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ABSTRACT

Title: Geomagnetic Induction and the Electrical Conductivity
of the Earth's Mantle

Author: Donald H. Eckhardt

Submitted to the Department of Geology and Geophysics
on May 12, 1961 in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy at
Massachusetts Institute of Technology.

The ratio of the internal to external source terms of the
earth's surface potential for certain geomagnetic fluctuations
is indicative of the electrical conductivity of the earth's mantle.
Such ratios have already been calculated for harmonics of the diurnal
magnetic variation and for storm time variations; in this thesis the
ratio for the predominant harmonic of the semiannual variation is
calculated but the corresponding ratio for the sunspot variation eludes
detection.

A. nonlinear first order differential equation is derived for any
of these ratios as a function of depth and conductivity in a spherically
symmetric earth. This equation may be solved numerically to
match an observable surface ratio with a conductivity-depth profile,
or it may be solved analytically for a few of the infinite number of
possible profiles. This approach departs from earlier, and less
flexible, methods which are also reviewed in some detail. The new
method provides a deeper insight into the problem of induction in a
spherically symmetric earth.

The thin irregular shell of conductivity oceans biases the
analyzed ratios for the diurnal and storm time variations. A rough
quantitative explanation of this inevitable effect affords an appraisal
of the actual significance of the biased ratios.

Since the semiannual variation penetrates more deeply into
the mantle and because its analysis is not subject to the same
uncertainties due to the influence of the oceans as are the higher
frequency variations, it proves a valuable indicator of the possible
conductivity structure of the earth. The diurnal ratios are consistent
with the semiannual ratio only if there is a rapid rise in conductivity
from about 0. 3 mhos/meter or less at a depth of 500 kilometers to
over 25 mhos/meter at a depth of 600 kilometers.
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CHAPTER I

INTRODUCTION

Purpose

Among the temporal variations of the magnetic field of the

earth, there are several detectable periodic variations whose

primary sources are outside of the earth. Secondary source fields

induced within the earth can be discriminated from the external

source fields, and a comparison of their magnitudes enable us to

make estimations of the electrical conductivity of the earth and its

variation with depth. This thesis is concerned with reviewing and

extending the pertinent theory, discussing its previous application

to the diurnal geomagnetic variation, analyzing the semiannual and

eleven year variations and applying the theory for the semiannual

period.

We are concerned with only one of several different methods

for estimating the conductivity of the earth. By the nature of the

sources and the relative sizes and conductivities of the crust,

mantle and core of the earth, this method is particularly sensitive

to the mantle conductivity and it is relatively insensitive to the

conductivities of the crust and core.

Historical Review

All previous applications of the process of magnetic induction

on a world-wide basis to infer the conductivity of the earth's interior

have considered only the diurnal variation of the geomagnetic field

and the storm time magnetic transient whose principal composite

periods are only a few days.
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Chapman and Whitehead (1923) first treated the problem by

considering a central "core" (not the core which is now universally

accepted in geophysics), surrounded by an insulating shell and

capped by a thin conducting shell. In this three layer model the

"core" represents, more or less, what is now known as the core

and most of the mantle taken together; the insulating shell corres-

ponds to the crust and some of the upper mantle; and the thin

conducting shell is an attempt to account for the relatively highly

conducting oceans. In matching this model with observed diurnal

magnetic variation data, Chapman and Whitehead had three degrees

of freedom at their disposal: the thickness of the equivalent oceans,

the depth to the "core" and the conductivity of the "core". They

found that the equivalent oceans would have to be rather shallow

(the total volume being no more than one fifth of the volume of the

true oceans) and that the "core" was at a depth of 200-500 kilometers

with a conductivity of the order of 0. 1 mhos/meter.

Chapman and Price (1930) used the "core" model of Chapman

and Whitehead for observed aperiodic storm time magnetic variation

data. They calculated "core" conductivities a little higher than those

from the diurnal variations. The "core" depth wasn't changed much

and the equivalent oceans were still quite shallow.

Lahiri and Price (1939) extended the theory for a "core" whose

conductivity varies as some power of the distance from the center of

the earth, and they considered both diurnal and storm time variations.

Their model required that the earth's conductivity increase very

rapidly at a depth of about 700 kilometers. Again the equivalent

oceans were very shallow.
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All of the above analysts used the data of Chapman (1919).

Rikitake (1950) reviewed their work and used the more recent

diurnal variation analyses of Benkova (1940), and Hasegawa and

Ota (1948). His results were about the same as those of Lahiri and

Price. Rikitake also tried to account for the effects of conducting

oceans which are not continuous about the earth. Benkova (1957)

found similar conductivity structures by applying the theory to new

data on storm time variations.

Contributions of this Thesis

The problem of the oceans was never adequately treated, and

it is the contention of this thesis that, because of inevitable bias in

the data, the problem is insuperable at the frequencies used for any

accurate conductivity determinations. The oceans vitiate the data

less as the frequencies of the magnetic variations decrease and their

effect for the longer period six month and eleven year cycles analyzed

in this thesis are negligible. Because of the low signal to noise ratio,

the quantitative analysis of these periods is somewhat more compli-

cated than for the diurnal variation. Fortunately, though, the spheri-

cal geometry for the long period fields used is very simple; geo-

magnetic data have been available; and machine computation facilities

have been accessible and thoroughly exploited.

The theoretical approach presented by Lahiri and Price adapts

itself well to the problem of estimating the mantle conductivity as a

function of depth, and much of it is reviewed below. In addition, a

new approach to the problem where the conductivity varies with

depth is presented. With this method, a better "feel" for the problem.

is attainable and the solution is more straightforward and flexible

insofar as the allowable conductivity structure is concerned. This
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new approach is used in the interpretation of the semiannual data.

The Mantle Conductivity - Other Methods

Other methods for estimating the conductivity of the mantle

(and core) have most recently been described by Tozer (1959). A

few of these which are especially sensitive to the lower mantle

conductivity are described here. (For a more complete survey see

Tozer or Runcorn, 1956.) Bullard et al (1950) considered the elec-

tromagnetic coupling of the core with mantle and the mantle con-

ductivity necessary to account for the observed westward drift of

the geomagnetic secular variation. It was calculated that the lower

mantle must have a conductivity of at least 10 mhos/meter. Munk

and Revelle (1952) were able to explain measured irregularities in

the length of the day by a core-mantle electromagnetic coupling if

the lower mantle conductivity were of the order of 100 mhos/meter.

Runcorn found an upper limit for the conductivity of the lower mantle.

By considering the maximum allowable mantle shielding which would

allow certain frequently observed and relatively rapid changes in

the secular variation field, he found that if the conductivity in the

lower two-thirds of the mantle were approximately constant, it could

not exceed about 100 mhos/meter. MacDonald (1957) and Yukutake (1959)

considered the attenuation in the mantle of a random distribution of

secular variation sources at the core boundary. Their lower mantle

conductivity estimates range between 45 and 700 mhos/meter.

Physical Laws of Conductivity

Hughes (1953) presented three electrical conduction mechanisms

for mantle material: impurity conductivity, electronic conductivity,

and ionic conductivity. For the temperatures of the mantle, impurity



conductivity is unimportant, but whether electronic or ionic conductivity

dominates at high pressures is a moot point. The conductivities by

both of these processes increase with increasing temperature, and at

high temperatures the ionic conductivity dominates. There is also a

pressure effect which is not well understood, so when both tempera-

tures and pressures are high, as deep in the mantle, the dominant

mechanism is uncertain. Hughes (1950) suggests ionic conductivity

and Tozer (1959) favors electronic conductivity. It is possible for

the conductivity to decrease with depth deep in the mantle if the

pressure effects exceed and oppose the temperature effects, but it

is generally assumed for the conductivity models in this thesis that

the mantle conductivity increases with depth although this assumption

need not hold for most of the theoretical development.

Estimates of the conductivity of the upper core have been made

by Bullard and Elsasser (1950). Even after possible downward

revision suggested by MacDonald and Knopoff (1958) and Tozer, these

conductivities are at least of the order of 105 mhos/meter. The

conductivity below the core boundary is several orders of magnitude

greater than it is above the boundary and the core appears as a super-

conductor for even the longest period magnetic variation analyzed in

this thesis.
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CHAPTER II

CONVENTIONS AND NOMENCLATURE

Units

This thesis employs the Giorgi rationalized MKSQ system

of units rather than the unnormalized cgs (emu and esu) system

which is conventionally used in geomagnetic literature. It is not

the purpose of this section to dwell on the advantages of the Giorgi

system for they have been adequately demonstrated many times

1n literature on the subject of units in electromagnetic theory. One

very readable account occurs in Sommerfeld's text, "Electro-

dynamics" (1952).

The nomenclature for the field vectors, B, H, E and D is,

unfortunately, disparate and often misleading. It is usually safest

simply not to give them any names and, except for calling B the

"magnetic flux density", this is the policy of this thesis.

Sommerfeld shows that B and E are analogous as "intensity

entities" whereas H and D are analogous as "quantity entities" so,

since any field measuring scientific instrument detects "intensity

entities", the appropriate vector in which to express the measured

magnetic field is B. The em.u unit for B is the gauss; in geomag-

netism the gamma (I gamma = 10-5 gauss) is often used in its stead.

In the rationalized MKSQ system, the unit of magnetic flux density

is the weber per square meter where I weber/m 2 = 104 gauss = 109

gammas.
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The Geomagnetic Elements

The vector B may be expressed in terms of its geomagnetic

elements. The elements which are the local cartesian components

of B are known as X, Y and Z. X is defined as positive northward;

Y is positive eastward and Z positive downward. If, instead of

using geographic north and east, geomagnetic north and east are

used in defining the cartesian elements, X and Y are replaced by
2 2

Xt and Y'. The total horizontal component is H = X + Y =

2 2 -/2 2
(X') + (Y) ; the total flux density is F = VH + Z ; the declina-

tion is D = sin -1(Y/H); the inclination is I = sin-1 (Z/F).

The geomagnetic elements which are usually tabulated are

X, Y and Z or H,. D and Z. From the second set we may convert

to the first set by using

X = H cos D

Y = H sin D

For small changes in the elements, we may relate the changes in

X and Y with those in H and D by using

X + AX = (H +t6H) cos (D +6D)zX - Y AD + cos D, H

Y + AY = (H +,6H) sin (D + D) ~Y - X AD + sin D dH

, X= - Y AD + cos D 4H (2. la)

LAY= X LD + sin D LH (2.lb)

Wherever these elements appear in equations, they are assumed to

be complex amplitudes (where i = -r1).



14
Representation of Sinusoidal Variations

In representing a sinusoid in time, t,

(L = U, cos < (t - to )

it is often a convenient shorthand of consider the complex function

U =Uexp i(t - to) =(U, e ' ) eW

such that

S= Re (U )

where Re: is the operator which takes

the complex amplitude of U and e w

we wish to extend this shorthand to a

and longitude, y ,

U. = U0 Co c~ (t - to) cos

for which we now consider the doubly

the real part of U. Use is

is its time variation. Here

product of sinusoids in time, t,

m ( y - ro )

complex function

Ue (U= 4wt ie- 4)C"Tei Poj

such that

U-= Rei (Rej (U ) ) = Rej (Rei (U) )

where Rei is the operator which removes the i-imaginary terms and

Rej is the operator which removes the j-imaginary terms. Thus

Rei (U) = U. cos (t - to)ecp jm ( - fo )

Rej (U) =U ep ew (t - to) cos iv( V- ,0 )

U0 e is the doubly complex amplitude of U; e is its time

variation and eJ mf is its longitudinal variation. Since i and j

are imaginary numbers in their respective domains
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2
j =-1

although, in general,

ij#-1

It is the convention here that the operator, Re, represents Rei,

but never Rej.

Legendre Function Normalization

The associated Legendre functions have the convenient Schmidt

normalization (Chapman and Bartels, 1940) which is conventional in

m
geomagnetism. The normalized functions, Pn are defined in terms

of the unnormalized functions, Ph, m, as follows:

pm =Pn, m m=On

Pnm 2 (n - m) Pn, m m O
(n + m)

Subscript and Superscripts

For scalar quantities which are not components of vectors,

the order of a spherical harmonic, n, and of its equatorial sinusoid,

m, appear in their usual locations, e. g. jn (kr), Pnm (cos 4). When

m is zero, it is omitted. For vectors and vector components, these

terms appear as superscripts (when two superscripts are required

they are separated by a comma) and components of a vector are

identified by subscripts, e. g. Bn B In, m n, m., B4 , Br. Occasional

subscripts, such as /o , No and tl have their conventional meanings

or are defined where they first appear.
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The Radial Distance

To help avoid confusion we define here the many symbols

used to denote the distance from the center of the earth, r, to

various surfaces.

r = a reference surface for geomagnetic potential.
This is generally the surface of the earth,
a = 6370 kilometers

r = r outer surface of conducting mantle r i 6370 kilo-
O Ometers

= r/a
normalized radial distances

= J/

r = r radius of superconducting sphere
S
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CHAPTER III

THE PERIODIC GEOMAGNETIC VARIATIONS

General

The changes in the magnetic field of the earth are manifold

and complex. They may be considered as the sum of three different

kinds of variations: secular, transient and periodic. In this thesis

we are mainly concerned with the most easily detectable periodic

variations: the diurnal, semiannual and sunspot cycles. The primary

sources of these periodic fields are outside the earth and secondary

sources are induced within the earth. By comparing these different

sources we may make some inferences concerning the conductivity

of the earth's mantle. The purpose of this chapter is to describe these

variations mathematically and to review the methods for discriminating

between internal and external sources.

The Magnetic Potential and its Sources

Let B be the periodic magnetic flux density of frequency, W/2y ,

which is part of the varying magnetic field of the earth, and let it

contain time only as the factor eiw . For a shell a few kilometers

thick, which is bordered on the inside by the earth's surface, we assume

that the electrical conductivity,a- , and the current density, J, are zero.

With , =/Ao = constant

J v H = 0 =Qx B

so in this shell B is derivable from a potential



In spherical co-ordinates ( r , , p ) the potential takes the form

= = 2 O (3,1)
m.l fus0 IAII "0

where f = ( is the normalized distance from the origin and Cand

are doubly complex amplitudes containing the factors e and e

(see Chapter II). C is associated with sources outside the shell,

while Jr is associated with sources under the shell, that is, within

the earth.

At the earth's surface where / = I , the potential is

where Y: represents PrafJem and

I* + Z I je f y

In terms of the X, Y Z field nomenclature of geomagnetism

(see Chapter II)

X e -I, (')- = a e (3.2a)

Y = v60-a = - Z--=49 (3, 2b)

Z e',: Y (3.2c)

where

It is possible to determine & and %from the measured X,

Y and Z periodic field components from observatories distributed

around the earth. We may use the horizontal components, X and Y,
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to find Q (a) by numerical line integration. A spherical harmonic

analysis of R-a (a) gives b while a similar analysis of Z gives .

Then the external and internal source terms can be found by

(2 m + 1) C, (rM + 1)tl) b (3. 3a)

(2 mv + 1) d' = m m -(3. 3b)

It is conventional, however, to calculate b by analyzing

the X or Y field components directly (see Chapman and Bartels,

1940, Chapter 20).

The Quiet Daily Variation, Sq

As may be seen in Vestine et al (1947b) at any geomagnetic

latitude the major portion of the quiet daily magnetic variation

depends only on local time. Benkova (1940) estimates that, aside

from the variation with latitude, about 80 percent of the Sq field is

a function only of local time, and most of the harmonic analyses of

this field have been made with the assumption that the entire field is

so dependent. That part of the field that does not depend on local

time may be attributed to the facts that the geomagnetic and geographic

axis of the earth do not coincide and that part of the field is caused

by currents induced in the irregularly distributed oceans. If we

denote local time by ' , we must have

W -OT + Wat

arr
= 24 hours

Rather than having

w t 1pro"
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we now have

£2$(a)=

This is a more restricted form for2'"which is imposed by

assuming that S'C is only a function of latitude and local time. It

is sufficient only to consider the complex potential associated with

the cosine term

Corresponding to this for the vertical field is

At about the time of the equinox, the Sq field harmonics are

odd about the equator, primarily of the form, P1 eJ0 , and

harmonics greater than the fourth order are relatively small and

unimportant. Analyses of this field have been made by Chapman (1919),

Benkova (1940), and Hasegawa and Ota (1941). Their derived complex

ratios 3r p n Fges53c

S U4/(53 are plotted in Figures 5. 3a-c

in Chapter V.
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The Storm Time Variation, Dst

Since the transient storm time variation, Dst, is symmetric

about the earth's geomagnetic axis, and since its geomagnetic north

component, X', is symmetric about the geomagnetic equator, the

field can be derived from a potential containing only odd zonal har-

monics. The field may be considered as composed of two parts.

The main part consists only of a few low order harmonics and it is

present at all latitudes; another part is very intense and is present

only in polar regions where the geomagnetic latitude exceeds 60*

(about 13 percent of the earth's area). Using the average charac-

teristics of the Dst field from 40 magnetic storms at geomagnetic

north latitude 22, 40, and 530, Chapman and Price (1930) deter-

mined be, and , for a main field which was assumed to contain

only the first, third and fifth order zonal harmonics. They found

that the first harmonic coefficients, k, and , , are, by far,

the largest and that the higher harmonics are relatively unimportant.

Long Period Variations

The frequency and intensity of magnetic storms change

cyclically with time. There are several detectable cycles which

are related, in various ways, to the change in seasons or the sun

and its activity. There is, for instance, a 27 day cycle which

corresponds to the mean period of rotation of the sun, and there is

a yearly cycle which McNish (1959) attributes to an atmospheric

dynamo effect. Of greater amplitudes are the cycles with which we

shall be concerned in this thesis: a semiannual cycle and an eleven

year cycle. The semiannual cycle has most recently been studied by

McNish who concluded that peak amplitudes of magnetic activity
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indices occur at the equinoxes. The eleven year cycle is known as

the sunspot cycle for there is a well-known correlation between

magnetic storms and sunspots and both magnetic disturbance indices

and sunspot numbers move in phase in an eleven year cycle.

The magnetic storms which are most frequent and intense

during the peaks of the semiannual and sunspot cycles combine to

give two long period cycles of magnetic flux density variations.

Except for scaling, therefore, the harmonics of the potentials of

these periodic fields are the same as for the transient field, and

the world-wide part can be adequately analyzed in terms only of

the first zonal harmonic.

The semiannual cycle in the geomagnetic north component, X',

is revealed by Vestine et al (1947b) in a graphical presentation of

monthly mean departures from yearly means of the X', Yt, Z I

geomagnetic elements. As would be expected for a potential zonal

about the geomagnetic axis, the geomagnetic east component, Y,

shows no periodicity; but the vertical component, Z, is unfortunately

so weak that it also shows no periodicity. For the zonal potential

the total horizontal component, H, varies the same as the Xt

component. Cynk (1941) examined the latitude distribution for H of

the daily mean disturbance, Dm, which is calculated from internationally

disturbed day means minus internationally quiet day means. He

compared this component at geomagnetic north latitudes 22Z, 400

and 53' with the mean H component taken from the same Dst field

analysis used by Chapman and Price, and he found that the Dm and

Dst horizontal components are proportional. In an earlier paper,

Cynk (1939) showed that the H component of Dm which is symmetric

about the equator has a conspicuous semiannual cycle.
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The sunspot cycle is shown graphically by Vestine in a pres-

entation of the yearly means of the geomagnetic elements over three

cycles. The geomagnetic north component, X', has a detectable

eleven year periodicity and its latitude distribution agrees reasonably

well with the X' latitude distribution for the daily means of disturbance,

Dm. Similar to the semiannual cycle, the Y' and Z' variations show

no periodicity.

Since the semiannual and sunspot cycle potentials can be

adequately represented in the nonpolar latitudes with only the first

zonal harmonic, only 2-, and 9, need be calculated and the

spherical harmonic analysis is simplified. b, is determined from

the X' variations, but before W, can be calculated for either cycle,

the vertical variations must be detectable by a frequency harmonic

analysis. However, for either cycle, even if the variations in Z eiw

remain below the detection threshold, if we can estimate the threshold

level, we can set some limit to J ,El ,and J I . In

Chapter VII, new frequency harmonic analyses of the geomagnetic

elements are presented for the semiannual and sunspot cycles.

The vertical variation d is detected for the semiannual period only.
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CHAPTER IV

INDUCTION IN AN EARTH OF SPHERICALLY SYMMETRIC

CONDUCT IVIT Y

General

The purpose of this chapter is to derive some relations between

observable geomagnetic quantities and the radial conductivity structure

of a spherical earth. At any depth the conductivity,a- , is assumed to

be constant. For the diurnal variations in the earth's magnetic field

this assumption loses its validity near the surface where the conductive

oceans are inhomogeneously distributed. The problem of allowing for

the oceans is treated separately in Chapter V.

The first part of this chapter is a review of the usual method

of matching the boundary conditions for LaPlaces equation outside

the earth with those of the Helmholz equation inside the earth. With

this treatment the complex ratio

is related to the solution of a second order differential equation for

which the radial distance, r , is the independent variable (see Equation

4.6). The second part of the chapter presents a new approach to the

problem in which S is considered as a function of r and is shown to satisfy

a nonlinear first order differential equation withr as the independent

variable (see Equation 4. 30). The behavior of this interesting equation

is treated in detail for it affords a good understanding of the relation-

ship between r , - and S, for any spherically symmetric earth model.
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The Vector Helmholz Equation

Let the field vectors E, B, H and J, contain the time as the

facDr e (rather than the conventional e w " ). Using Maxwell's

equations, neglecting the displacement current, we find

V-% E =-iw B =- wkH

'7 "" H " (4.1)

where k2 = k2 (r) =-Wyw"(r). Consider as the sum of an irrota-

tional field, Er, and a solenoidal field, E ,s , Applying (4.1) to

E;,

7X VxE r = 0 = k E(rr

If k # 0, Ei,,r = 0 and E = E,.j. Thus V E = 0, and we have the vector

Helmholz equation

o7*E -E xOE E * 'E +AxE O (4,2)

where V2 is the vector Laplacian operator. Returning to

Maxwell' s equations

(4.3)

In spherical co-ordinates ( r , , ), if is a scalar

which satisfies the scalar Helrmholz equation

7v 14 yl = .(4.4)
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then three mutually orthogonal solutions to (4.2) may be derived

from I (see Stratton (1941), Section 7.11) as

C= = vlp

E = M = 9 y

E = N =(/k) D x M

(4. 5a)

(4. 5b)

(4. 5c)

By separation of variables, the solution for 1) is found to be

~y~fry2 F. I C P.~
fMz A I I fsl C;

where R, is the solution to the differential equation

rl 0 11 ^ + 2r (LRK [AKrt -M (M)]R., Z.WLIr (4.6)

The Model of Lahiri and Price

The case where k is allc

2 2 -4
k2 (r) =kop

owed to vary with depth in the form

o<I

=0

where

r 5 , = earth's radius

was first investigated by Lahiri and Pric

r and k2 , (4.6) becomes

Z.F

e (1939). Substituting for

(4.7)(M4i31P=
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For a uniformly conducting sphere, o = 0 and the two independent

solutions to (4.5) are the spherical Bessel functions jA (Ar) and,(A(r ).

In order to have the solution remain finite at r = 0, only the jn (Ar)

solution is used and we have

Rf = j (Ar), o = O

For the special case, o( = 2, the two independent solutions to

(4.7) are p and p . Again, in

order to have the solution remain finite at the origin, only the first

form is chosen and

For the case ot#2, the two independent solutions to (4.7) may

be chosen as -t C) and p'f Kp) where Ip( ) and Kr&j) are,

respectively, the modified Bessel function of the first and second

kind, and

(See for instance, Hildebrand, 1948, pp. 166-67.)

so since = o, in order that the solution remain finite

as 0 -- O , R, takes the following forms
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where 7 -

The Poloidal and Toroidal Modes

For the problem at hand, only the solenoidal solutions for E

(4. 5b, c) are applicable. Corresponding to = R.V , let us

consider the two cases E'= Mand ~E= NM

where

N" "- Q td

Their components are

Ar A"'( r cOr 'Q ' y.&r , i-&' cra

Just above the boundary r= r , the conductivity is zero and

there can be no radial component of current. Just below the boundary,

where the conductivity is not zero, there still can be no radial

current so

JrYr.) c- E( fr.) = E( 4r.) .8(4,8)



Since the M

be identified

Let us take

form of the solution has no radial component, it may

with E" , and boundary condition (4.8) is satisfied.

E" = -c M" (4.9a)

Then, since Vx E = -

(4.9b)

The magnetic field for this form of solution is said to be in the

poloidal mode.

We may verify, now, that B' = AN~ satisfies (4. 3). Using (4. 5c)

and (4. 9a, b)

a~oo~ V'x M -0'xFI

17xN f- - x "tw

If we make an attempt to match E' with N' in the form, say,

/V^

then boundary condition (4.8) can only be met if

E r(r,) - ri 4I,

,A (X.r.) -z R, (Ar ) i o

29

B" I V x$ = AN-
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Therefore

13'(r) 0

The magnetic field for this form of solution is said to be in the toroidal

mode. At the boundary r = r,B vanishes in all components so the
0

magnetic lines of flux are completely enclosed inside the conducting

earth and they have no effect at the surface. The toroidal mode

cannot be induced by external source fields so, in the absence of

internal sources, it corresponds to a decaying field. For example,

for a uniformly conducting sphere in the toroidal mode

R,(%r,) ( jk (r) O

The real roots to jwt(r.) =O correspond to imaginary frequencies or,

physically, to exponentially decaying fields. For any reasonable

uniform earth model, the relaxation time, r /e , is considerably

less than one second. Even when a-is not uniform, we have shown

above that '. E = 0 and thus there is no charge density. For any

radial conductivity distribution for which r O and for which thecharge density and its time derivative are everywhere

charge density and its time derivative are everywhere zero

V. S' x~ Ef- Va- E*E"I E" 0 -
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Consequently

and E must have no radial component; that is, the solution must be

in the poloidal mode. From here on we shall consider only the

poloidal mode.

Boundary Conditions

At the boundary, r = ro , on the conducting side, the poloidal

components of Bm" are

B"r.) = ) R. (Ar.) at" Y. ew"r  (4.10a)

B; (r) . A, Ar & a# (4, 10b)

Btr. = -j ) YM 41cB""m IM~ e (4. 10c)

On the nonconducting side, from (3. Z a, b, c), if = ro the

components are

Br (4. lla)

C4) -e (4. llb)

B (r) - -WA ¥  e (4. 11c)

The boundary conditions are that Br is continuous across the

boundary and, since /= constant, that B and By are also

continuous. Equating (4.10a, b or c) and (4. lla, b or c)

of ++--+ ro- + '+,+
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Using (3. 3a, b) we have

In the above equation, we have assumed that the boundary of

the conducting earth, r = r , is the same as the surface where the

magnetic field is observed, r = 0. If, instead, the field is

observed at a> r , going from r o to a, L decreases by the factor

-(/} and increases by the factor (a-/ )* The net result is

that the observed amplitude ratio at r = a has decreased from the

ratio at r = r by a factor (/.) . This ratio

"M ( .(4,13)

depends on n, but not on m. Since it contains no j imaginaries,

oJ and C; are in the same angular phase.

The Solution for a Uniformly Conducting Earth

For a uniformly conducting earth

~A LR* = R , #r ' -J rj'

where the prime denotes the derivative with respect to the whole

argument, r.

/21 44
+ mr r ~'
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Using the identities

, I

j, Ar rJ' +JA

we find that

I,

3 1 - 1- ( ffi )j, +,

and therefore

oa (Ar.)

For a large Ar,

/#t~f I. : y M4
(4,14)

This is the ratio for a superconductor. We may easily verify this

independently by noticing that at $ = 1 on the surface of the super-

conductor, the radial magnetic field must vanish. Consequently

E~"Cr~)s (

3(,'~O ~meL\ /441 9

For a small kr, , using g (Agr) - (2rM)m" m!
(Ra<; },/

G'= 41fIt
2M41
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Going from a superconductor to a poor conductor, the absolute

value of the ratio de.creases .and the corresponding phase lead

changes from O tolT/2.

The Solution for the Lahiri and Price Model

The Lahiri and Price distribution ratio, &(a), is derived as

follows: Z) p) W~<2

sstun Kp () 2

, '

._ _ Z , ,p., (s.) -(t ,, (.)

For ot<2

For "ll 2 # eel,

is small and , Chapter and, thusations 105a 106b) Then
is small and C< *, ZM 43 and, thus, V<I. .. Then
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I , (.) r Ok'0) "

r orio) rl+Y)

and

The Thin Conducting Shell

The thin conducting spherical shell of constant conductivity

and bounded on both surfaces by insulators was first treated by

Chapman and Whitehead (1923) in a manner similar to that given

below. Unlike this treatment, however, they made no use of he

now well-known properties of the spherical Bessel functions. In

Chapter V, an alternative approach to this problem is given.

Let the shell have a thickness Jwith its outer surface at

r = a and its inner surface at r = a - S. The conductivity times

the thickness, -r, is taken as some nrin-zero quantity which remains

constant as we make the shell infinitesimally thin while, at the same

time, making the conductivity infinitely large. Symbolically,

e-J consTan T7

Sincek 2 = - iJ-L

Aj, a

0a3
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For the n, m harmonic, above the shell we have the potential

On the underside of the shell, ignoring J with respect to C. , we

have the potential

46 A1) are the unknowns sought.

In the shell the solution is the same as that for the uniformly

conducting sphere, but without the condition that the solution remain

finite at the origin. The solution, then, is a linear combination of

(*kr) and ',(kr) times Yve 4wt

Let

With r, replaced by a, the boundary conditions (4.12a, b) become

F(h)o j C, Cw o + M
,, (4,. 15a)

For >/

2 . - ",' / (4.16a)

,hoot-) , : 4.1.6b) (l) - " (4 j,,

A_(r______ 1110 (kjJ + .> C( ) ( )Al
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and (4.15a, b) become

-A(#)Z -0 O'
CCjIJI(As.) C7% A41-e (4. 17a)

(4.17b)

Making use of the Wronskian

j#- --

we may now solve for COV and

(4.18)

S-, [. (*4 s -'* (,I*,)
=vi

-

Using (4.16a, b) in a first order Taylor series expansion of J,(#(-

and i~WkLA-!)), we have

j,(A(L-,)), 
j' ) A 71 s.)

(Ag -n )a >, (Ito - Atn ()

Corresponding to (4.17a, b), we have the inner boundary conditions

which are, to the first order

C., d,, .o..) * C,, ,. 071r. 4

(4. 19a)

(4. 19b)

(4.20a)

(4. 2 0b)

(4. Zla)

< ) ) (CS;1c *) A ( r;1b)

dl~
M

ef))

-- ( -Lem L LI4~-LlolCJ~CI

(4.2lb)

/H
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Subtracting (4.17a) from (4. 21a) gives

(4.22a)

which is simply the condition that Br is continuous across both

boundaries. Subtracting (4.17b) from (4. 21b) gives

.EA.~7 (.4 'j), - C >s()
," (4. 22b)

Finally, combining (4.22a, b, 4.19a, b) and (4.18), we find

en, ' (4,.23a)

zz - /, " (4.23b)

The Thin Insulating Shell

Let us suppose that the potential (3.1), is to be developed by

analytic continuation about r = a, where a is now considered as a

variable describing the potential reference level. Accordingly, the

terms,

and
O- , "

d~m~'p-m-/ S~M -
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must vary only with r, where the potential is evaluated, and not with

a, which is an arbitrary reference level. Thus

E~~o dm

- 4\2

For a small 0- ,

(4. 24a)

(4.24b)

Solution by Simultaneous First Order Differential Equations

Now consider a sequence of alternating thin conducting and

insulating spherical shells. We wish to find how , and ,

evaluated in the insulators, change with 0. . It is sufficient to

consider the change across one pair of shells as from 1 to 3 in

Figure 4.1. Let C-= T/ so

S3.that the conductivity times the

i 1 thickness of the conducting shell

7a, .)a"E 4_.l a, = 07 6a.,

S.is constant. By (4.24 a, b), the

change in going from 1 to 2 is

FIGURE 4, 4 ') (A-, ,'E '

If C~(d is made small (4.23) may be used in going from

2 to 3, with 4-r replaced by d0;d .

OP /l*H4

d~
C""

n4~'
u~~

e,

Ot.
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Letting -- 0

Now, letting 4C C,7 4 . --+ O &s aO -4 O replacing

0. by r , we have

d4X (M 4 ( A"-
0 0,- ,- (4.2 5b)

It has been shown earlier in this chapter that there are no

radial currents so, naturally, the insulating shells can have no

effect on these currents. The horizontal currents are also

unaffected because the effective horizontal conductivity is unchanged.

Therefore (4.25a, b) are a pair of first order differential equations

in the external and internal components of the Yterm of an effective

potential for conductivity distributions which depend only on r. If

we were interested in the flux density vector as a function of depth

rather than the nature of the field sources, the following pair of

equations, derived from (4.25a, b) using (3.3a, b) would be more

direct

- n~ . ,,.r,... /" ? (4.26b)
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It is shown in Chapter V that these equations can be derived

directly from Maxwell's equations with the same condition as used

above: that there are no radial currents.

It is easy to verify that either pair of first order differential

equations (4.25a, b) or (4.2 6 a, b) is equivalent to the second order

differential equation (4.6). Since each pair is simply a linear

recombination of the other, we shall consider only (4.26a, b). By

(4. 1Za), at any r, rX should satisfy the same differential equation

in r as 1. Differentiating (4.26a, b) we have

~~4'r /) : ) r~ ~ > (4.27)

r r N (4.28)

We may eliminate k~ebetween (4.27) and (4.28) by multiplying

the former by 2 and the latter by r and summing

dr%

which is the same as (4. 6). Thus we have shown that r 1' does

satisfy the same differential equation as R, . It follows that r #k

satisfies the same differential equation as rR and ~(r ')C)r

satisfies the same differential equation as (R4) . But we have

r (drA 04 r
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and, therefore, in agreement with (4. 12b), satisfies the same

differential equation as r .R

For a thin conducting shell, (4. 26a, b) become

'r

Therefore

By Taylor series expansion

Since /rr is small compared with 1

46 - 0 W; (4.29)

is linear in k24r for a thin conducting shell.

A Differential Equation for Sn

From (4.25a, b) we may derive a first order, but nonlinear,

differential equation for the complex ratio S~, a ,w. Earlier,

we derived formulas for S(a) for special conductivity distributions

where r , and ro is the outer limit of the conducting earth.

Now, for any r

*%4$ -r WA' S Z,-, + I ,r) g-(" 1'; l )J" - -

,,j0

C~c 2m+ rIm o cik

M41 Ytl L



(4.30)dr (; r) M I .' " Z

For a thin conducting shell + 6S may be found by using (4.29)
S ,. ,,; + U, €;,r. "2 ,r-=, $" & .- " "")(n I)

_ A'r[ S,,)

Aare"+rc eC + Irv w\R ~t fA4 1 IW% Iro

Ste. AlSIK
(/ 1 ;2f

4.31)

Interpretation of Equation 4. 30

Except near S = 0 or S = in + 1), the relative importance of

the two terms on the right hand side of (4.30) is determined by the

magnitude of &) . When this is a large number the first term

predominates. When r is taken as the radius of the earth, the

values of 0" necessary in order that Ar= ka= zL, 00 are given

in Table 4.1 for 24 hour, semiannual and eleven year periods.

Table 4. 1 Conductivities in mhos/meter

Period

For A1(00

For =-L3
10

24 hours

0.3

0. 0003

6 months

50

0.05

11 years

1100 - High conductivity

1.1 - Low conductivity
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Let us consider two extreme cases of (4.30). When r is

large and (S, -X-l) is not small the equation becomes

On the other hand, whe is small and Lv is not small,

(4. 30) becomes

(4.33)

In (4. 32), the term r() only affects the rate at which S,

travels along any of the characteristic curves which are solutions of

In Figure 4.2, let S, be in-the direction exp i (17-4,) from - and

let P be a point on the real axis such that S, is in the direction

exp i (TT- Zo, ) from P . The direction from the origin to

41- ) Iis exp i ( iT -o ); to ( c ) the direction is

exp 2i (TT-o,) = exp - 2io(,; and to( S - )2 it is exp i (S -

Thus y" moves in the direction exp i (- -2ot) from and

is perpendicular to the line P',S . The characteristic curves are,

therefore, circles whose centers are on the real axis and about which

S, travels in a clockwise manner as r increases. When o(-= ,,

the derivative has no real part so it must be crossing the real axis.

This can only happen at -- , so all the characteristic circles must

pass through this point. However, as (, )-0) -0 so S. can

never cross the real axis from the positive imaginary to the negative

imaginary side. Figure 4.3 is a plot of the characteristic paths that

S, may take as r increases for this case.
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In (4. 33), as r increases, Sn decreases along a straight line

toward the origin, and, as Sn ---> 0, -- > 0. These characteristic

paths are shown in Figure 4.4.

In the general case which is governed by (4. 30), O travels

in a direction which is a combination of the directions from the two

extreme cases.

It has already been shown (see 4.14) that on the surface of a

superconducting sphere Sn lies on the real axis and has the value

It is obvious that when evaluated on the surface of a uniform insulator

Sn has the value

, = 0

Any possible radial conductivity distribution can be synthesized by

using a small superconducting or insulating sphere as a nucleus

and surrounding the nucleus by concentric shells of arbitrary

conductivities. Starting at = 0 and S,= -- , and referring

to Figures 4. 3 and 4.4 it is seen that, whatever the conductivity

structure, Sn is restricted to a semicircular region in the first

quadrant of the complex plane. This region is depicited in Figure 4. 5.

Mathematically, the conditions that Sn must satisfy are as follows:

41*1 )(4. 34a)

Im (SO )(4 4(4e34b)
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Since at the nucleus ,( ) = 0, by (4. 30) the j-imaginary part

of S# is always zero. Thus h and a must have the same jWy

phase.

Equation (4. 30) may be solved numerically, working down-

wards from the surface of the earth where S~ is known. The con-

ductivity as a function of depth may be arbitrarily chosen until &'

leaves the region defined by (4. 34). From this point the path that SM

can take is uniquely specified and the corresponding conductivity

distribution is also unique (except, of course, superconducting

sphere cannot be discriminated from a superconducting shell). If

, leaves the region across the real axis, the remaining earth

consists of a superconducting sphere surrounded by an insulating

shell; if it leaves across the semicircular border, the remaining

earth consists of an insulating sphere covered by a thin highly

conducting shell.

Possible Paths of S

Now let us examine the nature of the possible paths that S,

may take going downwards. By varying the conductivity we may

alter the relative importance of either term on the right hand side

of (4. 30) so from any point, S^ may move in any direction which

is a linear combination of these two terms. Where these terms

move in parallel, that is, where the curves in Figures 4. 3 and 4.4

are tangent, except for the sign, there is only one possible direc-

tion in which & may move. This locus of tangents is plotted in

Figure 4. 6. It is easily constructed, graphically, for it is the

intersection of two straight lines passing through the origin and -
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Their slopes are related as shown in Figure 4.7 which is self-

explanatory. As may be seen by examining Figure 4.6, below this

curve the angular change of I,. about the origin is clockwise with

increasing depth and above the curve this change is counter-

clockwise. Anywhere below the locus of tangents it is possible to

move directly toward ,-, and anywhere above it is possible to

move directly away from ; it is impossible to move in either

of these directions from a point exactly on the curve.

Suppose that .(r) is known at r = ro and we assume that the

conductivity increases with depth such that eventually takes on

the superconducting ratio

There are, of course, an infinite number of possible paths S~ may

take as long as it stays inside the borders of the restricting semi-

circle. If .(ro) falls below the locus of tangents, one possible

path is the straight line between (r ) and i . Let us examine

the conductivity structure for this path.

The Straight Line Path

Let us replace (SM,- ) in (4.30) by- ,e (see Figure 4.8)

where .tJ , (r) is a real function of r and the angle n4m = constant.

We seek the path for which ii,(r) decreases from j,,(ro) to zero.

We now have

'I "; ("" 'A ..... ( -4 .. 35
ar ( .., ,j - -7- - (4.35)
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If we divide (4. 35) by

fr

Now ~/ A
must be zero

is real, so the imaginary part of the right hand side

(a174 1)ffiq ~4r, m l
+ ~r) OV~O~

(g,l )

O"'t . [ (a" 1)'r e., fA+Lj I
'C/ ov

140,k

This equation tells us that as r and 5decrease, C must increase.

(4.36)

If

now we take the imaginary part of (4. 35) and substitute into it (4. 36)

we get

ICYO~
df

Sr (, I)

el' # sI

4~, CfO 041c.:A*O4 clevro4.
rBLA/;O4

r h )

rr m (Q14()ff

C onS~n r

The constant is evaluated at r = ro and the equation becomes

,~A

,w*I
eev J a,

4e we have

51

ie,
(.fA f fAi4I

(4.37)

twr
O I IA4 4)w 6

dm~,

W~6C'L (mot)

J^ . a covoemvn

"T~-3
r mo )OM L,
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When d~ = 0, + , = and this equation reduces to the integral

of (4. 33). At the superconductor, , ( rs ) = 0 and

S( m e (4.38)

Combining (4.36) and (4. 37), the conductivity may be calculated

as a function of r > r, where r is calculated from (4.38).

If ( r ) were originally chosen so that

)e d odr (4.39)

then, by (4.37), g(r) = (r) = constant. Since J, cannot

increase or decrease, Sn can neither move directly toward nor

away from i/(n + 1) and it must, therefore, fall on the locus of

tangents. Equation (4. 39) describes the locus of tangents.

If, in (4. 36), (4. 37) and (4. 38), the projection of , on the

real axis, 5 cos o , , is replaced by

and we let

the equations are modified into the following forms:

a- [ I) r] (4,40)

= t , (4.41)
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A9 (r) (4.42)

Used in the order (4.42), (4.41), and (4.40), these equations are,

computationally, slightly more simple for deriving the radial con-

ductivity distribution of the straight line model.

Modifications ofthe Straight Line Path

In Figure 4.9, the path taken by r labelled as Number 1 is the

straight line path investigated above. By first assuming that at the

surface there is a thin highly conducting shell which modifies S

according to (4. 31) and then using the straight line method, we get

alternate paths such as Numbers 2 and 3. Each of these paths

corresponds, at one point, to a discontinuous decrease in conductivity

with depth. Path 3, for instance, represents a thin highly conducting

shell separated from a superconducting sphere by an insulator. On

the other hand, before using the straight line method we may assume

that the initial outer material has no conductivity; in this case

must be modified according to the method described in the paragraph

preceding Equation 4.13. Numbers 4 and 5 are two paths corres-

ponding to this assumption. Path 5 makes its abrupt turn just short

of the locus of tangents. Here A^ remains relatively constant as r

changes until r approaches zero, and, by (4.40), over the bulk of the

conducting material for this model, "oC - rT  Like Numbers 2 and 3,

Paths 4 and 5 represent models with conductivity discontinuities, but

unlike the others, the conductivity never decreases with depth.
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CHAPTER V

INDUCTION EFFECTS OF. THE IRREGULAR OCEANS

General

Chapter IV was concerned exclusively with a spherical earth

whose conductivity is a function only of the distance from the origin.

This sort of conductivity was necessary in order to separate the

partial differential equation (4.4), and to prevent radial currents.

Although there may be good reason to assume that the conductivity

of the earth is relatively constant at any depth deep inside the earth,

such is not the case near the surface, particularly because of the

irregular distribution of the conducting oceans. Since the oceans

are comparatively thin and are surrounded above, below and land-

ward by relatively poor conductors, the lrobleift resolveb ito the

case of a thin shell, insulated inside and out, whose conductivity

is a function of the colatitude 9, and east longitude, f .

The Thin Shell Insulated on Both Sides

We shall start by writing down, from (3.2 a-c) the vector

components of the n, m harmonic of the flux density.

n, m m y
B = -am j n n (5.lab)n, m mm (5 b)

Br . m e 4 (5. 1c)

From these, we derive



or

r r

(5. a)

e t

(5. 2b)

- - ' c Y"
(5.2c)

r
(5.2d)

Since J = *x H

mrl~j-i'btv,4

Substituting from (5.1b), (5. 2;)we have

1 (#rY04 M
Z'2'O-('' K

In-.t a zo~ n

Similarly, using (5. la), (5. 2 a, c), we have

rp ~Wt
s/ ,w: ,

(5. 3b)

Let us, for the nonce, set

Pr

Then (5. 3 a, b) can be rewritten as

_ Iy
41:/ ~r= of s

.12

r C 

O
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r4k9
c*,/ s#: *awq 4

c.*%I wjo C)r r1

-~ t"

eAj.X
(5. 3a)

2 W
jflt 4CO

41/ 4IC

C0 (5.4a)

(5.4b)
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and therefore

S~-Y ~w~EAQI ~. tr ;4'1 ) *4 371c#.Lohe J~

where is the operator composed of the

where 70%jr is the operator composed of the 0 and T partial deriva-

tives of the Laplacian, V6 in spherical co-ordinates. ,is a

surface harmonic so is a solid harmonic which is a solution

of Laplace's equation,

Therefore

A&I =T 0431

Since 1E = -(w8

lost

499 $914

and, therefore

/4fl~InmtrL b~

6tw)n
di-l "" ,"

Ono 1 ____
00r

- r~v~ T~~pY-7
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/,z/ 4m0c

(5.5a)
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If -(or, equivalently, k2) is constant with respect to G* and y ,

respective n, m harmonics can be equated in the above equation

making it just a restatement of (4. 26a). Since (4.26b) doesn't

contain c-,'it still holds for the nonuniform shell. This may be

shown by independently deriving it as follows

dr r r

Therefore

dr r

Naturally this equation still holds when it is multiplied by either M P"

m
or (m+ 1) Pm and summed over n and m.

C =,bnng a wt 5 5)- Y (5.5b)

m > _(5. 5c)

Combining (5. 5a) with (5. 5b) and (5. 5a) with (5. 5c) we get

_)' r ,Y,,,:" - _ y (5.6a)

~~a-?ll ~~n 044 Y-~(~m

r~~c,,un,, PfY=,ZZI~S *I-(~br
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If the conductivity does not vary within the shell (5. 6 a, b) reduce to

(4.25 a, b). Finally, for the very thin conducting shell for which

k 2 r 2 is very large the second te-rm inside the brackets on the right

hand side of (5. 5a) is negligible with respect to the first. Across

the shell we have

M' 0 m(5.7)

and since the radial flux density is continuous across this shell

,, 1Zr(5.8a)

I(2>) (5. 8b)

Using (5. 8 a, b) in (5. 7), we have the analog to the uniform thin

shell equation, (4.23).

Because we have allowed the conductivity to vary with -& and

in the above derivations, it was necessary to consider the con-

ducting shell as thin and insulated on both sides in order to avoid

radial currents. If the conductivity ir .r)., these restrictions are

unnecessary and we have the same conditions as applied to the un-

summed equations in Chapter IV.

The change in the potential function of H = _- B across the

thin shell at r, whose thickness is S, i its magnetic moment per

unit area '

PC /AA 91 /MZQ
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The magnetic moment per unit area is the same as the current

functinn, F, from whose surface gradient may be obtained the

surface current density vector (Chapman and Bartels, 1940,

pp. 630, 1) by

1= IF X r

This is easily verified by referring to (5.4 a, b) and writing for

Cf its approximate value in the conductor,

C$ -: -r - I

giving

r- -Y -

which are the components of VF if F is replaced by (ARL/A).

The Effects of the Oceans

In (5.7) it has been assumed that k2 varies with - and while

S remains constant. Since k2 and J appear only together in the

term k2- we may consider k2 as constant, and /as variable

(or their product as variable). Let

Then (5.7) becomes

W

Now let us multiply this equation by rC(, )and integrate

over the surface of the unit sphere.
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Vn Ir

dO

If irAlr) is expressed as a sum of surface harmonics, the integral

in the above equation is over three such harmonics and difficult

to evaluate. The average value of o, O say, would occur in an

integral involving the products of only two surface harmonics which

is readily integrated to

It would contribute to a m the same change as that of a shell of

uniform depth, { . If the oceans were randomly distributed, the

expected value of the remaining contributions would be zero.

Rather than expressing di,) as a surface harmonic, let us

assume that in the northern and southern hemispheres it is a

function only of longitude and, therefore, can be developed into

alternate Fourier series expansions.

/WA)y) s 7r i I (5 10b)

For Dst, semiannual and sunspot cycle variations, the field is

composed predominantly of odd zonal harmonics. If we wish to

examine the effects of an ocean of the above type we may take

r = m = O and write



0
Ue

The zonal harmonics are orthogonal, integrated from 0 to Ir

Since both n and s are odd, Pn Ps is even about the equator, and

the orthogonality must hold from 0 to and to-T

Consequently, (5.11) becomes

st- -
-Ai r~~Z(1

(5.11)

where 4 is the mean depth of all the oceans. Any oceanic dis-

tribution in which the oceans in the northern and southern hemis-

pheres are, separately, functions only of the longitude and whose

oceans have a mean depth, o , modifies odd zonal fields to the same

extent as a uniform ocean of depth, o . The combination of zonal

fields and sectoral seas will cause some tesseral harmonic field

terms, but these are assumed to be negligible.

61
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Let us now consider the daily Sq variation during equinoctial

days. There are no zonal harmonics and aside from its latitude

dependence, the variation is a function mainly of local time. Since

the frequencies rw* 1/Z- and rm o/1TT must be the same, we must take

r = m a 1, and make use of the orthogonality of the normalized

associated Legendre functions
Ifr

j r>

The equinoctial variations are predominantly odd about the equator,

so if we only consider the odd harmonics which are of the form

pm pm , etc., we must have
m+l' m+3

J r r I T p r r 4e v e n

Using (5. 10 a, b) in (5. 9), we have

, 1c} A , ,1 ( 5.12)

-.where ..(/N, ' r

The trigonometric integral is of the form

0



In order that the integral doesn't vanish over 27F, it is necessary

that the product of its terms be

This will be so if the product of the three ambiguous signs is

positive, and if 2m = k. Thus

Equation (5.12) s implifies to

A possible representation of the earth's oceans accordingo (5.0 a, b) is illustrated in Figure 5.

o L i Zr

Equation (5. 12) simplifies to

S(S4), a

This is the first order effect, calculated from magnetic varia-

tions which are all odd (or all even) about the equator and which

depend only on local time. The corrections caused by the

irregularities of the oceans must be small; otherwise the fields

induced in the oceans, which do not satisfy the above conditions,

would have important secondary effects.

A. possible representation of the earth's oceans according

to (5. 10 a, b) is illustrated in Figure 5. 1.
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For this ocean distribution, the appropriate corrections for the

1 2 3
P2 ' P 3 and P 4 terms are

LO.7

20 { -

For the fields assumed, the difference between the correction

required for this ocean distributidn and that of an equivalent

uniform shell is small to negligible. However, attempts by earlier

workers to apply the equivalent uniform shell correction resulted

in impossible fields beneath the seas for all harmonics considered.

It behooves us, therefore, to seek a source of systematic bias in

the original data used.

Bias

The part of the varying magnetic field observed at a station

that is caused by induced ocean currents may be expressed in terms

of the integral

B induced = fr 7 J xJ
J)) 4 ' R
oceans

where R is the distance between station and volume element, The I/R

term implies that the closer the currents are to the station, the
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greater are their effects on the magnetic field. If a station is on a

ship in the ocean, the effects are greatest; if it is continental and

distant from the coast, the effects are least. For an unbiased

harmonic analysis of the magnetic potential, the stations must be

uniformly scattered over land and sea. Actually, however, there

are no floating magnetic observatories although many stations

have been established on islands and near coastlines. Let us pay

particular attention to these types of stations. Since the nearby

oceans are approximately planar, let the thin spherical shell of

variable conductivity be approximated by an infinitesimally thin

plane sheet of variable conductivity. At any coastal or island

station, the ocean gradually tapers from its deep sea depth to the

coastline and the altitude of the observatory is somewhat less than

its distance inland from the coast (see Figure 5.2 a). The observa-

tory is, therefore, approximately co-planar with the effective

ocean (Figure 5.2 b) so any horizontal component of the induced

field from nearby oceans is quite small. Unless there are floating

observatories, the ocean induced part of the analyzed horizontal

field is underestimated and its harmonic analysis in terms of n m
n

is biased. In addition, because of the observatory distribution there

may be a small bias in the harmonic analysis of the vertical field

in terms of ' 4 mn

Let us return to the sphere and assume that the distribution of

continental, coastal and island stations is such that a fraction, P1 of

the contributions to the horizontal components from the induced ocean

fields is unobserved. In addition we shall assume that a fraction,

, of the contributions to the vertical components from these fields



68
is also unobserved.. For the reasons given abQve, we expect

that 2 is small compared with I~. Above. the oceans an unbiased

harmonic analysis of the field would give 2 m and %m from which,n n

by the uniform shell approximation, we could estimate m _- ~"nm

and ( m -A m under the shell. But, by assumption, instead of

finding

m

9 m
n

= n +n

= n " ( "1) n

the harmonic analyses of the field find

m mjm mrm m

m m ) ( M m m
= n + n" 2 n n + 3 ( n

Across the shell

m

n
bm

464 
m

we have

m
=Mn

=m
n

_ f

m
( i + 1) n =0

m
n

m
An

Therefore
m m rl n

n bn " 1

m m + WH m

We seek the ratio, , beneath the oceans. Since, K = 0

(5.13a)

(5.13b)

(5.14),, s ,$ -MA
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Using (5.13 b) and (4.23 c)

m
m n Ad W I
n n (?V+Inm7a, =~, B+
m
n / ..M= .......- ----

(5. 15a)

Using (5.13 a), (4.23 c) and (5.15 a)

m Rmr m A.tod6r(?4\i m
Sn - b A 'n~n - (I - P 7 "0 n M_ I I

2,W) 621nm ) ( 4mnI)

~n n n +
/ ( 1

,o2041'nr

(I -h ~ZJ2Hl

(5.15b)

Combining (5.14) and (5.15 a, b) gives

n AV rIXu
Sfill

2!ft" (5,16)

In terms of the

-m
b n

8

biased ratio, 3, = JA/

m

n

, we may write

1 +S)

m gm
In =En

If these are substituted into (5.16), the equation may be manipulated

into the form

s, -6 5. s -

_t; L fI *' / (f"+ /

(5,17)

.000% - A Ljl,]
4 "OW/n c

-r-- ma~r4F t ri

.t [()- 7. /~Yr

IA+(\1),

0.7 Al

f/ - ^ colhi ~ // '~r~K Q 3 ijr

~H~l P~'m+(Z 4 1

+ ) M 411

(fA4 1) jM4 I '
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For q =.p2 = 0 (5.17) is equivalent to (4.31), the correction for a

uniform shell of thickness e . For P = 1 and P = 0, (5. 17) is
1 2

equivalent again to (4. 31), but the correction is now for a thinner

shell of thickness e! . For small k 2 ,' L-and for
2n4 fo

large k2  S--yo . The reverse problem is, knowing the

true S- under the oceans, to estimate the .I which would be

measured above the oceans. The derivation of the appropriate

formula is similar to that of (5.17).

(5.18)

Interpretation of Biased Sq Ratios

Neither the depth nor the conductivity of the oceans is constant.

For the thin shell correction we shall, instead of using the mean of

--o , we shall approximate it by the mean of 0 times the mean of .

The mean depth of the oceans which is still generally used by oceano-

graphers and geochemists was calculated by Kossina in 1921 (see

Goldschmidt, 1954, for an English account of his method) by inte-

gration over five degree zones over the earth. Kossina calculated

that the mean ocean depth is 3792 meters; an ocean of the same

volume distributed evenly over the earth would have a depth of 2680

meters. The conductivity is a function of the salinity temperature,

(see Table 5. 1). The salinity is relatively uniform at 35* / o o but the
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Table 5.1 (Extracted from Chapman and Bartels, page 424)

Conductivities in mhos/meter

Temp. OC Salinity 30 35 40

0 2,6 2.9 3.3

10 3.3 3.8 4.4

20 4.2 4.8 5.6

temperature falls off rapidly with depth leaving the bulk of the

ocean a uniform 30 or 4* C. We shall take a mean temperature

of 5* C and, by interpolating Table 5.1, the mean conductivity

will be taken as 3. 3 mhos /meter. The 6O to be used in the thin

shell approximation will then be 8. 8 x 103 mhos. Table 5.2 lists

-k and the skin depth, - , as a function of the period, 2I7/ .

It is seen that the ocean correction is unimportant for the semiannual

and sunspot cycles.

Table 5.2

Period 8 hours 12 hours 24 hours 6 months 11 years

k 2 &  15.4 i 10.3 i 5.14 i 0. 044 i 0.002 i

skin depth 47 km 58 km 8L km 1100 km 5160 km

If, in (5.18), 3S is varied along the positive real axis, the

path that S1 takes, which depends upon Pi and Z may be plotted.

Since the real axis must fall below all possible 5,. ratios, the paths

plotted (representing the "biased" real axis) must fall below the

observed SM ratios. In Figure 5. 3 a-c several of these paths are
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shown for the P , P and P terms for the daily variation which

depends only on local time. Superposed on these figures are the

7As calculated from the analyses Chapman (1902 and 1905), Benkova, and

Hasegawa and Ota. These ratios are scattered but none falls above

the zero bias curve. By choosing the bias sufficiently large, how-

ever, we can find curves which fall below any of the ratios.

Aside from the difficulty of assessing the actual amount of

bias in harmonic analyses of the Sq field, the interpretation is

complicated by the lack of agreement between the original harmonic

analyses which are available. These discrepancies cannot be

entirely attributed to ocean bias; one analyst (Chapman) calculated

widely different ratios, , for the same stations but for different

years. Considering all the uncertainties involved, a quantitative

interpretation of the conductivity of the earth's mantle from these

Sq field ratios is rather difficult. We shall, however, make an

attempt to apply the straight line interpretation given at the end of

Chapter IV.

The ocean and bias corrections have a relatively minor effect

on

so in using (4.40), (4.41) and (4.42), we may use the following

approximate quantities, eclectically culled from Figures 5. 3 a-c:

Approximation Sources

),(ro) 0.25 -Benkova, Hasegawa and Ota

3(r 30.35 enkva, Hasegawa and Ota, Chapman0 o1905)

OA4(ro) 0.40 Hasegawa and Ota, Chapman -
0 (1902, 1905)
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The angle, 6 , which is also required for the straight line solution

is unknown. Figures 5.4 a-c plot possible solutions for different

values of ^. For these variations any conductivity of the order of

0.3 mhos/meter or greater appears as a superconductor. This

conductivity is attained at a minimum depth of about 500 kilometers.

For the semiannual variation, any conductivity of the order of

0.05 mhos/meter or less appears as an insulator. This conductivity

is attained from the diurnal analyses at a minimum depth of about

400 kilometers. This information will be useful in the interpretation

of the semiannual variation.
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CHAPTER VI

ANALYSIS OF LONG PERIOD DATA

Purpose

The first half of this chapter is concerned with the data reduc-

tion used to calculate (or to attempt to calculate) the ratio for the

semiannual and sunspot cycles. The three main points to be con-

sidered are the techniques for zonal harmonic analysis, frequency

harmonic analysis and prefiltering of low frequency background

from the original data. In the second half of the chapter results of

analyses of the semiannual and sunspot cycles by these methods

are given. The semiannual analysis, usng mean disturbance

elements, successfully yields a complex ratio, S1 (a), which proves

quite useful in mantle conductivity interpretations. The sunspot

cycle analysis, using mean elements, gives poor results.

Zonal Harmonic Analysis

In the non-polar latitudes we may consider the varying

magnetic field in geomagnetic co-ordinates as derivable from a

potential containing only a first zonal harmonic term.. From

Chapter III, for either cycle we have at station k

In the geographic system we denote the colatitude and east longitude

at station k by 9Ai and C, , and we denote the colatitude and east

longitude at the geomagnetic pole by 6, and r, (see Figure 6.1).
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We may then calculate the geomagnetic colatitude by using the formula

cos-B = cos#, cos8Q+ sin- sin-, cos (j - {)
NORTH POLE

The geomagnetic components,
G&oMAGNETC a

PoLE X and Y' , are related to the measured
k k

geographic components, by

STATION A4

F IGURE 6.1 Y
where oe , the change in declination, is determined by using

sin = sin49

Weighting all K stations equally, we may determine 2 (a) and

C(a), by the method of least squares.

From these we calculate the ratio

Since the first zonal harmonic is so predominant in the non-polar

latitudes, S, (a) and 4 (a) and, therefore, J (a) can be calculated

from the records of only one station. The best location for such a

station is in the middle latitudes where ARis not small. In practice,
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of course, the more stations used, the better is the estimation of S 1 (a).

Order of Harmonic Analyses

Needed for the above calculations of A and l are the complex

amplitudes XA and A at the appropriate frequency. These may be

determined at station k by frequency harmonic analyses of a sequence

of measurements of the components of the geomagnetic field. This

method - a frequency harmonic analysis followed by a simple zonal

harmonic analysis by least squares - is used in the analysis of the

semiannual variation where data from all stations used is available

over a common span of time. For the sunspot cycle analysis, data

from many observatories are available, but these observatories

do not have continuous measurements over a common time span;

operations at different observatories started at different dates and

in some cases have already ceased. At any year, however, there

are always many data so, in order to use as much information as

possible, the procedure for the sunspot cycle analysis is the reverse

of that given above: first there is a zonal harmonic analysis by least

squares and then these results are subjected to a frequency harmonic

analysis to determine A and 94 .

Frequency Harmonic Analysis

Let us consider the input for the frequency harmonic analysis as

G ~S(< ti(wJ

where s (t) is a pure sinusoidal signal at frequency . and n (t) is

the noise, and S (c ) and N (ca) are the frequency transforms of s (t)

and n (t). If we write S () ) in the form

E21rS0 ce
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we find that its transform is

where the bracketed term in the above equation is the complex

amplitude of the signal. This is the term we wish to estimate from

a sample of g (t). Since the lengths of our records are finite,

rather than having g (t) we have only

where v4 (t) is the window which must be identically zero for ltl T ,

and -To is the total length in time of the filtered record. If ) (<) and

I\/ (0) are the frequency transforms of x (t) and W (t)

'4

W(O) ) 1o (6.1)

The first term on the right hand side of this equation is the complex

amplitude which we seek and the second term is the noise contribu-

tion which we wish to make relatively small. This is done by

making 'W(6) /W(0) small where N(\) is large. To diminish the

effects of low frequency noise which passes through the secular

variation filter, we shall peak Wb(w) /W(O) at 6CW = 0 and have it

die of rapidly as 6CO moves away from zero.

The simplest window, which we shall represent by the transform

pair W,(t) and W,(Wo) is defined as follows:

wC) 7'

-0
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It follows that

W.(4w /W, (0) has zeroes at dw= Cu 2w,, 3w , etc.,, and it falls from

its peak at Adw 0 to side lobes whose absolute peaks are 22, 13,

9 percent, etc., of the central peak. Blackman and Tukey (1958)

have considered a number of different windows in connection with

autocorrelation function lags. For example, their second pair,

the "hanning" window, is

'( (I+ - (Aj- istl IT

=0

and

The central lobe of W.,( no) is twice as broad as that of W@ (dCO) and

its zeroes occur at 4W = 2 1,, 3w, 4cw1 , etc. The absolute peaks

of the side lobes are only 3, 1, 1/2 percent of the central peak.

The window used for the calculations of this thesis is the sigma

smoothing factor of Lanczos (1956). This pair is

AOM/w 1C I,< t7

O

and

w, cow, [ -
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where S ( ) is the sine integral. The transcendental zeroes of 4( 4cJ)

occur at about dA = 1. 64N , 2.58a t , 3. 56W I , etc., and the absolute

peaks of the side lobes are 5, 2, 1 percent, etc., of the central peak.

See Figure 6.2 for a comparison of the transforms of the three

windows cited. With this choice of windows we have

W ) e

If x (t) is broken into the even and odd functions

W (C) 2 x(t) 4 x(-)

we then have

fr (t -rt, Vt

Let us solve these integrals numerically by using the trapezoidal

rule of numerical integration. We shall take the increment in time

as d t = 1 year and the effective record length as the even integer,

SZM4

rCo .0o (6.2)

The primes on the summations indicate that the first and last

terms of each are taken with only half their normal values. We

note that , ((M*I)) w (tJ T) =

C(M+ 1) = v (M c ) = O
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so g (-M-l) and g (M + 1) are never used in the calculation. For this

reason, the actual record length may be taken as 2 M, and the number

of yearly means required is Z.M + 1. If, further, we note that sin C0Q = 0,

(6.2) becomes

M

By calculating X (kG) for k= 0, , . . . , M +1, we have the

discrete range Fourier series coefficients (Lanczos, 1956). The

real and imaginary parts of X (kj,) may be interpolated to find

X ( &O), but the calculations for this thesis have always used an W,

such that °//W, is an integer and interpolation is unnecessary.

From (6.1), we have, approximately

So " a Wo
V(0) $ar)( Mf )

As long as all the records analyzed are over the same time span,

we may drop the above normalization and consider the complex

amplitude as identical with X (Wo0). This is because the significant

quantity, which is the ultimate goal of these calculations, is a

complex amplitude ratio.

Prefiltering

No matter in which order the frequency and zonal harmonic

analyses are applied, they must be preceded by some sort of an

operation which reduces the very powerful low frequency background

from the original measurements. The semiannual and sunspot

cycles contribute only slightly to the over-all change in the earth's

measured magnetic field. Over a span of years the major change
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is the secular variation of the earth's magnetic field, and its power

is several orders of magnitude greater than the power of the signals

sought. The secular variation usually changes slowly with time so

over fifty years of records, say, it can usually be fairly well

approximated by a low order polynomial. The recording instru-

ments may drift or their baselines may be miscalibrated at different

times. If these errors change slowly enough their effects and those

of the secular variation may be reduced by the same method.

The effects of the secular variation, instrument drift and

miscalibration may be effectively eliminated by using the mean

disturbance field rather than the mean field. This is feasible for

the semiannual variation which is measured in this thesis from

United States Coast and Geodetic Survey magnetic observatory data.

For the five internationally disturbed days and the five internationally

quiet days of each month, all USC&GS observatories publish the

means of the declination, total horizonal flux density and vertical

flux density. Their differences constitute the elements of the

monthly mean disturbance field used. Magnetic variations, such as

the secular variation, which are causally unrelated to magnetic

disturbance fields and which change l.. ttle j in a month cancel

themselves out in the subtractions of the means. Unfortunately, data

currently available to the author are inadequate to successfully apply

this method to the sunspot cycle.

For the sunspot cycle, we require a filter which eliminates

low order polynomial terms but passes the eleven year period

unattenuated. Vestine (1947 b) uses the differences between the annual

means and a quadratic fit by the method of least squares to all the

annual means. This method, however, does not constrain the signal



frequency to remain unaffected; in fact, Vestine notes that using

the differences between the annual means and a least squares

cubic fit seemed to rtmove part of the signal.

One method for accomplishing the desired result has been

suggested by T. R. Madden. It is based upon the filter whose

response to the unit impulse at time t is

where (A (t) is the unit spike at t = 0 and 1' is the period of the

signal, eleven years. If we pass our data, represented by (t),

through this filter once, we get the output 5 ,(t) which may be written

in terms of the convolution integral

9'T

where l is the first forward difference operator for the interval(l/2) T.

If the transforms of; (t), 5k(t) and A (t) are, respectively, F) ,

Go an) and H(w), we have in the frequency domain

where

At :-w,
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No frequency has a gain greater than 1 although there are an infinite

number of frequencies that also pass unattenuated; their angular

frequaerie are all the odd harmonics of sC& , that is, 3 o , 5 4. , etc.

If we apply this filter k times we have

where 4 is the OL / forward difference operator. Taking the a

forward difference reduces the polynomial part of f (t) by k degrees

and at ,C = Wo

and the signal frequency is unattenuated, so the filter has the

criteria required. For discrete data, the filtering operation then

is simply a matter of taking forward differences. For instance,

if we wish to remove all constant, linear and quadratic terms and

reduce the cubic term to a constant we operate on (t) as follows:

For the sunspot cycle, though, 1T4/2 and 37./Z correspond, respectively,

to 5 1/2 and 16 1/2 years. Since we have only mean yearly data,

we -are forced to compromise by linear interpolation. Letting the

unit of time be one year, the above operation is replaced by

(6.3)
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Analysis of the Semiannual Variation

The data used in the analysis of the semiannual magnetic

variation came from the four non-polar geomagnetic observatories

operated by the United States Coast and Geodetic Survey: Honolulu,

San Juan, Tucson and Cheltenham (now transferred to Fredricksburg).

Ten cycles were covered in the five relatively quiet years

1951 - 1955. At each station the tabulated mean elements D, H and Z

for the five internationally quiet days of each month were subtracted

from the corresponding mean elements for the five internationally

disturbed days of each month giving the monthly mean disturbance

elements A D, AH and I Z. In the five years covered, the elements

X and Y changed only a little, so the values half way between their

extremes were used, along with A D and 6 H, in Equations 2. 1 a, b

to calculate the monthly mean disturbance elements 6 X and 6 Y.

These were converted to the geomagnetic co-ordifiate elements

4 X I and YsI using the magnetic pole axis for 1945 given by Vestine

et al (1947 b). Its north magnetic pole is at latitude = 78.6N and -

longitude = 289.9E. The elements were then harmonically analyzed

(frequency-wise) using the sigma smoothing window.

In Figure 6.3 are pbts of the power spectra of 6X I and 6 Z

from the harmonic analysis of the monthly mean disturbance field.

As would be expected for a zonal field there are no significant peaks

in the power spectra of A Yt so they are not plotted. Clear peaks at

the six month period are recognized at all four stations with but two

exceptions: the 6 Z spectra of Honolulu and San Juan. Honolulu

is close to the geomagnetic equator so its z Z component should be

small and the lack of a power peak in 6 Z is not unexpected.
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San Juan has a peak for A Z, but it does not fall at exactly six months;

the 6 Z complex amplitude derived from San Juan data is therefore

questionable.

In Figure 6.4 are plotted the complex amplitudes ~ X', and

L Z. There is good agreement in the phases with the same two

exceptions in i Z noted above: Honolulu and San Juan. The small

6 Z amplitude of Honolulu receives little weight in the least squares

zonal harmonic analysis and does not have much effect on the j, (a)

determined. The phase and amplitude of ZLZ for San Juan are

discordant with those of Tucson and Cheltenham. Because of this

and because of its questionable power spectrum, the L Z amplitude

of San Juan was not used in the least squares determination of (a).

By the least squares method given in Chapter VII, ) (a) and

'1 (a) were found to be the following quantities:

•3 (a) a - 6. 55 + i 3. 56 gammas (using HO, SJ, TU and CH)

%(, (a) = - 1.08 + i 1.09 gammas (using HO, TU and CH)

It follows that

S (a) = 0.37L°

This is the complex ratio used in Chapter VII for conductivity

calculations.

It is of interest to derive S1 (a) from the monthly mean

disturbance data of only one station. This was done for Tucson and

for Cheltenham. The ratios calculated are as follows:

S1 (a) = 0. 35/L9 (TU)

S (a) = 0. 39 3* (CH)
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Vestine et al (1947 a) present tables of the "estimated symmetrical

part of annual variation" in the geomagnetic north component and in

the vertical component for every month from 1905 to 1942. Also

presented are "multiplicative latitude factors for obtaining symmetrical

part in any latitude from given values". (The method for obtaining

these data is not given.) Frequency harmonic analyses of the data

were made in search of the six month period. The resulting complex

amplitudes times the latitude factors at cos 9  = 0.0, 0.1, 0.2,

. . , 0.8 (geomagnetic non-polar latitudes 0, 6, 12, 170, 24,

300, 37* , 44* and 53*N) were used to find b, (a) and $I (a) by

least squares. The complex ratio calculated from these turned out

to be

S (a) 0.39L *

Although this is an impossible ratio, it is encouraging that it does

not differ by very much from the ratio calculated above from the

mean disturbance field.

Analysis of the Sunspot Cycle

Yearly mean values of the geomagnetic elements, such as were

used in the sunspot cycle analysis, are available in graphical form

for many stations operating between 1905 and 1945 in Vestine et al

(1947 a). They have been tabulated from time to time by Fleming

and Scott (1943, 1944, 1948) and Johnston (1951, 1956). Used in this

thesis are unpublished elements compiled by the Physics Research

Division of Emmanuel College, Boston, under the U. S. Air Force

Contract AF19(604)-2192. The compilation was done under the

direction of M. Patricia Hagen of Emmanuel College and the data,

in punched card form, were made available by Paul F.
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Fougere of the Geophysics Research Directorate, Air Force

Cambridge Research Laboratories in Bedford, Massachusetts.

The stations used, their latitudes and longitudes and the spans

of coverage are given in Table 6.1. The 1922 magnetic pole axis

(north magnetic pole latitude = 78. 5*N, longitude = 291.0*E -

Vestine, 1947 a) - was used to convert from geographic to

geomagnetic co-ordinates.

In Figure 6. 5 are plots of the spectra calculated for b, (a)

and. (a). The Z (a) spectrum shows a distinct eleven year period

peak with a lesser peak at lower frequencies which is caused by

the low frequency background passing through the numerical filter.

For 9W, (a), the background is considerably stronger and the eleven

year signal is weaker and concealed. (This is the same trouble

as beset Vestine et al, 1947 b, in their attempt to analyze Z.)

The real part of .9 (a) was found to be

5.0 cos (Y - 1900) 360* + 7.3 sin (Y - 1900) 360*
11 11

where y is the year. This function is maximized at about y = 1902,

1913, etc., which are years of sunspot minima. This is in accordance

with the fact that the X' flux density decreases at times of high

magnetic activity.

Since a substantial portion of the least -squared Z data

analyzed for the sunspot cycle is random noise, the correct way

to calculate its power spectrum is to find the frequency transform

of its autocorrelation function. Using a program written by

J. Galbraith this was done for 55 years of filtered Z data. However,

the 11 year period peak in i(a) was hardly perceptible in the presence

of the high Z noise.
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Table 6.1 (When observatories have been transferred locally, only

one is listed.)

Longitude Span Used

Amberley -43009'
Melbourne -37050'
Capetown -34025'
Pilar -31040 '

Watheroo -301090 '

Vassouras -22024'
Maurituis -20006'
Tananarive -18055'
Apia -13048'
Huancayo -1203'
Elisabethville -1140 '

Antipolo 14 o 36'
San Juan 18023'
Taungoo 180 56'
Honolulu 21019'
Hong Kong 22018'
Helwan 29052'
Dehra Dun 30019'
Zik-a-we i 310193
Tucson 32015 '

Ksara 33049 '

San Fernando 36028 '

San Miguel 37046'
Cheltenham 38044 '

Coimbra 40012 '

Ebro 40049'
Keles 41025 '

T iflis 41050'
Agincourt 43047'
Nantes 47015'
Chambon-la-Faret 48*011
Munich 48010 '

Vienna 48012'
Greenwich 51028'
Valentia 51056'
Niemegk 52004'
Swider 52007'
Potsdam 52023'
Eskdalemuir 55*19'
Zaymistche 550 50'
Vyssokaya Duiva 56044'

Sverdlovsk 56050'
Lovo 59021'
Slutsk 590411

1720431
1440 58'

19014'
296007'

115052'
316021 '

57033 '

47032 '

188014 '

284040 '

27028 '

121010 '

293053 '

96027 '

201034'
114010'
310201
78003 '

121002 '

249010 '

35053 '

353050'

334021 '

283010 '

351035 '

0031'
69012'
44042'

280044 '

358027 '

2016 '

11017'
160141
00001

349045 '

12040 '

21015 '

13004 '

356048'

480511
61004 '

60038 '

17050 '

30029 '

1902 -1957
1916-1957
1933-1956
1905-1950
1919-1957
1915-1955
1898-1954
1902-1922,1929-1954
1905-1957
1922 -1949
1932 -19 52
1911-19 3 8
1903-1957
1905-1923
1902 -1957
1898-1939
1903-1951
1903-1943
1908 -1933
1910-1957
1937-1954
1898-1957
1911-1957
1901-1955
1898-1954
1910-1937
1936-1955
1898-1934, 1938-1955
1899-1954
1923 -1955
1898-1957
1939-1957
1929-1950
1898-1956
1899-1956
1931-1957
1921-1951
1898-1929
1908 -1957
1914-1954
1900-1955
1898-1931
1929 -1959
1898 -1941

Station Latitude



94
CHAPTER VII

CONDUCTIVITY INTERPRETATIONS OF THE MANTLE

Resolution of Conductivities

The reckoned diurnal ratios, S2 , S3 and S4 , are predominantly

influenced by the oceans and shallow mantle conductivities and the

semiannual ratio, S1 , is most affected by greater and deeper mantle

conductivities. When ratios from both variations are used together,

conductivity interpretations over a wide range of conductivities and

through a considerable fraction of the mantle are possible. Lacking

a sunspot ratio, the higher conductivities in the lower mantle are

best appraised by methods other than those treated in detail in this

thesis.

The Conductivity of The Mantle - Specific Models

If the semiannual ratio calculated in Chapter VI, S (a) =

0. 370/6, is used in the straight line conductivity solution

(Equations 4.40 - 4.42), a conductivity-depth structure (labelled A

in Figures 7.1 and 7.2) is obtained as follows:

Depth Conductivity (mhos /meter)

0 1.5

200 2.2

400 3.6

600 6.8

800 20

1000 180

1100
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However, a conductivity of 1 1/2 mhos/meter is excessive at or

near the surface of the earth. A much better conductivity estimate

can be obtained by first using the results of the diurnal variation

analysis.

In the last paragraph of Chapter V it was pointed out that the

minimum depth at which the conductivity may significantly affect

the semiannual variation is about 400 kilometers. The effect on

S1 (a) as it travels downward through this relatively nonconducting

outer layer is that its magnitude increases and its phase remains

constant. The ratio increases as the cube of the radial distance

so at a depth /

At the depth 1= 402 kilometers

S1 (5968 km) = 0.450L6°

which is on the locus of tangents. (See Figure 7.1.) At a depth 4
600 kilometers

S (5770 km) = 0.498L:

which is on the outer boundary of the semicircular region inside of

which S1 must fall. There is only one possible path which can lead

away from this point (along the outer semicircular arc counter-

clockwise to the origin), and this requires an infinitesimally thin

superconducting shell surrounding an insulating sphere. This is

clearly implausible.
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If, corresponding to Path 5 of Figure 4. 9, S1 (r) is taken to

a depth just short of the locus of tangents and the straight line

solution of Chapter IV is used, the conductivity below this depth

increases inversely as the square of the radial distance until it

approaches the center of the earth and then it rapidly increases

to infinity. With this interpretation (labelled C in Figures 7.1 and

7.2) the conductivity rises rapidly to 25 mhos/meter at a depth of

402 kilometers and increases thereafter as r2 . At the depth of

the core boundary, 2900 kilometers, the conductivity is 75 mhos/meter.

But, since o- or-

SAr = constant

and the conductivity does not approach that of an equivalent super-

conductor for the semiannual period except right at the center of

the earth.

The starting depth for the straight line model can be chosen

so that the conductivity becomes infinite at the core boundary, and

near the locus of tangents this superconducting depth is extremely

sensitive to the starting depth. Starting at a depth of 398 kilometers

Sl (5972 km) = 0. 449/60

Very close to this choice

= 0.402
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and, by (4.42), the superconductor occurs at

r = 3470 km
s

which is the core boundary. The conductivity-depth structure for this

model (labelled B in Figures 7.1 and 7.2) is as follows:

Depth Conductivity (mhos /meter)

0-398 km 0 (apparent insulator, a-< 0.05)

400 km 22

900 km 30

1400 km 45

1900 km 87

2400 km 310

2900 km ea (apparent superconductor,
O- 200)

The conductivities required by models B and C at depths between

400 and 500 kilometers are much too high to be consistent with those

allowed by the diurnal variation analyses at the end of Chapter V. The

semiannual and diurnal ratios are consistent only if the semiannual

ratio, S1 , crosses the locus of tangents. Beyond the locus of tangents

the straight line solution is no longer applicable.

The Conductivity of the Mantle - Generalizations

An examination of the terms in Equation 4. 30 as S crosses the

locus of tangents and continues to the right shows that r and (S - 1/2)

decrease and 1/r and S1 increase. Thus, before S1 leaves its restricting

semicircle at a depth of 600 kilometers, the first term of (4.30) must

counteract the second term and this is possible only for conductivities

exceeding the conductivity which exactly balances the two terms at the

locus of tangents. We may conclude that the diurnal and semiannual

ratios are consistent only if a conductivity in excess of 25 mhos/meter

is attained at a depth between 500 and 600 kilometers.
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There are an infinite number of possible monotonic conductivity-

depth distributions which satisfy our data for the diurnal and semiannual

variations and which are compatible with lower mantle conductivity

estimates. All of them have the following properties:

1. From the surface to a depth of 500 kilometers the conductivity

increases to no more than 0.3 mhos/meter. This is an apparent

superconductivity to the diurnal variation. The absolute magnitudes

of S 2 , S3 , and S4 are too low to allow superconductivity at any

depth shallower than 500 kilometers.

2. At depths greater than 600 kilometers, the conductivity is at

least 25 mhos/meter. At these depths the first term of Equation 4.30

must be large enough to counteract the second term. This is in order

to keep S 1 (for the semiannual variation) within the semicircle to which

it is restricted as (4. 30) is solved working downwards.

3. The lower mantle conductivity is of the order of 100 mhos/meter.

The reasons are reviewed in Chapter I.

Thus, for a mantle in which the electrical conductivity increases

monotonically with depth, the conductivity changes by several powers

of ten in the outer 600 kilometers and by no more than a factor of

about ten in the remaining 2300 kilometers.
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CHAPTER VIII

SUGGESTIONS FOR FUTURE WORK

The purpose of this chapter is to suggest possible avenues of

future work on this and related problems.

The Sunspot Cycle

It is probable that the sunspot variation penetrates the mantle

to a significant degree as far as the core-mantle boundary and that

a successful analysis of this variation would contribute much infor-

mation about the electrical conductivity of the mantle. Part of the

problem of the detection of the elements of this cycle is the low

frequency, high power noise background* and part of the problem is

the long duration of the cycle. The former difficulty can probably

be overcome by using the mean disturbance field such as was done

for this thesis in the analysis of the semiannual cycle; the latter

difficulty is a matter of time, but over a century of data is required

to match just five years of data for the semiannual cycle. Mean

disturbance elements have been measured by many observatories

for many years; the practical problem is to acquire these data.

Once acquired, they will not cover many sunspot cycles but this

may possibly be offset by using data from many stations.

Other Cycles

Analyses of other periodic magnetic variations may be feasible.

The 22 year cycle, because of its length, is probably not one of these

at present. The annual variation may well be detectable in all of

its elements, but its mantle conductivity and depth resolution would

be only slightly different from that of the semiannual variation.
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The 27 day cycle falls between the semiannual and diurnal variation,

and if it could be analyzed it might illuminate the nature of the rapid

rise in the conductivity of the upper mantle. This cycle is very weak,

but comparatively many cycles of data are available for its analysis.

Survey of Mantle Models

The electrical conductivity distribution of the earth's mantle

is strongly dependent on its temperature profile and it also depends

somewhat on its fairly well-known pressure profile. MacDonald (1959)

has presented numerical calculations of the thermal history of the

earth for a number of different models. For any assumed conductivity

mechanism each of MacDonald's models (and any others) can be

tested for compatibility with observed complex ratios, S s , by

numerically integrating Equation 4. 30. Such testing may help to

circumscribe possible temperature profiles and conductivity

mechanisms within the mantle and it may throw some light on the

thermal history of the earth.

Mantle Shielding

Equations 4.26 a, b may be of use in investigating the shielding

by the mantle of secular variations. For any mantle conductivity

distribution, these equations relate the measurable secular varia-

tion field components at the earth's surface to its source field

components at the core boundary. The equations may be used in

either of two ways: knowing or assuming the conductivity structure,

what is the field at the core; or assuming the field at the core, what

is the conductivity structure.

Complex Ratios in Geophysics

Many problems in geophysics are concerned, like this thesis,

with ratios such as current/voltage, E field/ i- field, etc. The
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utility of the approach of this thesis in which a differential equation

for the ratio itself is considered (rather than its numerator and

denominator separately) suggests that it may be fruitful to use

this method of attack for other problems. For instance, in the one

dimensional magnetotelluric problem (Cagniard, 1953) for which an

electromagnetic wave with an implicit P time variation and

components E = (Ex, O, O), H = (0, Hy, 0) penetrates vertically

into the earth (z positive downward), the complex ratio R = E /H is
x y

of importance. From Maxwell's equations

x _Hy

Thus

This equation may be of use for the numerical solution of R when

the conductivity changes continuously or discontinuously with depth.

Its qualitative effect on R in the complex plane is easily perceived.

When dR = 0 we get the familiar uniform earth ratio, R=
dU ' I"
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