i+i) K 76n" Pa + t ain a

Hy- yre0 ft ra tank g +
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The above equation clearly becomes identical to that of the magneto-

telluric field over a uniform earth if tanh pas I. If we attend at the

behavior of tanhpa we have

pa tanh pa

3 0.99505

4 0.99933

5 0.99991

6 0.99999

6.5 1.00000

Thus we see that if we force the solution to zero at depths for which

the surface field will be negligibly affected. If on the other

hand we were actually interested in studying the wave fields inside the

earth, we would have to choose the cut-off point at a greater depth,

a.
say, at depths for which pa)( . We may note that a

corresponds to the skin depth.

The following tables and graphs present some finite difference

solutions for different sizes of net as well as some comparisons with

the differential solutions.

4.5.4. Finite difference derivatives

Our ultimate aim is calculation of the magneto-telluric field

over arbitrary geometries. Since the polarized field is constant, the

surface non-polarized field is the quantity we are most interested in

obtaining. However, all problems are solved in terms of the polarized



TABLE I

NUMFRICAL SOLUTION OF THE ONE DIMENSIONAL HELMOLTZ EQUATION

u= A +iB

(rad.)

0

0.25

0.5

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

A -y(rad.)

100.00

75.46

53.23

34.56

19.88

9.03

1.58

-3.10

-5.63

-5.95

-6.58

-5.90

-4.93

-3.23

-2.83

0

19.27

29.08

32.20

30.96

27.19

22.25

17.10

12.30

7.37

4.91

2.44

0.70

-0.42

-1.06

3.75

4.00

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

6.00

6.25

6.50

6.75

7.00

A

-1.93

-1.20

-1.20

-0.64

-0.23

0.03

0.19

0.27

0.29

0.27

0.24

0.19

0.15

0.11

0.07

B

-1.34

-1.38

-1.38

-1.28

-1.08

-0.86

-0.64

-0.44

-0.29

-0.16

-0.07

-0.06

0.03

0.05

0.06

- N.



TABLE II

COMPARISON BETWEEN SOLUTIONS u=A+iB OF THE DIFFERENTIAL AND DIFFERENCE

EQUATIONS VANISHING AT A DEPTH Y=4 2 /K

differential solution difference solution

k2 h1/ 2

A B A
100.000 0.000 100.000

53.004

21.32 27.2 0 20.097

2.132

-2.941 11.76 -5.035

-6.20

-3.675 0.009 -4.695

-2.40

0 0 0

k2 h2

B A
0.000 100.000

75.3
28.201 53.1

34.55
29.908 19.9

9.05
21.565 1.5

-3.25
12.175 -5.75

-6.85
5.320 -6.7

-5.9
1.58 -4.8

-3.5
0.19 -2.2

-1.1
0 0

Ky /J-2
0
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00

A
100.000
74.46
53.23
34.56
19.88
9.03
1.43

-3.29
-5.87
-6.22
-6.87
-6.17
-5.12
-3.26
-2.60
-1.29
0

B
0

19.27
29.08

30.96
27.19
22.23
17.60
12.37
7.50
5.20
2.88
1.34
0.44
0.02
0.06
0

S1/8

B
0.000

19.2
29.0
32.1
30.8
27.0
22.0
16.8
12.0

8.2
5.4
3.35
1.8
0.8
0.2
0
0
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vector component, so that the other electromagnetic vector, which is

needed to define a magneto-telluric measurement, has to be obtained

through Maxwell's curl equations. This involves finding the derivative

of the polarized field at the point where we want to know the non-

polarized field. In particular, since the magneto-telluric method

is characterized by the ratio of tangential E and H at the earth's

surface, we have to calculate the normal derivative of the polarized

field at the earth's surface (see section 3.2)

In section 4.2.1 we presented a two point derivative based on

central differences. Although useful for boundary conditions, this

type of derivative is not appropriate to the earth's surface where

we want a derivative in terms of forward differences. From the

expression for the Taylor expansion about a point (equation (/-8-))

we may easily deduce the three point derivative

A I [- 3 (o) + 4 -

which has a truncation error

~ 4 (0)

The error in the derivative depends primarily on the spacing of the

finite difference nodes, not so much from the error introduced by large

spacing on the finite difference solution, as actually from the difficulty of

trying to fit a low degree polynormal to a high degree one. There-

fore, when we go from regions of low conductivity to another of
high conductivity, keeping the same size of net (which is a practical

necessity), we will get less accurate results on the more conductive



TABLE III

COMPARISON BETWEEN THE FINITE DIFFERENCE SOLUTION AND DERIVATIVE WITH

k2 k2 : 1/8 AND THE SOLUTION AND DERIVATIVES WITH k2 h2= 2 INTERPOLATED

TO k2 h2 = 1/2 AND k2 h2 =1/8

k2 h2,L 1/8

A B

100.00 0.00

75.30 19.2

53.10 29.0

34.55 32.1

19.90 30.8

k2 h2 :z 2

A B

100.00 0.00

21.32 27.2

k2 h2 = 2

A B

100.00 0.00

53.35 29.24

21.32 27.20

k2 h12=2

A B

100.00 0.00

75.93 18.44

54.2 27.36

35.89 29.53

21.32 27.2

43.5 52.3

K //vzi

0

0.25

0.50

0.75

1.00

3 7=0 51.649.7



region. We have seen in 4.3.5 how the conductivity of the medium is

intimately connected with node separation. Thus in treating the

error introduced by the finite difference derivative, we have to

discuss them with respect to the parameter k2 h2 ,

Let us consider a uniform earth for which Re (k): 0.5. In the

differential solution the normal derivative of the polarized field

at the surface will have a magnitude 0.5. The corresponding finite

difference solution will have a node separation equal to half the skin

depth or k2 h2= 1/2. Using the above expression for the truncation

error, we find that for such spacing the derivatives will be in error

by less than 10%. Actual computation shows that they are in error by

4%. If instead, we decrease the net size by half, making k2 h2 -l/S,

we get from the truncation formula an estimated error of less than

3%; the actual error is 0.6%.

From these calculations, we see that 3 point derivatives taken

with separations of k2 h2 =1/8 are excellent for our purposes. However

in many occasions, the time available will compel one to use larger

separations (a typical vertical layer problem with a separation of

k2 h2 = 1/2 may need 80 points; with a separation of k2 h2 =1/8 the number

of nodes will increase to 320. Graded nets are an alternative, but

in most cases they also will increase sharply the computation lead)

which yield sufficiently accurate solutions, but which may be too large

for the derivatives. In this case we may improve the derivatives by

interpolation. That is, we may interpolate one or more points between

the surface node and the next sub-surface node, by making the interpolated

points satisfy the Helmolts equation and coincide with the two nodes

in question. Of course, the ideal procedure would be to solve all the

5.



problem in a fine net. However, by interpolating, we increase our

accuracy without a prohibitive amount of computation. Supposing that

we are solving a uniform earth problem on a k a ha=2 net, we know from a

previous discussion that the error at the points near the surface

will be less than 18%. By interpolating one point we reduce the error

by less than half and by interpolating more points, we reduce further

the finite difference error. At the same time we improve the derivative,

so that the process produces a much more accurate result. This is

illustrated by table 4. The 3 point derivative of the one dimensional

Helmoltz equation for a spacing k4 hk 2 is in error by 13%. By

interpolating one point we reduce the error to 4.6% and by interpolating

3 points we reduce the error further to 3.2%. The error in the derivative

by solving the whole problem in a finer net (equivalent to the 3

point interpolatiop) is 0.6%.

4.6 The magneto-telluric field in specific structures

4.6.1 Apparent conductivity patterns in inclined layers

As referred in 4.4, the finite difference solution of inclined

layer problems is characterized by a degree of generality not found

on finite boundary geometries. For this reason, we have chosen to

illustrate the use of the finite difference method developped here

with the calculation of the magneto-telluric field over a group of

inclined layer structures, from which we can draw certain general

conclusions on the behavior of the field over such structures.

Before going into the specific cases, we will point out that by

a.
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using the "semi-quantitative transform" concept discussed in section

2.5, the apparent resistivity patterns in inclined layer geometries

will have definite identifying characteristics. We may recall that

the "semi-quantitative transform. " was obtained by plotting the apparent

resistivities at a given station at a depth equal to the skin depth

in the mediu. As a result, all the lines of equal apparent resistivity

will go through the strike of the fault. Thus the transform accomplishes

the identification of the type of geometry involved. The only parameter

lacking will be the dip of the bed. In order to do this, once we know

that we are dealing with an inclined bed geometry, it is a simple

procedure to obtain the frequency response of the structure. From

this point on, it is a question of synthesis, which can usually

be accomplished by curve matching. However, the synthesis problem

is unique because it depends on one only variable, the angle of dip.

mu 4.
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4.6.2 Sea coast effects

One of the most striking instances of lateral changes in conductivity

is that associated with sea-land contacts. Its importance derives as

much from its widespread occurrence as from the conductivity centrasts

involved, which are on the order of 1000 or more. The magnitude of the

contrast introduces effects on the apparent conductivities measured

inland, to an extent that they may give an erroneous picture of the

sub-surface structure if proper care is not exercised.

An incident plane wave will penetrate between 10 to 1000 times

deeper on the continent than in the sea. For example, at 1 cycle per

second, on a shield type area, an electromagnetic wave would be

attenuated as much at a depth of about 80 kilometers as at a depth

of 500 meters under the sea. This means that as we approach the sea,

the telluric currents in the crust have to move upward. Once they get

to the sea they become concentrated near the surface, by comparison

with their distribution with depth in the continent.

In order to make a quantitative study of the behavior of the

magneto-telluric field near the sea, we may set up an inclined layer

model where one of the media has an infinite conductivity. Physically

this is equivalent to a zero skin depth in the sea; in other words,

it is the same as having the telluric currents in the sea concentrated

entirely at the sea surface. This is certainly a valid approximation

when we consider the ratio of about 1/100 and more between the distributions

of the current with depth at sea to that inland. A problem of this type

was solved by finite differences and the reader is referred to fig. 4-22

for the results.
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According to our solution, as we approach the sea, the upward

movement of telluric currents only becomes noticeable at a distance

equivalent to kr=2.5. At 1 cycle per second, for an earth with a

resistivity of 103 oha-meters, this would mean 40 kilometers from the

coast; at 0.01 cycles per second it would be 400 kilometers. The

following region, comprised between kr= 2.5 and kr=1.5, is consequently

characterized by apparent resistivities which are slightly higher than

the actual resistivity of the medium (this would be a region 16 kms.

long at 1 cycle or 160 kms long at 0.01 cycles per second, for the

same resistivity as above). Finally, from kr= 1.5 on, towards the sea,

the apparent resistivity falls off sharply; at kr =0.5 (8 km at 1

cpe; 80 at 0.01 cps) it has decreased to about 60% and by kr= 0.25

it has been reduced to about 40% of the actual resistivity.

The above description of the expected behavior of the magneto-

tolluric field near the sea assumes, of course, movable locations at

a fixed frequency. Let us see now what it means in terms of a spectrum

of frequencies at a fixed position. In this case the "kr" of the station

is changed at every new frequency and for each one a response as

described previously would follow. Therefore, under the assumption of

the possibility of measuring a very broad band spectrum, at the

highest frequency, we would get an apparent resistivity equal to the

real resistivity under the station. Then, as we lowered the frequencies

and went through the range which made the "kr" of the station about 2,

we would get slightly higher apparent resistivities. Finally, as we

keep lowering the frequency, we would run into the frequency region

where the apparent resistivities begin to fall very rapidly. The
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curious fact is that this type of response has the same general

features of the frequency response of a two layered earth, where the

bottom layer is more conductive than the top layer. And, one is tempted

to suspect that the profusion of papers dealing with two layered earths

with infinitely conducting substrata has its origin in the mistaken

identification of sea coast effects. However, we must add that with

good data, that is, with a fairly large range of frequency response

of apparent resistivities and phase angles no confusion should occur.

Yet one must remember that practical matters of all kinds dictate the

amount of data collected. Wide frequency response, simultaneous

recording of magnitudes and phases of the angles require an amount of

instrumentation not easily available.

In order to illustrate the above comments more concretely, let us

take an example. By now, it must be fairly evident that the curves

of fig. 4-22, giving the characteristics of the magneto-telluric

field in function of the distance from the sea can also be used as the

frequency response of the magneto-telluric field at a given station.

This is, of course, because from previous considerations of electro-

dynamic similitude, by changing the frequency we change what we may

call the electromagnetic distances involved; in other words the position

of the station changes with respect to the wave length of the electro-

magnetic wave.

Now in fig. 4-22 values of the field are given at distance intervals

equivalent to kr=0.5. A given station or observatory will be at a

distance r from the sea; since the k of the solution is actually the

real part of the propagation constant as it is usually defined, it is

given by k =, where w is the radian frequency and C~
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the conductivity of the mediuiu. The medium under the station will have

a conductivity o' ; therefore, by changing the frequency .- ) the

product kr assumes different values. In this manner the coordinate

showing the distance from the sea in fig. 4-22 can be transformed into

a frequency coordinate.

Let us for example consider an observatory 40 kas from the sea,

in a medium of resistivity 103 ohm-meters. The frequency response

of the apparent resistivity due to sea coast effect would be approximately

period (seconds) apparent resistivity

1.0 103

2.8 0.85 X 103

16.6 0.6 A 10-3

100.0 0.4 y 10- 3

To the observer unaware of the nature of sea coast effects, this data

may seem to point to a layer of higher conductivity at depth. In fact,

using the usual interpretational techniques of curve fitting, we would

see that these measurements fit very closely the curve for a two layer

earth with a top layer of resistivity 103ohm-meters and a bottom layer

of resistivity 0.5A 103 ohm-meters at a depth of 20 kms.

However, if simultaneous recording of the phase angles were made,

we would immediately detect the error of ascribing the response

obtained to a layered structure. While for the layered structure the

phase angle should start at 450 and go up with lower frequencies, for

the sea coast effect the phase angle starts at 450 but decreases

with lower frequencies. The reader is referred to Cagniardts

paper (1953) for a set of standard interpretation curves in the case

of a two layer earth.
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We may conclude therefore by emphasizing the similarities between

the apparent resistivity response of the sea coast and of a two layered

earth, at a given station. The farther inland the station is, the

the deeper the conductive lower layer appears to be. This is illustrated

by the apparent resistivity map in fig. 4-22. Besides the effects

mentioned above, we also must be aware that these lower resistivities

at depth may mask the other sub-surface structure. It should also be

pointed out that the way to avoid the pitfalls of interpretation is by

taking as complete a set of data as possible. Geographic coverage is

necessary. When it is impossible, apparent resistivities and phase

angles throughout a wide spectrum of frequencies are a must. With

simultaneous measurements of magnitude and phase no confusion between

sea coast eff ets and layered media should arise. However, the only

way to detect unambiguously the sub-surface structure is by geographical

coverage.
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4.6.3 Inclined layers

In this section, we will discuss some results concerning inclined

layers when both media have finite conductivities. These results were

obtained through the finite difference method that we have been

describing. Following the treatment of previous sections, we will

examine the magneto-telluric field for electric and magnetic polarization

separately. For electric polarization, the E vector is parallel to

the strike of the structure, and the current in the earth runs parallel

to the strike; for magnetic polarization, it is the magnetic vector

that aligns itself along the strike and the current in turn runs

normal to the strike.

In the following discussion, in order to achieve a certain

degree of generality, we will speak of distances in terms of krts

away from the strike. Thus when we write "at a distance kr= 2 in

the resistive side" we mean a distance from the strike at which kr =2.

By using kr for the dimensions, we take in account conductivity, wave

lengtk, and the actual length dimension at once.

a. Electric polarization.

In dealing with this type of polarization, the current flew lines

actually never cut across boundaries separating regions of different

conductivities. Further, the boundary conditions require continuity

of the electric field and its normal first derivative. These

characteristics would lead one to expect a rather smooth and gradual

change in the magneticfield at the surface, across the region of

changing conductivity. Three examples of the magneto-telluric field
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for electric polarization are given in fig. 4-20, 4-24, and 4-25, and

they justify our expectations. These examples concern inclined

layers with conductivity contrasts of 4 and angles of dip of 450

900 and 135* . In all of them the apparent conductivity just takes

intermediate values as we go from the more resistive to the more

conductive side.

For the vertical layer case (900 angle of dip) as we approach

the strike from the resistive side we begin to feel the influence of

the boundary at kr= 1.5. For ease of exposition, let us call the

difference between the resistivities of both media 100%. Then, as we

get to kr= 1 in the resistive side, the apparent resistivity has

already dropped about 5%. At kr = 0.5 the apparent resistivity has

decreased by nearly 20%. When we reach the strike, the apparent

resistivity is reduced to 30%. As we proceed into the more

conductive medium, the apparent resistivities keep dropping; at a

kr= 0.5 in the conductive side they are down to 14% and finally

by kr = 1 the apparent resistivity equals the resistivity. Between

kr * 1 and krz 3 our solution showed a region of slightly lower

apparent resistivities. These effects were on the order of 3% of the

actual resistivity and it looked like some sort of recovery effect.

Although we can be sure of its existence since it appears in other

vertical layer and 135* layer examples more accurately solved, we

cannot decisively say that in this case it disappears at a kr =3.

Probably it ceases to exist anywhere between kr= 1 and kr =3, but since

3% effects are at the limits of our accuracy on the more conductive

side, its impossible to state exactly where.

- W A-L-1 - I -.WA
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The values assumed by the phase angle as we cross over the

vertical layer show a high degree of symmetry about the strike. This

symmetry is in terms of actual distances not of kr's. At a kr= 1.5

in the more resistive medium, the phase angle is half a degree lower

than in an uniform medium . The minimum phase angle occurs at kr =0.5

and it is about 42*, From here towards the fault the phase angle

increases and the maximum occurs at a kr= 1 in the conductive side;

its value is 480 and we may note that both the maximum and minimum

are equally deviated from the 450 characteristic of an uniform

medium. At a kr= 3 in the conductive side, the boundary ceases to

affect the phase angle.

Let us see how these characteristics are modified when the angle

of dip is changed from 9CPto 45*. A 450 degree dip means that actually

we have a conductive layer sloping downward underneath the resistive

medium. Therefore, as it would be expected, the apparent resistivities

on the resistive side are affected farther away from the strike than in

the vertical layer case. Actually, there is an added feature: in the

resistive side, between kr= 3 and kru 2 there is a region of slightly

higher apparent resistivities (-j2%). From kr= 2 on, towards the

more resistive side, the apparent resistivities fall in a gradual

fashion and as we get to the strike they are reduced to about 3%

of the difference of the actual resistivities of both media. By kr =1
on the conductive side no boundary effects are detectable.

As to the phase angle, the lateral effects begin at kr =2.5

on the resistive side with a steady -decrease from 45*. The previous

symmetry about the strike disappears. A very abrupt change occurs,



still on the resistive medium, in the short space between kr= 1 and

the strike line; here the angle goes from a minimum of 320 to a

maximum of 54*. We may note the greater deviation of the angle on the

side nearer to the dipping contact; the same will be seen to happen

for 135*. At a kr =1.5 in the conductive side, the geometry no longer

affects the phase angle.

Finally, we may look into the response of an inclined bed at

135*. Here the fact that the resistive bed slopes under the conductive

one keeps the apparent resistivities on the resistive medium unaffected

uktil about kr= 0.5 from the strike. The usual pattern of gradually

falling apparent resistivities follows and as we reach the strike, the

apparent resistivity is the average of the resistivities of both media.

At a kr= 2 on the conductive side, we get real resistivities, but then

for about 2 kr's follows a region exhibiting the same slightly lower

apparent resistivities as in the case of vertical layers.

The phase angle shows the same general pattern as before except

for the fact that the minimum and maximum occur now respectively over

the strike and at kr=1 on the conductive side. Also, as pointed out

previously, the maximum (which is in the side nearer to the inclined

layer) represents a greater deviation from the uniform earth phase

angle than the minimum.

The knowledge of the response of dipping beds is useful either

to detect and define dipping beds or to avoid their effects. We may

summarize our results for a contrast of 4 (and certainly generally

applicable within a certain range of 4) by stating that the detection

-U
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of inclined beds in the resistive side begins at:

kr= 3 for 450 dip

kr =1.5 for 900 dip

kr =0.5 for 135* dip

The corresponding distances in the conductive side are

kr=1 for 45* dip

kr=3 for 900 dip

kr= 0.5 for 1350 dip

having in mind that beyond kr 0.5, kr =1and krz-2, respectively, the

effect is a very small one.

All the discussion up to now has been based on the rather low

conductivity contrast of 4. In order to estimate how the contrast

affects the distances at which the effects are felt, we solved 2

vertical layer problems dealing with limiting cases of extreme

conductivity contrast. In one, a finitely conductive medium was

assumed to be in contact with an infinitely conducting one; this is an

approximation to the case of very large contrast as seen from the more

resistive medium. In the other, the finitely conductive medium was

assumed to be in contact with a nonconducting medium; this is, of course,

the approximation to the case of very large contrast as seen from the

less resistive medium. The data obtained is given in fig. 4-22 and 4-23.

These results are very interesting because they show that for

vertical layers the region where the changes in apparent resistivity

take place are the same either for a contrast of 4 or for a contrast
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of infinity; this is, kr=1.5 on the resistive side and kr =3.5 on the

conductive side. Besides, these results also show the small recovery

effects described previously. On the resistive side they occur between

kr= 2.5 and kr=1.5 and amount to 2% of the actual resistivity; on the

conductive they occur between kr= 2 and kr =3.5 and are on the order of

5% of the actual resistivity. In face of these results, we may conclude

that the general features of the results for a contrast of 4 can be

used to estimate the response for higher contrasts.

In a manner identical to that described in the preceding section,

we may use the magnitude and phase curves which we have been discussing,

to study the frequency response at a given station near an inclined

layer. At the highest frequencies the values would be those of an

uniform earth (provided the kr were large enough i.e. kr=3) and at

the lowest frequencies the apparent resistivity would tend to that of

the strike. Again, we see that for a fixed location we would obtain

curves similar to those of a two layered earth. On the resistive

side the substratum would appear more conductive, on the conductive

side the substratum would appear more resistive. However, any

confusion would be dispelled by the phase angles which consistently

go in the direction opposite to that expected of the two layered earths

described above.

We may note that the point directly over the strike of an inclined

layer has the interesting property of constant apparent resistivity

throughout the range of frequencies. Therefore, a magneto-telluric

on the strike would seem to show an uniform earth of resistivity

different from that of either medium in question. For inclined layers,

_________ U.
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the phase angle deviation from 450 would show the erroneous inter-

pretation. But for a vertical layer, even the phase angle is nearly

450*. Here is then one more instance calling for geographical coverage.

b. Magnetic polarization

The fact that in magnetic polarization current flow lines run

across boundaries separating regions of changing conductivity and that

although the polarized field is continuous at the boundary its normal

derivative is not, night lead one to expect a less smooth behavior for

magnetic polarization than for electric polarization. This turns out to

be true. The reader is referred to figs. 4-21, 4-26, and 4-27, which

give results for inclined layers with dips of 450, 900 and 135*,

respectively, in the case of magnetic polarization.

The general behavior of the magneto-telluric field for several

inclinations of the layers is very similar. As we approach the strike

from the resistive side, the first effect is a downward flow of current

which produces lower resistivities. This occurs generally around

kr= 3 from the boundary. The minima on the apparent resistivities

cames in at kr =2, k=1, and kr=1.5 for 450, 900, and 1350, res-

pectively. As it might be expected, while for the 450 inclined layer

the effect is rather strong (20% of the difference in conductivities of

both media) at 900 it is reduced to about 4%, and at 1350 is little

more than 1%. After this minimum, we run into a region where the

current is rushing to the surface and consequently produces high

apparent resistivities. This maximum occurs at a kr =1, kr =0.5

and over the strike, for the 450, 909 and 1350 inclined layers.
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Such behavior can be explained in terms of the current flow trying

trying to force its way into the nearest region of higher conductivity.

In the resistive side the current at depth attempts to reach the

surface. For dip angles of less than 900, the surface current near

the contact tries to go down; for dip angles of more than 90o the

currents at depth have to climb at a much steeper angle than for

smaller dips. The result is that we get more pronounced resistivity

maxima for inclined than for vertical layers. For the 450 fault, we

get apparent resistivities which are twice as large as the resistivity

of the less conducting medium; for 1350 fault they are one and a half

times larger. In comparison, the vertical fault produces a small

effect, on the order of 5% of the resistivity of the less conducting

medium.

In all three cases the current is moving down as we cross into the

more conductive side. An exception is the 135* fault where the surface

current moves down from both sides of the strike and crosses the

contact essentially horizontally . Immediatly following the strike,

on the conductive side, we usually run into a region with apparent

resistivities smaller than the actual resistivity of the conducting

medium. This effect is small for angles larger than 900 (about 1%)

but for 450 it reaches 8% of the true resistivity of the conducting

medium. By kr= 1.5, kr= 2 and kr =3, for 45*, 90*, and 1350 , respect-

ively, the boundary effects cease to be detectable.

The above results are partially confirmed by modelling work. A

model involving a vertical bed over a nonconducting substratum (fig. A-3)
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showed the same sequence of apparent resistivities from the resistive

to the conductive medium, namely, the minimum followed by the maximum

and decreasing values as we went across the contact. Another scale

model, that of a buried cylinder near the surface (fig. 2-6) again

showed the minimum in the apparent resistivity at a kr between 3 and 2

from the cylinder, followed by the maximum close to the cylinder

boundary.

Let us turn our inquiry from the geographic response, to the

frequency response of the magneto-telluric field in a given locality.

The previous results show that in the resistive side, the inclined

layer will produce changes in the apparent resistivity resembling those

due to a three layer earth (or even a four layer earth, if the minimum

is pronounced); such a layered earth will in general appear to have a

very conductive bottom layer and a very resistive middle layer. On

the conductive side, as the angle of dip goes beyond 900, a response

like that of a three layered earth, of small conductivity contrast

and with a resistive bottom layer and a conductive middle layer, will

be obtained; for smaller inclinations of the beds the number of layers

will appear to be two, with a conductive bottom layer(correspondingly

in the resistive side it will look like a 4 layer earth). In all these

cases, however, the phase angles will show that the layered earth

interpretation is wrong.

Finally, we may add that if the location is on the strike, the

apparent resistivities will be unchanged throughout the frequency spectrum.

This response might be taken for that of a uniform earth, if it were not

for the values assumed by the phase angles.



APPENDIX I

A SCALED DCN MODEL FOR THE MAGNETO-TELLURIC FIELD

1.1 An analogue model for the magneto-telluric field

At the beginning of this investigation, it was thought that much

information regarding the behavior of the magneto-telluric field could

be obtained from a scaled down model. Unforseen difficulties restricted

the value of the model and reliable results were obtained for only

two geometries. However, this data is well worth reporting on account

of the complete lack of results regarding plane waves in two dimensional

geometries. It provides confirmation of the field behavior predicted

by the finite difference methods of chapter IV as well as an inquiry

into the possibilities of model work.

The first question to be taken is the manner by which the magneto-

teluric field was simulated in the laboratory. The problem consisted

in producing a field analogous to that associated with incident plane

waves in the earth. As discussed in section 2.3 this field is characterized

by horizontal and uniform current flow in a homogeneous earth. The idea

e f transmitting antennas or other methods involving electromagnetic

coupling between sender and ground, was ruled out on the basis of the

resulting low level signa, interference from objects in the laboratory

and restrictions on the distance at which the antennas could be placed.

Instead, a system relying on conductive coupling was adopted. This

- - -
I.
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consisted of two horizontally lying rod electrodes, parallel to each

other, located at each end of the model tank and buried just beneath

the surface (fig. A-1).

The sending electrodes were 2 feet apart and the model measure-

ments were carried along a one foot center strip, running perpendicular

to the rod electrodes. There was provision for checking the lateral

uniformity of the field through 2 parallel lateral strips, 4 inches

to each side of the central strip.

The receiver was a dipole with a one centimeter separation

between electrodes. High frequency coaxial wire was used in the

receiving system as well as everywhere possible, but the need for a

return wire between sending electrodes posed serious electromagnetic

coupling problems. In speaking of these coupling difficulties, we

must bear in mind that the voltages measured were extremely small,

on the order of tenths of millivolts. Thus a very small amount of

electromagnetic coupling was enough to spoil the measurements.

Whenever using metallic model materials, we were restricted to

frequencies below 250 kylocycles; even at lower frequencies care had

to be exercised in the layout of wires and some of the larger decoupling

transformers could not be used due to induction in their highly permeable

cores. With more resistive materials, such as sand with a saturated

NaCl solution, electromagnetic coupling became less of a problem.

With appropriate precautions, percentage changes in the field for

a homogeneous half space of the order of 10% from a point at the center

of the tank to the point nearest to the rod sender, were achieved. This

deviation from uniformity posessed always a trend towards higher apparent
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resistivity at the outer ends of the measuring strip. Such behavior

could be thought to be connected with the gradual adaptation of the

current coming out of the rod electrodes to horizontal flow. However,

the fact that the percentage change in the apparent resistivities from

the center to the ends went also up with frequency seems rather to

point to electromagnetic coupling effects.

As referred above, the frequency response of the half space,

within the measuring strip, agreed with expected behavior of a plane

wave field up to frequencies of 250 kylocycles whenever very

conductive material was used, which was most of the time. Above this

frequency, the ever present electromagnetic coupling masked completely

the plane wave field.

It should be mentioned that the intrumentation of fig. A-1 was

done by T. R. Madden, D. A. Fahlquist, and the author, for the model

research connected with the A. E. C. contract AT(05-1)-718

1.2 The size of model

In obtaining a scaled down model of the earth, the electrodynamic

similitude relationships of section 4.4 must be upheld. These

relationships state the need to keep certain ratios between the

dimensions of length, frequency and conductivity. In our case, practical

considerations dictated the first restriction, a restriction on the

length dimension. The problems of interest were the large scale geologic

features (such as inclined layers) for which the existing large tank was

unsuitable; the possibility of building a self supporting surface of

contact between two different electrolytes, with dimensions 5' x 6',
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without introducing extraneous electrical properties at the contact

appeared very dim indeed. In this manner, we were led to the consideration

of a small model. Here a few calculations show us that the choice is

rather restricted. The reader is now referred to fig. A-2 in which the

parameters of importance are presented graphically. One of the

restrictions is of course how small a voltage one can measure. Without

going into extremely complex instrumentation, we cannot expect te

measure below 0.1 mv. At the same time currents of a few amperes,

2 or 3 should be considered the maximum, on account of heating and

contact problems. Since the wanted receiving electrode separation should

be on the order of centimeters, we see that we will have to work in

the region below the line 0.1 mv/cm/a in fig. A-2. From the lines for

skin depth, we get our model size. The amount of material needed as

well as the "structural" problems just mentioned lead us to choose a

size corresponding to skin depths of about 5 cm. Electromagnetic

coupling effects, the relaxation time of electrolytes (important at

about 109 cps) and displacement currents force us to use frequencies

of less than 106 cps. We see therefore that we are thus restricted to

a region calling for conductivities on the range of 102 to 104 and

frequencies between 5 x 104 and 106. These requirements, plus those

connected with allowance for wall effects were satisfied by a 2' x l'x 1/2'

model tank which had been built for the A. E. C. project previously

mentioned and which we were kindly permitted to use.

I.
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1.3 Model materials

We have just seen how we were confined to work with materials

on the 10-2 to 10-4 ohm-mater range. In looking for natural occurring

substances having these electrical properties, we find that these

consist largely of sulfides (table V). Unfortunately, sulfides do not

come in large homogeneous blocks, one foot by one foot by a half. The

alternative was then to achieve such conductivities by the use of

mixtures of metals and appropriate fillers. An extensive investigation

aimed at developping a workable mixture was carried by the M. I. T.

group and most results have been reported in the annual progress

report (T. R. Madden et al, 1957). The results were not completely

satisfactory. Brass filings, in saturated NaCl solution to provide

better contacts and more homogeneous distribution of current, had

about the right conductivity and the best frequency response characteristics,

but these were far from ideal. The following measurements illustrate

the main difficulty with brass filings. Just after they were laid down:

frequency 100 lke 10ke 100kc 200kc 400kc 600kc

(x-)xl- 3  2.2 2.2 2.2 2.1 2.1 2.1 2.1

One day later:

(N-m)x1o- 3  0.76 0.76 0.75 0.762 0.78 0.83 0.93

T. R. Madden has suggested that as the material settles and becomes

more conductive, an inductive component of its impedance becomes noticeable.

Such an inductive component could be produced by the self-inductance df

the brass fillings resulting from the fact that the current paths are not



TABLE 'IV

HIGH CONDUCTIVITY

Substance

copper

aluminum

brass

nickel

iron

Dow metal

lead

zonel

stainless steel

graphite

MEDIUM CONDUCTIVITY

magnetite

pyrite

galena

specularite

marcasite

Resistivity (r-m)

1.73 x 10

3.66 - 5.8 x 108

6.4 x 8.4 x 10~

9.6 x 10-8

1.2 x 10~7

1.83 x 10~7

2.27 x 10~7

4.55 x 10-7

7.1 x 10~7

1.4 x 10-5

3.6 x 10-4

2.4 x l04

2 x 10 ~3

3 - 7 x 10

1 x 10~1



TABLE IV (cont.)

LOW CONDUCTIVITY

Substance

5N NaC1

6N KC1

3 N MgSO4

Salt water

Tap water

Resistivity (r-m)

5 x 10-2

2 x 10-2

2 x 10-1

2 x 10~i

50
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straight. Simple calculations on the basis of a model of loosely

wound parallel coils predicts frequency response difficulties for current

flow paths of 1 cm radius, one turn for each 4 cm length, and materials

of resistivity smaller than 10-3 in the 100,000 to 500,000 cps range

(T. R. Madden et al, 73, 1953)

Other effects that had to be taken into account were induced

polarization and heating. The former, arising from the conversion from

ionic to electronic current flow, became conspicuous whenever large

surface contacts between electrolyte and metal existed. The latter

derived from the necessity of using high currents to obtain readable

voltages and produced a rather steady drift with time of the volt-

ampere ratios.

Finally reference should be made to the relative size of the brass

filings, which ranged between 1/5 to 1/10 of the electrode separation.

The resulting many possible arrangements of ohmic paths between

electrodes introduced a scatter on the measured apparent resistivity. In

extreme cases this scatter reached 10% of the volt-ampere ratio being

measured. Since the resistivity is proportional to the square of the

volt-ampere ration, one can see how difficult it would be to detect

small frequency effects.

Until great improvements are Aade on the materials, models of the

type desired for our purposes will only yield results in cases where

spectacular effects are present. This is true of the model structures

described in the next section.
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1.4 The magneto-telluric field in specific model structures

1.4.1 Vertical layer geometry

All the model work was done with magnetic polarization, that is,

with the current running normal to the strike of the structures. In

the vertical layer model, brass in a saturated solution of NaC1 was

used for the more conductive quarter space and sand with the same NaC1

solution for the adjoint less conductive side of the vertical layer

geometry. The conductivity contrast was about 200.

The results of fig. A-3, show us the behavior of the current flow

as it is forced to come nearer to the surface in the more conductive

quarter space. This behavior is not totally expected but agrees with

that predicted by the finite difference solution. Rather than just

rushing nearer to the surface as it approaches the boundary of the

more conductive medium, the current actually dips down a short distance

before the boundary. This produces a minimum in the apparent resistivity

with values lower than the actual resistivity of the less conducting

medium. Only very close to the vertical layer does the current

concentrate near the surface causing a maximum in the apparent resistivity.

In our particular case the minimum was on the order of 65% of the actual

resistivity while the maximum was only about 15% above the resistivity

of the medium. Just before crossing the boundary from the resistive

to the conductive medium, the surface current is moving downw'ard again;

apparently, in adapting itself to the more conductive region, the

current initially concentrates nearer to the surface than it would on a

homogeneous medium of equal conductivity. Thinking in terms of wave

-I
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propagation, we recognize in this the familiar "source" effect characteristic

of corners. Finally at a distance corresponding to a kr of about 3

(away from the fault, in the conductive side) the current flows like in

a homogeneous earth, without being affected at all by the vertical layer.

We have seen therefore that the field behaves in a distinct fashion from

one medium to the other. Approaching the vertical layer from the

conductive side the surface current just moves upward; approaching from

the resistive side, the surface current goes through a complete cycle

in the direction that it takes. We may note again that this confirms

the relaxation results.

A point we have not discussed is the frequency dependence of the

apparent resistivities in the less conductive side of the model of

fig A-3. A consideration of the frequency and conductivities involved

leads one immediately to suspect that the frequency dependence arises

from reflections from the bottom of the model tank; on the more

conductive side, where skin depths are a fraction of the depth of the

depth of the tank, these effects are not found. A comparison between

the theoretical response of a layer with the depth and conductivity of the

resistive quarter space, overlaying a non-conductive bottom layer, fits

very closely the model results (fig. A-4). Therefore it might be more

appropriate to label the model in question a vertical layer overlying

a non-conductive horizontal bottom layer.

I.
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1.4.2 Buried cylinder geometry

This model was prepared partly to show the interpretative pos-

sibilities of the magneto-telluric method. For a map of results the

reader is referred to fig. 2-6.

Probably the most important result from this model is a further

confirmation of the nature of current flow when it runs into horizontal

changes in conductivity. Again, as we approach the more conductive body

from the less conductive one, we go through a minimum in the apparent

resistivity, followed by a maximum just before reaching the boundary.

It is rather interesting to notice that the minimum occurs at a distance

from the cylinder for which kr is between 3 and 2, a result that

agrees with that of the finite difference solution for a vertical

layer with infinite contrast.

U.



APPENDIX II

WAVE FIELDS WITHIN THE EARTH

2.1 Relaxation maps.

This section contains all the complete solutions of the electro-

magnetic field within the earth. It was from these solutions that the

examples of section 4.6 were obtained.

We are including the complete solutions on the appendix for

various reasons. They may be used as starting points for finer nets

and more accurate solutions. As they are, the maps show the degree

of accuracy to which the relaxation process was taken in the different

regions. Further, from them, one can find the general patterns of

the electromagnetic field within the earth. Of course one must be

aware of the existence of a certain amount of distortion, arising

from reflections from the boundary at which the solution was

constrained to zero. All these are points of interest not only

regarding the present work, but also, as far as future investigations

may be concerned.

It may be added that in plotting the maps, the top number refers

to solution A and the bottom one to solution B; the total solution,

as before, is u= A +iB . The dimensions are indicated in the map,

but it should be kept in mind that equidimensional horizontal and

vertical separations are being used. The station numbers are indicated

at the top of the map.

--.A . i-M-Mi ---



2.2 Vertical layer: electric polarization
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2.3 Vertical Layer: magnetic polarization
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2.4 Vertical layer: infinite contrast
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2.5 Vertical layer in contact with a non-conducting medium
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-7.24 -8.3
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29.0
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31.3
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-9.2
14.1

-10.8
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8

100
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30.2

17.8
33.6
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0

52.9
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0.19 -0.21 -1.0
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k r= 1
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0

11

100
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-1.7

-3.5
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2.6 Inclined layer 45*: electric polarization
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2.7 Inclined layer 135*: electric polarization

1 2 3 4 5 6 7 8 9 10 11 12

100 100 100 100 100 100 100 100 100 100 100 100
0 0 0 0 0 0 0 0 0 0 0 0

53.0 52.5 51.0 46.9 35.0 23.2 20.9 21.1 21.3 21.3 21.3 21.3
28.2 27.7 27.0 26.8 31.3 31.2 28.2 27.2 27.4 27.2 27.2 27.2

20.1 19.6 18.1 15.1 8.7 -0.4 -4.1 -3.6 -3.0 -2.94 -2.94 -2.94
29.9 29.1 27.7 25.9 23.7 19.3 13.6 11.5 11.2 11.6 11.8 11.8

2.13 2.13 1.23 -0.2 -2.67 -5.2 -6.3 -4.9 -4.1 -3.8 -3.68 -3.68
21.6 20.6 19.4 17.4 14.3 9.6 4.2 1.2 1.1 1.4 1.8 2.2

-5.03 -5.03 -5.3 -5.5 -5.9 -5.9 -5.2 -3.3 -1.8 -1.3 -1.0 0
12.2 11.5 10.4 9.1 6.9 3.9 0.8 -1.4 -1.4 -1.0 -0.5 0

-6.2 -6.2 -6.2 -6.2 -5.7 -4.8 -3.9 -2.5 -1.1 -0.1 0 0
5.32 5.32 4.32 3.52 2.52 0.8 -0.2 -1.0 -1.3 -0.5 0 0

-4.7 -4.7 -4.7 -4.7 -4.2 -3.6 -2.7 -1.5 -0.5 0 0 0
1.58 1.58 1.58 1.1 0.3 -0.3 -0.1 -0.45 -0.5 0 0 0

-2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.0 -0.9 0 0 0 0
0.19 0.19 0.19 0.19 0.19 -0.3 0.15 0.1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

strike contact

klr= 1 k2 1



2.8 Inclined layer 450: magnetic polarization

10 U 12 13 14
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kir =1 k2r= 1
C- ~ I e

0 -0.3
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2.9 Inclined layer 450: magnetic polarization
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SUGGESTIONS FOR FURTHER WORK

The sequel to any investigation is the appearance of new

problems related to those studied. Two of the more evident topics

are:

1. The adaptation of the finite difference method of chapter IV

to a high speed computer. Only then we can solve the host

of geometries that will give us a sure feeling for the

behavior of the magneto-telluric field.

2. The integration of the formal solutions for the inclined

layer problems.

U.
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