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ABSTRACT

Three-dimensional modeling and inversion algorithms are required to properly
interpret magnetotelluric data because the Earth's conductivity structure is inherently
heterogeneous. Furthermore, these modeling algorithms must be able to incorporate
regional features far away from the actual area of interest since local electromagnetic fields
can be perturbed by these distant features. In this thesis, we have developed three-
dimensional modeling algorithms that meet these needs, and we have made considerable
progress in implementing a three-dimensional magnetotelluric inversion algorithm. Finally,
we interpret magnetotelluric data taken in the California Basin and Range Province. This
data is very three-dimensional and regional in nature, and it requires three-dimensional
modeling algorithms to interpret.

Our three-dimensional modeling algorithms are difference equation algorithms that
are based on the integral forms of Maxwell's Equations rather than the differential forms.
This formulation does not lead to the problem of approximating derivatives of Earth
properties or derivatives of the electromagnetic fields. We investigated exact and
approximate solutions of these difference equations.

The exact solution method is similar to propagator methods and Ricatti equation
methods. Results from the exact solution compare very well with those determined from
the integral equation solution of Wannamaker (1990). The relaxation solutions are
conjugate direction algorithms that iteratively obtain an approximate solution to the system
of equations. The relaxation solutions can incur significant errors due to the eigenvalue
spread of the system. A multiple-scaling approach is used to counteract these errors.

The three-dimensional inversion scheme is a relaxation solution of the maximum-
likelihood inverse equations. At each iteration of the non-linear inversion, conjugate
gradient relaxation is used to obtain an approximate solution for the model perturbations
with which to update the model. Using conjugate gradient relaxation schemes allows one to
bypass the construction of the sensitivity matrix, or the inversion of a large matrix at each
iteration of the non-linear inversion procedure. Instead, one only needs to know the effect
of the sensitivity matrix, and its transpose, operating on an arbitrary vector. We show that
these two operations are equivalent to one forward problem each per frequency with
sources distributed either on the surface (for the transpose operation), or distributed
throughout the volume. This procedure cuts down tremendously on the computation time
involved in non-linear inversions, and begins to make 3D magnetotelluric inversions
feasible.



Finally, we interpret magnetotelluric data from the California Basin and Range
Province that we collected over the past two years. The principal (maximum) mode of the
impedance in this region is perturbed by excess ocean electrical currents trapped in the
continental upper crust. Following the leakage of these excess currents allows us to place
bounds on the integrated lower crustal resistivity properties for the California Basin and
Range. Three-dimensional modeling of the data requires a lower crust in the California
Basin and Range that has 16 times less integrated resistance (resistivity-thickness product)
than the lower crust further to the west in California. Such low resistivities for this region
can be explained by an increase in the connected porosity of the lower crust. This may well
be related to the extension presently occurring there, but more importantly, it probably
indicates that some small component of brittle failure is occurring in the lower crust even
though it deforms ductilely as a whole (this is semi-brittle deformation). The exact
relationships and interactions between fluids in the lower crust, fluid pressures, and
deformation processes in the lower crust is, however, not completely understood.
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Title: Professor of Geophysics



Table of Contents

A b stract....................................................................................... 2

Table of Contents............................................................................ 4

Chapter 1: Introduction

Thesis objectives.................................................................6

Background........................................................................7

Three-dimensional magnetotelluric modeling............................... 10

Three-dimensional magnetotelluric inversion............................... 12

A magnetotelluric study of the California Basin and Range...............15

Thesis organization................................................................18

References........................................................................19

Chapter 2: Three-dimensional magnetotelluric modeling methods

Introduction...................................................................... 23

Difference equations........................................................... 24

Boundary conditions, grading of models................................... 29

Relaxation solution............................................................ 31

Direct solution: impedance matrix formulation............................. 46

Model responses............................................................... 51

Comparisons between direct solution and Wannamaker's solution.........52

Relaxation results.............................................................. 64

Computational considerations.................................................86

Conclusions......................................................................91

References........................................................................92

Chapter 3: Three-dimensional magnetotelluric inversion

Introduction...................................................................... 94

Maximum likelihood inverse................................................. 95

A note on the use of a priori information....................................98

Sensitivity analysis and reciprocity...........................................99

Relaxation solution of the inverse problem................................... 104

Details of the 3D inversion procedure......................................... 112

Source distributions............................................................. 116

Boundary conditions and other practical matters.............................119

Results for theoretical data......................................................120

Future work...................................................................... 137



Conclusions...................................................................... 137

References........................................................................ 139

Chapter 4: Magnetotellurics in the California Basin and Range

Introduction.......................................................................140

MT response terminology.......................................................141

The MT coast effect..............................................................144

Geologic framework.............................................................156

Previous electromagnetic investigations.......................................158

Magnetotelluric data in the California Basin and Range

I. Data collection.............................................................160

II. Impedance estimation................................................... 160

III. Computation of apparent resistivities, phases, and directions.....163

IV. Editing to improve impedance estimates............................. 191

A qualitative interpretation of the data.........................................195

3D modeling of the data.........................................................199

Geophysical and geological implications......................................210

Conclusions...................................................................... 216

References........................................................................ 218

Appendix A.......................................................................223

Appendix B.......................................................................230

Chapter 5: Summary......................................................................235

Acknowledgements.......................................................................237



Chapter 1

Introduction

"In spite of the simplicity of Ohm's law, the theory of current flow in the Earth is very
complex."

-Cagniard (1953)

Thesis objectives

The objectives of this thesis are threefold: 1) develop three-dimensional

magnetotelluric modeling algorithms, 2) develop three-dimensional magnetotelluric

inversion algorithms, and 3) study the electrical properties of the California Basin and

Range Province using magnetotelluric measurements. This data set is very three-

dimensional in nature and requires three-dimensional modeling algorithms to interpret.

One-dimensional and two-dimensional modeling and inversion methods have

existed for some time, but to date, no practical three-dimensional modeling algorithms, and

certainly no three-dimensional inversion algorithms, have been developed. A practical

modeling algorithm is one that is capable of modeling fully inhomogeneous media quickly

and accurately without the use of a supercomputer. In this thesis, we detail our attempts at

solving this difficult problem. Specifically, our modeling algorithms are based on the

difference equations derived from the integral forms of Maxwell's equations rather than

from the differential forms. In order to solve these difference equations quickly and

efficiently, we employ conjugate direction relaxation methods in conjunction with a

multiple scaling technique. Our three-dimensional inversion algorithm uses conjugate

direction relaxation techniques to solve the maximum likelihood inverse equations. This

approach eliminates the need for a sensitivity analysis and the need for inverting large

matrices, and it makes three-dimensional inversions feasible. Much work remains to be

done, however, before the inversion algorithm is practical. Finally, we use our forward

modeling algorithms to interpret magnetotelluric data taken in the California Basin and

Range Province to gain insight into the processes that govern extension in the region.



Background

Complex interactions between the Earth's magnetic field and the solar wind give

rise to a time-varying magnetic field that induces electrical currents in the conductive Earth.

Magnetotellurics (MT) is the geophysical technique that uses measurements of these

naturally-occurring electromagnetic fields on the Earth's surface to infer the electrical

properties of its crust and mantle. The total amount of current flowing in the conductive

Earth is determined from the magnetic field measurement while the distribution of that

current with depth, which is dependent on the conductivity structure, is determined from

the electric field measurement.

Introduced by Cagniard (1953) and Tikhonov (1950), magnetotellurics involves

measurements of the horizontal electric and magnetic fields at the Earth's surface to

determine its conductivity structure. Although all of the magnetotelluric concepts and

formulae can be derived from the theory of electromagnetic wave propagation, it must be

remembered that physically, the process is one of diffusion. The fields induced by a time-

varying external magnetic field diffuse through the conductive Earth and decay with depth

(Price, 1962). Consequently, fields with different frequencies penetrate to different depths

in the Earth. Lower frequency fields penetrate deeper than higher frequency fields. By

making measurements at several frequencies, one can make a determination of the Earth's

conductivity structure with depth. If measurements are made over an array of sites, one can

also map out the lateral variations of conductivity.

The electrical conductivity of the Earth's crust and mantle is related to its

mechanical, thermal, lithologic, fluid, and partial melt properties. The Earth's electrical

conductivity structure can be quite complicated because the Earth is inherently

inhomogeneous, and its electrical conductivities can range over ten orders of magnitude

from 105 S/rn in the core to 10-5 S/rn in the lower crust. Electrical conductivity in the Earth

results from many different mechanisms. In the crust, conductivity is due primarily to the

movement of ions through a fluid-filled, connected pore space (this pore space also



includes fractures, cracks, faults, etc.), although some minerals such as sulphides and

graphite are highly conductive. The connectivity of fluids in the lower crust is controversial

because it is thought that the wetting angles, which may be related to the connectivity

(Watson and Brenan, 1987), might be too high (Madden, 1990, pers. comm.). Laboratory

measurements, however, show that the wetting angles are reduced when the fluids contain

saline components (Watson and Brenan, 1987). Since fluids in the lower crust are probably

highly saline (Orville, 1963; Ellis and Mahon, 1964), it is likely they will form a connected

phase. High fluid pressures may also be another mechanism for enhancing the connectivity

in the lower crust (Etheridge et al., 1984). In the mantle, temperatures are high enough so

that thermally-activated semi-conduction processes take over resulting in conductivities

dramatically higher than those found in the crust. The composition of the mantle also plays

a role in its electrical conductivity. Olivine, which is 90% forsterite (Mg2SiO4) and 10%

fayalite (Fe2SiO4), is believed to be the major phase of the Earth's upper mantle (Duba,

1972). Laboratory studies show (Duba, 1972; Duba et al., 1974) that the conductivity of

mantle-like olivine increases with increasing iron content. Additionally, partial melt in the

upper mantle may explain high conductivity anomalies in the upper mantle that have been

inferred from long-period magnetotelluric measurements and geomagnetic deep soundings

(Shankland and Waff, 1977).

In magnetotelluric surveys, one is mainly concerned with the conductivity structure

of the crust and upper mantle. Even though at these depths the conductivity is controlled

primarily by connected pore fluids, there are still large variations in conductivity both

laterally and vertically. For example, sedimentary rocks tend to be more conductive than

igneous rocks because of their generally higher porosities. The lower crust should be more

resistive than the upper crust because the lower crust deforms ductilely, and this tends to

eliminate much of the porosity. Ductile deformation in the lower crust is due primarily to

the higher temperatures found there as compared to the upper crust. Additionally,

conductivities in sedimentary basins are often highly anisotropic because of interbedded



shales and sandstones, or the inclusion of clay layers, which are also anisotropic. In short,

the heterogeneous nature of the Earth's conductivity structure necessitates three-

dimensional modeling algorithms to properly interpret magnetotelluric data.

The California Basin and Range Province is very three-dimensional in nature and

requires three-dimensional modeling algorithms to interpret the data we have collected

there. We became particularly interested in this region after analyzing magnetotelluric data

we had collected during the MIT Geophysics Field Camp at Panamint Valley, California, in

January of 1987. We were suprised to find that the current system at Panamint Valley was

still being influenced by the ocean some 300 km away in the period range of 10-300s. Near

ocean-continent boundaries, ocean-like electrical currents get trapped in the continental

upper crust at periods where they should be in the mantle in typical continental areas. These

excess currents gradually leak across the resistive lower crust into the mantle as one moves

away from the ocean-continent boundary. This effect is manifested in magnetotelluric data

by the retardation of the mantle response to longer periods. In typical continental areas, one

starts to see the mantle response (this part of the magnetotelluric spectrum is termed the

mantle branch) at periods from 10-100s. In an ocean regime, the mantle is not seen until

periods of 12h or greater. In the region around the ocean-continent boundary, the mantle

branch is seen at periods that are a compromise between the ocean and the continental

responses. For instance, at Hollister, California some 75 km away from the ocean, the

mantle branch begins at a period of about 8h (Mackie et al., 1988). At Panamint Valley, we

find the mantle branch at periods of around 100-300s, and at stations further south in

Searles Valley, the mantle branch is retarded to even longer periods. Particularly

surprising, however, is that this ocean effect is present in the north-south currents, but

absent in the east-west currents. This is a feature that we continue to observe at other

stations throughout the California Basin and Range. It seems as if the Sierra Nevada block

off the current from the west, but that current from south of the Sierra Nevada comes up



into the Basin and Range Province. Obviously, it will take three-dimensional modeling to

fully understand these data.

Three-dimensional magnetotelluric modeling

Interpretation methods for magnetotellurics largely involve the use of one-

dimensional and two-dimensional modeling and inversion algorithms. One-dimensional

geometries are modeled quite simply by using the analytic solution to Maxwell's equations

for a layered earth (Kaufman and Keller, 1981). Except for a few special cases, such as a

quarter space model (d'Erceville and Kuntz, 1962), two-dimensional geometries must be

modeled with numerical methods. These include network analogs (Madden, 1972), finite

differences (Brewitt-Taylor and Weaver, 1976; Oristaglio and Hohmann, 1984), finite

elements (Coggan, 1971; Wannamaker et al., 1987), or integral equation techniques

(Hohmann, 1971; Lee, 1975). The Earth, however, is three-dimensional, and its electrical

properties are much more variable than most of its other physical properties. Even though

there are certain special situations where three-dimensional responses can be accurately

modeled by two-dimensional TM mode responses (Wannamaker et al., 1984), three-

dimensional modeling routines are clearly needed.

In recent years, a lot of effort has been put into developing three-dimensional

magnetotelluric modeling algorithms. Much of this work has gone into the integral equation

approach (Hohmann, 1975; Wannamaker et al., 1984; San Filipo et al., 1985;

Wannamaker, 1990). This method is computationally quick when there are only a few

inhomogeneous bodies in an otherwise layered earth. As the complexity of the model

increases, so also does the computation time. Other algorithms work in the Fourier domain

(Park, 1985; Fornberg, 1987), but these implicitly involve periodicity assumptions that can

bias the computations. Finite difference and finite element algorithms (Adhidjaja and

Hohmann, 1989; Reddy et al., 1977) lead to very large systems of equations to be solved

for realistic earth models, but advances in solving large sparse matrices by relaxation



techniques (e.g., Reid, 1971) make these methods more appealing. Finally, there are some

hybrid algorithms (Lee et al., 1981; Best et al., 1985) that involve combinations of these

solution methods, but it remains to be seen whether they offer any improvements over the

more traditional methods.

The goal, then, is to develop an algorithm that can model complex, fully

inhomogeneous, three-dimensional media quickly and accurately. Integral equation

techniques are not well suited for situations in which there are more than just a few

inhomogeneities in an otherwise layered earth because they become too time-consuming.

Fourier methods, while similar to finite differences or finite elements, implicitly assume

periodicity, and are unable to include regional boundary conditions on the three-

dimensional model. Therefore, one is led to use either finite differences or finite elements to

model complex media, but finite differences are simpler to implement. Our modeling

algorithms are finite difference algorithms that are actually based on the integral forms of

Maxwell's equations rather than the differential forms. This bypasses the difficulties

associated with approximating derivative operators or taking derivatives of Earth

properties. Arguably, discretized Earth models can still lead to large, sparse systems of

equations, but these sparse systems can often be solved quickly and efficiently with certain

approximate and direct solution techniques.

We investigate several relaxation and direct solution techniques for solving the

system of equations that arise from our finite difference formulation of Maxwell's

equations. The relaxation algorithms are conjugate direction algorithms (Hestenes and

Stiefel, 1952) and are quick, simple to implement, and do not require large amounts of

computer storage. Conjugate direction algorithms, in theory, exactly solve a system of

equations in no more than n steps where n is the dimension of the system. Relaxation

solutions are approximate solutions, but one of the drawbacks to using them is that one

never really knows when to stop the relaxation process. Unfortunately, the residual, which

is the only measure one has of the error in the solution, is not always a good indicator of



when the relaxation process should be terminated. An additional problem with relaxation

methods is that they have difficulty resolving the component of the solution that is

associated with the small eigenvalues of the system (Reid, 1971). We have implemented a

relaxation algorithm that uses a multiple scaling technique, and this appears to give better

results compared to the relaxation algorithm without multiple scaling. This technique

condenses the model into a smaller scale model (horizontally and not vertically) that is

solved using an exact solution of the difference equations. These fields are then interpolated

onto a larger scale model that is solved iteratively by a conjugate direction relaxation

method. This process is continued until the original model is reached. This technique has

the advantage that the regional H field structure is imprinted onto the starting field values

for the larger scale relaxation solutions. The results from this technique appear to be

superior to those obtained from the conventional relaxation of the original model, which are

started with 2D TM mode H field values.

The direct solution technique is an exact solution of the difference equations that is

similar to propagator methods (Gilbert and Backus, 1966; Haskell, 1953; Thomson, 1950)

and Ricatti equation solutions (Eckhardt, 1963). With this technique, a matrix is computed

for each earth layer that relates the horizontal E fields to the horizontal H fields in that

layer. This matrix is propagated up through the earth, and is dependent on all the

interactions below that layer. This method is more time consuming than the relaxation

methods since a matrix inversion has to be performed for each layer in the earth model, and

it requires more computer storage space, but the resulting solution is more accurate.

Three-dimensional magnetotelluric inversion

Our approach to the forward problem has always been influenced by the goal of

implementing a three-dimensional inversion algorithm. We are motivated by the desire to

have the ability to invert for a fully inhomogeneous model since the Earth is never as

simplistic as layered media or a single inhomogeneous body buried in a layered media.



Inversion schemes can be catagorized as either direct or linearized schemes. Direct

inversions involve well-defined operators acting on the data to produce a model that

predicts the observed data. Linearized inversion schemes, on the other hand, are iterative

approaches that make systematic changes in the model to reduce the error in the fit to the

data, usually subject to certain constraints.

Direct inversions are known for several one-dimensional geophysical examples, the

most famous being the seismic traveltime inversion, which is known as the Herglotz-

Wiechert formula (Aki and Richards, 1980). Examples of other direct inversion schemes

are the 'layer-stripping' algorithms. These algorithms systematically proceed from higher to

lower frequencies (or equivalently from the surface on down) adding layers to a one-

dimensional model until all the data has been predicted. They are called layer-stripping

methods because when an additional layer had been added to the model, its effect is

stripped away from the data in order to unmask the properties of the next layer, and so on.

Pekeris (1940) derived a layer-stripping algorithm for the electrical resistivity problem.

Such algorithms have also been applied to seismic data (Yagle and Levy, 1985). These

algorithms have only dealt with one-dimensional models, although theoretically, they

should be extendable to higher dimensional models.

Direct inversion methods also exist for the magnetotelluric problem, although these

are restricted to one-dimensional geometries. Weidelt (1972) adapted the Gelfand-Levitan

theory for the solution of the inverse Sturm-Liouville problem to the magnetotelluric

problem for either a spherically symmetric or plane stratified earth. Baily (1970) derived an

analytic solution for the geomagnetic induction problem in a spherically symmetric earth.

He also proved that the resulting model was unique for a continuum of noise-free

measurements if the conductivity distribution was a bounded, real analytic function of

depth. The uniqueness proof was extended by Loewenthal (1975) to the magnetotelluric

case for a one-dimensional geometry in which the conductivity distribution consisted of a

finite number of discontinuities (i.e., the earth is composed of a finite number of layers,



each having isotropic conductivity). More recently, Coen et al (1983) obtained a direct

solution for one-dimensional geometries by using the Born approximation to the electric

field integral equation. Unfortunately, direct inversions tend to be unstable for noisy, band-

limited data. Other iterative analytic methods have been developed to help stabilize the direct

inversion of magnetotelluric data (Fischer et al., 1981; Parker and Whaler, 1981), but

again, they are limited to one-dimensional geometries.

Linearized inversion schemes, on the other hand, are not restricted to one-

dimensional geometries, and they are used in a wide variety of geophysical and medical

applications. These schemes involve linearizing a non-linear problem about some model,

and solving for the model perturbations that minimize a pre-determined error functional.

Since the problems are non-linear, the model is updated and the procedure is iterated until

an acceptable fit to the data, perhaps subject to certain constraints, is obtained.

Examples of linearized inversion schemes for the magnetotelluric problem can be

found, for example, in Jupp and Vozoff (1977) and Pederson and Rasmussen (1989).

These inversion schemes typically employ non-linear least squares algorithms. For our

inversions, we prefer to use the maximum likelihood inverse (Mackie et al., 1988), which

closely follows the work of Tarantola (1987) and Tarantola and Valette (1982). The

maximum likelihood inverse is the inverse that minimizes a weighted sum of the variance of

the data errors (misfit of the observed data to the predicted data) and the model errors

(deviation of the solution model from an a priori model).

Most linearized inversion schemes involve a sensitivity analysis that determine how

the observed parameters depend on changes in the properties of the Earth. These

determinations, often called the Frechet derivatives, are grouped together into the

sensitivity, or Jacobian, matrix (see McGillivray and Oldenburg, 1990, for a comparative

study of sensitivity analyses). Carrying out the sensitivity analysis to create the sensitivity

matrix involves doing one forward modeling run per frequency with sources at each

observation site (reciprocity relationships guarantee that this is equivalent to putting sources



in the media and solving for the fields at each observation site). For one-dimensional and

two-dimensional geometries, the actual sensitivity analysis poses no computational

difficulty, especially with modern computers. However, because three-dimensional

modeling algorithms are so computer-intensive, creating the sensitivity matrix for a three-

dimensional model would be impractical, even with the use of a supercomputer. There is

one additional problem for three-dimensional inversion schemes: most linearized inversion

algorithms, including weighted least squares and maximum likelihood methods (Tarantola,

1987), require, after constructing the sensitivity matrix, the evaluation of a quantity like

(AHA)-1 where A is the sensitivity matrix. Evaluating the matrix AHA and inverting it is

yet another large computational task. We circumvent these problems by using conjugate

gradient relaxation methods to solve the maximum likelihood equations. This bypasses the

need to create A or AHA, and the need to invert AHA, because all the relaxation method

needs to know is the result of A or AH operating on an arbitrary vector. We show that

these operations are equivalent to one forward modeling run each with sources distributed

throughout the volume (for the A calculation) or at the surface (for the AH calculation).

Relaxation solutions of the maximum likelihood equations work as well in one-dimensional

and two-dimensional geometries as the direct solution of those equations (Madden and

Mackie, 1989). In this thesis, these concepts are extended to three-dimensional geometries.

A magnetotelluric study of the California Basin and Range

We have spent a fair amount of time during the past three years collecting

magnetotelluric data in the California Basin and Range Province. We have collected data

east to west from Death Valley to Owens Valley, and north to south from Eureka Valley to

the northern Mojave Desert. Although the data are narrowly band-limited (10 sec to 300 sec

periods) and of only moderate quality, they are sufficient to allow us to identify zones in

the crust of increased conductance and electric current leakage. We find that even this far

inland from the ocean, the local telluric fields are perturbed from their normal continental-



like values because of the excess ocean current still trapped in the upper crust. These

perturbations occur in the E fields aligned along the valley, whereas the E fields aligned

across the valley are not perturbed, but rather, contain information about the upper-crustal

conductivity structure of the basins.

The total amount of current induced in the Earth is determined by the source field,

which changes temporally and spatially. The vertical distribution of that current, however,

is determined by the Earth's conductivity structure. In the oceans, most of the electric

current is concentrated in the ocean itself even down to very long periods (12 h or greater)

because of the high conductance of the ocean. In continental regimes, at these same long

periods, the current is concentrated in the mantle. Since current is divergenceless, the

current fields perpendicular to the ocean-continent boundary must readjust themselves in

some region around the ocean-continent boundary. This readjustment, which is a leakage

of the currents out of the upper crust into the mantle across the resistive lower crust,

typically takes place over a distance of hundreds of kilometers and is dependent upon the

resistivity of the lower crust and the conductivity of the upper crust (Ranganayaki and

Madden, 1980). On the conductive side of a conductive-resistive contact, the current

density near the surface is decreased near the contact (causing a decrease in the E field

perpendicular to the contact), and the current density near the surface on the resistive side is

higher than it would normally be if the conductive medium were not present (causing an

increase in the E field perpendicular to the contact). In our situation, the contact is the

ocean-continental boundary, the conductive side is the ocean, and the resistive side is the

continent. The current fields found on the continent near the ocean-continent boundary,

being divergenceless, are a mix between the oceanic current system and the continental

current system. The effect of the oceanic current system is to retard the magnetotelluric

response to longer periods (as occurs in the ocean because of its high conductance). That

is, the part of the magnetotelluric spectrum that is termed the mantle branch (Mackie et al.,

1988) usually occurs at periods of 10-100s in typical continental regimes, but is retarded to



much longer periods nearer to the ocean. These are not subtle effects as they show up as

dramatic changes in the phases and slopes of the apparent resistivity curves and do not

require the highest quality data to follow.

This particular coast effect shows up in the current system perpendicular to the

ocean-continent boundary and was first described by Kasameyer (1974). He found excess

ocean currents in the upper crust across New England all the way to New York, some 500

km away from the continental margin. The more familiar coast effect was described by

Parkinson (1962) and Schmucker (1963) where anomalies in the vertical component of the

geomagnetic field near ocean-continent boundaries are due to electric currents running

parallel to the coast in both the ocean and in the oceanic upper mantle.

In central and southern California, high current levels at long periods have been

documented by Bennett (1985) and Mackie et al. (1988). The interpretation of that long-

period magnetotelluric data requires a highly resistive oceanic crust (a resistivity-thickness

product on the order of 1 x 106 Q-m-km). This value is consistent with that determined

from ocean-bottom controlled-source electromagnetic measurements in the Pacific ocean

(Cox et al., 1986). These excess currents gradually leak into the mantle as one proceeds

away from the ocean-continent boundary and are documented across the Great Valley in

central California (Park et al., 1990), and to a lesser extent in the California Basin and

Range (this thesis). What is especially unusual about these studies is that there are zones in

the lower crust that are more conductive than usual through which large amounts of the

excess upper-crustal current leaks into the mantle. More intriguinghowever, is that these

zones appear to be correlated with certain tectonic features. For example, in central

California, these zones are correlated with suture zones in the lower crust on the eastern

and western edges of the Great Valley (Park et al., 1990). In the California Basin and

Range, these zones are correlated with the areas presently undergoing the most recent and

dramatic extension (this thesis). The increased conductance in these zones may result from

subducted sedimentary rocks (as postulated for the Great Valley suture zones), or may



result from other processes associated with the extension of continental crust as in the

California Basin and Range. Such results may well aid us in our understanding of the

tectonic evolution of the lower crust in such regimes.

Thesis organization

This thesis is organized into three parts. The first part, chapter 2, details our

algorithms for solving the three-dimensional magnetotelluric forward modeling problem.

Included are both relaxation and direct approaches. Comparisons are made between our

direct solution and another direct solution which uses the integral equation technique.

Comparisons are also made between the relaxation algorithms and the direct algorithms.

The second part of the thesis, chapter 3, details our solution of the three-dimensional

magnetotelluric inversion problem. This solution technique uses conjugate gradient

relaxation methods. Several examples are shown inverting synthetic noise-free

magnetotelluric data. The third part of the thesis, chapter 4, is a magnetotelluric study of the

California Basin and Range. The forward modeling algorithms developed in the first part

are used to model these data. The results as well as the implications are presented.

Conclusions and suggestions for further work are in Chapter 5.
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Chapter 2

Three-dimensional magnetotelluric modeling methods

"Sometimes we have a blind trust in machines, a tendency to believe that whatever a
computer tells us is gospel..."

-Dean R. Koontz, Midnight

Introduction

In this chapter, we describe several approaches to solving a large system of

equations for the electromagnetic response of a fully inhomogeneous, three-dimensional

Earth model due to a uniform current source far above the Earth (this is the magnetotelluric

response). We depart from most of the recent efforts that have been put into developing

integral equation approaches (Wannamaker et al., 1984a; San Filipo et al., 1985;

Wannamaker, 1990). We instead focus on the viability of using finite difference equations.

Our difference equation algorithm, however, is based on the integral forms of Maxwell's

equations. The traditional difference equation approach, working with the second-order

system of equations derived from the differential equations, leads to the issue of

approximating derivatives of Earth properties (Adhidjaja and Hohmann, 1989). Starting

from the integral forms of Maxwell's equations, however, one only has to be concerned

with issues of taking averages, and not in approximating derivatives.

Finite difference algorithms lead to very large systems of equations to be solved for

realistic, three-dimensional Earth models. Therefore, the bulk of this chapter is concerned

with solving these large systems of equations quickly, accurately, and efficiently. These

algorithms are grouped into relaxation solution techniques and direct solution techniques.

The relaxation solutions use conjugate direction relaxation algorithms to obtain

approximate solutions to the second order system of equations in H. These methods are

quick, give reasonable answers, and do not require large amounts of computer storage

space. The direct solutions, which are similar to propagator matrix algorithms, are more



computer-intensive because they can require large amounts of storage space and involve

doing many matrix inversions. They do, however, give exact solutions to the difference

equations up to roundoff and precision errors.

Difference Equations

At the low frequencies involved in magnetotelluric exploration, conduction currents

dominate over displacement currents. Therefore, if displacement currents are ignored and

an e-iot time dependence is assumed, then the integral forms of Maxwell's equations in

mks units are given by:

H -di = ffaE -dS (2-la)

f E-dl= ff iopH-dS (2-1b)

where in general, Y and p are tensor quantities (Stratton, 1941). These integrals can be

evaluated for any discretization of the Earth involving flat surfaces. We choose to divide the

Earth model into rectangular blocks of arbitrary dimensions with the H field defined along

block edges, and average E fields defined as normals across block faces, as shown in

Figure 2-1. This is similar to the geometry for a finite difference scheme on a staggered

grid. If adjoining blocks have differing conductivities, the actual E fields are discontinuous

across the block faces, but the J fields are continuous because current is divergenceless.

The E fields in our geometry, however, actually represent average E fields. Discontinuities

in the E field do not pose any problems since these equations involve integrations rather

than differentiations.

One can transform any unequally gridded earth to an equally gridded earth by

making the appropriate transformations in the conductivity, permeability, and field values

(Madden and Mackie, 1989). This is often quite useful in situations where equally spaced
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Figure 2-1. The difference equation geometry based on the integral forms of Maxwell's
equations. The Earth model is divided into rectangular blocks of arbitrary dimensions. The
H fields are defined as averages along block edges, and the E fields are defined as averages
across block faces.
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grids are needed such as Fourier applications. In addition, if one is using an equally

gridded mesh, then the operator for the difference equations is symmetric, which would not

generally be the case if the spacing was variable. This turns out to be an important issue

when solving this problem by conjugate direction relaxation techniques, which assume

symmetric operators.

If the transformed parameters are denoted with an apostrophe, then the scaling

factors for the transformation are

CX= Ax C y Cz = Az ,2-2)
Ax' Ay' Az'

and the transformed conductivity and permeability tensors are

cCy Cz oGaYC 0 0
Cx

' 0 Cx Cz 0 (2-3)Cy

0 0 cxc

p 0 0CX

0 Cx Cz 0 (2-4)
Cx C

0 0 cxCy
Cz

For our applications, we assume isotropic conductivity, but the generalization to

anisotropic media is straightforward. We also assume that g=g0 =4n x 10-7 henry/m

everywhere. The transformed E, H, and J fields are defined as

Ex= CxE E' = Cy Ey Ey = Cz Ez (2-5a)

H', = Cx Hx H'y = Cy Hy Hz = Cz Hz (2-5b)



Jx = Cy CzJx J = Cx CzJ J z = Cx Cy Jz - (2-5c)

Under these transformations, equations 2-la and 2-lb remain invariant, so that solving the

transformed system is equivalent to solving the original, or untransformed, system.

Throughout the remainder of this chapter it will be assumed that we are dealing with the

transformed variables, and the apostrophes will be dropped. Furthermore, to ensure

symmetry, it is required that Ax'=Ay'=Az'=L.

With this formulation and the geometry shown in Figure 2-1, the x, y, and z

components of equation 2-la are

([Hz(i,j+1,k) - Hz(ij,k)] - [Hyi,j,k+l) - Hy(i,j,k)]} L = J,(ij,k) L 2

([Hx(i,j,k+1) - Hx(ij,k)] - [Hz(i+1,j,k) - Hz(ij,k)]) L = Jyi,j,k) L2  (2-6)

([Hy(i+l,j,k) - Hy(i,j,k)] - [Hx(ij+l,k) - Hx(i,j,k)]) L = Jz(ij,k) L2

where the J fields are related to the average E fields by

[pxx(ij,k) + pxx(i-lj,k)]
Ex(i,j,k) = 2 J(i,j,k)

[pzz(i,j,k) + pzz(ij,k-1)]
Ez(i,j,k) 2 Jzi,j ,k) .

The resistivities are subscripted because the transformed resistivity tensor is anisotropic

even though the actual resistivities are isotropic (see equation 2-3). This likewise applies to

the magnetic permeabilities. The components of equation 2-1b are given by

([Ez(i,j,k) - Ez(i,j-l,k)] - [Eyi,j,k) - Ey(i,j,k-1)]} L = ioipx ) Hx(ij,k) L2

([Ex(i,j,k) - Ex(ij,k-1)] - [Ez(ij,k) - Ez(i-1,j,k)]) L = io( yy) Hy(i,j,k) L2 (2-8)



([Ey(i,j,k) - Eyi-1,j,k)] - [Ex(ij,k) - Ex(i,j-1,k)]) L = io( zz) Hz(ij,k) L2

where the average permeabilities are defined as

4 xx(ij-l,k-l) + pxx(ij,k-l) + pxx(ij-l,k) + gxx(ij,k)
(pLxx)= 4

pyy(i-lj,k-1) + gyy(i,j,k-l) + pyy(i-,j,k) + pyy(i,j,k) (2-9)
(pIyy)= 429

() =pzz(i-1,j-l,k) + gzz(i-lj,k) + gzz(ij-1,k) + gzz(ij,k)
4

One can solve the first order system of equations, or one can algebraically eliminate either

E or H to obtain a second order system of equations. The relaxation solution techniques

that we discuss later in this chapter operate on the second order system of equations in H.

Our direct solution technique solves the first order system of equations (after eliminating Hz

and Ez). No matter which solution technique is used, one is ultimately interested in the

fields at the Earth's surface since these are the fields that are actually measured. The E and

H fields are output on the Earth's surface at the top face center of each model block. Since

the H fields are defined along block edges, the H fields in the center at the Earth's surface

(Hxs and Hys) are simply taken to be the average of the adjacent H fields:

Hxs(ij) = -i[Hx(ij,ksurf) + Hx(ij+1,ksurf)]
2

(2-10)

Hy,(i,j) = I[Hy(ij,ksurf) + Hy(i+1,j,ksurf)]

Since the E fields in the model are defined as normals across the block faces, a bit more

care must be taken in computing the fields at the Earth's surface. First, the fields in the top

model layer are averaged to give the E field in the block center (Exc and Eyc). Because the

actual E fields are discontinuous across conductivity contrasts, the averages are weighted

by the conductivities of the blocks (here, k refers to the top Earth layer):



p(i,j ,k) p____ i___j___k) __

Exc(ij) = p(ijk) Ex(ij,k) + p(ij,k) Ex(i+1,j,k)
p(ij,k) + p(i-,j,k) p(ij,k) + p(i+1,j,k) (2-11,

(2-11)
=- p(ij,k) Ey(ijk) + p(ij,k) . .

p(ij,k) + p(ij-1,k) p(ij,k) + p(ij+1,k)

Then, the E fields are continued up to the Earth's surface using equation 2-8 and assuming

that Ez = 0 at the Earth's surface.

Boundary conditions, grading of models

Proper treatment of the model boundaries is important in calculating the

magnetotelluric response of 3D models. One common approach is to assume that the model

is periodic in the horizontal directions. This approach is used in Fourier methods (Park,

1983) and Rayleigh-FFT methods (Jiracek et al., 1989). It can also be used in difference

equations, but even if the boundaries are extended a considerable distance away from the

local 3D structure, there are still many situations where it would not be an accurate

representation of the regional structure. Oftentimes, local magnetotelluric fields are biased

by regional features far away from the local measurement site. The ocean-continent

boundary is perhaps the most severe example of this (Ranganayaki and Madden, 1980).

To circumvent the potential problems associated with periodic models, one can

assign the H fields on the boundaries of the model. This is in essence assigning the

regional current field, both laterally and vertically, a priori. These values could be 1D

values, or they could come from a larger scale 2D or 3D calculation. For example, all our

algorithms, except the multiple scaling algorithm, currently use 2D TM mode H field

values assigned on the boundaries of the 3D model. The 2D values are from a calculation

where each vertical plane of the 3D model has been imbedded into a larger-scale 2D

regional model. We have elected to use the ID boundary values in the multiple scaling

algorithm and to simply include the regional features in the 3D model. This results in larger

3D models to be solved, but the multiple scaling algorithm, which will be shown to be



superior to the other relaxation algorithms, is quick enough and accurate enough to include

the regional features.

It is possible to extend the side boundaries to large distances without creating

unmanageably large systems by grading the 3D model in the horizontal directions.

Discretizing the model on a finer scale near regions of strong conductivity gradients allows

one to obtain more accurate solutions. One can also grade the model in the vertical direction

because 1) the diffuse nature of electromagnetic waves in conducting media smears the

information content with depth, and 2) this allows one to use the same model for a wide

range of frequencies without changing the vertical spacing at least up to some high

frequency limit that is determined by the thickness and conductivity of the first layer. We

found (Madden and Mackie, 1989) that geometrical grading factors of 2 in the vertical

direction and factors of 3 in the horizontal directions gave results accurate to within 1% in

amplitude and less than a degree in phase. These results applied to one- and two-

dimensional geometries, but our own modeling experience has been that these results are

probably valid for three-dimensional calculations.

Several graded air layers are added on top of the Earth model to account for

perturbations in the H fields from current gathering effects. These air layers extend far

above the Earth and are given a high but finite resistivity of 106 ohm-m. All the results

presented in this chapter are from computations with the air layers extending to 75 km

above the Earth. We ran a test case with the air layers extending to 150 km above the Earth,

but this produced no appreciable differences in the computed field values compared to those

that had the air layers extending to 75 km above the Earth. All of the H field perturbations

are required to be damped out by the top of the air layers. At the bottom of the model, a 1D

impedance for a layered earth is used to relate the E field to the H field (Ez is also assumed

to be zero there). Thus, it helps to have the bottom of the model below the resistive lower

crust, which acts to filter out shorter wavelength H field variations.



Relaxation solution

A second order system of equations in H is obtained by algebraically eliminating

the E fields from the difference equations. This procedure produces a large system of

equations to be solved, with a sparse coefficient matrix. Relaxation methods can then be

used to iteratively obtain the solution to this second order system of equations. Relaxation

algorithms have often been used to solve large sparse systems of equations that arise from

numerical solutions of partial differential equations. Methods such as steepest descents,

over-relaxation, and Gauss-Seidel have traditionally been used to solve such problems, and

it has only been recently (Reid, 1971) that conjugate direction methods have been applied to

the solution of these large sparse matrices. Conjugate direction methods encompass a

whole class of algorithms, the most well known of which is the conjugate gradient

algorithm (Hestenes and Stiefel, 1952).

Conjugate direction methods are iterative techniques that in theory exactly solve the

system of equations Ax = b in at most n steps where n is the dimension of the matrix A.

Conjugate direction methods build up the solution vector x as a combination of linearly

independent vectors p (also called the search directions). The amount of each vector p that

is represented in the solution x is determined by satisfying certain orthogonality and

conjugacy relations. The method fell into disfavor shortly after it was introduced because it

was realized that due to roundoff errors and finite computer word lengths, the method

could never be used as an exact method. However, it was shown (e.g., Reid, 1971) that

when used as an iterative technique, accurate results were often obtained after only a

modest number of iterations for several different problems.

Consider the system of equations Ax = b. For any trial vector Xk, the

corresponding residual is defined as rk = b - Axk. If A is real, symmetric, and positive

definite, then the functional

D(xk) r A-1 rk 2-12)2 k(12



has a minimum value when rk = 0, or Xk=A- 1b. Thus, the problem of minimizing D and

solving Ax = b are equivalent. Since any function decreases most rapidly in the direction

of its negative gradient, it might seem logical to iterate to the minimum of (D by moving at

each step in the direction of its negative gradient, -V1)(xk) = rk, to the point where (D is

locally minimized in that direction. This corresponds to moving to that point at which the

residual vector is tangent to the level curves of (D. This is the basis of the relaxation method

known as steepest descents. By construction of the algorithm, each residual vector is

orthogonal to the previous residual vector, but not necessarily orthogonal to all previous

residual vectors. If the eigenvalue spread of A is large, then the level curves of (D are very

elongated, and convergence is prohibitively slow. This is because one is forced to traverse

back and forth across the valley defined by the level curves rather than down the valley

(Golub and VanLoan, 1983). In fact, an infinite number of iterations are usually required to

obtain the exact solution (Jacobs, 1981).

If, however, (D is minimized along a set of directions pi, P2, ...) such that each p

is linearly independent and each xk satisfies the relation

min D(x) 
(2-13)

xkE span{ pi,...,p k)

then not only is global convergence guaranteed, but the solution will be reached in at most

n steps (Golub and VanLoan, 1983). This is the basis of conjugate direction relaxation

techniques.

To solve Ax=b, one starts with an initial estimate xO, the initial residual ro, and an

initial search direction, which is given by po = ro. These vectors are updated at each

iteration by the following relations:

Xk = Xk-1+ ak Pk-1

rk = b - AXk = rk-1 - ak APk-1 (2-14)
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Pk = rk + f k Pk-1

where ak is chosen to require that rj Pk-1 = 0, and Pk is chosen to require that

T Apk.1 = 0. It can be shown (Golub and VanLoan, 1983; Hestenes and Stiefel, 1952)PkAp.1(ob

that given these relations, the search directions pk are A-conjugate, that is,

pT Api= 0 i k, (2-15)

and that the residuals are orthogonal, that is,

ri = 0 i#j. (2-16)

From these relationships, it is clear that the vectors pi and ri both lie in the space

Si+i={ro, Aro, ... Airo}. Because of the orthogonality and conjugacy conditions, the pi

and ri vectors each form a set of linearly independent vectors, and thus, the space Si+1 can

also be represented by the vector bases {po, pi, ... pi) and (ro, ri, ... ri}.

Recall that in this algorithm, A is assumed to be real, symmetric, and positive-

definite. For many problems, however, the operator A is not real, or symmetric, or

positive-definite. For example, the operator for the three-dimensional electromagnetic

equations is neither real nor positive-definite, but can be made symmetric by the proper

transformations as described earlier. If an operator is complex, but hermitian and positive-

definite, then the conjugate gradient algorithm, along with its properties, holds if all the dot

products are simply changed to hermitian dot products. For situations in which an operator

is real and symmetric, but not necessarily positive-definite, the minimum residual algorithm

(also called the minimum variance algorithm) can be used (Hestenes and Stiefel, 1952;

Fletcher, 1975; Axelsson, 1980). In this algorithm, the functional rTr is minimized rather

than the functional rTA-lr, and we will describe it shortly. In the complex case, naturally,

the functional rHr must be minimized.

We mentioned earlier that one of the drawbacks to using conjugate direction

techniques was that even though in theory they represented exact solutions, such results

could never be obtained in practice because of finite computer word lengths and roundoff



errors. Another potential problem with ny relaxation technique, let alone conjugate

direction techniques, concerns the eigenvalue distribution of the operator. Both Jennings

(1977) and Jacobs (1981) have pointed out that not only is the eigenvalue spread important,

but so also is the distribution of the eigenvalues. That is, using exact arithmetic, conjugate

gradients require one step for each distinct eigenvalue. This fact was clearly established by

Hestenes and Stiefel (1952). What was not made clear in their original paper, however,

was that conjugate gradient techniques are especially well suited for problems in which

most of the eigenvalues are clustered in a small number of groups. The basis for this

statement essentially comes from the relationships between the theory of orthogonal

polynomials and conjugate gradient relaxation methods as described in Hestenes and Stiefel

(1952) and Stiefel (1958).

Jennings (1977) pointed out that the residual vector could be written as a linear

combination of the eigenvectors of the matrix A:

r = si qi (2-17)

where qi is the eigenvector corresponding to the ith eigenvalue, and si is a coefficient which

is a measure of the amount of that particular eigenvector represented in the residual vector.

Jennings (1977) proved that the coefficients si at the kth iteration could be expressed as

sIk) - fk)(Xi) s() , (2-18)

where 1 (k) (Xi) is a polynomial of order k that satisfies j(k) (0) = 1 and Xi is the ith

eigenvalue. The residual vector, therefore, would be zero when F(k) (Xi) = 0 for all Xi for

which si(O) o 0. Consequently, it takes a polynomial of order equal to the number of

eigenvalues to make F(k) (Xi) = 0, and therefore make the residual equal to zero. If the

eigenvalues are evenly distributed, it takes a very high order polynomial to have zeros on or

near each distinct eigenvalue and hence give considerable error reduction. If, however, the

eigenvalues are clustered in a few small groups, then the best-fitting low order polynomial



(order equal to the number of clusters) will give a small residual because that polynomial

will have zeros either within or close to each cluster of eigenvalues. Therefore, only a small

number of relaxation steps would be needed to give a considerable error reduction.

Unfortunately, finite difference and finite element schemes usually result in

coefficient matrices whose eigenvalues are evenly distributed (Jacobs, 1981). Furthermore,

matrices with large eigenvalue spreads (large condition numbers) are more difficult to relax

than those with smaller eigenvalue spreads (e.g., Jennings, 1977). Consequently, in order

to use conjugate gradients on such ill-conditioned systems, it is often necessary to

precondition them. This is certainly the case for the 3D electromagnetic equations.

The idea behind the use of a preconditioner is to compact the eigenvalue spread of

the original matrix because the smaller the eigenvalue spread, the more efficient the

relaxation procedure (Hestenes and Stiefel, 1952). The preconditioner acts on the original

matrix to produce a matrix that has a more compact eigenvalue spread and is given by

B = C-1AC-1 . (2-19)

Preconditioners can be implemented without ever computing B, one only needs to be able

to compute the effect of C-2= M-1 on a vector. One example of a common preconditioner is

the matrix M = diag(ai1, a221 ..., ann) where aii refers to the diagonal elements of the A

matrix (Golub and Van Loan, 1983). Other preconditioners that could be used are those

based on certain classes of matrices (Meijerink and Van der Vost, 1977), or those that arise

when the original coefficient matrix can be expressed in other more convenient forms

(Concus et al., 1976), or those that are based on certain 'incomplete' matrix

decompositions (Kershaw, 1978). The best preconditioners, however, are those which are

most closely related to the actual inverse of the matrix. If, for example, we used as a

preconditioner the actual inverse of the matrix, M- 1= A-1, the conjugate gradient algorithm

would reach the solution in just one step. This is because that particular preconditioner



reduces the eigenvalue spread of the original matrix to just one eigenvalue (k = 1). This is

clearly an exaggerated example because if we had the actual inverse, there would be no

need to use conjugate gradients. Nevertheless, it demonstrates the idea behind the use of a

preconditioner.

We can examine how preconditioning is implemented by considering the minimum

residual algorithm for real symmetric matrices in which rTr is minimized (Fletcher, 1975;

Axelsson, 1980). Make the following definitions:

A' = C-1 A C- 1  x = C x b' = C-1 b . (2-20)

Here we will also assume that C, and therefore C- 1, are symmetric. Therefore, the system

Ax' = b' is equivalent to C-1 A C-1 Cx = C- 1b, or Ax = b. In other words, solving

Ax' = b' also solves Ax = b. We now apply the minimum residual algorithm to the

transformed system as it is better conditioned and should have improved convergence

properties. The quantities with apostrophes will denote those that are related to the

transformed system of equations. The equations for updating the solution vector and the

search directions in the transformed system are

X'i+1 = X'; + Xi p'i => CXi+ 1 = CXi + ci p'i
(2-21)

r'i,1= r'i - oci A'p'i => r'i,1= r'i - ai C-1AC-1p 'i .

Notice that if we set p = C-1p' and r = Cr', then we obtain

Xi+1= Xi + ai Pi
(2-22)

ri,1= ri - ai Api .

Furthermore, we obtain for ai (by requiring that (ri 1)T A'p'= 0 for the minimum residual

algorithm)

a - (r'i)T A'p'i rT C-2Ap (2-23)
(A'p'i)T A'p'i pT ATC-2 Api
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which, since A is symmetric, can also be written as

ai r C 2Api (2-24)
pT AC- 2Api

The search directions are updated as

p'i+1= r'i, 1 + Pi'i => pi,1= C-i+1 + i p1 . (2-25)

We obtain for i (by requiring that (A'p',1) A'p' = 0 for the minimum residual algorithm)

-(A'r'i, 1) A'p'i -rT C -2AC 2Api

(A'p'i)T A'p p ATC-2Ap(

which again, since A is symmetric, can be written as

-rTi+1 C-2AC- 2Api (2-27)
p1 AC-2Api

Notice that we never have to compute the matrix A'= C-1 AC- 1, we only need to be able to

compute C-2 r and C-2 Ap. Clearly, for the preconditioned minimum residual algorithm to

be an effective technique, we must be able to compute C- 2 r and C- 2Ap quickly and

efficiently. With a good preconditioner, rapid convergence can often be obtained, even after

O(Vn) iterations (Golub and VanLoan, 1983).

Up to this point, we have skirted the issue of dealing with complex systems of

equations. As mentioned earlier, the algorithms discussed would still be valid for complex

systems if the symmetry properties were changed to hermitian symmetry, and if all the dot

products were changed to hermitian dot products. For general complex matrices however,

we follow Lanczos (1961) and imbed the operator into a larger hermitian system

At L 0 C-1AC-1 x' = b' W [ lb (2-28)
.(C-lAC-J)H 0CX - CH-'b*



Since this operator is hermitian symmetric, the minimum residual algorithm could be

applied to this system provided all the dot products are changed to hermitian dot products.

This would ensure that at each step we are reducing the functional (r')H r'. There are,

however, two potential problems associated with proceeding along these lines. The first is

that because the larger hermitian system has a dimension of twice the original system, in

theory it will take 2n steps to reduce the residual to zero. The second problem is that it is

necessary to know (C-1)HC-1, which, unless C- 1 is real, is generally not known. For

situations in which C-1 is real and symmetric, however, and A is complex and symmetric,

the minimum residual algorithm for the expanded system above is as follows:

Re[rt C2Ap
aXi = -Aj

Re[(Api)H C-2Apj

Xi+= Xi + ai pi

ri1= ri - ai Api (2-29)

_ -Re [(AC-2 r*i1)H C-2Api

Re[(Api)H C-2Api]

pi+1 = C-2 r , 1 + $i pi .

We have entertained this long discourse on conjugate direction methods because

many authors avoid the issues of dealing with complex indefinite matrices, and the ones

who do try to deal with such systems in theory seem to never have dealt with such systems

in practice. Jacobs (1986) derived a modification of the conjugate gradient method for

general complex matrices that he called the 'complex biconjugate gradient method.'

Although he was able to show that the algorithm terminated in at most n steps (n being the

dimension of the matrix), he also stated that "... the monotonic decay of the residual

measure [similar to the functional <D as defined earlier] cannot be proved." Part of the

appeal of the original conjugate gradient algorithm was that at each iteration, the functional

rT A-Ir was minimized over the entire subspace if A was positive-definite. It was this



property that oftentimes led to a rapid convergence to an acceptable error level after only a

small number of iterations. Furthermore, since the residual is really the only measure of the

error available to us, and hence the only way to ascertain the validity of the iterate xk, this

minimization property is especially important when trying to decide when the error has

been reduced enough to stop the relaxation procedure. Since the 3D electromagnetic

equations are complex, but not hermitian symmetric nor necessarily positive-definite, the

original form of the conjugate gradient algorithm cannot be used. Jacobs'(1986) complex

biconjugate gradient algorithm could be used to solve the system, but unfortunately, the

important minimization property does not hold. Therefore, since the 3D electromagnetic

system is symmetric (or can be made to be hermitian symmetric by the Lanczos method),

some form of the minimum residual algorithm is probably best suited for relaxing the

electromagnetic system of equations. Recall that for the minimum residual algorithm, A

was not required to be positive-definite. Again, the appeal of this algorithm was the fact

that rTr was minimized at each iteration, leading one to perhaps expect reasonable answers

after only a modest number of iterations as compared to the dimension of the matrix.

Before we get into the specifics of the relaxation algorithms developed for the 3D

magnetotelluric problem, let us first return to the issue of preconditioners. We have

explored the behavior of relaxation solutions to the 3D magnetotelluric problem using two

different preconditioners. One preconditioner is the matrix M = diag(laill, 1a221, ..., lannI),

where 11 stands for absolute value. A better preconditioner might be one that is more closely

related to the actual matrix to be inverted. The second order system of equations in H can

be written as

Mxx Nxy Nxz
A= Nyx Myy Nyz , (2-30)

Nzx Nzy Mzz



where the block diagonal matrices M are the same as the 2D operators for the TM mode in

each direction. For example, Mxx describes the TM equations in the y-z plane for which Hx

is parallel to the strike direction, and the electric fields are perpendicular to the strike

direction, in this case, the x-direction. These 2D operators can be inverted quickly and

cheaply (Swift, 1967), so that it is feasible to use the operator

M-1i 0 0

M-1= 0 M- 0 (2-31)

0 0 M-1Z

as a preconditioner. This preconditioner is complex and symmetric, but not hermitian. We

have not explored any other preconditioners, although it is conceivable that a different

decomposition of the matrix A might give better results than have been obtained with these

two preconditoners.

Our first attempt at relaxing the 3D system of equations was based on using the

preconditioner given in equation 2-31, and a good deal of naivety about what we were

doing. We realized that since the matrix A for the 3D electromagnetic equations was not

positive-definite, we could not use the original form of the conjugate gradient algorithm.

And because the matrix was not hermitian symmetric, we knew we could not use the

complex form of the minimum residual algorithm. Since the matrix and the preconditioner

given in equation 2-31 were symmetric however, we thought we could use the

preconditioned form of the minimum residual algorithm for real matrices. This algorithm,

which is designated as the MINRTRACC algorithm (minimum rTr accelerated algorithm),

is the preconditioned form of the algorithm which minimizes rTr at each iteration (actually it

minimizes rTM-lr, where M- 1 is the preconditioner given above). However, this is not a

strictly valid procedure because even though both the operator and preconditioner are

symmetric, they are also complex and therefore the local minimization property is not

absolutely valid. Minimizing rTr is not equivalent to minimizing rHr when dealing with



complex operators except that the solution is obtained when r = 0. The functional rTr is

still a 'measure' of the error in the solution, although it is not the true measure of the

magnitude of the error, which is rHr. However, this algorithm allowed us to use the

preconditioner in its complex form, rather than having to use, say, the real part of the

preconditioner. The MINRTRACC algorithm has been used widely by some people in the

industry (Arnie Orange and Richard Sigal have been our biggest users) and seems to be the

most robust relaxation algorithm we have developed. We have experimented with different

preconditioners and different versions of the algorithms, but have not been completely

satisfied with any of these modifications. What does show considerable promise, though,

is a multiple scaling technique based on the unaccelerated form of the minimum residual

algorithm, and this will be discussed shortly. We will also show results from another

relaxation algorithm that is called the MINRTR (minimum rTr algorithm), which is

basically the same algorithm as the MINRTRACC, except the preconditioner is that given

by the absolute value of the complex diagonal components of the matrix A. We originally

believed that the accelerated form of the algorithm would be superior to the unaccelerated

form because it seemed to reduce the residual error measure much more quickly than the

unaccelerated form of the algorithm. While this is indeed true, what has recently become

apparent is that the solutions obtained from the MINRTRACC algorithm may not

necessarily be superior to those obtained by the MINRTR algorithm. This will be discussed

in more detail in the 'model responses' section.

The main problem with all these relaxation methods, besides those associated with

the eigenvalue spread or distribution, is that one never really knows when to stop iterating

the procedure. Hopefully, one would want to be able to stop after some modest number of

iterations, especially if the system of equations is quite large. In addition, one would want

the confidence that the answer obtained was fairly reasonable and close to the true answer.

Unfortunately, there are no hard and fast rules that govern the number of iterations required

to obtain reasonable answers. One must use care, good judgement, and experience to



determine when an accurate solution has been reached. There are, however, some

common-sense 'rules of thumb' one can use. For example, the final error should be several

orders of magnitude less than the starting error and should not be changing during the last

several iterations. One could also look at the surface field values, or apparent resistivities

and phases, to make sure that they are not changing during the last several iterations.

Unfortunately, this does not necessarily guarantee that the results at such a point are

reasonably accurate. Probably the most helpful suggestion, however, is to obtain some

experience relaxing simple 3D models where one has a good idea of what to expect, or

where one can compare the relaxation results to exact numerical calculations.

There is one last problem associated with these relaxation methods that is especially

exacerbated with the preconditioner given in equation 2-31: the H field values in the air

hardly get changed from their initial values. The problem is that eigenvectors associated

with small eigenvalues are poorly represented in the initial residual ro. Since the residuals

and search directions ri and pi both lie in the space Sij=(ro, Aro, ... Airo}, the

contributions from small eigenvalue eigenvectors are quickly lost in the roundoff errors.

For the 3D MT problem, a small eigenvalue eigenvector is associated with the residuals in

the air layers. Because of its uniform conductivity, there is little contribution to the initial

residual from the air, and consequently, H does not get changed from its starting value in

the air. Nevertheless, we have found that in many cases, the computed impedances are still

fairly accurate. This must be due to the fact that the E fields are still fairly well determined

because they involve differences of the H fields, and the H field in general is smoother and

more regionally uniform than the E field.

One possible way to counteract the somewhat inaccurate H field determinations is

to implement the Biot-Savart Law after several iterations. If the algorithm was then

restarted with the updated H field values, much improved accuracy could be achieved. The

Biot-Savart Law is given by (Stratton, 1941)



H(x',y',z)= J x V( ) dV - - (n x H) x V dS - (n - H) V( ) dS

(2-32)

These integrals can be computed numerically given the boundary H values and the current

density J within the Earth. The problem with this implementation is that it can be fairly

time-consuming since it is a full matrix operation.

Another possible way to counteract the problem is to use a multiple scaling

approach to get a better representation of the H field distribution. Multiple scaling, which is

closely aligned to renormalization group theory approaches to critical phenomena, has been

successfully applied to modeling the effects of crack interactions on the brittle failure of

rocks, as described in Madden (1976, 1983) and Lockner (1990). The basic idea behind

multiple scaling is that oftentimes the modeling of a heterogeneous system is not

numerically tractable unless the problem is broken into a series of smaller problems.

Specifically, the system under consideration is broken down into small subsections, whose

properties are then numerically computed. Several of these subsections are then 'averaged'

together and treated as part of a larger-scale subsection. The properties of this larger-scale

subsection are determined, and the process is repeated up through several scales until one

has determined the average properties of the largest-scale system. In this manner, one can

numerically model large, complex, hetergeneous systems.

Multiple scaling has also been tried in 3D magnetotelluric modeling (Ranganayaki,

1978; Park, 1983), although the results, except in special cases, have been mostly

negative. The motivation for multiple scaling in magnetotelluric modeling is that the local

fields are influenced by regional features, so that to properly model local features, a large

model must be constructed that accounts for the regional features. Unfortunately, this leads

to very large systems of equations to be solved. If instead one solves a cruder 3D model

that contains the 'essence' of the actual 3D model, one could perhaps use the values from

the crude model as the regional field for the actual 3D model. Figure 2-2 is a



Simplified Multiple Scaling Geometry

Figure 2-2. A simplified version of the multiple scaling geometry. The large scale model,
which is six blocks by six blocks, is condensed into a smaller scale model (outlined by the
bold lines) which is three blocks by three blocks. The resistivities of the larger scale blocks
are averaged to give the resistivity of the block at the smaller scale.
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simplified version of the multiple scaling geometry. The original model is six blocks by six

blocks. These blocks are averaged to form a cruder model which is three blocks by three

blocks (outlined by the bold lines) and which contains the average properties of the full-

scale model. To avoid confusion, we will call the cruder 3D model the regional model, or

small scale model (because it has a small number of model parameters), and the actual 3D

model the full-scale model, or large scale model (since it has a large number of model

parameters). Park and Ranganayaki's multiple scaling approach is a two scale method

where the fields at the smaller regional scale are solved for, then interpolated onto the more

detailed larger scale model. At the larger scale, only the fields inside the local 3D

heterogeneity are solved for. All other fields are assumed to be equal to the interpolated

values from the regional model.

Our multiple scale approach differs somewhat from these previous approaches in

that we attempt to use multiple scales to improve the relaxation solution at the larger scales.

Unlike Park and Ranganayaki, we use the interpolated field values only as starting values

for the relaxation procedure at the next scale. Such an approach was originally suggested

by Southwell (1946) for relaxing Laplace's equation. If these starting values are more

'correct' than the 2D TM mode starting values used earlier, it is hoped that a more accurate

relaxation solution would be obtained. Our method goes as follows. First, the 3D model is

scaled down horizontally to a model that is eight blocks by eight blocks (the number of

vertical layers does not change). This model is solved exactly using the direct solution

method outlined in the next section. The field values from this calculation are interpolated

onto the next scale, which is 16 blocks by 16 blocks. These interpolated values serve as the

starting point for the MINRTR relaxation procedure. It is hoped that these starting values

are more representative of the regional features of the model, especially the H field values

in the air, and that the relaxation will produce better results. At this scale, the MINRTR

procedure is iterated some number of times to meet either a preset level of error reduction,

or some maximum number of relaxation steps. The field values from this calculation are



then interpolated onto the next scale model, and the process is repeated. This is continued

until we have reached the final scale, or the original 3D model to be solved. The results

from this type of procedure are especially encouraging and will be shown in the upcoming

model responses section.

The averaging of the model blocks must be done in such a way as to most

accurately represent the true features of the original model at the smaller condensed scale.

At the smaller scale, the resistivity in the x-direction is defined to be the geometric mean of

the series and parallel average in the x-direction of the resistivities of those blocks at the

larger scale which are to be condensed into that particular block at the smaller scale.

Likewise, the resistivity in the y-direction is the geometric mean of the series and parallel

average in the y-direction of the resistivities. Taking the geometric mean of the series and

parallel averages is somewhat of a compromise, but is probably the best solution to handle

the most general situations. And finally, the resistivity in the z-direction is simply taken to

be the parallel average in the z-direction of the conductivities.

Direct solution: impedance matrix formulation

Because of the difficulties associated with relaxation solutions, it is worthwhile to

seek an alternate solution method, one that in principle would give an exact solution to the

system of equations. Sparse matrix inversion routines do exist that take advantage of the

structure and sparsity of the matrix. If, however, one examines the problem in terms of

neighboring layer interactions, one can achieve perhaps the same efficiency as the sparse

matrix methods without losing the insight of looking at the system as an EM system. An

example of such an approach is the Greenfield Algorithm (Greenfield, 1965; Swift, 1967).

This algorithm solves networks for unknown nodal voltages given a current source

distribution. The algorithm analyzes one row or column of the network at a time. Instead of

doing one large matrix inversion, it obtains its efficiency by computing several smaller

matrix inversions, thus greatly decreasing the computation time. The algorithm is



essentially an algorithm for inverting block tridiagonal matrices (Golub and Van Loan,

1983).

Let's look at the 3D magnetotelluric problem in somewhat more detail. If Ez and Hz

are eliminated from the discretized system of equations given earlier, then the horizontal E

or H fields in one layer can be expressed in terms of the fields in that layer and one layer

below that layer. For example, since by equation 2-8, Hz is given by

Hz(i,j,k) = 1 [Eyij,k) - Ey(i-1,j,k) - Ex(ij,k) + Ex(ij-1,k)] (2-33)
icoL ( gzz )

then Hx, by virtue of equations 2-6 and 2-7, can be written as

Hx(ij,k) = Hx(ij,k+l)

i- . 1 [Ey(i+1,j,k) - Ey(ij,k) - Ex(i+1,j,k) + Ex(i+1,j-1,k)]
icoL ( gzz(i+1,j,k)

+ (1 [Ey(i,j,k) - Eyi-1,j,k) - Ex(ij,k) + Ex(i,j- 1,k)]
iCOL ( zzi,j~k) )

2 L Ey(ij,k) (2-34)
[pyy(i,j,k) + pyy(ij-1,k)]

where the k+1 layer is beneath the kth layer. Similar equations can also be written for Hy,

Ex, and Ey. These equations can be expressed in a much more compact form as

Ek = AkHk+1+ Ek+1+ ak (2-35)

Hk = BkEk + Hk+1. (2-36)

Here, the matrices A and B are the coefficient matrices that arise from the elimination of Ez

and Hz from the difference equations (for example the coefficients contained in the equation

above for Hx), the vector a is the vector that contains the contributions from the boundary

tangential H fields, and E and H are the vectors of the horizontal electric and magnetic

fields respectively.



At the bottom of the 3D model, which has n layers, we assume that E is related to

H by the 1D plane-wave impedance. This E is continued up to the n-1 layer assuming that

Ez=O. Consequently, no boundary H terms are involved with this initial step. Likewise, H

is continued up to the n-i layer using equation 2-36. For the first propagation step, this

gives the following equations:

En.1= An.1Hn (2-37)

Hn.1= Bn.1En1 + Hn- (2-38)

One could compute an impedance matrix for the bottom layer that does not assume an

infinite wavelength by using a Fourier Series approach. This, however, is very time-

consuming and also includes an implicit repetition assumption that would be somewhat

inconsistent with the rest of the model, which does not assume repetition.

We can express E for the bottom layer in terms of H for that layer only. Solving

equation 2-38 for Hn, and substituting this into equation 2-37 yields

En.1= An.1[Hn.1 - Bn. 1En.1 . (2-39)

Solving for En-1 we arrive at:

En.1= Zn.1H. 1 , (2-40)

where
Z.1= [I + An-.1Bn_1] - An. 1 . (2-41)

A similar analysis is carried out for all of the other Earth layers, except that one has to keep

track of the boundary terms. For each layer, the E fields are continued up from the

previous layer using equation 2-35 and the H fields are continued up using equation 2-36.

For example, for the n-2 layer, which is the next higher layer, we would have:

En-2= An-2n. + En.1 + an-2 (2-42)

Hn-2= Bn-2En-2 + Hn. 1. (2-43)

The expression for En-1 given in equation 2-40 is substituted into equation 2-42 giving:

En-2 = [ An-2 + Z..1 ] Hn.1 + an-2. (2-44)



Equation 2-43 is then solved for Hn-1, and this is substituted into equation 2-44 giving us

an equation with the unkowns En-2 and Hn-2. This can then be rearranged to give:

En-2 = Zn-2Hn-2 + Zn-2 (2-45)

where

Zn-2= [I + (An- 2 + Zn- 1)Bn- -1 [An-2 + Zn- 1] (2-46)

and

Zn-2 = [I + (An-2 + Zn-1)B- 2] -1 an-2 (2-47)

The vector z contains the effects of the known boundary values. In this manner, an

impedance matrix is computed for each layer in the model that relates the horizontal E fields

to the horizontal H fields. A simple recursion formula gives the impedance information at

each level:

For k = n-2 to ksurf (ksurf is top Earth layer)

Zk =[I + (Ak + Zk+1)BJ - [Ak + Zk+]

Zk =[I + (Ak + Zk+1)BJ - [ak + Zk+1]

Ek= ZkHk + Zk -

This recursion formula is stable and well-behaved. For the top Earth layer, the E fields are

continued up to the Earth's surface assuming no Ez.

A somewhat similar procedure is used for the air layers. As we will explain shortly,

a uniform current sheet at the Earth's surface is the source field for the direct solution.

Consequently, there are no boundary H field terms in the air layers. Starting at the top air

layers with a plane-wave impedance and Ez =0, we have the equation:

Ei= ZiHi. (2-48)

For the next air layer down, we can write:
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H2 =Hi -B 1 E1  (2-49)

E2 = E1 - A1 H2  (2-50)

We substitute the expression for Ei, equation 2-48, into equations 2-49 and 2-50, solve

equation 2-49 for H1 in terms of H 2, then substitute this into equation 2-50 to obtain an

equation for E2 in terms of H2:

E2 =Z2 H2 -(2-51)

where

Z2 = Z1 [I- B1 Zi] -A 1 - (2-52)

A similar analysis is carried out for each air layer resulting in a simple recurrence formula

for the air layers:

For k = 2 to ksurf- 1 (ksurf is top Earth layer)

Zk+1 = Zk [I - Bk Zj -1 - Ak.

In the air layer directly above the Earth's surface, the E field is continued down to the

Earth's surface assuming Ez = 0, and the H field is continued down using equation 2-49

except with the 2 changed to ksurf and the 1 changed to ksurf-1.

We put a uniform current sheet at the Earth's surface, across which there is a jump

in the H field. The E field is continuous across the current sheet. The tangential H field

boundary terms in the air layers are zero, so that there are no sources above the Earth's

surface. This means that the H field in the air is a secondary outgoing field and it is equal to

the H field due to the Earth conductivity structure minus the uniform field at the Earth's

surface. Since it is uniform, the current sheet can be put anywhere above the Earth's

surface as long as one allows for the secondary outgoing fields above the current sheet.

Therefore, we have at the Earth's surface the following relationships:

Eair= ZaiMlair
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Eearth = ZeHearth + Ze (2-53)

Hair = Hearth - Jcs '

where Jcs is the constant current sheet at the Earth's surface, ze contains the effects of the

boundary values, Eair and Hair correspond to the E and H fields just above the current

sheet, and Eearth and Hearth correspond to the E and H fields just below the current sheet.

Since E is continuous across the current sheet, we can write:

Hearth = I - YaniZe] 1[Jcs + Yaize]. (2-54)

Once the H fields at the Earth's surface are known, then the E fields at the surface can be

determined as well as the E and H fields everywhere in the model. Thus, solving the 3D

model has been reduced to solving the EM interactions at each layer in the model rather than

solving the EM interactions in the 3D model as a whole at one time. As with the Greenfield

Algorithm, the algorithm just described has the advantages of directly solving the 3D MT

equations by doing several smaller matrix inversions rather than one large matrix inversion.

Since matrix inversions take O(n3) operations, this is seen as a tremendous time savings.

Model Responses

We compare the computed responses between different modeling algorithms to

judge the accuracy and flexibility of the different algorithms. Furthermore, since the

relaxation algorithms are approximate solutions, it is necessary to compare them with other

exact calculations. The model we have chosen for our comparisons is one proposed by Dr.

M.S. Zhdanov of the USSR Academy of Sciences in his effort to compile 2D and 3D

model responses by investigators worldwide. We directly compare our computed

responses with those computed by Wannamaker (1990) for the same model. The

Wannamaker (1990) responses were computed using the integral equation approach. This

approach was originally outlined in Wannamaker et al. (1984a) and the recent modifications

are described in Wannamaker (1990). We will also compare our direct solution results

with the relaxation solution results. In this section we are striving merely to compare



responses from different modeling algorithms and we are not intending to explore in detail

the 3D responses for complicated geometries. There are several studies that have

concentrated on examining 3D field behavior (Park, 1985; Park et al., 1983; Wannamaker

et al., 1984b)

The model under study consists of two adjacent rectangular blocks residing in a

three-layer host (see Figure 2-3). One block is conductive (1 Q-m) and the adjacent block is

resistive (100 9-m). The rectangular blocks are imbedded in a layer of 10 U-m, and are

each 20 km in width, 40 km in length, and 10 km in depth. The first layer is underlain by a

second layer of 100 Q-m and 20 km thickness. This layer is then underlain by a halfspace

of resistivity 0.1 9-m. The responses were computed for periods of 10, 100, and 1000

seconds. The skin depths in the conductive block are 1.6 km, 5 km, and 16 km

respectively, and 16 km, 50 km, and 160 km for the resistive block. We define the strike

length to be the length of the conductive and resistive bodies in the y-direction. Therefore,

the strike length is 40 km for all calculations except when we compare the 3D results with

2D results, for which case the strike length is increased to 200 km.

Comparisons between direct solution and Wannamaker's solution

We first compare our direct solution technique, which uses difference equations,

and Wannamaker's integral equation method. The model described above was discretized

into 28 blocks in the x-direction, 19 blocks in the y-direction, and 11 layers in the z-

direction. The model was more finely discretized near the conductivity contrasts (see

Figure 2-4). We will show the apparent resistivities and phases for the Zxy and Zyx

responses for profiles across the 3D body. The Zxy component of the surface impedance

tensor is the Ex field due to an applied Hy field. Similarly, the Zyx component of the

surface impedance tensor, is the Ey field due to an applied Hx field.
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Figure 2-3. The 3D model used to make comparisons between our difference equation
algorithms and Wannamaker's (1990) integral equation algorithm. This model is also used
to compare the behavior of the relaxation solutions with the direct solutions.
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Figure 2-4. A plan view of the horizontal discretization used for the model of Figure 2-3.
The model has been more finely discretized near the conductivity contrasts to obtain more
accurate solutions in these areas.



Shown in Figures 2-5 and 2-6 are the Zxy mode and Zyx mode responses for the model at a

10 second period for a profile across the center of the body (along the x-axis of Figure 2-

3). There is generally good agreement between Wannamaker's responses (labelled as

rhoxy.ie, phxy.ie, etc. where the .ie stands for integral equation) and our difference

equation responses (labelled rhoxy.dir, phxy.dir, etc. where the .dir stands for direct

difference equation solution as opposed to relaxation solution). There are small

discrepencies in the phases over the center of the resistive body and near conductivity

contrasts. The phase differences near the boundaries are probably due to the differences in

the E field geometry between our difference equation approach and Wannamaker's integral

equation approach. As mentioned earlier, the E fields in our algorithm actually represent

averages across block faces, whereas in Wannamaker's algorithm, the E fields represent

averages for a block and not across block faces. Near conductivity contrasts, the E fields

are changing rapidly, and the issue is how the E field is averaged to obtain a value which is

called the field at that particular location. Finer discretization can be used to obtain more

accurate results in areas where strong gradients in the E field exist. The phase discrepencies

over the center of the resistive body may arise because the integral equation algorithm

typically has more difficulty computing the fields over resistive bodies as compared to

conductive bodies (Wannamaker , 1990, pers. comm.). Figures 2-7 and 2-8 show that the

difference equation Zxy and Zyx mode responses at this period agree almost exactly with 2D

TM and TE mode responses when the strike length of the 3D body is increased from 40 km

to 200 km (effectively making the response across the center of the body a 2D response

since the ends of the 3D body are many skin depths away from the center).

The Zxy and Zyx mode responses for the model at a 100 second period are shown in

Figures 2-9 and 2-10 respectively, and the Zxy and Zyx mode responses at a 1000 second

period are shown in Figures 2-11 and 2-12 respectively. There is excellent overall

agreement between Wannamaker's integral equation responses and our difference equation
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Figure 2-5. The Zxy response along a profile across the center of the bodies at a period of
10 seconds, and a strike length of 40 km (this is the width of the bodies in the y-direction).
The responses labelled rhoxy.ie, phxy.ie, etc are those from Wannamaker's (1990) integral
equation solution. The responses labelled rhoxy.dir, phxy.dir, etc are those from our direct
solution of the difference equations.
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Figure 2-6. The Zyx response along a profile across the center of the bodies at a period of
10 seconds and a strike length of 40 km comparing the integral equation solutions with the
direct difference equation solutions.
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Figure 2-7. The Zy response along a profile across the center of the bodies when the
strike length of the bodies is increased to 200 km. The results are for a period of 10
seconds. Here we are comparing the 3D difference equation direct solution results along
this profile with the 2D TM results for the profile computed using a 2D finite difference
(transmission analog) algorithm.
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Figure 2-8. The Zyx response along a profile across the center of the bodies when the
strike length of the bodies is increased to 200 km. The results are for a period of 10
seconds. Here we are comparing the 3D difference equation direct solution results along
this profile with the 2D TE results for the profile computed using a 2D finite difference
(transmission analog) algorithm.
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Figure 2-9. The Zy response along a profile across the center of the bodies at a period of
100 seconds comparing the integral equation solutions with the direct difference equation
solutions.
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Figure 2-10. The Zyx response along a profile across the center of the bodies at a period
of 100 seconds comparing the integral equation solutions with the direct difference equation
solutions.
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Figure 2-11. The Zxy response along a profile across the center of the bodies at a period
of 1000 seconds comparing the integral equation solutions with the direct difference
equation solutions.
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Figure 2-12. The Zyx response along a profile across the center of the bodies at a period
of 1000 seconds comparing the integral equation solutions with the direct difference
equation solutions.
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responses, especially in the amplitudes. Discrepencies in phase are usually no more than

1O-2* and occur primarily near conductivity contacts and over the resistive body, as before.

We have made additional comparisons at a period of 10s, but for profiles along the

strike direction of the bodies (the y-direction as shown in Figure 2-3). Figures 2-13 and

2-14 show the Zxy and Zyx mode responses respectively as a function of position along the

y-axis at a strike position of x=-10km (this is down the strike of the conductive body).

Likewise, Figures 2-15 and 2-16 show the Zxy and Zyx mode responses respectively as a

function of position along the y-axis but at a strike position of x=+10km (this is down the

strike of the resistive body). As before, there is excellent overall agreement between the

integral equation responses and the difference equation responses. Minor phase differences

can be found near conductivity contrasts and over the resistive body, and most likely result

for the same reasons as stated earlier.

In conclusion of this section, we have shown that for the simple 3D model of

Figure 2-3, there is good overall agreement between Wannamaker's integral equation

solution and our difference equation solution. Minor differences in the phases were usually

found near conductivity contrasts and over the resistive body. The phase differences near

the conductivity contrasts were presumably due to differences in the E field geometry

between the two solution algorithms. The phase differences over the resistive body most

likely resulted from an inherent difficulty in the integral equation algorithm to accurately

compute the fields over resistive bodies.

Relaxation results

Having established the validity and accuracy of our direct solution difference

equation algorithm, we will now compare the relaxation solutions to the direct solution both

in terms of accuracy and robustness. Again, we will use the model shown in Figure 2-3 for

the comparisons, and all comparisons will be for a period of 100 seconds.
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Figure 2-13. The Zxy response for a profile in the direction of the y-axis at the position
x=-10km (this is down the strike of the conductive body) and a period of 10 seconds
comparing the integral equation solutions with the direct difference equation solutions.

100

0 phxy.ie
* phxy.dir



100

20 30
position along y-axis

Zyx response, 10 sec period, x = -10 km

- -- - - - -- - --- - -- -- - -- -- -- -- - - --- - - --- - -- -- -- - -- - - - - - -

0 10 20 30 40 50 6

position along y-axis (km)

conductive body 10 ohm-m body

o * ,
013

* phyx.ie
* phyx.dir

40
(km)

Figure 2-14. The Zyx response for a profile in the direction of the y-axis at the position
x=-10km (this is down the strike of the conductive body) and a period of 10 seconds
comparing the integral equation solutions with the direct difference equation solutions.
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Figure 2-15. The Zxy response for a profile in the direction of the y-axis at the position
x=+10km (this is down the strike of the resistive body) and a period of 10 seconds
comparing the integral equation solutions with the direct difference equation solutions.

0rhoxy.ie
10 rhoxy.dir



1000

0 10 20 30 40

Zyx response, 10 sec period, x = +10 km

-------------------- ------------- -------- ---- ---

0 10 20 30 40 50 6(

position along y-axis (km)

resistive body 10 ohm-m body

0 A&__

0- ,-

- - - - - - - - - - -- - -

50 60
position along y-axis (km)

Figure 2-16. The Z x response for a profile in the direction of the y-axis at the position
x=+10km (this is down the strike of the resistive body) and a period of 10 seconds
comparing the integral equation solutions with the direct difference equation solutions.
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We computed the responses for the model using the MINRTRACC algorithm (recall this

uses inverses of the 2D TM operators as accelerators), with one run stopping after 50

iterations per polarization, and then another run stopping after 150 iterations. A plot of the

normalized error as a function of the iteration is shown in Figure 2-17. The normalized

residual plotted here is rTM-1r, where M is the diagonal matrix whose elements are the

absolute value of the complex diagonal elements of the 3D operator. Also plotted in this

figure is the normalized error for the MINRTR algorithm, but this will be discussed

shortly. Notice that after approximately 50 iterations, the error has been reduced by about

two orders of magnitude, and after an additional 100 iterations, the error has only been

reduced by about another order of magnitude. Figures 2-18 and 2-19 show the Zxy and Zyx

mode responses for the direct solution and for the relaxation solutions for a profile across

the center of the 3D bodies (along the x-axis). There is generally good agreement in the Zxy

mode amplitude and phase, except for a minor shift in the amplitude over the resistive

body. Also notice that there is practically no difference between the relaxation responses for

50 and 150 iterations - it seems as if the extra 100 iterations have not visibly improved the

results. There is much less agreement in the Zyx mode amplitude and phase, especially the

phase over the conductive body. This is probably so because with this particular model, the

Zyx mode response is more sensitive than the Zxy mode to the current gathering effects of a

conductive body, and we mentioned earlier that these relaxation solutions have difficulty in

modifying the H field because of such effects. Notice again that there is little difference

between the responses for 50 and 150 iterations except near the resistive-conductive

boundary where the 150 iteration response is somewhat more accurate.

In order to ascertain the distribution of the errors between the direct solution and the

relaxation solution, we have made contour plots of the RMS error between the two solution

techniques for both the Zxy and Zyx mode responses. We define the RMS error as:
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Figure 2-17. A plot of the normalized power in the residual vector for two runs of the
model in Figure 2-3, once using the the MINRTRACC algorithm and the other using the
MINRTR algorithm. The error plotted is rTM-Ir where M- 1 is the diagonal matrix whose
elements are the absolute value of the complex diagonal elements of the 3D operator.
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Figure 2-18. The Zxy response along a profile across the center of the bodies for a period
of 100 seconds comparing the direct solution results with the results from two separate
runs of the MINRTRACC algorithm, once stopping after only 50 iterations, and the other
run stopping after 150 iterations. The results labelled rhoxy.50it, etc. are those
corresponding to the 50 iteration run, the results labelled rhoxy.150it, etc. are those
corresponding to the 150 iteration run, and the results labelled rhoxy.dir, etc. are those
corresponding to the direct solution.
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Figure 2-19. The Zyx response along a profile across the center of the bodies for a period
of 100 seconds comparing the direct solution results with the results from two separate
runs of the MINRTRACC algorithm, once stopping after only 50 iterations, and the other
run stopping after 150 iterations.
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RMS error = prei 2 x 100, (2-55)

where the phase values are given in radians. Figures 2-20 and 2-21 show the contour plots

of the RMS error between the direct solution results and those obtained using the

MINRTRACC alogrithm in the Zxy and Zyx modes respectively at a period of 100 seconds.

The results obtained from the MINRTRACC algorithm are those resulting after 150

iterations. The conductive and resistive bodies are both outlined on the contour plots. Not

surprisingly, the greatest errors occur near conductivity contrasts, and especially so near

the ends of the contact separating the resistive and conductive bodies. The errors in the Zxy

mode are, in general, greater over the resistive body than the conductive body, whereas in

the Zyx mode, the errors are large over both the conductive and resistive bodies (although

they are more localized near the contacts over the conductive body, but spread out more

evenly over the resistive body). The errors in the Zxy mode over the resistive body are

primarily errors in the amplitudes and occur because with the relaxation solution, the H

fields have not been depressed over the resistive body as they should be (since current is

channeled around resistive bodies). Likewise, the large errors just outside the resistive

body in the Zxy mode occur because the relaxation solution has not increased the fields due

to the extra current being channeled around the ends of the resistive body. Similarly, in the

Zy,, mode, the relaxation solution has a difficult time perturbing the H field over the

conductive and resistive bodies due to current being gathered into the conductive body and

diverted around the resistive body.

Next, we will compare the MINRTRACC algorithm with the MINRTR algorithm.

Figures 2-22 and 2-23 show the Zxy and Zyx mode responses across the center of the

model at a period of 100 seconds for both relaxation algorithms and the direct solution

algorithm. Figure 2-17 shows the progression of the error reduction for both algorithms.

Even though they start at the same error, the MINRTRACC finishes with a little over an

order of magnitude less error than the MINRTR algorithm. This is presumably due to the
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Figure 2-20. A contour plot of the RMS error in the Zy response at a period of 100
seconds between the direct solution and the MINRTRACC relaxation solution after 150
iterations. The RMS error is defined in the text. Outlined are the positions of the conductive
and resistive bodies.
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Figure 2-21. A contour plot of the RMS error in the Zyx response at a period of 100
seconds between the direct solution and the MINRTRACC relaxation solution after 150
iterations. The RMS error is defined in the text. Outlined are the positions of the conductive
and resistive bodies.
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Figure 2-22. The Zxy response along a profile across the center of the bodies for a period
of 100 seconds comparing the direct solution results with the results from both the
MINRTRACC algorithm and the MINRTR algorithm, each time stopping after 150
iterations. The results labelled rxy.150.rtr, etc are those corresponding to the
MINRTRACC algorithm, the results labelled rxy.150.rtrl, etc are those corresponding to
the MINRTR algorithm, and the results labelled rhoxy.dir, etc are those corresponding to
the direct solution.



Zyx response, 100 sec, relax vs. direct

'Baw

------- ------- - -

-60

ryx.150.rtr

20 40

position (km)

ephyx.dir
pyx.150.rtr
pyx.150.rtrl

-60 -40 -20 0 20 40 60
position (km)

Figure 2-23. The Zyx response along a profile across the center of the bodies for a period
of 100 seconds comparing the direct solution results with the results from both the
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supposedly better preconditioner as discussed earlier. But, are the results really better? The

Zxy mode responses, Figure 2-22, show fairly good agreement with the direct solution

results (the results labelled .rtr are from the MINRTRACC algorithm and the responses

labelled .rtrl are from the MINRTR algorithm). The responses from both algorithms are

essentially equivalent except over the 10 ohm-m body near the conductive boundary

(-20 km) where the MINRTRACC phases are slightly better than the MINRTR phases,

and over the 10 ohm-m body near the resistive body (+20 km) where the MINRTRACC

phases are slightly worse. The relaxation solutions compare less favorably to the direct

solution in the Zyx mode responses as opposed to the Zxy mode responses. There is little

difference between the responses from the two relaxation algorithms, although the

MINRTRACC phases are somewhat better near the boundaries on either side of the

conductive body. There are a few places over the conductive body, however, where the

MINRTR phases are slightly better.

Figures 2-24 and 2-25 show the Zxy and Zyx mode responses for both relaxation

algorithms at a strike position of 18.75 km, which is a more severe test of the algorithms'

capabilities. Agreement between the relaxation algorithms and the direct solution is

generally poorer than for the profile across the center of the body, and again, the responses

from both relaxation algorithms are similar, except for a few locations where one is better

than the other.

All of these results from the relaxation algorithms are somewhat discouraging,

however, because they suggest that many more iterations are needed to obtain accurate

solutions. Even doubling the number of iterations to 300 does not improve the results that

much, as seen in Figure 2-26. One must bear in mind that this model, which is 28 blocks

by 19 blocks by 18 blocks (including the air layers), represents a 3D operator with

dimension of approximately 28,700. The original appeal of relaxation techniques, besides

the fact that they require little computer storage and are relatively quick, was the possibility

that reasonable answers could be obtained with only a modest number of iterations. If one
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Figure 2-24. The Zxy response along a profile at a strike position of y=18.75 km for a
period of 100 seconds comparing the direct solution results with the results from both the
MINRTRACC algorithm and the MINRTR algorithm, each time stopping after 150
iterations.
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Figure 2-25. The Zyx response along a profile at a strike position of y=18.75 km for a
period of 100 seconds comparing the direct solution results with the results from both the
MINRTRACC algorithm and the MINRTR algorithm, each time stopping after 150
iterations.

1000

100

10

.



100

-60

Zyx response, 100 sec, min rtr relaxation

---------- -- -------

poito (km)

6 *

E

0 10

-60 -40 -20 0 20 40 60

position (kmn)

I -

* U,

* ~ - -, as e __ _

-20
position (km)

Figure 2-26. The Zyx response along a profile across the center of the bodies for a period
of 100 seconds comparing the direct solution results with the results from two separate
runs of the MINRTR algorithm, once stopping after only 150 iterations, and the other run
stopping after 300 iterations.
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had to do several thousand iterations to obtain a solution, then any time advantage over the

direct solution would be lost. To be practical for people without access to supercomputers,

however, the relaxation solutions would have to be improved over these first two attempts.

We turned to a multiple scaling scheme in hopes of improving the results from the

relaxation techniques. The algorithm, described earlier, is designated as the MINRTRMS

(minimum rTr multiple scaling algorithm). The model under consideration went through

three scales of calculation. The first scale, eight by eight, was solved exactly, and the fields

interpolated onto a 16 by 16 model. This intermediate scale model was relaxed using the

MINRTR algorithm with instructions to stop and go to the next scale after either the error

had been reduced four orders of magnitude or 300 iterations had been reached. At this

scale, the error reduction criteria was reached in under 300 iterations. The field values were

then interpolated onto the final scale model, which was the original model. At this final

scale, the error dropped approximately 3.5 orders of magnitude in 300 iterations, see

Figure 2-27. Also shown for comparison in this figure is the error reduction for the model

running the straight MINRTR algorithm. The starting error for the MINRTRMS algorithm,

though higher than that for the MINRTR algorithm, comes down quickly and ends up at

about the same level as that from the MINRTR algorithm. The starting error for the

MINRTRMS algorithm is higher than that for the MINRTR algorithm because of errors

incurred in the interpolation to the larger scale. What this plot does not show, however, is

that even though the error is approximately the same as with the straight MINRTR, the field

values are more representative of the true field values. The interpolating-averaging scheme

used in the multiple scaling gives errors in the field values, but these values have preserved

the regional structure of the H field through the scaling process, and this results in much

improved 3D responses. Figures 2-28 and 2-29 show the Zxy and Zyx mode responses for

the multiple scaling algorithm versus the direct solution algorithm. Notice that although

there are a few places where there are minor discrepencies, the multiple scaling solution

matches the direct solution quite well. Even at a strike distance of 18.75 km, the multiple
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Figure 2-27. A plot of the normalized power in the residual vector for two runs of the
model in Figure 2-3, once using the the multiple scaling algorithm (at the final scale and for
the Zxy mode) and the other using the MINRTR algorithm. The error plotted is rTM-Ir
where M- 1 is the diagonal matrix whose elements are the absolute value of the complex
diagonal elements of the 3D operator.
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Figure 2-28. The Zxy response along a profile across the center of the bodies for a period
of 100 seconds comparing the direct solution results with the multiple scaling relaxation
results. The results labelled rhoxy.ms, etc are those corresponding to the multiple scaling
algorithm, and those labelled rhoxy.dir, etc are those corresponding to the direct solution
algorithm.
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Zyx response, 100 sec, direct vs. multiple scaling
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Figure 2-29. The Zyx response along a profile across the center of the bodies for a period
of 100 seconds comparing the direct solution results with the multiple scaling relaxation
results.
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scale responses, shown in Figures 2-30 and 2-31 are far superior to the responses

computed by straight relaxation. Contour plots of the RMS error between the direct

solution and the multiple scaling solution are shown in Figures 2-32 and 2-33 for the Zxy

mode and Zyx mode respectively. These plots, when compared to those shown in Figures

2-20 and 2-21, confirm that the multiple scaling relaxation algorithm gives superior error

reduction over the MINRTRACC algorithm. Therefore, although additional testing needs to

be done, it appears that multiple scaling is a viable way to use relaxation methods and

obtain improved responses as compared to the traditional relaxation algorithms.

Computational considerations

As mentioned previously, it is in our best interest to develop a reliable relaxation

algorithm to solve the 3D magnetotelluric problem. Since realistic 3D finite difference Earth

models invariably lead to large systems of equations to be solved, relaxation methods are

needed to make 3D modeling available to those users without access to supercomputers.

The relaxation algorithms take less storage space than the direct solution, but are less

accurate, as was demonstrated in this chapter. The direct solutions, though accurate,

require large amounts of computer memory and can be too time-consuming without a

supercomputer.

All of the modeling in this chapter was done on the CRAY-2 / 4-256 computer

maintained by the MIT Supercomputer Facility. The Lanczos (1961) method for inverting

complex matrices was used in conjunction with CRAY-optimized real matrix inversion

routines to invert the complex operators. Additional time-savings were obtained by using

the Lanczos (1961) matrix partitioning method for inverting matrices, and by using CRAY-

optimized routines for multiplying matrices. It took approximately 25 minutes of CPU time

per frequency (two polarizations per frequency) for the direct calculations and 30 MWords

of memory (1 word = 8 bytes). The MINRTRACC routine took 14.4 minutes of CPU time

per frequency at 150 iterations per polarization, the MINRTR routine took 2.7 minutes of
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Figure 2-30. The Zy response along a profile at a strike position of y=18.75 km for a
period of 100 seconds comparing the direct solution results with the multiple scaling
relaxation results.
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Zyx response, 100 sec, y=18.75 km, multiple scaling
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Figure 2-31. The Zy, response along a profile at a strike position of y=18.75 km for a
period of 100 seconds comparing the direct solution results with the multiple scaling
relaxation results.
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RMS error between direct and relaxation results
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Figure 2-32. A contour plot of the RMS error in the Zxy response at a period of 100
seconds between the direct solution and the multiple scaling relaxation solution. The RMS
error is defined in the text. Outlined are the positions of the conductive and resistive bodies.
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Figure 2-33. A contour plot of the RMS error in the Zyx response at a period of 100
seconds between the direct solution and the multiple scaling relaxation solution. The RMS
error is defined in the text. Outlined are the positions of the conductive and resistive bodies.



CPU time per frequency at 150 iterations per polarization, and the MINRTRMS took 7

minutes of CPU time per frequency at 300 iterations per scale (two scales per polarization).

Conclusions

We have developed several numerical schemes to solve for the magnetotelluric

response of a 3D Earth model using finite differences on a staggered grid. The finite

difference equations are based on the integral forms of Maxwell's equations, so the main

issue is that of taking averages rather than in approximating derivatives. Our direct solution

method is shown to compare favorably with Wannamaker's (1990) integral equation

solutions for the same model. The relaxation solutions, though attractive because of their

speed and minimal memory requirements, have difficulties in modifying the H field due to

3D conductivity contrasts. A multiple scaling approach has shown a dramatic improvement

over the straight relaxation scheme, but more work needs to be carried out to determine the

robustness of the multiple scaling method.
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Chapter 3
Three-dimensional magnetotelluric inversion

"If there is no struggle, there is no progress."
- Frederick Douglas, 1857

Introduction

Inversion algorithms operate on observed data to produce a model that predicts the

observed data, perhaps subject to certain constraints. Linearized inversion schemes provide

one method for dealing with non-linear inversion problems (those problems where the data

are non-linearly related to the model parameters). They involve expanding the model

predictions in a Taylor series around some point in the model space, and then solving for

the model changes that minimize the error between the observed and predicted data. Many

such schemes exist, such as the non-linear least squares method, but we prefer to use the

maximum likelihood inversion procedure (Mackie et al., 1988). The maximum likelihood

solution is the solution that maximizes the joint probability of fitting the observed data

(subject to the data covariance) and adhering to an a priori model (subject to the model

covariance). This solution is obtained with the help of the sensitivity matrix, which is the

matrix that relates small changes in the model parameters to changes in the observed data.

For the three-dimensional magnetotelluric inversion problem, we apply conjugate

gradient relaxation methods to solve the maximum likelihood system of equations instead

of solving that system directly using matrix inversion algorithms. In doing so, we avoid

having to explicitly construct the sensitivity matrix; indeed, we only need to know the effect

of the sensitivity matrix, or its transpose, multiplying an arbitrary vector. We will show

that each of these operations can be done as one problem with sources distributed either in

the volume, for the sensitivity matrix multiplying a vector, or sources distributed on the

surface, for its transpose multiplying a matrix. This implementation greatly reduces the

computational enormity of three-dimensional inversion, making practical three-dimensional

inversions a possibility rather than an impossibility. Although we have not yet perfected the



algorithm described herein to the point where it is ready for practical use, we have

progressed far enough to demonstrate that the method does indeed work as intended. A few

details remain to be sorted out, and these will be discussed later.

Maximum Likelihood Inverse

The maximum likelihood inverse is but one method to obtain a solution to a non-

unique inverse problem. There are many procedures for obtaining such solutions, and each

one is biased, but the maximum likelihood inverse clearly exposes its biases. The

maximum likelihood inverse is an example of a linearized inversion scheme. Our derivation

of the maximum likelihood inverse closely follows the work of Tarantola and Valette

(1982) and Tarantola (1987). The maximum likelihood inverse, also called the stochastic

inverse by Franklin (1970), gives the solution that minimizes a weighted sum of the

variance of the difference between the data and model parameters and the difference

between the model parameters and an a priori model (Mackie et al., 1988).

To derive the maximum likelihood solution, we first assume that the errors between

the observed data and the model predictions have Gaussian statistics. The data errors,

therefore, are proportional to

exp - [ (d - g(m))H Ra1 (d - g(m))] (3-1)

where d are the observed data, g is the operator that maps a model m to the data space, Rd

is the data covariance matrix, and the superscript H stands for Hermitian, or complex

conjugate transpose. The data covariance matrix is a measure of the experimental

uncertainties in the data and can be defined as E[(d-p)(d-pu)H] where p represents the data

mean values and E represents the expectation operator. If the data errors are uncorrelated,

then the data covariance matrix is a diagonal matrix with each diagonal term representing

the variance in that particular data parameter. We likewise assume that the errors between



the model parameters and the a priori information also have Gaussian statistics, and

therefore are proportional to

exp -[ (m -m)H R-m (m - m)] (3-2)

where m. is the a priori model and Rmm is the model covariance matrix. The model

covariance matrix is a measure of the uncertainties in the a priori information. Since it is

difficult to put numerical values on the variances of the model parameters, the model

covariance matrix usually specifies only relative bounds on the model parameters. That is,

the entries describe the variance of each model parameter relative to the other model

parameters, and the magnitude is related to how much more the data is trusted than the

a priori information. Usually, a much larger variance is assigned to the a priori information

than to the data. An exception to this is when a particular model parameter is well

established by some other means, for example, the conductivity of sea water. In this case, a

very small variance would be assigned to those parameters whose values were well known.

If some parameters were known absolutely, they could alternatively be taken out of the

inversion scheme altogether. If the data errors are uncorrelated with the model errors, then

their joint probability distribution also has Gaussian statistics and is proportional to

exp - [ (d - g(m))H RdA (d - g(m)) + (m - mo)H R-1 (m - mo)]. (3-3)

The maximum likelihood solution is that solution which maximizes the joint probability

function, or equivalently minimizes the exponent in equation 3-3.

Most geophysical inverse problems, including the magnetotelluric case, are non-

linear, and we can deal with them by using linearized inversion schemes. If we expand the

model predictions in a Taylor Series around some model m', we can write:

ad
g(m) ~ g(m') + - Am . (3-4)am



This assumes of course that m and m' are close enough that a linear approximation is valid.

The derivative terms are collected into a matrix that is called the 'sensitivity' matrix A. It is

called the sensitivity matrix because its entries describe the perturbations in the data (or

sensitivity of the data) due to perturbations in the model parameters. The sensitivity matrix

takes the form Aij = ddi / imj. For non-linear problems, Am describes only local

changes, so the inversion must be iterated, each time updating the model. For simplicity,

rewrite equation 3-4 as g(mk+1) = g(mk) + AAmk where mk+1 = mk + Amk. We take

these two expressions and substitute them into equation 3-3, take the derivative with

respect to AmkH, and set the derivative to zero. The maximum likelihood solution for non-

linear problems is then given by

(AURe Ak+ Rdm)~1 Amk = AV Rai (d - g(mk))+ R-1 (mo - m).
(3-5)

This equation has a straightforward interpretation. The model changes calculated at each

step represent a compromise between fitting the data and adhering to an a priori model. The

compromise is weighted by the inverses of the data and model covariance matrices. We

usually do not explicitly know g, but we can calculate the model predictions g(m) by use

of a forward modeling code.

In our implementation of the maximum likelihood inverse, we have used

logarithmic parameterization of the data and model parameters. This is useful for several

reasons. First, it removes any bias associated with using either conductivity or resistivity as

model parameters. Furthermore, it guarantees the positiveness of the model parameters

(i.e., no negative resistivities or conductivities are allowed). In addition, it is the natural

way of dealing with complex-valued data that are separated into log amplitude and phase (In

Z = In /Z/ + iG). Finally, logarithmic parameterization allows for larger changes in the

model parameters as the inversion is iterated For the electrical problem, where the

resistivity can vary by several orders of magnitude in the Earth, this reduces the total



number of iterations needed to reach an acceptable solution. For logarithmic

parameterization, the sensitivity terms become

a In di mj adi
a In mj di amj

Since the model parameters are real, mo - mk becomes In (mo/mk). The data are complex-

valued so that d - g(mk) becomes In Id/g(mk) + i(Od - Og(m)). Phase angles are already

logarithmic parameters and, for the full 3D MT case, we also have to worry about

directions and ellipticities, but more will be said about this later. Finally, the model changes

mk+1 = mk + Amk become mk+ = mk exp(Amk).

As mentioned previously, the data covariance is a measure of the uncertainties in the

data and can be computed or measured directly. The model covariance, on the other hand,

is much more subjective because it cannot be measured directly. The model covariance is

used to apply a set of weights or constraints to the model parameters. Some simple

constraints could be imposing smoothing between neighboring points, forcing certain

parameters to be correlated with each other, or increasing/decreasing the freedom with

which certain parameters can change. In the logarithmic parameterization scheme, the

covariance matrices actually represent the covariances of the logarithms of the data and

model parameters.

A note on the use of a priori information

We have advocated the use of a priori information in our inversion schemes since it

is rare that one does not have any information a priori concerning the geology, tectonics, or

physical properties of the area being studied. Furthermore, using different a priori models

and allowing for different model covariance constraints helps one to understand which

model parameters are important, or required, in fitting the observed data. Although the

obtained models represent only a few of the large number of possible models, meaningful



studies can be made testing various competing geologic hypotheses provided one interprets

the results with caution.

Sensitivity analysis and reciprocity

In this section we develop the sensitivity analysis for the magnetotelluric problem

and then show how reciprocity can be implemented in carrying out the sensitivity analysis.

Maxwell's equations can be written in matrix form as

-[a Vx [E] (3J7)
Vx -iWo.

where J are the media current sources, which for the MT problem are usually represented

by a uniform current sheet far above the Earth's surface. If the media conductivity is

perturbed by an amount So-, then the E and H fields will also be perturbed by amounts SE

and SHrespectively

-(Y+80) Vx E+ E

Vx 4i90 j[ J (3-8)

Expanding this equation, subtracting it from equation 3-7, and dropping second-order

terms, we obtain

-[ 2 Vx SE [E SI (3-9)Vx -ipo _8 H . 0.

Thus, the E and H field perturbations satisfy the original EM equations except that the

current sources are equal to the media perturbations times the original E field. That is, the

field perturbations can be solved for by doing forward problems with the proper current

source distribution. In terms of Green's functions, equation 3-7 can be rewritten as (Kong,

1986)

(r) d3s G(r,s) -J(s) (3-10)
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where G(r,s) is the dyadic Green's function (a matrix of Green's functions). The elements

of the dyadic Green's function are Gi(r,s)j where r is the observation point, s is the source

point, i represents the observed field component (i=1,2,...,6 corresponding to Ex, Ey,...,

Hz ) andj represents the source component (j=1,2,3 corresponding to Jx, Jy, Jz ). Using

this notation, equation 3-9 can be expressed asE=E(r) d3s G(r,s) -E(s) Sa(s) . (3-11)
SH(r) _

Thus, it would appear that the dyadic Green's function needs to be computed for every

point in the media where we wish to determine the electrical properties.

If reciprocity is employed, however, we find that we only need to compute Green's

functions for every surface location where a measurement has been made. To derive the

reciprocity relationship, we follow the work of Lanczos (1961) who defined the normal

problem (the original system of equations) and the adjoint problem as

vi~ bi~
D I = : => Dvk=bj (3-12)

Lvn_ bm.

ul ai
DH ' =I => DHuj =ak (3-13)

um. an.

In these equations, the operators could represent matrices, or they could represent

continuous differential operators in which case the vector products become integrations.

These equations are called homogeneous if the right-hand sides are equal to zero. Notice

that homogeneous differential equations do not imply that the boundary terms are also

homogeneous (which means that some linear combination of the function and its

derivatives are zero on the boundary). One could have homogeneous differential equations

with inhomogeneous boundary conditions. An example of this is Laplace's equation with

side boundary conditions. In our case, however, D would represent Maxwell's equations,

vk would represent the E and H fields, and bj would represent the current sources. DH
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thus represents the adjoint operator, which itself is a linear differential operator, and which

is uniquely related to the normal operator by the extended Green's identity, or bilinear

identity (Lanczos, 1961). If the boundary terms are homogeneous, then the bilinear identity

for differential operators takes the form

M n
J u Dv-l2v,(DHj) d3S=O.
_=1 U k=1 (-4

Inhomogeneous boundary terms would show up on the right-hand side as a surface integral

of some bilinear function of u and v. The adjoint boundary terms are the minimum number

that are required to make the right-hand side of equation 3-14 equal to zero for

homogeneous boundary conditions of the normal problem.

A word is in order here concerning boundary conditions. First, it should be

realized that a differential operator really has no meaning without prescribed boundary

terms. The boundary conditions belong to the operator and cannot be separated from it

(Lanczos, 1961). That is, it is not only the differential equations that determine the matrix

D, but also the corresponding boundary conditions. The boundary conditions to the normal

problem also determine the boundary conditions for the adjoint problem, and therefore, the

adjoint boundary terms are also uniquely determined. In this section, we have assumed

homogeneous boundary conditions. Even if the boundary conditions were inhomogeneous,

it would not pose a problem because the solution to the inhomogeneous boundary value

problem is obtained with the Green's function for the homogeneous boundary value

problem. That is, if the problem is prescribed with inhomogeneous boundary conditions, it

can be separated into two problems whose solutions are added to give the complete

solution. The first problem is the homogeneous differential equation with inhomogeneous

boundary values, and the second problem is the inhomogeneous differential equation with

homogeneous boundary values. The solution to the first problem will be given as an

integral over the surface of the volume and will involve the inhomogeneous boundary



102

conditions and the associated Green's function and its derivatives on the surface. The

solution to the second problem will be an integral over the volume and will involve the

source terms and the associated Green's function.

The solution to the inhomogeneous equation with homogeneous boundary

conditions, equation 3-12, can be derived from the bilinear identity and is given by

vk(r)= d3s 2 G"(s,r)k bj(s) (3-15)j=1

where the underscored Green's function is actually the Green's function for the adjoint

problem. We will show that this can be cast into the more usual form of equation 3-10 by

use of the reciprocal relationship.

The dyadic Green's function for the normal problem with homogeneous boundary

conditions is given by

01

G1( ,s)j
D = Sj(4-s) , (3-16)

Gn(4,s)jJ

Om

or DG(t,s)j = Aj. Here Aj refers to the vector with zeros in all entries except the jth entry,

which contains a delta function, and G( ,s)j refers to the vector of corresponding Green's

functions, which are the effect at due to a source at s, integrated over the entire space.

Likewise, the Green's function for the adjoint problem is given by fj

01[ G1(4,r)k
DH SAk(-r) (3-17)[Qm(4,r)k _

On
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or DH.j( ,r)k = Ak. Since the delta function is real, we could also write DTU*( ,r)k = Ak-

Here, Ak refers to the vector with all zero entries except for the kth entry, which contains a

delta function. We denote this vector with an underbar because in the general case it may be

of different length than Aj and is related to the adjoint operator. If these expressions for the

Green's functions are substituted into the bilinear identity, we obtain, since the delta

function is real,

Q ((,r)k A - Gi( d3 = 0. (3-18)

When integrated over the delta functions ( [Aj]i = 0 except when i=j and (=s; likewise,

[Akli = 0 except when i=k and 4=r), we obtain the reciprocity relation

fj(s,r)k = Gk(r,s)j. (3-19)

With this reciprocal relation, we can rewrite equation 3-15 in the more usual form of

vk(r)= d3s Gk(r,s)j bj(s). (3-20)

Since the curl operator and real constants are self adjoint (imaginary constants have a

change in sign), the adjoint operator for Maxwell's equations is

DH=F- (3-21)
Vx ig .

Thus, the adjoint to Maxwell's equations is also the electromagnetic equations except with

backwards time or negative frequencies. Since the adjoint in the frequency domain is

simply the complex conjugated electromagnetic equations, fA* = G, we arrive at the desired

reciprocity relation,

Gj(s,r)k = Gk(rs)j -2 (3-22)
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This simple relation is of tremendous importance for all geophysical inverse problems. It

says that the effect at the surface due to a source in the interior is equivalent to putting a

source on the surface and solving for the effect in the interior (one must also take into

account the proper interchange of vector components). In the magnetotelluric case, for

example, the term GI(r,s)2 is the Ex effect at r (at the surface) due to a unit Jy dipole source

at s (in the interior), which by reciprocity is equal to G2(s,r)1, which is the Ey effect at s

(in the interior) due to a unit Jx dipole source at r (at the surface). Similarly, the term

G4(r,s)2 is the Hx effect at r (at the surface) due to a unit Jy dipole source at s (in the

interior), which by reciprocity is equal to G2(s,r)4, which is the Ey effect at s (in the

interior) due to a unit Hx magnetic source at r (at the surface). Thus, if one were actually

constructing the sensitivity matrix for the 3D MT problem, one would only need to do

forward modeling runs with sources at each surface measurement site instead of doing

forward modeling runs with sources at each model block, which results in a tremendous

time savings. As we will point out, however, our inversion algorithm does not actually

require computing the sensitivity matrix, but the reciprocity relationship will still play an

important role.

Relaxation solution of the inverse problem

To carry out a linearized inversion using the maximum-likelihood inverse, one must

determine the sensitivity matrix A, compute AHA, and then invert AHA (for the moment

we are neglecting the data covariance weighting). In the 3D case, computing A is a

computationally enormous task even when using reciprocity. This is because the total

number of forward problems needed to construct the sensitivity matrix is on the order of

(no. measurement sites) x (no. frequencies). For a nominal 3D problem, there might be 20

measurement sites and eight frequencies, thereby requiring on the order of 160 forward

problems simply to set up the sensitivity matrix for one iteration of the inversion (of course

one must also take into account source polarization and vector components of the fields so
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this estimate is just a lower bound). In addition, for this modest 3D problem, there might

be on the order of several thousand model parameters (20x20x10 model = 4000 model

parameters). Inverting the matrix AHA, which has the dimension of the number of model

parameters, is also a big computational task. To make 3D inversions computationally

tractable, another way must be found which circumvents these problems.

One obvious way to reduce the computational complexity and magnitude of the 3D

inverse problem is to use conjugate gradient relaxation techniques to solve the maximum

likelihood equations. At each iteration of the inversion, we will use conjugate gradient

relaxation to obtain an approximate solution Am to the maximum likelihood equations. This

bypasses the need to do a large matrix inversion at each iteration of the inversion

procedure. We can use the standard conjugate gradient techniques because the system is

positive definite and hermitian. It should be made clear that when using relaxation methods

to solve the non-linear inversion, there will be two levels of iteration involved. The outer

loop is the iteration of the non-linear maximum likelihood equations. The inner loop is the

iteration of the conjugate gradient relaxation procedure that is used to solve for the

approximate Amk at each iteration of the inversion. It is our contention that only a few

relaxation iterations are necessary at each inversion iteration since the model must be

updated and the whole process begun again. Furthermore, when using relaxation

techniques, we never need to explicitly know A, the sensitivity matrix. We only need to

know the effect of A or AH on a vector. We will show that these operations can be done

without actually constructing the sensitivity matrix. These features will make the 3D inverse

problem computationally manageable.
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We will first summarize our 3D inversion scheme, then we will discuss the details

of the algorithm:

For k = 1 to max # inversion iterations

g(mk)

d - g(mk)

mo - mk

b = AH Ra (d - g(mk)) + R-m (m - mik)

Auo =0; ro = b

For i= 1 to max # relaxation iterations

i = rT._ ri. 1 / rT-2 ri-2

pi = ri.1 + Pi pi-I

Bpi = [AH R-1 A + Rlj pi

ai = rTi1 ri.1 / p B pi

A(Yi = A(Ti-1 + (xi pi

ri = ri.1 - ai Bpi

end loop on relaxation iterations

Gk+1 = Ok + AoY

end loop on inversion iterations

NON-LINEAR INVERSION

response of current model

data'residuals

model residuals

one forward problem with
surface sources per frequency

initialize conjugate gradient
algorithm

RELAXATION SOLUTION

( 0 = 0)

(p1 = ro) update search
direction

two forward problems per
frequency

step length along search
direction

update model perturbations

update residuals

update model parameters

A similar scheme has been developed by Mora (1987) who used the conjugate

gradient method of nonlinear least squares to invert seismic reflection data for P-wave and

S-wave velocities and density in two dimensions. He correctly ascertained that the

operation of AHy was equivalent to doing one forward modeling problem with sources
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distributed on the surface, which he showed was actually a propagation in backwards time

of the surface residual error fields. What he did not recognize, however, is that the

operation Ax is equivalent to doing one forward problem, except that in this case, sources

are distributed throughout the media and not on the surface. Consequently, he had

approximated the term [AH R-1 A + R-1 in his stochastic inversion procedure by iR-I,

where the model covariance matrix was assumed a diagonal matrix and 11 was a step length

that ensured his error functional was minimized. Although Mora (1987) obtained good

results with his algorithm for the inversion of seismic reflection data, he stated that for

highly non-linear problems, the method probably would not work well. Electrical

properties are very non-linear and can vary over several orders of magnitude, so we feel

that it is important to treat the AHA term more rigorously. Furthermore, since the AHA

effect on a vector can be computed with just two forward modeling runs, as we will show,

it is obviously worthwhile to proceed in this manner.

The maximum likelihood equation 3-5 can be written as Bu = b where B =

(AHRddA + Rmm-1), u = Am, and b = [AHRdd-l(d - g(m)) + Rmm-1(m - mo)]. In the

standard conjugate gradient procedure (Hestenes and Stiefel, 1952), we need to know the

initial residual, ro = b - Buo, and we need to be able to compute what B times some vector

yields at each iteration. In this case, we set uO = Am = 0 since, unlike the 3D forward

problem, we have no way of knowing what a good starting value for Am would be.

Therefore, in terms of the maximum likelihood equation, we need to be able to compute the

initial residual ro = [AHRdd-l(d - g(m))+ Rmm- 1(m - mo)], and at each relaxation step the

effect of (AHRddA + Rmm- 1) on some vector. Since Rdd-1 and Rmm- 1 are known , we

only need to be able to compute quantities like p = Ax and q = AHy. We can compute

these quantities using one forward modeling run each without ever constructing the actual

sensitivity matrix.

The sensitivity matrix, given in equation 3-6, describes the effect of a surface

measurement to a small perturbation in a physical property of the media. Although we have
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not stated explicitly which surface measurement we will be inverting for, it will naturally

involve derivatives of the surface E and H fields, and will be made up of terms like

dEx/da, aEy/dao, dHz/d, dHy/d. The row space of the sensitivity matrix corresponds to

the model parameter space. That is, each element in a particular row represents the

perturbation in one of the surface fields at one site, one frequency, and one polarization due

to a perturbation in one particular model parameter. If one were actually constructing the

sensitivity matrix, one would put a unit current source at each surface measurement site for

each frequency, and then compute the fields in the interior due to that current source (of

course, this uses the reciprocal relationships derived in the previous section). These fields

multiplying the original E fields, equation 3-9, would represent the values aE/aa and

a)Hia, and we could then compute the desired sensitivity terms.

For the relaxation solution, however, we do not need to construct the sensitivity

matrix. Notice that by the definition of the sensitivity matrix, the sensitivity matrix

multiplying a vector is simply a sum over all model parameters of the sensitivity term

multiplying the vector component for that model block:

p=Ax- Xa(EH)~p =Ax- ~ x. (3-23)
model a(2

parameters

Each component of the vector p is defined at a particular surface measurement site and a

particular frequency. We can use the principle of linear superposition to compute the vector

p without ever computing the sensitivity matrix A. The superposition principle states that if

T is the linear system transformation, then for any two inputs xi and x2 and any scalar

constant c,

Tx 1 + x2] = Klx] + Tx 2] , and
(3-24)

AlcxI] = cdxi] .

If this is true for two inputs, then it can be shown to be true for any number of inputs. In

our case, the linear system T is represented by Maxwell's equations, and the inputs
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correspond to the media current sources, as shown in equation 3-1. We have seen that the

sensitivity in the surface fields is the response due to a unit current source in the media

multiplying the original E field at that location. Therefore, the vector p goes like

TEo(1)] x(1) + 11Eo(2)] x(2) +... + 1{EO(n)] x(n) (3-25)

where Eo(i) represents a current source distribution in the media that has a current dipole at

the ith model parameter and no other sources in the media (the current source is a unit

source multiplied by the original E field at that location). Employing the superposition

principle allows us, however, to alternatively express the vector p as

11Eo(l) x(l) + Eo(2) x(2) + -.. + Eo(n) x(n)] . (3-26)

We see that this is equivalent to putting all the sources in the media at the same time and

computing one forward problem to determine the effect at the surface. The surface fields

give the desired result of the sensitivity matrix multiplying a vector for every surface

measurement site for one frequency, and this is done without ever actually computing the

sensitivity matrix. We have defined one forward problem as corresponding to two

polarizations at one frequency. We see that we have gained tremendously in terms of

computation time by using this approach. Computing the sensitivity matrix by the

traditional, 'non-reciprocal' method required doing one forward problem for each model

parameter for each frequency. Utilizing the reciprocity relationships reduces the number of

forward problems to the number of surface measurement sites for each frequency.

However, our approach for computing Ax requires only one forward problem for each

frequency.

Likewise, we can employ a similar procedure for the AH operation. We can express

the vector q=AHy in terms of another vector Q where Q = ATy* and q = Q* = (ATy*)* =

AHy. The column space of the sensitivity matrix corresponds to the data space, and each

element in a particular column corresponds to a perturbation in one of the surface fields at
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one of the measurement sites and one frequency for one particular model parameter. The

vector Q therefore goes as,

Q IX Da(E,H)surf *
f~ s u sur
freq surf COG

(3-27)

which is a sum over all frequencies and all surface measurements of the sensitivity term

multiplying the vector component for that particular frequency and surface measurement,

the result being given at an interior model block. As before, we can use the principle of

linear superposition to compute the vector Q. Using reciprocity, we have seen that the

sensitivity in the surface fields is the response due to unit current or magnetic sources on

the surface, depending on whether one was solving for the perturbed E fields or H fields.

We can therefore express the vector Q as

[T [S(1)] y*( 1) + T [S(2)] y*(2) +-.. + T [S(k)] y*(k)] Eo(i) (3-28)

where S(j) represents a unit surface source, either electric or magnetic, and Eo(i) is the

original E field at the ith model block. The principle of linear superposition, however,

allows us to rewrite the vector Q as

[T [S(1) y*(1) + S(1) y*(l) +--- + S(k) y*(k)]] EO(i) (3-29)

which corresponds to one forward modeling run with all the sources distributed at the

surface simultaneously. This computation is similar to a downwards propagation of surface

fields, but is actually a downwards propagation in backwards time. Since we are really

computing AHy, and since by reciprocity Gj(s,r); = Gi(r,s)j, the AHy operation is actually

a sum of the complex conjugate of the Green's function responses to the surface sources,

and the complex conjugate of the Green's function involves negative frequencies, or

equivalently, backwards time.

Therefore, we can carry out one iteration of the conjugate gradient procedure

without ever explicitly computing the sensitivity matrix. We merely need to compute two

forward problems per frequency with sources distributed throughout the volume and across
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the surface (at the initial iteration one additional forward problem is required to compute the

initial residual). The surface sources in the calculation of the initial residual are simply

R A (d - g(mk)), which are given at each surface measurement location and frequency. For

each iteration of the conjugate gradient procedure, one must first compute Api where pi is

the search direction at the ith iteration. The sources for this calculation are therefore the

vector pi, which has a value at each interior model block. One must then compute

AH R-1 A pi. The sources for this calculation therefore are R A pi, which is a vector

with values given at each surface measurement location and frequency. The relaxation

inversion procedure, therefore, is seen to be a tremendous time savings when compared to

constructing and storing the sensitivity matrix for a 3D model.

Our motivation for this procedure came from our experiences in implementing it in

1D and 2D geometries (Madden and Mackie, 1989). In 1D and 2D geometries, there is no

time savings involved in using relaxation methods because the models are not too large,

and by using networks, one can compute the sensitivity terms quickly and accurately.

However, we found that in 1D and 2D, the relaxation technique gave results comparable to

the direct results. Here, direct results refer to explicitly computing the sensitivity matrix and

solving the maximum likelihood equations by matrix inversion whereas relaxation results

refer to the relaxation solution outlined above. The results of the 1D and 2D comparisons

are found in Madden and Mackie (1989) but we will summarize them here.

For 1D inversions, a one relaxation step solution for Am was practically

indistinguishable from the direct inversion for Am. When extended to 2D geometries, we

found that we could not get away with one relaxation step per inversion iteration. With only

one relaxation step, the RMS data error (error between the observed data and that predicted

by the model) was reduced to approximately 20% and did not decrease any further. This is

because the relaxation procedure filters out eigenvectors in the solution that are associated

with small eigenvalues. Presumably, the finer details of the 2D models, which are

necessary to reduce the data error, are associated with small eigenvalue eigenvectors.
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Increasing the number of relaxation steps helps to some degree, but does not help as much

as we would like. Implementing a preconditioning scheme improves the convergence

properties of the inversion. We used inverses of the 1D sensitivity analyses (ATA) for each

vertical strip of model blocks as preconditioners. With this preconditioning and five

relaxation steps per inversion iteration, the relaxation inversion is able to compete with the

direct solution. That is, error levels are routinely reduced to below 1% for noise-free

theoretical data.

For 3D data and Earth models, we had no idea what type of behavior to expect. As

a first step, we implemented the standard conjugate gradient procedure without any form of

preconditioning. As we will show later, this routinely decreases the error levels to around

2% for theoretical noise-free data. Indeed, we found that the simple preconditioning used in

the 2D procedures was numerically unstable in 3D geometries. We will discuss this

behavior more extensively later.

Details of the 3D inversion procedure

The first step in the inversion procedure is deciding which parameters to invert for

(e.g., phase, apparent resistivities, etc.). In magnetotellurics, we typically measure the

impedance tensor over a range of frequencies at each measurement site. The impedance

tensor, which relates the horizontal E fields to the horizontal H fields, is given by

Ex() _]Zxx Zxy Hx(O) 1 (3-30)
Ey(O) J Zyx Zyy Hy((O) '

Assuming that there are two linearly independent source polarizations, the impedance

tensor is given by

[(Ex1Hy2 - Ex2Hy1) (Ex2Hx1 - Ex1Hx2)

Z = (Ey1Hy2 - Ey2Hy1) (Ey2Hxi - Ey1Hx2) (3-31)
Hx1Hy2 - Hx2Hy1
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where the subscripts 1 and 2 refer to the fields from the two different source polarizations.

At first glance, it might seem logical to just invert for the four complex impedance

elements. The difficulty with this, however, is that in many situations, Zxx and Zyy can be

zero or close to zero. This is a problem when using logarithmic parameterization. Since

DlnZ / alna = a/Z (aZ/aa), we see the possibility for a division by zero if any of the

impedance elements are zero.

Instead, we take an approach similar to Eggers (1982) and LaTorraca et al. (1986),

both of whom looked at eigenstate formulations for the impedance tensor. They were

mainly concerned with extracting physically meaningful scalar parameters from the

complex impedance tensor, especially where three-dimensional geometries were concerned.

We use a somewhat simpler approach, however, and decompose the impedance tensor in

terms of two complex vector fields (cf. Jackson, 1975). We consider the E field due to a

unit Hx field, which is E = [i Z, + Y ZyJ and the E field due to a unit Hy field, which is

E = [I ZXY + Zyy]. These two vectors serve as the basis set for the impedance tensor.

Every complex vector can be described in terms of four scalar quantities: amplitude, phase,

direction, and ellipticity. These quantities for the E vectors given above are closely related

to the apparent resistivity, phase, and direction measurements usually measured from field

data since, in many situations, the H field predominately induces a perpendicular E field.

Any complex vector in the frequency domain, E(co) = a + jb, can be expressed in

the time domain, assuming an e-iOt dependancy, as e(t) = Re[ E(o) e-iot] = a coscot +

b sincot. The magnitude of the complex vector is simply [E*E] 1/2. In the time domain, the

vector traces out an ellipse, which in some cases degenerates to a circle or a line depending

upon the vector's polarization. One uses the major axis of the ellipse to define the direction

corresponding to that vector field, and defines the phase as the phase along that axis. The

ellipticity is the ratio of the major axis to the minor axis. Ellipticities are difficult to measure

accurately from field data, but magnitudes, phases, and directions are more robust in

comparison. Consequently, we obtained all the inversion results in this chapter inverting
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only for amplitudes, phases, and directions. Following Eggers (1982), we can write down

the expressions for the magnitudes, phases ($), and directions (yf) in terms of our vector

basis set:

-1 W

$Hx = tan-1
2

OHy = -- tan-
2

VHx = 1tan-
2

VHy = -- tan-
2

2(Z4xix+ 4x4x)
(ZRx)2 + (4x)2 - (2 x)2 - (4x)2

2(Z4y~y + Z y~iy)

(ZRy)2 + (4y)2 ()2 - (4)2

2(ZxZ x + Z x4x)
(Zx+ (Zx)2 _ (4)2 - (4x)2

2(ZxyZ y + Zy 4 y)

2 + (Zy)2 - (4y)2 - (Z4y)2

where the terms like Zix stand for the real part of Zxx, and so on. The sensitivity terms are

derived by algebraically taking the derivatives of the above expressions. We first need the

partial derivatives of the components of the impedance tensor, which are given by

Dzxx
Do d EX~2

detHH o
+ H aExi - Ex-alyi

'ao
-HyIaEx2

YaoY
ZXX DHH]

aZxy= 1 Ex alxil
aa detHH I

aZyx [EaH 2
aa detHH 1 aa

Zyy= 1 E aHxil
aa detHH a y

+ HxiaEx2 - ExiaHx2

aoY ao y

+ Hyaay1 - Ey-H1
a - E 1 a a

+ xaEy 2 - EylaHx2

- Hx-DExi - Z xy aHH]

Zyx aHH]- HyiaEy2
a

- Hx2y1- Zyy aHH]

where we have made the following definitions:

detHH = HxlHy2 - Hx2Hyi

(3-32)

(3-33)

|EH = XXx + ZyxZx ]1/2

|EH = [ ZXYy + Zyy4y ]1/2
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DHH = Hxi Dy2 + HyaIX1Y aHy 1
(3-34)

Hylalx2

With these definitions, the sensitivity terms for the magnitudes are given by

E = 1 [Re4 Zxx)+ Re Z a )yx
Ia EHA ~ 4a

3|EHy| _ I1 Re4 aZ~x + Rez~ Z yaa |EHy \ Do /e\ Z aY.

where we have used relationships such as

2ReZ*xx

(3-35)

(3-36)

in simplifying the expressions for the derivatives. The expressions for the derivatives of the

phase terms are a bit more complicated, and are given by

a$Hx

ao 1+u2 [Ud

+ Zd

(W+ 4--
Ud

2 Zxu x

u Do a

2 Zxx u. ) Z1 +4 (x 2 4x un a 4x
WI Ud / a.j

a$Hy

aa 1 + v2 [Vd

2 4y vn a Zy (
2 vdVdI

2 Z yva aZy
2 1vd/

ZRy+
Vdj

2 Zxy v) a Z y
v2 a

ZR
+ Zjyvn\ a Zyy

2 1
Id

where we have made the following definitions

U = 2 (ZxxZx + ZxZyx)

(ZLx + (Z - (ZIXY - (ZIYX

y =R 2 (ZyZIy+ Zy42&y)
(ZXy) + (Z y - (ZIyY - (ZIYYY

(3-37)

(3-38)

aZxx+ 2*xD =

2 Zixx un) Zx

u2 aau
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with ud and un representing the denominator and numerator respectively of the expression

given above for u, and vd and vn likewise representing the denominator and numerator of

the expression given above for v. The sensitivity terms for the directions of the major axes

are given by

ay~x _{(4Z +2 x sn) aZx (+4x 2Z4x~ saZax

+( Zx+2Zxs) 4x 2Zx Sn aixZR SdSd

sd s O + ao sd sg -Xa

(3-39)
y 1 y( Z4y tn a + (y 2 _y t ay

+(z~ L~y2 4 tn) x~+(~ Z yt)ZY
DO ~ 1+ t2 \td ti }DO \ t DO0

ZIxy + 2 Z4y tn 4~y iy 2 Zxy tn aZXy

where we have made the following definitions

2 (ZxZyx + Z xxZyx)

(Zx)2 +(Zixx - (4x - (Zyx
(3-40)

t = 2(ZyZy + ZkyZyy)
(ZRy +(ZIyY - (Zy- (ZIYY'

with sd and sn representing the denominator and numerator respectively of the above

expression for s and td and tn representing the denominator and numerator of the above

expression for t.

Source distributions

As mentioned previously, computing the effect of the sensitivity matrix multiplying

a vector requires one forward problem with sources distributed throughout the volume, and

computing the effect of the transpose of the sensitivity matrix multiplying a vector requires
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one forward problem with sources distributed across the surface. Because we are using

logarithmic parameterization, the vector p = Ax, from equation 3-6, is of the form

p=Ax- I Y EH) x . (3-41)
model (E,H) Da

parameters

By virtue of equation 3-11, and since each component of the vector x corresponds to a

particular model parameter in the volume, we see that the volume sources for the problem

p = Ax are equal to

Jx(k) = a(k) Ex(k) x(k)
Jy(k) = a(k) Ey(k) x(k) k = 1,...,n (3-42)
Jz(k) = (5(k) Ez(k) x(k) I

where n is the number of model parameters, and the a(k) are included because of the

logarithmic parameterization. There are actually two sets of sources involved here, one for

the Hx polarization and one for the Hy polarization. The E fields are those that we compute

from the original forward problem at one particular frequency and polarization of inducing

field. These sources are distributed throughout the volume and the resulting E and H

fields, by dint of equation 3-11, actually correspond to the derivatives of these fields,

DE/aa and Hf/aa, summed over all model perturbations. One can then use these values to

compute the required sensitivity terms given in equations 3-33, 3-35, 3-37, and 3-39.

The sources for the AT problem are a bit more difficult to set up, but we can use

reciprocity to obtain the desired results. Recall that the perturbed fields went like the

Green's function times the original E field. For example, the effect in the Ex field due to a

conductivity perturbation at depth, equation 3-11, is given by DEx/aa = Gi(r,s)i Ex(s) +

G1(r,s)2 Ey(s) + Gi(r,s)3 Ez(s) where Gi(r,s)i is the Ex effect at r due to a Jx source at s,

GI(r,s)2 is the Ex effect at r due to a Jy source at s, and Gl(r,s)3 is the Ex effect at r due to

a Jz source at s. Integration over the volume is implicitly assumed in this expression. By

using the reciprocal relation, equation 3-22, we can also express this as DEx/aa = Gi(sr)i

Ex(s) + G2(s,r)1 Ey(s) + G3(s,r)1 Ez(s) where Gi(s,r)i is the Ex effect at s due to a Jx
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source at r, G2(s,r)i is the Ey effect at s due to a Jx source at r, and G3(s,r)1 is the Ez effect

at s due to a Jx source at r. Similarly, the effect in the Hx field due to a conductivity

perturbation at depth is given by )Hx/aa = G4(r,s)1 Ex(s) + G4(r,s)2 Ey(s) + G4(r,s) 3

Ez(s) where G4(r,s)i represented the Hx effect at r due to current sources i at s. Likewise,

we can turn this around using reciprocity and express it equivalently as Mx/aa = Gi(s,r)4

Ex(s) + G2(s,r)4 Ey(s) + G3(s,r)4 Ez(s) where now, Gi(s,r)4 represents the electric fields at

s in the media due to Hx sources at the surface position r. So, for example, if one of the

sensitivity terms was, from equation 3-33, Hy2 (aExji/D), then the AT operation would be

carried out by putting a Jx current source proportional to Hy2 at the surface location,

calculating the forward problem with this source, computing the E fields in the interior

location, multiplying the computed E fields by the original E fields, and summing as

indicated above. Since the problem is linear in sources, we can compute the effect of AT on

a vector by putting all sources at the surface simultaneously and solving for the interior E

fields everywhere. If one denotes the fields due to the surface sources as E' and the

original E fields as E, then the AT operation is

ATQ(k)= a(k) Exi(k)Exi(k) + Eyi(k)Eyi(k) + Ezi(k)E 1(k)
freq

(3-43)
+ Ex2(k)Ex2(k) + Ey2(k)Ey2(k) + Ez2(k)Ez2(k)]

where the results are summed over frequencies for both polarizations of inducing field.

Some care must be taken in setting up the sources for the AT problem, however,

because the sensitivity analysis involves terms like Re (DZxx/aa) and Im (DZxx/aa). Notice

that this was not a difficulty for the A problem because one simply took the real or

imaginary part of the resulting surface field values. To see how to deal with the AT

problem, let us first look at two complex vectors a and b. The complex quantity ab is equal

to (aRbR - albI) + i (aRbI + abR). However, the complex quantity Re(a)b is equal to

aRbR + i aRbI, and the complex quantity Im(a)b is equal to abR + i albi. Therefore, the

quantity Re(a)b can be expressed as Re(a bR) + i Im(a bi) and Im(a)b can be expressed as
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Im(a bR) - i Re(a bi). Consequently, to compute the sensitivity effects like Re( )Q in the

AT problem, two forward problems must be done, one with QR as sources, and one with

Qj as sources, and likewise for the Im( )Q terms.

Boundary Conditions and other practical matters

Up to this point, we have not dealt specifically with the issues of the boundary

conditions. We mentioned earlier that the boundary conditions are tied to the differential

operator and cannot be separated from it, and that they also determine the boundary

conditions for the adjoint boundary value problem. The 3D forward modeling algorithm we

described in the previous chapter assigned tangential H field values on the boundaries of

the 3D model. In this chapter, we avoid having to deal with the boundary values and their

effect on the sensitivity terms by assuming the model is repeated in the horizontal

directions; that is, there are no side boundary terms assigned. With this assignment, one

can simply compute the adjoint problem by putting sources on the surface and solving for

the fields in the interior, also assuming horizontal model repetition. We made this

assignment to simplify the programming and to test our concepts about relaxation

inversion. In the future, however, we will include the boundaries and their effect on the

sensitivity terms in order to deal with realistic Earth models.

We made one additional modification in the inversion algorithm because of the

geometry of the 3D forward solution. With our geometry there can be no curl of the E

fields within an individual model cell; hence, we broke the top Earth layer into two

sections, the top one being 1% of the original thickness of the top layer and the other

section being 99% of the original thickness. Otherwise, we could not correctly compute the

response to a current dipole in the top Earth layer because the current fields would not be

able to properly turn around above the dipole. The addition of this thin layer allows for the

correct computation of the response to a current source in the second layer, and the

resistivity of the thin layer is tied to the resistivity of the second layer. Additionally, we did
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this for the bottom layer where we had the same problem because of the bottom impedance

condition. We split the bottom layer up into two sections, the top one being 90% of the

original thickness and the bottom one being 10% of the original thickness.

Results for theoretical data

In this section, we present results using the relaxation inversion routine for

inverting numerically-computed, noise-free 3D magnetotelluric data. We have not

extensively tested the algorithm on a wide variety of models, but nonetheless, we wish to

demonstrate that, even at this stage in the development of the algorithm, it does work as

intended.

The model used to generate the data is shown in Figure 3-1 and consists of a

conductive, three-dimensional inhomogeneity embedded at a shallow depth in an otherwise

layered media. The model was made up laterally of five blocks in the x-direction and five

blocks in the y-direction. Vertically, there were eight layers and a halfspace. The impedance

for a 30 ohm-m halfspace was used at the bottom of the layers in the 3D model, and it was

held fixed throughout all the inversions. Data were output for eight frequencies equally-

spaced in the logarithm of period from 0.01 seconds to 30 seconds. The a priori model

used for all inversions had the same dimensions as the one used to generate the 'observed

data', but with a uniform resistivity of 100 ohm-m, except for the 30 ohm-m halfspace.

Shown in Figures 3-2, 3-3, and 3-4 are the observed and a priori model responses

for three different locations on the surface of the 3D model. These three sites were chosen

because it would be too voluminous to show the responses at all the sites, and the sites at

xb=2, yb=2 and xb=4, yb=4 represent sites where 3D effects are the severest. Figure 3-5

shows the error progression versus inversion iteration for an inversion with five relaxation

steps per inversion iteration. We define the data error as
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Figure 3-1. The 3D model used to generate synthetic MT data. This data was used to test
the 3D MT inversion algorithm. The model was 5 blocks by 5 blocks by 9 layers. A
10 ohm-m inhomogeneity was buried in an otherwise layered earth.
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E from Hx, xb=2 yb=2, opriori model
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Figure 3-2. The observed and a priori model responses for the surface location xb=2,
yb=2. Shown are the amplitudes, phases (in degrees), and directions (in degrees clockwise
from the positive x-axis, which runs to the right) versus period. These values are defined in
the text, see equation 3-32.
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Figure 3-3. The observed and a priori model responses for the surface location xb=3,
yb=3. Shown are the amplitudes, phases (in degrees), and directions (in degrees clockwise
from the positive x-axis, which runs to the right) versus period. These values are defined in
the text, see equation 3-32.
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E from Hx, xb=4 yb=4, opriori model
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the text, see equation 3-32.
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Nrel = 5, no Rmm constraints
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Figure 3-5. The RMS error progression as a function of the inversion iteration step. This
particular run used 5 conjugate gradient relaxation steps per inversion iteration. The ratio of

ai / 01 was equal to 3x10-5. The data error is defined in equation 3-44, and the right-hand-
side error (rhs error) is defined in equation 3-45. The right-hand-side error should go to
zero when the solution to the maximum likelihood equations is obtained.

rh error
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In N+ (0 - O-m + (o-y
ndat nfreq npol - x x - 10 (3-44)

ndat x nfreqx2

where 6 and N are given in radians, the subscripts o and m refer to observed and model

respectively, ndat is the number of data locations, nfreq is the number of frequencies, and

npol is the number of polarizations (npol=2). The right-hand-side error is the error in the

right-hand-side of the maximum likelihood equations, equation 3-5. When the maximum

likelihood equations are exactly satisfied, the right-hand-side goes to zero. This does not

necessarily correspond to the solution in which the data are exactly predicted because the fit

is actually a compromise between fitting the data and adhering to the a priori model,

weighted by the inverses of the data and model covariances. The right-hand-side error

plotted in Figure 3-5 was computed by the following equation, where r(k) represents the

element of the right-hand-side corresponding to the kth model block:

nmod
I r(k) r(k)
k=1 x 100 (3-45)

A nmod

For this example, we used five relaxation steps per inversion iteration, and we

assumed that both the model covariance and the data covariance matrices were of the form

y2I. That is, we set Rdd = ad I and R. = (yn I, where the ratio oe / Y2n = 3x10- 5. This

simply means that the variance of the fit to the a priori model was assumed greater than the

variance of the data errors. In other words, the data were trusted much more than the

a priori model, and the fit to the observed data was more important in the inversion than

was the fit to the a priori model. An additional damping term was added to stabilize the

inversions and was tied to the error in the right-hand-side so that as the error decreased, so

did the added damping. The damping term was equal to (1.0)*(l/ed)*(RHS error).

Damping terms reduce the influence of the small eigenvalues in the early stages of the
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inversion, then allow them to become more influential at the latter stages. Damping terms

should depend on the magnitudes of the eigenvalues, but the damping term added in these

3D inversions came about largely from our experience with 2D inversions and

experimenting with the damping factor for 3D inversions. This damping is somewhat larger

than what we are use to dealing with in 2D inversions, but this is probably due to the

increased degrees of freedom in 3D inversions as compared to 2D inversions.

For this particular example, fifteen iterations reduced the error in the fit to the data

to approximately 2% and the right-hand-side error to 0.6%. The resulting model and the

actual model for this inversion are both shown in Figure 3-6, where the numbers are the

resistivity values in ohm-meters. Note that the resistivity structure of the top four layers is

fairly-well resolved, but that the image of the conductive feature is smeared into the lower

layers. This is a common byproduct of many inversion schemes where one only has data

coverage on one side of the feature one is trying to image. The inherent difficulty

magnetotellurics has of resolving resistive bodies, especially if they are underneath more

conductive layers or bodies, enhances this phenomenon. Figures 3-7, 3-8, and 3-9 show

the data predictions for the model of Figure 3-6 for the three surface locations shown

earlier. We see excellent agreement in both polarizations for amplitudes, phases, and

directions. We find similarly good fits to the observed data at all other locations, but we do

not show them here.

As a further example, we inverted the same data starting from the same a priori

model, except this time, we included Rmm constraints to keep the bottom four layers 1D

(that is, in each layer, all the resistivity values in that layer are tied together). We ran this

inversion for different numbers of relaxation iterations per inversion iteration. Figure 3-10

shows the resulting model after fifteen inversion iterations using only one relaxation step

per inversion iteration. Figure 3-11 shows the resulting model after fifteen inversion

iterations using three relaxation steps per inversion iteration, and Figure 3-12 shows the

resulting model after fifteen inversion iterations using ten relaxation steps per inversion



Number of relaxation steps - 5
Number of inversion iterations = 15
No Rmm constraints

RESULTS FROM INVERSION PROGRAM

layer1
239 237 242 240 235
245 263 266 267 234
231 260 254 250 240
246 263 266 269 235
236 235 240 240 240

layer2
344 347 353 353 343
333 194 248 198 367
306 249 253 267 397
333 193 248 199 369
340 344 351 353 350

layer3
531 537 491 510 545
578 11 11 10 485
586 10 13 13 458
578 11 11 10 486
527 536 488 509 553

layer4
1196 1281 1218 1155 1278
1280 154 9 9 1139
1302 121 14 13 1228
1281 154 9 9 1139
1193 1290 1213 1149 1275

layer5
2346 2651 2681 2725 2444
2792 490 99 126 2637
2833 231 99 82 2630
2801 491 99 125 2625
2366 2676 2686 2710 2418

layer6
3041 4717 4813 4938 3033
4811 829 356 1021 4787
4980 192 154 111 4462
4826 828 355 1016 4804
3074 4713 4823 4919 3001

layer7
19461 14747 9627 14495 22294
18683 373 173 365 12812
17577 149 94 131 5318
18702 368 172 361 12847
19390 14820 10843 14680 22130
layer8

90 86 85 85 88
87 114 102 102 86
86 107 99 99 86
87 114 102 102 86
90 86 85 86 89

Rmmfac=3. Oe-5
Damping-1.0

ACTUAL MODEL

layer 1
200 200 200 200 200
200 200 200 200 200
200 200 200 200 200
200 200 200 200 200
200 200 200 200 200

layer 2
400 400 400 400 400
400 400 400 400 400
400 400 400 400 400
400 400 400 400 400
400 400 400 400 400

layer 3
600 600 600 600 600
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600 10 10 10 600
600 10 10 10 600
600 600 600 600 600

layer 4
1000 1000 1000 1000 1000
1000 1000 10 10 1000
1000 1000 10 10 1000
1000 1000 10 10 1000
1000 1000 1000 1000 1000

layer 5
3000 3000 3000 3000 3000
3000 3000 3000 3000 3000
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3000 3000 3000 3000 3000
3000 3000 3000 3000 3000

layer 6
3000 3000 3000 3000 3000
3000 3000 3000 3000 3000
3000 3000 3000 3000 3000
3000 3000 3000 3000 3000
3000 3000 3000 3000 3000
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30000 30000 30000 30000 30000
30000 30000 30000 30000 30000
30000 30000 30000 30000 30000
30000 30000 30000 30000 30000
30000 30000 30000 30000 30000
layer 8

100 100 100 100 100
100 100 100 100 100
100 100 100 100 100
100 100 100 100 100
100 100 100 100 100

Figure 3-6. The resulting model after 15 iterations of the inversion procedure. The actual
model is shown on the right for comparison. The resistivity values for each block are given
in ohm-m. The 30 ohm-m bottom halfspace was held fixed during the inversion, and is not
shown here.
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E from Hx, xb=2 yb=2, it=15, nrel=5
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Figure 3-7. The data predictions for the model of Figure 3-6 for the surface location
xb=2, yb=2. Also shown are the observed data responses. Shown are the amplitudes,
phases, and directions versus period. These values are defined in the text, see equation
3-32.

*



E from Hx, xb=3 yb=3, it=15, nrel=5
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Figure 3-8. The data predictions for the model of Figure 3-6 for the surface location
xb=3, yb=3. Also shown are the observed data responses. Shown are the amplitudes,
phases, and directions versus period. These values are defined in the text, see equation
3-32.
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E from Hx, xb=4 yb=4, it=15, nrel=5
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Figure 3-9. The data predictions for the model of Figure 3-6 for the surface location
xb=4, yb=4. Also shown are the observed data responses. Shown are the amplitudes,
phases, and directions versus period. These values are defined in the text, see equation
3-32.
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Number of relaxation steps - 1
Number of inversion iterations = 15
Rmm constraints to keep layers 5,6,7,8 1D

RESULTS FROM INVERSION PROGRAM

layerl
204
213
205
213
204

layer2
381
345
330
345
381

layer3
690
553
543
553
690

layer4
1291
1186
1206
1186
1291

layer5
1795
2411
2220
2411
1795

layer6
4626
6293
4600
6293
4626

layer7
15301

8984
3604
8984
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63
74
83
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270
253
218
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244
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2493
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333
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866
465
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74
88
92
88
74

218
282
207
282
218
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240
198
345
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8

14
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194
223
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356
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662
514
533
514
662
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339
222
339

2739

83
92
93
92
83

9
1078

2536
263
209
263

2536

5827
936
368
936

5827

7194
604
297
604

7194

74
88
92
88
74

1108
1268

1753
2400
2112
2400
1753

4559
5873
3722
5873
4559

14479
6277
2295
6277

14479

63
74
83
74
63
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Damping=1.0

ACTUAL MODEL

layer 1
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400 400
400 400
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600 600
600 10
600 10
600 10
600 600
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3000 3000
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3000 3000
3000 3000
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3000 3000
3000 3000
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Figure 3-10. The resulting model after 15 iterations of the inversion procedure when the
bottom 4 layers, excluding the bottom 30 ohm-m halfspace, have been constrained to be
1D. For this run, 1 relaxation step per inversion iteration was used. The actual model is
shown on the right for comparison. The resistivity values for each block are given in ohm-
m. The 30 ohm-m bottom halfspace was held fixed during the inversion, and is not shown
here.
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Number of relaxation steps - 3
Number of inversion iterations = 15
Rmm constraints to keep layers 5,6,7,8 1D

RESULTS FROM INVERSION PROGRAM

layer1
241 247
247 262
231 268
247 256
235 231

layer2
342 366
357 178
327 255
346 175
334 334

layer3
507 559
577 10
535 10
538 11
505 503

layer4
1193 1410
1441 145
1438 102
1382 148
1222 1349

layerS
2116 2347
2459 1564
2346 1076
2467 1538
2262 2336

layer6
3335 4135
4211 3090
4662 2168
4285 3067
3630 4202

layer7
14505 11338
12526 3787
10454 3081
12516 3791
14621 11379
layer8

87 84
84 85
82 84
84 85
87 84

244
276
255
278
245

356
255
255
256
357

464
11
15
11

465

1263
10
14
10

1260

2301
1070
1072
1073
2303

4601
2503
2239
2517
4625

9014
3138
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3141
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8
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Rmmfac-3.0e-5
Damping-1.0

ACTUAL MODEL
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Figure 3-11. The resulting model after 15 iterations of the inversion procedure when the
bottom 4 layers, excluding the bottom 30 ohm-m halfspace, have been constrained to be
1D. For this run, 3 relaxation steps per inversion iteration were used. The actual model is
shown on the right for comparison. The resistivity values for each block are given in ohm-
m. The 30 ohm-m bottom halfspace was held fixed during the inversion, and is not shown
here.
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Number of relaxation steps - 10
Number of inversion iterations = 15
Rmm constraints to keep layers 5,6,7,8 1D

RESULTS FROM INVERSION PROGRAM
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Figure 3-12. The resulting model after 15 iterations of the inversion procedure when the
bottom 4 layers, excluding the bottom 30 ohm-rn halfspace, have been constrained to be
1D. For this run, 10 relaxation steps per inversion iteration were used. The actual model is
shown on the right for comparison. The resistivity values for each block are given in ohm-
m. The 30 ohm-m bottom halfspace was held fixed during the inversion, and is not shown
here.
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iteration. We started each of these inversions from an a priori model that had a uniform

resistivity of 100 ohm-rn except for the 30 ohm-rn halfspace which we held fixed. The

results using only one relaxation step per iteration are surprisingly good, although the

results using ten relaxation steps per iteration are clearly the best. Tying together the

resistivities within each of the bottom four layers has removed the smearing caused by the

shallow conductive body and improved the estimates of the resistivities for these layers. Of

course, in this example, we had the luxury of knowing beforehand that the bottom four

layers should be uniform, but nonetheless, this demonstrates the usefulness of a priori

information if it is available. Figure 3-13 shows the progression of the data errors and

right-hand-side errors as a function of inversion iteration for the cases just described. Even

though the inversions with three relaxation steps and ten relaxation steps per inversion

iteration wound up at about the same data error level, the one with ten relaxation steps

clearly did a better job at imaging the original model and adhering to the model covariance

constraints.

We attempted to implement preconditioning of the relaxation scheme for the 3D

inversion as we did for the 2D inversion (Madden and Mackie, 1989). As in that case, we

tried using the inverses of the 1D sensitivity analyses for the vertical strip of blocks beneath

each data site. Implementing this type of preconditioning in the 3D case caused numerical

instabilities that made the inversion diverge away from the correct solution. What would

generally happen is that the error would be reduced for the first few steps, then would

steadily increase as the model parameters were driven to extreme values in one direction or

another. We do not know exactly what causes this behavior, although we will hazard a

guess. The 1D sensitivities are more closely related to the actual 2D sensitivities rather than

the 3D sensitivities because in both the 1D and 2D cases, there are sensitivity terms for the

phase and resistivity whereas in the 3D case, there are sensitivity terms for amplitudes,

phases, and directions. Furthermore, in the 1D and 2D cases, there is only one

electromagnetic mode whereas in the 3D case, there are two modes and they are coupled to
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Relaxation inversion results
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Figure 3-13. The RMS error progression as a function of the inversion iteration step for
three different runs of the inversion algorithm. One run used 1 relaxation step per inversion
iteration, one run used 3 relaxation steps per inversion iteration, and one run used 10
relaxation steps per inversion iteration. For each run, the bottom 4 layers of the model,
excluding the bottom 30 ohm-m halfspace, have been constrained to be 1D. The data error
and right-hand-side errors are defined in the text, equations 3-44 and 3-45.
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each other. This coupling of the modes makes the 3D inversion inherently more difficult,

but may also be the reason for the numerical instabilities when one uses preconditioning.

This is because the preconditioning may be trying to drive the two separate electromagnetic

modes in opposite directions, and this may cause the divergence we observed. Of course,

the two modes increase the amount of data one has at each data site, and this fact alone

should improve the convergence properties of the inversion so that the preconditioning may

not be absolutely necessary for 3D data and 3D models. We saw in the examples presented

earlier that we obtained extremely good fits to the data with just a few relaxation steps per

inversion iteration without any sort of preconditioning. This is one point that we need to

explore in more detail before we can make a definitive statement.

Future work

The examples we show in this chapter are for uncomplicated, small 3D models. We

have demonstrated that our relaxation inversion algorithm works fairly well for these

models, implying that perhaps one day we will be able to routinely run 3D inversions. We

must first learn to walk, however, before we can learn to run.

In the future, we must learn to include the effects of the boundary values in the

sensitivity analysis. Then we can get away from using horizontally repeated models that we

argued against in the previous chapter. Additionally, we must perform more extensive

testing of the algorithm. This testing must include a wider variety of models and data

coverage, it must include the effects of noise on the data, and it must include applications to

real data. Lastly, we should explore alternate preconditioners that might help to improve the

convergence properties of the algorithm.

Conclusions

In this chapter, we introduced a method to invert magnetotelluric data for 3D Earth

models. This method uses conjugate gradient relaxation to solve the maximum likelihood
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inversion equations. Since at each iteration of the inversion one must update the model and

begin the procedure anew, one need only use a few relaxation steps at each step of the

inversion. Since we are using relaxation methods, we do not need to explicitly construct

and store the sensitivity matrix, we only need to know the effect of the sensitivity matrix or

its transpose multiplying an arbitrary vector. We have shown that each of these, the

sensitivity matrix multiplying a vector and the transpose of the sensitivity matrix

multiplying a vector, can be accomplished by one forward problem per frequency (both

polarizations) each. This results in a tremendous time savings over the more traditional

approach, and makes 3D inversions much more practical. We have demonstrated that the

procedure works well for simple 3D models. Much work remains to be done to make the

algorithm practical for realistic data and Earth models.
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Chapter 4
Magnetotellurics in the California Basin and Range

"MT is a technical acronym for a sort of measurement taken by EE's in the guise of
geophysicists ... MT involves many highly sophisticated instruments including shovels,
picks, and little pieces of plastic and electrical tape used to cover the ends of missle-like
objects ... buried in the desert for no reason at all..."

-Carolyn Ruppel, crack MT data collector (1989)

Introduction

Over the past three years, we have collected magnetotelluric data across the

California Basin and Range Province. Most of the data were acquired in the valleys where

road access is good. The data are limited primarily to frequencies between 10 and 300

seconds because of equipment limitations and are generally of fair-to-good quality. We

initially became interested in this area because an analysis of magnetotelluric data taken in

Panamint Valley, California, at the January, 1987 MIT Geophysics Field Camp revealed

several intriguing results. We expected that data at these periods would primarily

experience the influence of the conductive mantle and that both modes of the impedance

tensor would have decreasing apparent resistivity with increasing period and E/H phases of

around 50*-70*. We were quite surprised to find that only one mode displayed this type of

behavior, and that the other mode behaved as if it were being influenced by excess ocean

electrical currents trapped in the upper crust. Excess ocean currents, in general, retard the

impedance spectra to longer periods (Mackie et al., 1988); in other words, the spectra are

not influenced by the conductive mantle until longer periods. This was surprising not only

because we thought we were far enough away from the ocean not to be influenced by it

(approximately 300 km), but because the anomalous current system was in the north-south

direction and not the east-west direction as one might have initially assumed.

These results were interesting enough by themselves to be followed up with

additional measurements in order to determine the nature of this anomalous current system.

However, there was an added incentive to expand our measurements across the California
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Basin and Range Province. The nature of extension in this region and its accommodation in

the lower crust are two controversial issues (cf., Zoback et al., 1981; Wernicke, 1985;

Jones, 1987). If, as we suspected, the current system in the California Basin and Range

was anomalous because of excess ocean electrical currents trapped in the upper crust, then

these currents would be very sensitive to the electrical properties of the lower crust

(Ranganayaki and Madden, 1980). We were able to document with additional

measurements and theoretical modeling (this chapter) that the anomalous current system is

indeed caused by excess ocean electrical currents trapped in the upper crust. By modeling

the responses at these locations, we are able to construct a plausible, and possible,

conductivity model for the region.

MT response terminology

Throughout this chapter, we use a terminology that is useful for describing certain

components of the magnetotelluric response. This terminology is based on an idealized 1D

Earth model, but applies to real Earth responses. Consider a hypothetical continental 1D

Earth model that has a moderately conductive upper crust, a resistive lower crust, and an

increasingly conductive mantle, Figure 4-1. The apparent resistivity and phase for this

model are plotted in Figure 4-2. At higher frequencies, the response is sensitive to the

upper crustal resistivity structure, and this part of the response we term the upper crustal

branch. At these frequencies, all of the induced current is in the upper crust because of the

skin effect of electromagnetic fields in a conductive medium. For this particular example,

the upper crust has a uniform resistivity of 300 ohm-m, so the apparent resistivity is

constant at 300 ohm-m and the phase is 45*. For other more complicated upper crustal

structures, the corresponding resistivity and phase would also be more complicated, and

would be dependent on that resistivity structure. At intermediate frequencies, the apparent

resistivity rises and the absolute values of the phase drop to low values. This is due to the

influence of the resistive lower crust. This part of the spectrum we term the lower crustal
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Figure 4-1. The 1D hypothetical continental Earth model used to generate the 1D MT
soundings shown in Figure 4-2. This model has a 300 ohm-m upper crust, a 30,000
ohm-m lower crust, and an increasingly conductive mantle.

142

model
surface

10 km

50

90

200

350

500

650



143

ID hypothetical continental MT response
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Figure 4-2. The MT response for the ID hypothetical continental model of Figure 4-1.
We have plotted apparent resistivity and phase versus period. The upper crustal branch,
lower crustal branch, and mantle branch are indicated on the plot, and they are defined in
the text.
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branch. Since the lower crust is usually much more resistive than the upper crust, and since

the periods are not yet long enough for the fields to penetrate into the conductive mantle, all

the induced current gets concentrated in the more conductive upper crust. Consequently,

the electric field is approximately constant within the upper crustal layer, and its amplitude

is dependent primarily on the conductance of the upper crustal layer and the strength of the

source field (Kaufmann and Keller, 1981). The impedance, therefore, is constant and

frequency-independent over this frequency range. This causes the apparent resistivity,

which is proportional to the period, to increase with increasing period and the phase to

decrease (in the limit of an infinitely resistive and infinitely thick halfspace, the phase

would go to zero). At the longest periods, most of the current is induced in the conductive

mantle, and consequently, the amplitude of the impedance decreases, causing a decrease in

the apparent resistivity. The phase also increases because the mantle is much more

conductive than the crust (in the limit of a perfect conductor, the phase would go to 900).

At these longer periods, the surface impedance, especially the phase, is determined largely

by the fields induced in the mantle even though the fields are measured on the Earth's

surface. This part of the spectrum we term the mantle branch. In typical continental

regimes, the mantle branch begins at periods of around 10-100s, depending on the

conductivity structure. Near ocean-continent margins, however, the mantle branch can be

retarded to much longer periods because of the influence of the ocean on the induced fields.

The MT coast effect

Electromagnetic fields are affected by an ocean-continent boundary in two very

distinct ways. The first, and probably most well known, is the coast effect that was first

described by Parkinson (1962) and later by Schmucker (1963). They realized that

anomalies in the vertical magnetic field recorded near an ocean coast were most likely due

to electrical currents running parallel to the coast in both the ocean and the conductive upper

mantle. Menvielle et al. (1982) suggest that the primary source of this coast effect is from
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the ocean, and that the electric currents are deflected by the more resistive continental upper

crust. They reached this conclusion by modeling the geomagnetic variations observed at

coastal magnetic observatories. Measurements of the E fields in the ocean, however, seem

to imply that there is not enough current in the ocean to cause all of the observed effects,

and that some of the effect must be due to currents in the upper mantle (Schmucker, 1970,

p.100). In the work herein, we are concerned with another coast effect - one that perturbs

the electric fields running perpendicular to the coast. For this type of coastal effect, electric

currents induced in the ocean remain trapped in the continental upper crust for some

distance away from the coast, although they gradually leak off into the mantle as one

progresses away from the coast.

Because the ocean has such a high conductance, most of the induced electrical

current in oceanic regimes is concentrated in the ocean itself, even down to very long

periods. This has the effect of retarding the mantle branch to very long periods (to greater

than 12h even). Consider a 1D model that is the same as the model shown in Figure 4-1,

except that the upper five km is replaced with an ocean of 0.3 ohm-m. The magnetotelluric

response for this model is shown in Figure 4-3. Notice how the mantle branch is retarded

to very long periods. In a continental regime far away from the ocean, the response is more

typical of that shown in Figure 4-2. Since electrical currents are divergence-free, there is

continuity in the normal component of current across the ocean-continent boundary.

Consequently the currents must readjust to the change in the vertical conductivity structure

in some broad zone around the ocean-continent boundary. This readjustment takes place by

leaking currents out of the upper crust, across the resistive lower crust, and into the mantle.

In this readjustment zone, the current system is a mix between the oceanic system and the

continental system.

This readjustment depends on the conductance of the upper crust and the resistance

of the lower crust (Ranganayaki and Madden, 1980). The distance over which two-thirds

of this excess current has leaked back into the mantle is termed the adjustment distance, and
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Figure 4-3. The MT response for the 1D model similar to that of Figure 4-1 except for
the top 5 km of crust, which has been replaced by an ocean of 0.3 ohm-m. Notice how the
mantle branch is retarded to long periods.
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is equal to the square root of the product of the upper crustal conductivity-thickness product

and the lower crustal resistivity-thickness product (Ranganayaki, 1978). Alternatively, one

could interpret the adjustment distance as the distance over which currents are brought up

from the mantle into the ocean. This distance can be 100 km or more for continental

regimes, depending upon the resistivity structure. One must remember that even one

adjustment distance away from the ocean, the upper crustal current system will still be

contaminated by the ocean. It actually takes several adjustment distances for the current

system to be returned to normal continental values.

Consider a simple 2D ocean-continental model, Figure 4-4. Figure 4-5 shows the

TM mode responses at several locations on the continental side for this model. We plot the

apparent resistivity and phase for six continental locations from 15 km to 550 km away

from the ocean-continent boundary. In addition, we also plot the 1D response for the

continental resistivity structure for comparison. The TM mode has E fields perpendicular to

the strike of the geologic model and the H field parallel to the strike. Looking at Figure 4-4,

we take the z-axis as vertically down, the y-axis horizontally across the page, and the x-

axis (which is the strike axis) into the page. The TM mode, therefore, consists of the fields

Ey, Ez, and Hx. The E fields, since they are normal to conductivity contrasts, suffer

discontinuities across these contrasts. The continental adjustment distance for this model is

145 km. Notice the manner in which the apparent resistivity curves and phase curves

behave as one progresses away from the ocean. Near the ocean, the mantle branch is not

observed even at a period of 105 seconds (about a 28 h period). It takes a distance of 200-

300 km away from the ocean before the mantle branch begins to be seen at lower periods.

As one progresses away from the ocean, the longer period portion of the apparent

resistivity curve is shifted downwards and the phase curve is shifted down to larger phases

as more of the ocean current leaks into the mantle. It is not until 550 km, or a little more

than 3 adjustment distances, that the response is 1D-like.
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Figure 4-4. A simple 2D model representing an ocean-continent boundary. The
continental adjustment distance for this model is 145 km.
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Figure 4-5. The 2D TM mode responses for the model shown in Figure 4-4. Plotted are
the apparent resistivity and phase for 6 continental locations from 15 km to 550 km away
from the ocean-continent boundary. Also plotted is the 1D continental response for
comparison.
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Figure 4-6 shows the 2D TE mode responses for the same locations. The TE mode

has the E field parallel to the strike of the model and the H fields perpendicular to the strike

(Hy, Hz, and Ex). The shapes and slopes of the apparent resistivity curves, and hence the

phases, are about the same for all locations, except nearest to the ocean where the apparent

resistivity is reduced somewhat. The TE mode responses are not influenced in a dramatic

fashion, as are the TM mode responses. This is because the tangential component of the E

field (Ex) is continuous across resistivity contrasts, and this E field is approximately

constant across the entire model.

Anomalous conductive or resistive zones in the lower crust or upper crust can

dramatically alter the behavior of the TM response curves. Figure 4-7 shows an example of

such a situation, which is the model of Figure 4-4 except with a large conductive zone in

the lower crust. Figure 4-8 shows the TM mode responses for this model as a function of

period and position. Notice that the responses are basically separated into two groups, one

group corresponding to the responses on the oceanic side of the anomalous conductive

zone, and the other group corresponding to the responses on the continental side. Because

of the conductive zone in the crust, more current from the ocean is attracted onto the

continental upper crust. This causes the E fields on the oceanic side of the conductive zone

to be larger than those for the uniform crust model of Figure 4-4. Consequently, the

apparent resistivities are larger on the oceanic side of the conductive zone than those for the

model with uniform crust (compare Figures 4-5 and 4-8). Additionally, the responses at 15

km and 75 km are practically equivalent. This is because the current in the upper crust

would rather remain there until it has reached the conductive window instead of leaking

some current across the resisitive lower crust before it reached the window (simply, current

takes the path of least resistance). All of the responses for stations after the conductive zone

are basically at the 1D response, although there are still some leakage effects at the longest

periods. This is because, in this example, the conductive zone is so large that all of the

excess ocean current went into the mantle through that zone. The response at 135 km,
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Figure 4-6. The 2D TE mode responses for the model shown in Figure 4-4. Plotted are
the apparent resistivity and phase for 6 continental locations from 15 km to 550 km away
from the ocean-continent boundary. Also plotted is the ID continental response for
comparison.
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Figure 4-7. This 2D model is the same as that shown in Figure 4-4 except that a
conductive window has been put into the lower crust.
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Figure 4-8. The 2D TM mode responses for the model shown in Figure 4-7. Plotted are
the apparent resistivity and phase for 6 continental locations from 15 km to 550 km away
from the ocean-continent boundary. Also plotted is the ID continental response for
comparison.
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within the conductive zone, is a mix between the oceanic system and the continental

system, but is more continental because much of the current has already leaked off. The TE

mode responses for this model, Figure 4-9, show little effect from the anomalous

conductive zone for the same reason as stated before.

From these examples, it is obvious that the TM mode response is extremely

sensitive to the crustal resistivity structure near ocean margins, whereas the TE mode lends

much less information regarding anomalous zones in the lower crust. By carefully

following the readjustment of the TM current system, one can map out anomalous features

in the lower crustal resisitivity structure.

It should be kept in mind that the readjustment across anomalous zones in the lower

crust is dependent not only on the resistivity of that zone, but also on its horizontal

dimensions. A conductive zone that is much narrower will not attract as much current as the

broad zone, but there will still be a noticeable change in the TM response across that zone.

The examples we have shown are not intended to cover all possible scenarios; indeed, they

show just two simple examples one might actually encounter in field data. Park et al.

(1990) followed the TM mode response across the central Great Valley and Sierra Nevada

and found two zones of dramatic current loss - one on the west side of the Great Valley and

another on the east. They interpreted these to be a suture zone between the Coast Ranges

and the Great Valley and a contact between the basement of the Great Valley and the Sierra

Nevada. The increased conductance of these zones was inferred to result from fluids in

sedimentary rocks trapped during subduction that occurred in the Late Mesozoic and Early

Cenozoic eras. In this chapter, we document examples in the California Basin and Range

where we have found anomalous conductive zones in the lower crust. We interpret these

zones to result from the recent extension that has caused higher than normal levels of

porosity and fluids in the lower crust.
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Figure 4-9. The 2D TE mode responses for the model shown in Figure 4-7. Plotted are
the apparent resistivity and phase for 6 continental locations from 15 km to 550 km away
from the ocean-continent boundary. Also plotted is the 1D continental response for
comparison.
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Geologic framework

The Basin and Range Province of Western North America is a broad region

approximately 1000 km wide that is characterized by extensive normal faulting, high heat

flow, and a high regional elevation (Eaton et al., 1978). The Basin and Range has

experienced a multitude of tectonic events throughout its geologic history including

extension, arc-related compressional orogenies, arc volcanism, and plutonism (Burchfiel

and Davis, 1972, 1975; Wernicke et al., 1987). Nevertheless, recent Cenozoic extension is

largely responsible for the present physiography of the region, which is typified by

elongate ranges separated by basins filled with recent alluvial sediments. The ranges and

valleys are aligned approximately parallel, and they are perpendicular to the modern stress

field which is roughly WNW-ESE (Zoback et al., 1981).

Extension in the Basin and Range Province has not been uniform in time or areal

extent. One can think of this province as a broad, diffuse zone of extension with localized

zones of extreme extension mixed in with unextended or only mildly extended terranes.

What has controlled the timing, magnitude, and location of the extension is still not known,

nor is it known what role plate interactions and motions have played in producing the

extended terrane (Atwater, 1970). Nevertheless, the mechanics of the crust, and especially

the lower crust, are probably important in influencing the style and magnitude of extension,

and this is one area where our magnetotelluric measurements can provide some

information.

Several models have emerged in recent years to explain the mechanics of

extensional terranes like the Basin and Range Province. One model, initially put forth some

twenty years ago, is termed the pure shear model (Stewart, 1971) in which normal faulting

in the upper crust is accommodated by penetrative ductile stretching in the middle and lower

crust. In this model, the amount of extension is vertically uniform throughout the crust and

upper mantle. The pure shear model contrasts with the simple shear model in which

extension is accommodated along a low-angle master detachment surface that penetrates the
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entire crust and perhaps the upper mantle (Wernicke, 1985). In this model, brittle behavior

along the detachment surface in the upper crust gives way to some form of ductile

deformation in the lower crust. Another possible model is that of lithospheric necking

(Froidevaux, 1986; Zuber et al., 1986) in which brittle extension in the upper crust at one

location is coupled to, but separated horizontally from, the ductile thinning of the mantle

lithosphere in another area. These models are only end-members whereas extension in the

Basin and Range may actually involve some component of each of these models.

Wernicke (1985) proposed that the uplift of the Sierra Nevada is related to

extension in Death Valley by simple shear extension of the crust. In his model, crustal

thinning in Death Valley is accommodated by lithospheric thinning under the Sierra Nevada

along a low-angle master detachment surface. Jones (1987) also concludes that the mantle

lithosphere is thinned under the Sierra Nevada and that the crust is highly extended and

thinned under Death Valley. He suggests, however, that either simple shear or lithospheric

necking correctly predict the observed gravity, topography, and seismic refraction data, and

that both models produce extended crust overlying unextended mantle lithosphere near

Death Valley and unextended crust overlying thinned mantle lithosphere under the Sierra

Nevada. Although they did not specifically model the Death Valley-Sierra Nevada transect,

Buck et al., (1988) suggest that based on their models for the evolution of the Red Sea

Rift, simple shear extension, as proposed by Jones (1987) and Wernicke (1985), would be

a viable extension mechanism along that transect. And although the extension in the

Panamint-Saline system appears to be confined to the upper few kilometers of the crust

(Burchfiel et al., 1987), it is probably related to the larger scale extension that is occurring

in the Death Valley area.

In each scenario discussed above, thinning of the upper crust by extension must be

accommodated in the lower crust by some type of ductile deformation process. The models

differ, however, in how the deformation in the upper crust is accommodated in the lower

crust. Unlike most geophysical measurements, magnetotellurics can look at the lower crust
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in this province and perhaps provide constraints to the deformation processes occurring

there.

Previous electromagnetic investigations

Schmucker (1970) carried out an extensive geomagnetic variation study in

California analyzing magnetic bays and disturbances at 1 cph (1 cycle per hour = 3600 s), 2

cph, and 4 cph. He found that the Parkinson vectors near the California coast were very

large in magnitude and pointed uniformly towards the ocean. By definition, Parkinson

vectors point toward conductive features. Near the coast, the ocean overwhelms any local

conductivity anomalies. Stations on the eastern side of the Sierra Nevada (Inyokern, Lone

Pine, and Bishop), however, had Parkinson vectors pointing toward the Basin and Range.

This indicates that the Basin and Range is more conductive than the Sierra Nevada to the

west. Furthermore, these stations had a significant out-of-phase component that was in the

opposite direction as the in-phase component. This signifies that an anomalous

concentration of induction current is aligned parallel to the Sierra Nevada. Schmucker

(1970) interpreted these anomalies as due to a narrow zone of high-conductivity east of the

Sierra Nevada at a depth of 40-50 km.

Wannamaker (1983) conducted a magnetotelluric study in southwestern Utah.

Two-dimensional TM modeling of his data required a low-resistivity (approximately 20

ohm-m) layer from about 35 km to 65 km in the upper mantle. He interpreted this feature as

a zone of interconnected melt that had resulted from diapiric uprising of mantle-derived

melts. Although this survey was carried out on the eastern margin of the northern Basin

and Range, he postulated that a similar resistivity structure might exist on the western

margin of the northern Basin and Range because of the similarities in tectonic style between

the two regions.

Park and Torres-Verdin (1988) analyzed magnetotelluric data taken around the

Long Valley, California caldera complex, which is north of our survey area. They were
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primarily interested in seeing whether their data justified the existence of a magmatic body

at depth, and did not concentrate on the lower crustal resistivity structure. Excess ocean

electrical currents, however, did not seem to be influencing their data.

Bennett (1986) and Mackie et al. (1988) analyzed long-period magnetotelluric

measurements made in Palmdale, California and Hollister, California to examine the lower

crustal resistivity structure near the California coast. Both studies required a resistivity-

thickness product for the oceanic lower crust on the order of 106 ohm-m-km to fit the

observed data. This correlates well with an independent study carried out by Cox et al.

(1986) who made controlled-source electromagnetic measurements in the Pacific ocean

with the transmitter and receiver directly on the ocean floor. They were able to model their

data with an oceanic lower-crustal resistivity-thickness product of 2x106 ohm-m-km. Park

et al. (1990) analyzed shorter-period magnetotelluric data taken across central California.

Their data also required similar resisitivities in the lower crustal parts of their model except

for two zones of dramatic current leakage on either side of the Great Valley in central

California.

There have been additional magnetotelluric surveys conducted in the vicinity of the

Transverse Ranges in Southern California (Reddy et al., 1977; and Lienert et al., 1980),

but these have failed to address the interaction between the ocean and the continent. And

finally, Towle (1980) made magnetic measurements on the eastern front of the Sierra

Nevada along a transect from the Sierra Nevada across to Death Valley. The fields he

measured were the DC magnetic fields that resulted from the single-pole operation of the

Pacific Northwest-Southwest DC Power line that runs down Owens Valley. He suggests

that high electrical conductivity along the eastern front of the Sierra Nevada would explain

his data.
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Magnetotelluric data in the California Basin and Range

I. Data collection

From January, 1988 through March, 1989, we collected narrow-band

magnetotelluric data at 27 sites in the California Basin and Range, shown in Figure 4-10.

The data were sampled at a rate of 2s. Because of the filters in our system, the data were

limited to periods of 10-300s. We modified the electronics prior to our last field trip so that

we could collect data to 1000s periods. The data from the northern Mojave Desert

(Garlock, Harper Lake, Coyote Lake, and Baker) sample to 1000s. Each sounding site

consisted of two dipoles and two induction coils. Vertical H was not collected, nor were

we able to remote reference the data.

Ted Madden at the Massachusetts Institute of Technology (MIT) and Steve Park at

the University of California at Riverside (UCR) designed and built the magnetotelluric field

systems that we used. The E fields were measured on dipoles approximately 800m long,

which were grounded at each end with Ag-AgC1 porous-pot electrodes. The signals from

the dipoles were amplified, filtered, then digitized. The H fields were measured on

induction coils that were originally built by Cantwell (1960), then later modified by Davis

(1979). The signals from the coils were fed into a preamplifier, then the output from this

was amplified again, filtered, and digitized. The MIT system uses a commercial Starbuck

model 1232 digitizer, and the UCR system uses a digitizer built by Steve Park. Both

systems are controlled by portable Hewlett Packard computers. Data collected on the two

systems are internally consistent and repeatable (Park et al., 1990).

II. Impedance estimation

We processed the data using traditional processing methods (e.g., Swift, 1967;

Sims et al., 1971; and Vozoff, 1972). This processing consists of the following steps:

1) removal of gains, 2) removal of DC shift, 3) windowing the data, 4) Fourier

transforming the data, 5) removing the system response (phase shifts caused by the
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Figure 4-10. A simplified map of the California Basin and Range Province and the
northern Mojave Desert. The mountain ranges and major outcrops are shaded. The
locations of all our MT soundings are shown with black dots. The numbers next to each
dot are the site numbers.
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electronics and digitizer), and 6) computing the impedances as a function of frequency. We

compute two estimates of the impedance tensor (see Sims et al., 1971 for a detailed

discussion of impedance estimates). The first estimate we term the Zh estimate, which is

given by

F (EH*) ( ExH*) F(HxH*)(HxH*)[x: ZXY]LYx Y 41
y-.(EyH*) (EyH* HyH* ) (HyH*)

In this equation, () represents an average of values over a narrow bandwidth centered at a

particular frequency. The quantities like ( ExH* ), etc., are the auto and cross power spectra

of the observed fields. The second estimate we term the Ze estimate, which is given by

[Zxx Zxy - ( ExE*x ) (HxE*
.Zyy . (EyE*) (EyE*) (HyE* ) (HyE* )_

The Zh estimate is biased down by noise in H while the Ze estimate is biased up by noise

in E. Computing both estimates gives us a good idea of the noise in the data. In our

analysis, we make impedance estimates at twenty evenly-spaced logarithmic values from

10s to 300s (or 1000s for the Mojave Desert sites). Each impedance estimate averages the

auto and cross power spectra over a band with a half-bandwidth of 30% of the center

frequency. Before averaging, however, the E fields are corrected for the frequency

dependence of the impedance amplitude. Since p = 0.2 T 1 2, where T is the period in

seconds and Z is the impedance, and since we are assuming that the impedance is constant

over this wide band, the E fields are first multiplied by 4(fo/fi), where fo is the center

frequency and fi is the frequency for the individual Fourier value. This removes the

frequency bias caused by assuming a constant Z over the wide band. This method could be

improved by allowing the impedance to have a slope across the band.
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III. Computation of apparent resistivities, phases, and directions

Once the impedance spectra are computed, they are rotated into an orthogonal north-

east coordinate system, then decomposed using the shifted eigenvalue analysis of

LaTorraca et al. (1986). This analysis determines the maximum and minimum apparent

resistivities, the associated phases, the directions of the principal electric and magnetic

eigenvectors, and the ellipticities. This analysis is superior to traditional rotation analyses

because the electric and magnetic fields are not required to be perpendicular. The maximum

apparent resistivity is associated with the electric and magnetic fields in the principal

directions. The minimum apparent resistvity is associated with the electric field

perpendicular to the principal electric field and the magnetic field perpendicular to the

principal magnetic field. The E field eigenvector direction corresponds to the direction of

current flow at that site.

The results of this analysis for each data location are shown in Figures 4-11 to

4-36. We plot the results for both the Zh and the Ze estimates. The maximum apparent

resistivities and phases are plotted with open circles, and the minimum apparent resistivities

and phases are plotted with closed triangles. The upper estimate at each frequency is the Ze

estimate since it is biased up by noise in E, while the lower estimate is the Zh estimate. The

principal E and H eigenvector directions are also plotted (the letter E represents the E

principal direction and the letter H represents the H principal direction). The directions are

plotted clockwise from geographic north. We also plot coherencies of the predicted E fields

to the actual E fields in the maximum and minimum directions. These coherencies are the

geometric mean of the coherencies from the Zh and the Ze estimates. The data from site 4,

which was in Owens Valley, is not shown because the H field data from that site are

contaminated with microseismic noise and are totally unusable.
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Figures 4-11 to 4-36. These are the processed MT data for each site. The eigenstate
analysis of LaTorraca et al. (1986) was used to generate the results. Plotted are the
maximum and minimum apparent resistivities and phases, the principal electric and
magnetic eigenvector directions, and the coherencies of the electric fields in the eigenvector
directions. The upper estimate of apparent resistivity at each frequency is the Ze estimate
while the lower estimate is the Zh estimate. The eigenvector directions are plotted as
clockwise from geographic north. The coherencies are the geometric mean of coherencies
from the Zh and Ze estimates.
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Site 1, Owens Valley, near Lone Pine
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Site 2, Owens Valley, north of Lone Pine
102

t0o

E

C

0

100

10-
a

-10

-20

-30
-40-

-50
-"0 eoooooooese

-g0

150

100

Wo

0

-50

-100

-150

10l

period (seconds)

Figure 4-12.

:--------------- a sa -s- ---------------

.---------------------------------------------
EEEEEEEEECEE

------

-- 
-

-. 
.



167

Site 3, Owens Valley, north of Independance
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Site 5, western Eureka Valley

?

c0

0

-a

c

150

100

50

-50

-100

-150

period (seconds)

Figure 4-14.

II
III

IItit

lop,

0

-10-

-20-

-40-0

-60
-70

-..........-------------------------------------

-------------------------------------------

Ifg g gggr EEEg lg EC CE

. ---- - -- -------- - - - - - - - - - - - - - - - - - -



169

Site 6, eastern Eureka Valley
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Site 7, southern Searles Valley
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Site 8, south of Owens Lake
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Site 9. southwest Coso Mtns
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Site 11, south of Ridgecrest
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Site 12, northern Searles Valley
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Site 13, northern Coso Mtns
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Site 14, northwest Coso Mtns
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Site 15, central Death Valley
102

8*1s

too

-10

-10-

-20

-50

-so. 
A

-go

150

too ----------------------- .H- - +M----------

-s0

.I -10

C

1.000
0000

0.9- A
0  

000

* o.s2 saA

0.9, , AAAAA A1.. .. . . . . . . . . . . . . . .

period (seconds)

Figure 4-24.



179

Site 16, southern Death Valley
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Site 18, northern Death Volley
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Site 19, northern Panamint Valley
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Site 20, southern Panamint Valley
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Site 21, Panamint Mtns, off Skidoo Road
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Site 22, Black Mtns
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Site 23, Tehachapi Mtns
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Site 24, Garlock Foult
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Site 25, near Harper Lake
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Site 26, near Coyote Lake
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Site 27, near Baker
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IV. Editing to improve impedance estimates

The quality of the impedance estimates is determined largely by the signal levels

when the data are recorded. If there are high signal levels and a good mix of frequencies,

the impedance estimates will be very coherent. On days when the signal levels are low, the

estimates are much less coherent. We implemented an editing algorithm in an attempt to

improve the impedance estimates when signal levels were low, or when there appeared to

be a lot of noise present in the data. Our editing algorithm is similar to the coherence-based

rejection algorithms described in Jones (1981, 1984), Chave and Thomson (1989), and

Jones et al. (1989), but is actually more closely related to the editing algorithms of Madden

et al. (1990) and Egbert and Booker (1986).

Our editing algorithm operates in the frequency-domain and is an iterative process

that determines which points in an impedance estimate to reject in order to give the most

coherent impedance estimate. The technique assumes Gaussian statistics. At each iteration,

the algorithm ignores points that have errors in their predicted values greater than 2a. A

new impedance is computed that is based only on the points not thrown out. The new

variance is adjusted for the fact that all points with errors greater than 2a were thrown out.

We iterate the editing algorithm using the entire data set until the coherency converges to a

constant value, which happens when the same points are thrown out in two successive

passes.

Out of all of our data, only three stations had improved responses after editing the

impedance estimates. These are sites 2, 8, and 13. At these sites, the editing improved the

responses and increased the coherencies (compare Figures 4-37, 4-38, and 4-39 with

Figures 4-12, 4-17, and 4-22). At all of the other stations, the editing procedure did not

noticeably improve the results. This might have happened because either the noise was not

describable by Gaussian statistics, or the signal-to-noise ratio was just too small for editing

to make improvements.
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Site 2, Owens Valley, edited
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Figure 4-37. MT data after editing for site 2.
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Site 8, south of Owens Lake, edited
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Site 13, northern Coso Mtns, edited
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A qualitative interpretation of the data

The data plotted in Figures 4-11 to 4-36 are generally of sufficient quality to

identify the behavior of the principle (maximum) mode of the impedance. It is this mode at

most data locations (i.e. valleys) that we believe is contaminated by excess ocean electrical

currents. Therefore, this mode will be sensitive to the resistivity of the lower crust. This

mode is directed along the valleys whereas the minor mode is directed across the valleys.

The minor mode is of secondary importance to this study because it is not as sensitive to

anomalous zones in the lower crust.

In Figures 4-40, 4-41, and 4-42, we have plotted the apparent resistivity and phase

versus frequency for three transects across the California Basin and Range and the northern

Mojave. We have normalized the apparent resistivities to a constant value at the shortest

period since with these plots we are mainly concerned with the slopes of the curves and not

their actual amplitudes. Figure 4-40 shows data south to north from Garlock, Searles

Valley, Panamint Valley, and Eureka Valley. What is most striking about this plot is the

systematic change in the slope of the apparent resistivity curves and the systematic shift in

the phases from south to north. Notice that this is very similar to the leakage effects seen in

the 2D TM mode responses shown earlier in Figure 4-5. We believe these data are showing

a loss of excess ocean current as one progresses north along this profile and further away

from the ocean. Figure 4-41 shows data south to north in Death Valley, although these data

are not of the highest quality, and Figure 4-42 shows data west to east across the northern

Mojave. Again we believe these two figures show a loss of ocean current as one progresses

south to north in Death Valley and west to east across the northern Mojave, in both cases

further away from the ocean.

A closer examination of these three plots and the data plots in Figures 4-11 to 4-36

reveals several additional features that we interpret in the context of excess ocean currents

as follows. The responses in the northern Mojave do not show as much retardation of their

mantle branches as do the stations along the southern edge of the Basin and Range, but the
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Basin and Range MT data (maximum Z)
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Figure 4-40. A plot of the apparent resistivity and phase for sites along a north-trending
traverse in the California Basin and Range. We have plotted the data south to north from
Garlock, Searles Valley, Panamint Valley, and Eureka Valley. We have normalized the
apparent resistivity curves to a value of 10 ohm-m at the shortest period since we are
concerned with the slopes of the curves and not their actual amplitudes.

0

. .

Ui * *
# " E U *

100

10-

-10

-20-

-30 -

-40-

-50 -

-60

* U

. ... .
* U

* U 0
a e eo e o
U. 0.

EU"

U



197

Death Valley MT data (maximum Z)
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Figure 4-41. A plot of the apparent resistivity and phase for sites along a north-trending
traverse in Death Valley. We have plotted the data south to north from southern Death
Valley, central Death Valley, and northern Death Valley. We have normalized the apparent
resistivity curves to a value of 3 ohm-rn at the shortest period since we are concerned with
the slopes of the curves and not their actual amplitudes.
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Northern Mojave MT data (maximum Z)
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Figure 4-42. A plot of the apparent resistivity and phase for sites along an east-trending
traverse across the northern Mojave Desert. We have plotted the data west to east from
Harper Lake, Coyote Lake, and Baker. We have normalized the apparent resistivity curves
to a value of 3 ohm-m at the shortest period since we are concerned with the slopes of the
curves and not their actual amplitudes.
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Garlock site seems to have more excess ocean current than any other site. This seems to

indicate that the excess ocean current seen in the California Basin and Range does not come

up from the Salton Sea to the south, but rather, is channelled along the Garlock Fault zone

from the west and then up into the California Basin and Range through Searles Valley and

Death Valley. The Peninsular Ranges, which run along the western edge of California

south of Los Angeles, may also act to partially block some of the current from reaching

those sites in the northern Mojave. Additionally, the response at the western edge of Indian

Wells Valley (site 10) seems to be entirely in the mantle branch, but the response south of

Owens Lake (site 8) shows some effect of ocean currents, although to a degree less than

seen in Panamint Valley. We believe that the mountains just north of the Garlock Fault zone

at the southern edge of Indian Wells Valley, and the Sierra Nevada, may block off any

excess current from Indian Wells Valley, but that some of the ocean current gets into

southern Owens Valley from Panamint Valley and Searles Valley. The responses in Death

Valley do not show as much ocean effect as the responses in Panamint and Searles Valley,

but this is probably because it is simply further away from the ocean and more current has

leaked off by the time it has reached Death Valley.

Up to this point, we have concentrated primarily on the major impedance response,

but the minor impedance response also has some interesting characteristics. This impedance

mode at all sites is in the mantle branch. However, high phases at short periods are found

at many sites (e.g., sites 2, 3, 6, 7, 8, 12, 17, 20, 22). These phases decrease at the longer

periods as the slopes of the apparent resistivity curves decrease. We believe that some of

this effect at these sites may be due to highly conductive sediments in the shallow upper

crust that give way to more resistive sediments deeper in the crust.

3D modeling of the data

The data we have taken in the California Basin and Range is obviously very three-

dimensional in nature. Trying to model the data using 1D or 2D algorithms would not allow
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us to accurately characterize the resistivity structure of the area. On the other hand, trial-

and-error forward modeling of the data using a 3D algorithm is a very time-consuming and

difficult problem. In this situation, we had little choice but to proceed with the 3D modeling

to see how much of the data we could explain with the simplest models possible. All of the

preliminary modeling used the multiple scaling relaxation routine on the NCUBE computer

at the Earth Resources Laboratory and the MINRTRACC routine on the MIT Cray

Supercomputer. The last few models, and the predictions we show, were all computed

using the direct solution algorithm on the MIT Cray.

As a prelude to the 3D modeling, we ran several 2D inversions of both modes of

the data to use as a starting point for the 3D model. Once we had done this, we proceeded

systematically to fit the data by trial-and-error 3D forward modeling. We did not attempt to

fit the data at every site - the geologic complexity of the area would have required too large

a 3D model to be realistic. Our 3D models had to cover a large area, from the Pacific Ocean

to the Basin and Range, yet be detailed enough to accurately model the data at sites within

the Basin and Range. Since most of the data that was collected is bounded between the

Garlock Fault, the Sierra Nevada, Death Valley, and south of Panamint Valley, we chose to

concentrate our modeling efforts on this region.

In our modeling efforts, we did not concentrate very much on fitting the amplitudes

exactly at each site. We are somewhat at a disadvantage because we do not have higher

frequency data to constrain the statics of the upper crust. We have no way of knowing

whether one or both apparent resistivity curves at each site are static-shifted up or down

due to local conductivity anomalies. Static shifts affect primarily the interpretation of the

upper crustal resistivity structure, and their effect on the lower crustal resistivity structure,

we believe, would be minimal. Therefore, we were concerned primarily with the phases

and the slopes of the apparent resistivity curves.

Our first 3D model is given in Appendix A (this is actually a resistivity map for each

layer of the model, and is explained in more detail in the appendix). In our model, we have
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aligned the y-axis with the structural grain of the Sierra Nevada-Great Valley trend, and the

x-axis is perpendicular to that grain. As mentioned previously, we had to balance the need

for covering a large area with accurate modeling of the responses in a smaller detailed area.

We have attempted to include as many of the major geologic features of California as

possible. We have included the Great Valley, the Sierra Nevada, the Penninsular Ranges,

the San Bernardino Mountains, the Garlock Fault zone, and as much detail as possible in

the California Basin and Range.

This model, in general, has valleys containing conductive sediments down to a few

kilometers and mountain ranges that are much more resistive down through the crust. The

most important feature of this model is the change in lower crustal resistivity from the

ocean and western California to the California Basin and Range. We set the resistivity of

the lower crust under the ocean and western California into the Mojave Desert region to a

value of 80,000 ohm-m from 12 km to 32 km depth. This gives that part of the lower crust

a resistivity-thickness product of 1.6x10 6 ohm-m-km, which is in keeping with those

values deduced by Bennett (1986), Mackie et al. (1988), and Park et al. (1990). This value

contrasts dramatically with that needed in the California Basin and Range. There, the lower

crust has a resistivity of 5000 ohm-m between 12 km and 32 km depth, with a zone in

Panamint Valley of 3000 ohm-in at the same depths. This gives the lower crust in the

California Basin and Range a resistivity-thickness product of 1x105 ohm-m-km, which

corresponds to an increase in the lower crustal conductance by a factor of 16. In addition,

we have made the Garlock Fault zone fairly conductive in order to attract the current from

the coast and channel it up into the Basin and Range.

In Figures 4-43 to 4-46, we show the model predictions for this model compared

with the data. The model predictions were computed for four periods - 10, 30, 100, and

300 seconds. The solid lines represent the model predictions for this model (dashed lines

represent the results for a second model that we will discuss shortly). We do not show

predictions for all the data we took because, as mentioned previously, the 3D model
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Figures 4-43 to 4-46. The model predictions for the models given in Appendices A and
B are shown in comparison with the actual field data for several of the sites within the
study area. The model predictions for the first model given in Appendix A are shown by
the solid lines, and the model predictions for the second model shown in Appendix B are
shown by the dashed lines. The model predictions were computed using the direct solution
algorithm at periods of 10, 30, 100 and 300 seconds.
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required to describe the local physiography of all stations would simply require too large a

model to be manageable. We have shifted the predictions plotted in Figures 4-43 to 4-46 by

an amount needed to get the major impedance response to agree in amplitude with the actual

field data. This could have been accomplished by minor adjustments in the near surface

resistivities at each data site, but given the computational time and costs of 3D modeling,

we felt we were justified to simply shift the curves ourselves. Furthermore, minor

adjustments in the near surface resistivities would not really affect our interpretation of the

lower crustal resistivity structure.

We have fit the major impedance response very well at Searles Valley and Panamint

Valley. Even the minor impedance responses are fit fairly well in both valleys. This model

has too much current channelled up into the Death Valley region as evidenced by the steeply

rising apparent resistivity curves for sites within Death Valley. The minor impedance

responses are fit fairly well there, however. The fits at the other data sites are not as good.

For example, this model has too much current in Owens Valley and in the northern Mojave

Desert (Harper Lake, Coyote Lake, and Baker). We believe that the excess current at

Owens Valley could be leaked out by a local zone in the lower crust of increased

conductivity. Likewise, increased leakage in the Mojave would help to get the model

predictions there more in line with the data. The major impedance response is fit fairly well

at Garlock, however. We were not able to fit the northern Mojave Desert data very well

because we just did not have the detail there necessary to model the effects of the ranges

and valleys which, as in the California Basin and Range, is an important consideration.

In some instances, which we do not show, the modeling would predict non-

minimum phase behavior in the minor impedance response (that is, the slope of the

apparent resisitivity would be greater than -1 and the phase would be greater than 900). We

believe that this is a feature of the modeling algorithms that we have little experience in

dealing with, and that it is caused by sharp corners and dramatic conductivity contrasts

across the corners. This behavior was particularly noticeable in areas where the Earth
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model was very complicated, such as around the Searles Valley-Panamint Valley area. At

the sites where this happened, we were able to go just one model block away and obtain a

more reasonable curve for the minor response without changing the major response. This

behavior was probably accentuated by the dramatic split in the amplitudes of the fields at

these longer periods. This points out the difficulty associated with trying to model a

complex region with the crudeness that we have put into our Earth models.

Overall, we feel that we have done a reasonable job in predicting the major response

at several of the data locations. We believe our modeling supports our hypothesis that the

lower crust in the California Basin and Range must be much more conductive than that

found in surrounding areas in order to attract enough ocean current. Recall that the lower

crust under the ocean and the continent into the western edge of the Mojave had a

resistivity-thickness product of 1.6x106 ohm-m-km whereas the resisitivity-thickness

product in the California Basin and Range was 1x10 5 ohm-m-km. This represents a 16 fold

change in resistivity-thickness product from the lower crust in western California to that in

the California Basin and Range. This is a very non-unique problem, however, with many

tradeoffs. For example, the resistivity of the lower crust in the Basin and Range could be

increased, but then either the oceanic crust would have to be made more resistive, or the

Garlock Fault zone would have to be made more conductive in order to get enough current

into the Basin and Range. However, we find it difficult to believe that a 16 fold change in

the resisitivity-thickness product of the lower crust could be realistically compensated for

by a 16 fold increase in the conductivity-thickness product of the continental upper crust, or

by similar changes in the resistivity-thickness product elsewhere. Higher frequency

measurements (or DC resistivity or shallow electromagnetic measurements) would help to

constrain the conductivity structure of the upper crust, but the dramatic change in lower

crustal resistivity is a feature that is probably fairly robust. We should mention that we can

do a better job at modeling the minor impedance responses using 2D TM mode inversion

algorithms. The minor impedance response is associated with the current system across the
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valley, but one does not have the ability to take into account the finite strike length of the

ranges and valleys. It is difficult, however, to completely resolve the 2D models with the

3D model, so for simplicity and brevity, we show only the 3D responses here.

It is useful to compare the responses from the previous model to one in which we

have made some minor adjustments in some of the features that control the leakage of the

excess ocean current. This not only demonstrates how minor changes can dramatically

affect the responses at many locations far removed from where the change was made, but it

also demonstrates the sensitivity we have in determining the leakage properties of the lower

crust.

For the second model, shown in Appendix B, we increased the resisitivity of the

Garlock Fault zone. We also decreased the resistivity of the lower crust around the

southern end of the Death Valley region and in the western Mojave Desert region. The

upper crustal conductivity in Death Valley was also decreased slightly. All other features

remained the same. We expect that these changes should cause the Garlock Fault to attract

less current, and should cause more leakage to occur before the current reaches Death

Valley. The predictions for this model are shown in Figures 4-43 to 4-46 as dashed lines.

Note that the major impedance responses were changed only slightly in Searles

Valley and Panamint Valley, but changed quite dramatically in Death Valley. The major

impedance responses in Death Valley are now better fit by the model, but there are large

changes in the minor impedance responses in Panamint Valley, Searles Valley, and Death

Valley. These changes in the slopes of the minor impedance responses are probably due to

the fact that there is less excess ocean current in these areas, which causes less of a split

between the two modes. This model does a better job at predicting the responses at Garlock

and in the northern Mojave than the first model.

Both models are fairly robust in needing a conductive lower crust in the Basin and

Range. We saw that minor changes in the lower crustal resisitivity structure could produce

dramatic changes in both the major and minor impedance responses. Although the numbers
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we have obtained are not unique, the change in lower crustal resisitivity from the ocean and

western California into the Mojave and the Basin and Range is necessary to attract enough

excess ocean current. It is obvious that 1D or 2D interpretation of these curves could lead to

very erroneous results. In the case of the major response, the lower crustal resistivity

would be severely over-estimated, while in the case of the minor response, the lower

crustal resistivity would be severely under-estimated. The fact that the lower crust in the

California Basin and Range is so conductive may have important implications for the

mechanical state of the crust there.

Geophysical and geological implications

Our data and modeling results, though intriguing, do not allow us to resolve any

particular mechanism of extension in the California Basin and Range along the Death

Valley-Sierra Nevada transect. Unfortunately, our data are not very sensitive to the upper

mantle resistivity structure, so we are not able to determine any structure associated with

the crust-mantle boundary or any thermal anomalies. However, the lower crust under

Panamint Valley seems to be somewhat more conductive than the rest of the California

Basin and Range. This may be related to the Death Valley extensional system, or may be a

manifestation of the more recent extension occurring in Panamint Valley. If it is related to

the Death Valley extension, it seems to indicate that deformation in the upper crust at Death

Valley gives way to some form of deformation in the lower crust under Panamint Valley

(the deformation in the lower crust would necessarily need to increase the porosity there).

Such a scenario seems to favor the simple shear model for extension, but we cannot

catagorically state that this must be the case. The extremely low resistivities modeled for the

California Basin and Range may, however, provide some insight into the mechanical

properties of the lower crust there. The value of 5000 ohm-rn down to 32 km depth is

much more conductive than we might normally expect for those depths in the crust.
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The electrical conductivity of the lower crust has always been somewhat of an

enigma. It is well known that the electrical conduction in upper crustal rocks is controlled

by the presence of a fluid-filled interconnected porosity, and that the conductivity is

dominated by the porosity and salinity of fluids whereas other factors such as grain size

and mineralogy have little or no effect (Brace, 1971). Within the mantle, temperatures are

high enough so that normally insulating silicate minerals become good conductors of

electricity by dint of thermally-activated semi-conduction processes (Hughes, 1955;

Runcorn and Tozer, 1955). In the lower crust, however, the controls of electrical

conductivity are not quite so clear.

Laboratory measurements on crystalline rocks to 10 kbar of confining pressure

(approximately 30 km depth within the Earth), and at a constant temperature of 200 C

yielded resistivities ranging from 104 ohm-m to 106 ohm-m (Brace et al., 1965). They

suggested that the high confining pressures closed up much of the available porosity, thus

increasing the electrical resisitivity, and that a similar scenario might be expected in the

lower crust More recent laboratory studies (Lee et al., 1983) corroborate these results and

again suggest that saline volatiles in the crust are largely responsible for its electrical

conductivity. These studies, however, did not take into account the effect of temperature on

the mechanics of lower crustal rocks, nor did they take into account how crustal fluids and

wetting angles affected the conductivity.

Because of the increased temperatures in the lower crust as compared to the upper

crust, it is commonly believed that rocks deform ductilely rather than brittlely (e.g., Heard,

1976), although the mid to lower crust may actually be in the semi-brittle regime (Carter

and Tsenn, 1987; Evans et al., 1990). Because ductile deformation processes are thought

to eliminate much of the porosity (Brace and Kohlstedt, 1980), the lower crust, in general,

should be very resistive.

Indeed, deep resistivity measurements in Massachusetts (Schlichter, 1934), South

Africa (Van Zijl, 1969), and in the Pacific Northwest (Cantwell et al., 1965; Cantwell and
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Orange, 1965) have required lower crustal resistivity-thickness products on the order of

106 ohm-m-km to fit their data. Magnetotelluric measurements made near ocean-continent

boundaries (and therefore very sensitive to the lower crustal resistivity) have also required

similarly high resistivity-thickness products to fit the observed data. This is seen in data

taken across New England (Kasameyer, 1974), and in data taken in California (Bennett,

1986; Mackie et al., 1988; Park et al., 1990). These values for the lower crustal resistivity-

thickness product agree remarkably well with an independent study carried out by

Cox et al. (1986) who made controlled-source electromagnetic measurements in the

Pacific ocean with the transmitter and receiver antennas directly on the ocean floor. They

were able to model their data with a lower crustal resistivity-thickness product of 2x10 6

ohm-m-km.

However, there are a plethora of journal articles (a summary is given in Haak and

Hutton, 1986) that suggest that the electrical resistivity of the lower crust is much lower

than the values found from these other studies we have just mentioned. Many of these

studies, however, were based on 1D or 2D TE mode interpretations of the data, which are

biased to lower resistivity values. In general, it is difficult to resolve the resistivity of the

lower crust from MT measurements. It is well known that in 1D geometries, one cannot

determine the resistivity of a highly resistive layer, but can resolve only its thickness

(Madden, 1971). And even in 2D environments, only very special circumstances allow one

to adequately resolve zones of high resistivity because current simply flows around rather

than through these features. Only when current is forced to cross a resistive zone can one

begin to determine how resistive these zones actually are. One example of this that we

discussed earlier occurs near ocean-continent boundaries.

The point of this discussion is not to imply that all studies that suggest the lower

crust is conductive are wrong, for we believe there are situations in which the lower crust

will be anomalously conductive. Rather, our point is simply that the lower crust has a finite

resistivity. This most likely implies that the lower crust has a small porosity, but that this
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porosity is connected and filled with saline solutions (Brace et al., 1965; Lee et al., 1983;

Shankland and Ander, 1983). Shankland and Ander (1983) have suggested fracture

porosities on the order of 0.01-0.1% could explain the high conductivities in the lower

crust implied by some field studies.

There are many lines of evidence suggesting that free water is present to at least

moderate depths within the crust. These include electromagnetic field studies (as detailed

earlier), isotopic studies of batholithic rocks (e.g. Taylor, 1977), geochemical studies (e.g.

Kerrich et al., 1984; Kerrich, 1986), analyses of metamorphic rocks (e.g. Etheridge et al.,

1984), and seismic studies (e.g. Nur and Simmons, 1969; Jones and Nur, 1982).

Even if free water does exist in the lower crust, it may not necessarily exist in a

connected form; rather, because lower crustal rocks are believed to undergo ductile

deformation, it is conceivable that the water may exist only in isolated pockets or in

absorbed hydrous phases unless the wetting angles are low enough (Watson and Brenan,

1987), or unless fluid pressures can be maintained at greater than hydrostatic for

geologically significant times (see Walder and Nur, 1984 for a discussion of this idea). It is

also highly likely that the amount of free water in the lower crust, and the state in which it

exists, is variable from area to area and may depend on many factors including the state of

stress to which the region is being subjected.

The crustal state of stress in a particular region controls the deformation occurring

there, and may also control the magnitude of fluid flow (Torgensen, 1990). Thus, large-

scale fluid transport may be important in tectonically active areas. Specifically, fluid

transport in fault zones and into deeper shear zones has been evidenced by geochemical

studies of metamorphosed rocks in several different localities (Kerrich et al., 1984;

Kerrich, 1986), although the fluid origin, temperature regime, or amount of fluid

infiltration are not well understood. Sibson (1981,1988) suggests that high fluid pressures,

greater than hydrostatic, may be responsible for activation of faulting along high-angle

reverse faults. Etheridge et al. (1984) present evidence, from the studies of rocks having
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undergone low to medium grade metamorphism, that a high-pressure, mobile fluid phase

exists at least to moderate depths in the crust during regional metamorphism. Even though

the porosity in these regimes is likely to be very low, less than 0.1%, Etheridge et al.

(1984) suggest that the high fluid pressures cause microcracking which in turn forms an

interconnected porosity. A high pore fluid pressure would necessarily need to be

maintained by the constant infiltration of fluids from below the crust. Although high fluid

pressures may be present during regional metamorphism, and even though this may be one

mechanism for producing an interconnected porosity in the lower crust, it is by no means

the only mechanism.

Another way in which a fluid phase can be interconnected in a crustal environment

without having to rely on high fluid pressures is simply to have the wetting angles (which

are the angles between the crystal faces) low enough so that the energetics of the system

will favor a wet connected configuration (Watson and Brenan, 1987). In a polycrystalline

aggregate, the 3D interconnectivity of a fluid phase is controlled almost entirely by the

wetting angle and not by the shape of the pore cross-section (Watson and Brenan, 1987;

Hay and Evans, 1988). If the wetting angles are less than 60*, then the channels formed by

the pore space remain open, and likewise, if the wetting angles are greater than 600, then

the channels close off and the fluid collects at grain corners. This 600 criteria is valid only

when the volume fraction of fluid is less than about 1%, which is almost certainly the case

for the lower crust.

Wetting angles for single phase systems are dependent upon the crystalline material.

Hay and Evans (1988) found that interconnected pore fluid networks were unstable in

polycrystalline calcite at high temperatures. Watson and Brenan (1987) found that for

quartz-water systems at 1000*C, the wetting angles are generally too high for

interconnectivity (the wetting angle 0 is approximately 600 for pure water) unless salts

were added to the fluids (a solution that is 0.4 mg NaCl/mg of solution reduces the wetting

angle for quartz to around 400. The wetting angles for olivine were generally greater than



215

700, and were not reduced when aqueous salt solutions were added. There is evidence that

any fluid present in the lower crust will contain dissolved salts, but it is not clear from the

experimental data what effect this will have on the wetting angles of lower crustal rocks

(this is complicated by the fact that there have been no wetting angle experiments carried

out on multiphase aggregates). High concentrations of dissolved salts are commonly found

in hydrothermal systems (Ellis and Mahon, 1964) and although these hydrothermal

systems commonly occur at shallow depths within the crust, their fluids may originate from

deeper in the crust. Additionally, fluid inclusions found in quartz and other minerals often

contain highly concentrated salt solutions (Orville, 1963) indicating that the crystallization

of these rocks has taken place in the presence of a vapor phase containing salts in solution.

This would seem to suggest that at least to moderate depths in the crust, and quite likely to

deeper depths, fluids exist and contain dissolved salts. Whether this allows for

interconnectivity of the fluids in the lower crust is debatable given the current experimental

evidence.

However, as Brian Evans pointed out (1990, personal communication), even if the

pore space in the lower crust were extensively connected, the pores would eventually be

eliminated by non-hydrostatic stresses that would cause the solid framework to creep shut

unless the fluid pressures were at or near lithostatic pressure. Once the pore spaces were

closed off, the pore pressures would increase and thus increase the likelihood of semi-

brittle failure. Such cycles of cracking and healing are discussed in Walder and Nur (1984)

and Nur and Walder (1990).

Thus, we have seen that there is evidence for the connectivity of saline fluids in the

lower crust, but in general, the connected porosity would be very small (Shankland and

Ander, 1983). To obtain dramatically increased lower crustal resistivities, such as we find

in the California Basin and Range, some mechanism must be acting to produce increased

porosity in the lower crust. We mentioned earlier that in metamorphic regions, elevated

fluid pressures can cause microcracking that in turn would lead to an increased porosity.
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However, we believe that in the case of the California Basin and Range, the increased

porosity is probably related to the dramatic extension that has been occurring recently.

Most of the models suggested for deformation in the Basin and Range have the

deformation in the lower crust occurring through ductile deformation processes. However,

because the lower crust consists of many different minerals, it is not unreasonable to expect

that the type of deformation occurring, even though it is primarily ductile, has some small

component of brittle behavior. In this semi-brittle regime, deformation occurs by crystal

plasticity and microcracking (Evans et al., 1990). Even though the geothermal gradients are

believed to be large in the Basin and Range, we believe that there may be some component

of brittle failure (microcracking) in the lower crust that is enhanced by the extensional stress

field. This may be helped by the fact that mafic minerals, which make up a large part of the

lower crust, undergo the transition to ductile deformation at higher temperatures than the

less mafic minerals. Of course, it would not take a much increased porosity to give

dramatically increased lower crustal conductivities. At this point, we are beginning to get

onto very tenuous ground as we can only speculate about what might be leading to the

increased conductivity of the lower crust in the California Basin and Range. There are

many deformation and healing mechanisms, and their interactions and behaviors in

polymineral rocks such as the lower crust are not well understood. Even if there was some

small component of brittle behavior in the lower crust, this would not preclude the lower

crust as a whole from deforming ductilely over geologically significant time periods.

Conclusions

In this chapter, we have interpreted short-band magnetotelluric data collected

primarily in the California Basin and Range. The data are very three-dimensional in nature

and are influenced by excess ocean electrical currents that get trapped in the continental

upper crust. Much of the data can be predicted by models that have a very conductive lower

crust in the California Basin and Range as compared to the crust further west in California.
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We interpret the increased conductivity in the Basin and Range lower crust to result from an

increased porosity due to the extension that is ongoing there. We believe that the lower

crust must have some small component of brittle failure, perhaps microcracking, that

increases the porosity during tectonic deformation. The existence of a small component of

brittle failure in the lower crust does not necessarily preclude any extensional models that

have lower crustal flow as the deformation mechanism.
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Appendix A

In this appendix, we present the first 3D model for which model predictions are

shown earlier in the chapter. We present for each level in the model a resistivity map. The

numbers in the map correspond to a particular resistivity value, which we give below. In

general, the resistivity is approximately equal to 2n/4 where n is the number in the map.

Therefore, a map value of 2 corresponds to a resistivity of 1 ohm-m. In this fashion, there

is approximately a factor of 2 increase in resistivity for each increase in map number. The

y-axis, which runs down the page, is aligned with the structural grain of the Sierra Nevada.

The x-axis, which runs horizontally across the page, is perpendicular to the structural grain

of the Sierra Nevada. The model was 27 blocks in the x-direction, 18 in the y-direction,

and 13 Earth layers vertically (7 graded air layers are put on top of the model).

The widths, in kilometers, of the blocks in the x-directions are (from left to right):

4500, 1500, 500, 180, 60, 60, 80, 80, 40, 20, 20, 5, 5, 5, 15, 15, 5, 10, 5, 20, 5,

10, 5, 20, 100, 300, 1000

The widths, in kilometers, of the blocks in the y-directions are (from top to bottom):

1000, 300, 100, 60, 30, 20, 20, 10, 10, 20, 10, 15, 20, 20, 30, 100, 300, 1000

The thickness, in kilometers, of the layers in the z-direction are (from the surface down):

0.1, 0.2, 0.4, 0.8, 1.5, 2.5, 2.5, 4, 10, 10, 20, 50, 100

The resistivity map values correspond to the following resistivities (in ohm-m)

0 = 0.3 5 = 8.5 10 = 300 15 = 10000

1 = 0.5 6 = 20 11 = 500 16 = 16000

2 = 1.0 7 = 30 12= 1000 17 = 30000

3 = 2.0 8 = 55 13 = 3000 18 = 80000

4 = 5.0 9 = 100 14 = 5000
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The data sites have the following correspondence to the model locations (xblock, yblock):

Site 1, Owens Valley = (12,5)

Site 8, south of Owens Lake = (12,7)

Site 10, Indian Wells Valley = (12,11)

Site 12, Searles Valley = (19,11)

Site 15, central Death Valley = (22,9)

Site 16, southern Death Valley = (23,11)

Site 18, northern Death Valley = (22,6)

Site 19, northern Panamint Valley = (19,7)

Site 20, southern Panamint Valley = (19,9)

Site 21, Panamint Mtns = (20,7)

Site 24, Garlock Fault = (13,13)

Site 25, near Harper Lake = (14,14)

Site 26, near Coyote Lake = (18,14)

Site 27, Baker = (23,14)

The resistivity maps for each layer in the model are as follows:
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Chapter 5
Summary

"There is no doubt that the first positive success in geophysical prospecting was obtained by
electrical methods."

-Cagniard (1953)

In this thesis, we developed several 3D magnetotelluric modeling algorithms. All of our

algorithms are finite difference algorithms that are based on the integral forms of Maxwell's

equations rather than the differential forms. We developed a direct solution algorithm and several

approximate solution algorithms. Our direct solution algorithm is similar to propagator matrix

techniques, and the results from this algorithm compare very well with those from an independent

algorithm that uses integral equation techniques. The approximate solution algorithms employ

conjugate direction relaxation methods. These algorithms are quick and do not require large

amounts of computer memory, but they sometimes give inaccurate results. A technique that uses

multiple scaling in conjunction with conjugate direction relaxation seems to give results that

compare well with the direct solution results, at least for modest 3D Earth models.

We also made considerable progress in the development of a 3D magnetotelluric inversion

algorithm. This problem in non-linear and although there are many schemes for obtaining the

solution to a non-linear inverse problem, we prefer to use the maximum likelihood inverse.

However, instead of solving the maximum likelihood equations directly at each step of the non-

linear inversion, we use conjugate gradient relaxation to obtain an approximate solution. This

allowed us to bypass a traditional sensitivity analysis and resulted in a considerable computational

time savings. We were encouraged by the results of this scheme for simple 3D Earth models and

synthetic, noise-free data.

Finally, using the forward modeling codes developed in this thesis, we interpreted

magnetotelluric data collected in the California Basin and Range Province. These data are very

three-dimensional and their proper interpretation required the use of 3D forward modeling

algorithms. We believe that these data are contaminated by excess ocean electrical currents trapped
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in the continental upper crust even though the data sites are located 200-300 km away from the

ocean. We observed a very systematic leakage effect in the data northwards into the California

Basin and Range and eastwards across the northern Mojave Desert. We believe the excess ocean

current is channelled along the Garlock Fault zone, then up into the California Basin and Range

through Searles Valley - Panamint Valley and Death Valley. Three-dimensional modeling of these

data required the lower crust in the California Basin and Range to have 16 times more conductance

than the lower crust further west in California and under the ocean. We interpreted this to result

from the ongoing extension in the area and a small component of brittle deformation in the

otherwise ductilely deforming lower crust. Issues of porosity, connectivity, deformation, and

fluids in the lower crust are still in debate and are yet to be fully resolved.
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