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Abstract

The aim of this study was to gain a better geological understanding of the southern African
region through the use of magnetotelluric (MT) and seismic techniques. Specifically, the
newly collected southern African magnetotelluric experiment (SAMTEX) data are analysed
for directionality using a tensor decomposition technique. Instead of conducting the analysis
for given periods, as is commonly done, the data are analysed for approximate depths due
to the variable electromagnetic penetration across the region. I also re-analyse previously
collected southern African seismic experiment (SASE) data for shear wave splitting of tele-
seismic events using standard processing techniques. These analyses provide information on
the electrical and seismic anisotropy properties of the region, which may then be related to
tectonics and geological structure. It is found that MT conductive direction results, for both
crustal and lithospheric mantle depths, are significantly more complex than has previously
been observed in other regions. The complexity is attributed to be due to strong effects
of large-scale conductivity heterogeneities on the conductive directions measured. The re-
analysis of some of the SASE stations for shear wave splitting has produced near-identical
results to those previously measured, and I was not able to conclusively demonstrate the
presence or absence of 2-layer anisotropy. A previously unnoticed relationship is observed
between thick lithosphere, and regions of well correlated seismic fast axis directions and plate
motion directions. Combined with the observations of vertical variations in conductive direc-
tions of the MT results, this has led to a new model being proposed to explain the anisotropy
results observed in the region. The model suggests both lithospheric and asthenospheric con-
tributions to seismic anisotropy, with a significantly stronger anisotropic layer below thicker
lithosphere, which is proposed to be due to stronger lattice preferred orientation (LPO) of
olivine as a result of increased flow velocity below the thicker lithospheric keel. This model
is supported by other geoscientific observations, including the results from the lithospheric
and asthenospheric MT analysis. No strong correlation between the measured MT and seis-
mic anisotropy parameters is observed, likely because the electrical anisotropy is strongly
effected by structure, and the seismic anisotropy is predominantly a result of LPO of olivine
(in places, quite strongly vertically varying).
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1
Introduction

This chapter provides an introductory overview to the focus of the research work described

in this thesis. It also serves as an introduction to the southern African magnetotelluric

experiment (SAMTEX), provides a brief tectonic framework of the region, and describes

previous electromagnetic work conducted in the area.

1.1 Motivation and aims of my study

The SAMTEX experiment is a multinational project, comprising a consortium of academic,

government, and industry partners. The sheer size of the experiment (figure 1-1) has necessi-

tated this cooperation in order to complete the vast amount of work linked to the collection,

processing, analysis, modelling, and interpretation of the data. A strength of an experiment

such as this is that it provides access to the expertise from each organisation, as well as the

opportunity to get involved in many different aspects of the experiment.

My thesis work was originally planned as an M.Sc. by research, which was subsequently

converted to a PhD. project. The conversion has afforded the additional time and op-

portunity to focus my project on a more comprehensive study: examining the electrical

1
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anisotropy information gained from the MT technique, and comparing the results with seis-

mic anisotropy results from the southern African seismic experiment (SASE). The work of

this thesis was originally inspired by the work of Ji et al. (1996), who compared MT geo-

electric strike directions with the fast axis splitting directions across the Grenville front in

Canada (findings discussed later). This is a facet of MT/seismic co-interpretation that has

only recently started to be explored in any detail. The SAMTEX experiment has provided

an unparalleled opportunity to compare seismic and electrical anisotropy across a very large

and geologically diverse region since the large SASE experiment (discussed in depth later)

is spatially coincident with many of our profiles (figure 1-1).

There were a number of outcomes that it was hoped would be addressed by this study,

although as this was the first time MT data had been collected across the vast majority

of the southern African region, it was sure to yield new and exciting data regardless. Past

studies of electrical anisotropy from MT have yielded interesting results that have been used

to infer geological information, e.g. mantle flow direction, and have proved a very worthwhile

analysis. It was hoped that through the correlation of the electrical and seismic anisotropy,

we would be able gain even more information than would otherwise be obtained through us-

ing either of them alone. One of the more obvious aims was to place more accurate bounds

on the depth and extent of the seismic shear wave splitting anisotropy of Silver et al. (2001),

since this seismic technique has no inherent depth information. Additionally, we expected

that the electrical anisotropy could provide information on any distinct electrical fabric in

the region, which may be related to geology, and thereby give more insight into the formation

and tectonics of southern Africa.

My part in the SAMTEX project has included many different aspects. I have planned

and led sections of the field campaign, particularly those in Botswana. I have processed and

analysed large portions of the MT data, and have participated in modelling and inversion of

some of the MT data during software courses and SAMTEX workshops (SAMTEX, 2004,

2005). The main focus of my work has been on the electrical and seismic anisotropy of the

region. This entails the detailed analysis of the MT responses for geoelectric directionality,

and since I am comparing the MT results with seismic results, it has been necessary for me to

become familiar with the seismic shear wave splitting method. I have reanalysed some of the

seismic data from the SASE experiment to look for subtleties that may have been overlooked

by the Silver et al. (2001) analysis, and also in order to gain a better understanding of the

technique. Additionally, in order to try and understand the results of my analysis, it has
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been necessary for me to explore other techniques and data sets, such as cluster analysis,

as well as plate motion and mantle flow models. We present in this thesis the analysis of

the MT data for directionality at different depths, the re-analysis of some of the SASE data

for shear wave splitting, and the interpretation of the results taking into account constrains

provided by both techniques.

1.2 The southern African magnetotelluric experiment

(SAMTEX)

Archean cratons have been the target of geoscientific studies for a long time. Our under-

standing of them is important because not only are they the oldest parts of the continents,

but also because they are major sources of the world’s mineral wealth. There are many

different hypotheses and models for the formation of continental cratons, primarily because

there is a very limited amount of data present that imposes constraints on the deep structure

beneath cratons. The different models that have been proposed would likely produce very

characteristic structures in the continental lithosphere. Magnetotelluric (MT) studies are

able to help identify and characterise many of these features through imaging and analy-

sis of the MT data: for example, the depth and extent of electrical anisotropy, the degree

and character of regional variation in the apparent resistivity, and the variation in electrical

anisotropy direction. By relating these features to surface structures, such as the orientation

of mobile belts, large faults, etc., as well as with the expected results for different models

of formation, these data can prove invaluable for the rejection as well as the improvement

of hypotheses for the formation of the cratonic roots of the continents (Jones, 1999; Chave

et al., 2002).

The SAMTEX project as a whole is intended to compliment the broad geoscientific data

that exist over the southern African region by providing added constraints through the mea-

surement of the electrical properties of the region. It has been demonstrated in other studies

(e.g. Jones et al., 2001; Jones & Ferguson, 2001; Jones et al., 2003; Davis et al., 2003) that

electromagnetic results can combine with other geoscientific results such as geochemical,

petrological, geochronological, and seismic results to form a more complete geological pic-

ture. The study conducted over the Slave craton in Canada is an example of a very large

area MT study, where the primary aim was to map the lithosphere-asthenosphere boundary

beneath the craton. That study revealed unexpectedly and serendipitously the presence of

a conductivity anomaly, named the Central Slave Mantle Conductor (CSMC) anomaly, that
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is a localized region of low resistivity at depths of 80-120 km and is spatially coincident

with the Eocene-aged kimberlite field. Given the electrical properties of the conductor, its

position, and as well as geochemical information, Jones et al. (2003) attribute the anomaly

to carbon, as either graphite or as carbon on grain-boundary films.

A large amount of geoscientific information, in particular geochemical, petrological, and

seismic, is available for both the Slave and Kaapvaal cratons, making the Kaapvaal craton

an ideal region for comparison with the Slave craton. The need for electrical information

on the southern African region was one of the main driving reasons for the initiation of the

SAMTEX experiment. Originally the proposal was to collect data along four profiles that

coincided well with the SASE experiment, thereby providing the opportunity to compare

the MT results directly with the seismic results (Chave et al., 2002). After the success-

ful first phase of fieldwork, the project was subsequently extended, with further phases of

data collection as a result of interest and funding from government, academic, and industry

partners. The SAMTEX experiment has moved further to the northwest into Namibia and

covered Botswana extensively. With further phases of data collection planned, the SAMTEX

experiment already covers the majority of the SASE station coverage, with the exception

of Zimbabwe due to political reasons, as well as large regions to the northwest where there

is far less geoscientific information available. The experiment currently consists of over 525

broadband sites along a total of 20 profiles (figure 1-1). Once complete, it will be the largest

experiment of its kind yet performed, involving a consortium of academic, government, and

industrial partners worldwide.

1.3 Previous MT work in southern Africa.

Small-scale controlled-source MT studies are routinely conducted in South Africa as a tool

for late-stage mineral exploration. However, these small-scale shallow studies are of little

use for obtaining geoelectric information of lithospheric scale. When SAMTEX was first

initiated, the only relatively large-scale MT study carried out in the country was that of

Stettler et al. (1998) and Stettler et al. (1999) (same data). These MT data consisted of 5

soundings, and were combined with reflection seismic, gravity and magnetic data in order to

gain a better understanding of the crustal structure of the Kheis tectonic province.

An MT study in northwestern Namibia (≈250 km west of our nearest profile) was carried

out by Ritter et al. (2003) and Weckmann et al. (2003) (same study), which consisted of an
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Figure 1-1: The southern African magnetotelluric experiment (SAMTEX) profile/site lo-

cations, and the SASE seismic array station locations, overlain on a map of southern Africa

with schematic geological provinces (after Nguuri et al., 2001).
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≈200 km long profile, the interpretation of which was focused on crustal structure (upper

40km). Subsequent to the start of SAMTEX, there has been further MT work across the

Beattie magnetic anomaly (Cape fold belt) funded by the GeoForschungsZentrum in Pots-

dam, Germany, as part of the German-South African Inkaba yeAfrica project (Bochannon,

2004; de Wit & Horsfield, 2006). Some of this work was recently published (Weckmann et al.,

2007), but is also more focused on crustal (upper 25 km) structure, utilising 82 broadband

stations, with a station spacing of ≈2 km.

Although not MT studies, it is important to make note of magnetometer array studies

undertaken in the region (Gough et al., 1973; de Beer & Gough, 1980), which noted a conduc-

tive anomaly in the southern Cape orientated east-west, located in the crust or uppermost

mantle. de Beer & Gough (1980) note that the conductive anomaly correlates well with a

magnetic anomaly, and is likely not thermally related. Other methods that have been used

to gain information on the electrical structure of the region include DC resistivity soundings

(e.g. Van Zijl, 2006). Some of these are deep soundings, with current electrode spacings of

a few hundred kilometres (e.g. Van Zijl, 1969, 1978), and have provided useful information

on crustal resistivity structure. The very deep DC resistivity soundings generally use tele-

phone or power lines to gain large current electrode spacings. However, although MT and

deep DC electrical soundings both provide information on the electrical characteristics of the

crust, they are not mutually exclusive (Stettler et al., 1999). MT, being an electromagnetic

method, is more capable of distinguishing between conductive layers than DC methods, but

less capable in distinguishing between different resistive layers than DC methods.

1.4 Geological outline and tectonic framework

There are two major reasons for geological interest in southern Africa. Firstly, contained in

this region is the Archean-aged Kaapvaal craton. Our understanding of Archean cratons is

essential to our understanding of early Earth and continent formation. Secondly, areas on

the Kaapvaal craton contain very significant mineral resources. These two reasons provide

both academic as well as industry interest in the region, resulting in an enormous amount

of geoscientific information being available. This section is intended as a brief introduction

to the geological structure and tectonic framework of the region (figures 1-1, 1-2). More

detailed works on the subject are presented by Tankard et al. (1982); de Wit et al. (1992);

Key & Ayres (2000), and James & Fouch (2002).
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Figure 1-2: A schematic tectonic framework of the geological provinces of southern Africa,

with some other important features (Nguuri et al., 2001). The yellow and brown in the

centre of the Kaapvaal craton is the Witwatersrand basin. The green regions on the Kaap-

vaal craton are the outcrops of the Bushveld complex. Etopo 5 data (freely available at:

www.ngdc.noaa.gov/mgg/fliers/93mgg01.html) are used for the bathymetry in the oceans.

The Kalahari craton, within which is contained the Archean Kaapvaal and Zimbabwe

cratons, forms the core of the southern African continent. The Kaapvaal craton, the more

thoroughly studied of the two cratons, is composed of various granite-greenstone terranes. It

is bounded in the south and west by Proterozoic mobile belts (Namaqua-Natal mobile belt,

and Kheis fold and thrust belt), in the east by the Lebombo monocline, which is Jurassic in

age, and in the north by the Neoarchean orogenic Limpopo belt (de Wit et al., 1992). At
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its surface, the Kaapvaal craton can be divided into Archean subdomains, and it has been

suggested that some of these subdomains are also distinct at upper mantle depths (de Wit

et al., 1992) within the deep lithospheric keel, or tectosphere (Jordan, 1975), typically found

beneath Archean cratons. The Kaapvaal cratonic keel, as observed by James et al. (2001)

through tomographic analyses of P-wave and S-wave delay times, is a high velocity mantle

zone. The eastern part of the craton is host to the oldest known sections of crust (≈3.5 Ga),

some of which may represent the remnants of ancient oceanic lithosphere, whereas the more

western sections of the craton are generally younger in age (de Wit et al., 1992). The Kaap-

vaal terranes were assembled over a period of at least 1 Ga, from the early Archean (3.6 Ga)

to the late Archean (2.6 Ga). In contrast to the general ENE-WSW trend in the east of the

craton, the western section of the Kaapvaal craton, to the west of the Colesberg Magnetic

lineament (CML) (figure 1-2) shows a distinctively NS trend both geologically and geophysi-

cally, e.g. the Amalia and Kraaipan greenstone belts as well as the CML itself (Corner et al.,

1990; de Wit et al., 1992). The CML can be clearly observed in the magnetic data in figure

1-3. The core of the Zimbabwe craton is characterised by north-northeast structural trends,

including the Great dyke (Wilson, 1990; Jelsma et al., 2004). The late stages of the Kaapvaal

craton evolution included widespread extensional volcanism, followed by the development of

very large depositional basins (James & Fouch, 2002). One such basin is the Witwatersrand

basin, supplied by sediments originating in the north, and host to what is thought to be the

world’s largest gold reserves. The end of craton evolution in Archean time was marked by a

craton-wide extensional cycle of Ventersdorp volcanism and sedimentation between 2.7 and

2.6 Ga (James & Fouch, 2002). A prominent feature located on the northeastern part of the

Kaapvaal craton is the ≈2.06 Ga (e.g. Eglington & Armstrong, 2004) Bushveld intrusion, the

world’s largest layered mafic intrusion, containing the world’s largest reserves of platinum

group metals.

The Limpopo belt separates the Kaapvaal and Zimbabwe cratons, and can be divided

into three zones; the northern marginal zone, central zone, and southern marginal zone

(de Wit et al., 1992). These three zones are geologically distinct, and are separated from

each other, and from the adjacent cratons by well defined shear zones (Van Reenan et al.,

1992). As a whole, it is a high-grade metamorphic terrane formed through collision between

the Kaapvaal and Zimbabwe cratons in the late Archean. There is a large system of roughly

ENE-WSW trending ductile shear zones that accommodated crustal shortening during the

Limpopo orogeny (McCourt & Vearncombe, 1992). The Thabazimbi-Murchison Lineament

(TML), a deformation belt with a long-lived tectonic history, is one such feature ≈25 km
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wide that stretches for approximately 500 km across the Kaapvaal craton (Good & DeWit,

1997). The TML has been advocated to be an important controlling structure for the SKS

shear-wave splitting results of the region (Silver et al., 2001).

Mobile belts accreted to southern Africa in the mid to late Proterozoic, buffering the

cratons from later plate tectonic events (James & Fouch, 2002). The Kaapvaal craton is

bounded to the south and east by the Namaqua-Natal Belt, which is Proterozoic in age

and thought to be subduction-related (James & Fouch, 2002). To the west, the Kaapvaal

craton is bounded by the Proterozoic “thin skinned” Kheis fold and thrust belt (Carney

et al., 1994). The Okwa terrane and Magondi orogenic belt lie to the northwest of the

Kaapvaal craton, Zimbabwe craton, and Limpopo belt. This region has complex geological

relationships, made even more enigmatic due to the extensive Kalahari cover (Carney et al.,

1994; James & Fouch, 2002; McCourt et al., 2004). These orogenic belts relate to events

around 2 Ga and imposed strong overprinting on the very western parts of the Zimbabwe

craton. However, despite Proterozoic overprinting, the mantle beneath some parts of this

region are known to be of Archean age (Carlson et al., 2000; Shirey et al., 2001; James &

Fouch, 2002). Blue diamonds in figure 1-3 represent model ages >2.5 Ga, calculated from

Re depletion models of peridotite xenoliths (note there is one in the Magondi orogenic belt).

Red diamonds represent model ages <2.0 Ga, and the green diamond is for a model age of

2.0-2.5 Ga (Carlson et al., 2000).

To the northwest of the Okwa Terrane and Kheis belt is the Rehoboth terrane (or Namibia

province), of which very little is known due largely to the thick Kalahari desert sands which

cover a large portion of it. It is delineated primarily by potential field (mostly aeromag-

netic) data (figures 1-3, 1-4), where it has a characteristically lower frequency, “smoother”

response. The Rehoboth terrane can be divided into two subprovinces, the northern Tses

Subprovince, which has a weaker magnetic signature than the southern Aroab Subprovince.

The change in magnetic signature is considered to reflect a potential transition in the crustal

basement across a northeast trending discontinuity (Hoal et al., 1995). The discontinuity,

which is not very well understood, is known as the Makgadikgadi line and was originally

based on gravity (figure 1-4) and seismicity anomalies (Reeves & Hutchins, 1982), but is also

visible in the regional magnetic data (figure 1-3). Northwest of the Rehoboth terrane and

Magondi orogenic belt is the Ghanzi-Chobe belt and the Damara orogenic belt (Hoal et al.,

1995), outlined as one belt (the Damara belt) in figures 1-2, 1-3, and 1-4. The Damara belt

is interpreted to represent the collisional suture separating the Rehoboth terrane from the
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Congo craton (sometimes called Angola craton) (Johnson et al., 2006). Most studies place

the timing of the collisional tectonics in the central, high-grade metamorphic part of the belt

to be ≈550 Ma (Johnson et al., 2006).
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Figure 1-3: Regional magnetic anomaly map of southern Africa, in nT, with rough frame-

work of geological provinces (Nguuri et al., 2001). KC: Kaapvaal craton. KB: Kheis belt.

ZC: Zimbabwe craton. RT: Rehoboth Terrane. DMB: Damara Mobile belt. OT: Okwa Ter-

rane. MMB: Magondi Orogenic belt. NN: Namaqua-Natal Metamorphic belt. CFB: Cape

fold belt. GB: Gariep belt. LB: Limpopo Belt. Colesberg magnetic lineament also displayed.

Blue, green, and red diamonds represent Re model ages of >2.5, 2-2.5, and <2.0 Ga respec-

tively from peridotite xenoliths, after Carlson et al. (2000). Magnetic data courtesy of the

Council for Geoscience, Pretoria, South Africa.
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Figure 1-4: Regional Bouguer gravity map of southern Africa, with rough framework of

geological provinces (Nguuri et al., 2001). Terrane symbols as in figure 1-3. Gravity data

courtesy of the Council for Geoscience, Pretoria, South Africa.



2
MT theory

2.1 Introduction to the magnetotelluric (MT) method

The magnetotelluric (MT) method is a natural-source (passive) electromagnetic geophysi-

cal technique. The foundations of the technique were described by Cagniard (1953) in the

1950’s, and although used sporadically subsequently, its use and development has made

massive progress since the 1980’s with the aid of modern instrumentation, 24-bit recorders,

low-noise sensors, modern robust processing methods, advanced analysis techniques, and

multi-dimensional modelling and inversion. MT has the ability to penetrate several hun-

dred kilometres into the Earth, reaching well into the upper mantle. To provide an artificial

source large enough so as to allow this depth penetration would be costly and impractical,

and would produce additional complications through the necessity of dealing with source ge-

ometry (Madden & Nelson, 1986; Jones, 1999). A few studies have used very large sources,

mostly power lines, to penetrate depths greater than the middle crust (e.g., Blohm et al.,

1977; Lienert, 1979; Kaikkonen et al., 1996; Zhamaletdinov et al., 2007). The source used by

the magnetotelluric method is the Earths naturally fluctuating magnetic field. These varia-

tions in the magnetic field are produced by a number of different mechanisms; high frequency

signals that penetrate several hundred metres to typically ten kilometres into the Earth are

13
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caused largely by world-wide thunderstorm activity. The resulting electromagnetic energy

travels around the Earth in a waveguide that is formed between the Earth’s surface and the

ionosphere. If the thunderstorm activity is too near the station where measurements are

being made, say within 5 km, it will not provide an ideal source as it will have non-planar

characteristics, and will appear as a spike in the data. Longer period signals (103–104 s)

that penetrate deeper (100 km or more) into the Earth are caused by the interaction of solar

plasma with the Earth’s magnetosphere (Vozoff, 1991).

Figure 2-1: Ranges in electrical conductivity of some common Earth materials. Taken from

Marti (2006), modified from Palacky (1987).

The naturally varying magnetic field induces an electric current (known as a telluric cur-

rent), which by Faraday’s Law, induces an electric field in the Earth. This induced electric

field produces a secondary magnetic field. The strength of the electric field is dependant

on the conductivity of the medium (Jones, 1999). Through the simultaneous recording of

the time variations in the magnetic and electric fields, and the calculation of their ratios

at varying frequencies, it is possible to derive the conductivity distribution with depth and
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distance (Jones, 1999). The variations in conductivity with depth can then be used to gain

information about the electrical structure of the lithosphere. There are a number of factors

responsible for variations in conductivity: different rock types and compositions have con-

ductivities which vary over orders of magnitude (figure 2-1), a wet environment will likely be

more conductive than a dry environment, strongly interconnected conductive minerals will

enhance conductivity compared with poor interconnection, and an increase in temperature

will decrease resistivity. These are just some of the possible factors that may be responsible

for an observed resistivity structure. They will be discussed in more detail in later sections.

2.2 The physics of the MT method

Maxwell’s equations are a set of four equations that were published by Maxwell in his two

volume textbook in 1873: A Treatise on Electricity and Magnetism (Maxwell, 1873a,b). The

equations describe the behaviour of both electric and magnetic fields and their interaction

with matter, and are therefore the fundamental physics upon which the MT method is built.

They are described in differential and integral (in square brackets) form, and in words cor-

responding to the integral form (Feynman et al., 1964) below:

∇·E =
q

ǫ0

[
∮

S

E·nds =
q

ǫ0

]

(2.1)

This first equation (2.1) is essentially Gauss’ Law for an electric field, and can be described

as:

(flux of E through a closed surface) = (Charge inside) / ǫ0.

∇× E = −∂B

∂t

[
∮

c

E· dl = − ∂

∂t

∫

S

B·nds

]

(2.2)

The second of Maxwell’s equations (2.2) is Faraday’s Law of induction, and can be described

as:

(line integral of E around a loop) = − (the time rate of change of the flux

of B through the loop).

∇·B = 0

[
∮

S

B·nds = 0

]

(2.3)
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Equation 2.3 is Gauss’ Law for a magnetic field, and can be described as:

(flux of B through a closed surface) = 0.

∇× H = J +
∂D

∂t

[
∮

c

H· dl = I +
∂

∂t

∫

S

D·nds

]

(2.4)

This fourth equation (2.4), commonly known as the Ampere-Maxwell Law, is Ampere’s Law

with Maxwell’s term (∂D
∂t

) added to it, and can be described as:

(The integral of H around a loop) = (Current through the loop) + (the time rate

of change of the flux of D through the loop).

where E, and B are the measured electric (V m−1) and magnetic (Teslas [T ]) fields respec-

tively, q is the electric charge density (coulombs per unit volume), ǫ0 is the electric permit-

tivity in free-space (Fm−1), and t is time. n is a unit vector normal to the area element ds

of the surface S and dl is a vector element of length along the contour. I in equation 2.4

is defined as I =
∫

S
J ·nds. J , the total electric current density (Am−2) is related to E by

equation 2.5 (where σ is conductivity (Sm−1)), which is Ohm’s Law and has implications

for the accumulation of charge at a conductivity discontinuity. D is electric displacement

(Cm−2), and is related by equation 2.6, where ǫ is the permittivity of the material. H is

the magnetic intensity (Am−1) and is related to B by equation 2.7, where µ is the magnetic

permeability (Hm−1) of the substance.

The constitutive equations relating these are:

J = σE, (2.5)

D = ǫE, (2.6)

B = µH. (2.7)

In the MT method, it is assumed (see assumption viii of the MT method (page 18)) that

bulk rock conductivity variations far outweigh the effects of variations in electrical permit-

tivities and magnetic permeabilities. Therefore free-space values for electrical permittivities

(ǫ0 = 8.85 × 10−12 Fm−1) and magnetic permeabilities (µ0 = 1.2566 × 10−6 Hm−1) are

assumed.

The penetration of an electromagnetic wave in a conductor (e.g. rock for induction in the

Earth) depends on the oscillation frequency. The relation is known as the electromagnetic

skin depth phenomenon and is the reason for MT measurements being made over a range of
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frequencies. Each frequency of measurement is essentially also a measurement at a certain

length, which is depth in a 1D Earth. The electromagnetic skin depth phenomenon is

described by

δ(ω) =

√

2

µ0σω
≈ 500

√

ρT , (2.8)

where δ is the penetration of an electric field (in metres) with an angular frequency ω into a

half-space of uniform or average conductivity σ. Thus, penetration is assured at any depth

and depends only on the period (T ) of measurement, and resistivity (ρ) of the subsurface.

In theory, all we would need to do to probe deeper into the Earth, is to measure at longer

and longer periods.

2.3 Assumptions of the MT method

There are a number of simplifying assumptions that are utilised when considering electro-

magnetic induction in the Earth. These have been discussed by a number of authors (e.g.,

Cagniard, 1953; Wait, 1954; Price, 1962, 1973; Simpson & Bahr, 2005) and are summarised

below, modified from Simpson & Bahr (2005). It is important that these assumptions be

born in mind and one should realise when they are being violated.

i Maxwell’s equations (equations: 2.1, 2.2, 2.3, 2.4) are obeyed.

ii The Earth does not generate electromagnetic energy, it only absorbs or dissipates it.

iii All fields can be regarded as conservative and analytic (has a first derivative at all points)

away from their sources.

iv The electromagnetic source fields utilised by the MT method may be treated as being uni-

form, plane-polarised electromagnetic waves, with near-vertical incidence to the Earth’s

surface. This is commonly known as the plane-wave assumption and may be violated

when the source field is too near, or in polar and equatorial regions.

v No accumulation of free charges is sustained in a layered Earth. However, in a 2D or

3D Earth, charges are accumulated and dissipated (on a cycle given by the frequency

of interest) along conductivity discontinuities, producing the non-inductive static shift

effect.

vi The Earth behaves as an ohmic conductor, and charge is conserved. i.e., J = σE, and

∇· J = −∂ρ
∂t

.
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vii The Quasi-stationary approximation: Time-varying displacement currents (∂D
∂t

, Maxwell’s

term in equation 2.4) are small compared with time-varying conduction currents (J , in

equation 2.4) for the period range 10−5 s to 105 s. Even at high frequencies and in very

resistive environments, the displacement currents are likely to be about one order of

magnitude smaller. This allows us to treat induction in the Earth as a diffusion process,

further allowing us to gain responses that are volumetric averages of Earth conductivities.

Strictly, this condition applies only in the sub-surface

viii Variations in electrical permittivities and magnetic permeabilities of rocks are negligible

compared with variations in bulk rock conductivity. Within the Earth, the dielectric

permittivity can vary from ǫ0 = 8.85 × 10−12 Fm−1 (in a vacume and air) up to 80×ǫ0

(in water). In the presence of a highly magnetised layer, the magnetic permeability may

be many times greater than µ0 = 1.2566 × 10−6 Hm−1. If µ0 is assumed, the resulting

magnetised layer would be misinterpreted to be more resistive than it actually is (Kao

& Orr, 1982). Thus, it is clear that this assumption could be inappropriate in highly

magnetic or very wet environments.

Electromagnetic fields in the earth must not only obey Maxwell’s equations, but also

the appropriate conditions to be applied at boundaries between the homogeneous regions

involved in the problem. Thus in order to fully specify the assumptions of the MT method,

we state the boundary conditions below, given two regions, medium 1 and medium 2 (from

Ward & Hohmann, 1987).

The normal component of B, Bn, is continuous across an interface separating medium 1

and medium 2, i.e.,

Bn1 = Bn2. (2.9)

The normal component of D, Dn, is discontinuous across an interface separating medium 1

and medium 2 due to the accumulation of a surface-charge density ρs, i.e.,

Dn2 − Dn1 = ρs. (2.10)

The tangential component of E, Et, is continuous across an interface separating medium 1

and medium 2, i.e.,

Et1 = Et2. (2.11)

The tangential component of H, Ht, is continuous across an interface separating medium 1

and medium 2 if there is no surface current, i.e.,

Ht1 = Ht2. (2.12)
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The normal component of current density J , Jn, is continuous across an interface separating

medium 1 and medium 2, i.e.,

Jn1 = Jn2. (2.13)

The scalar potentials, appropriate to static fields, V and U defined by: E = −∇V , and

H = −∇U , are continuous across an interface, i.e.,

V1 = V2 and U1 = U2. (2.14)

The modified Maxwell’s equations, taking the assumptions above into account, may be

transformed into the frequency domain:

−∂B(t)

∂t
= −iωB(ω) (2.15)

∇· (∇× A) = 0 for any vector field A. We can take the divergence of equation 2.4.

µ0∇· (σE) = µ0(σ∇·E + E· ∇σ) = 0 (2.16)

it then follows from equation 2.1 that

q

ǫ0
= −E

∇σ

σ
⇒ q

ǫ0
= −E∇ lnσ (2.17)

resulting in the modified Maxwell’s equations in the frequency domain:

∇× E = −iωB (2.18)

∇× B = µ0σE (2.19)

∇·E = −E∇ ln σ (2.20)

∇·B = 0 (2.21)

using the proven vector field identity (where F is any vector)

∇× (∇× F ) = (∇·∇·F ) −∇2F (2.22)

We can then take the curl of equations 2.18 and 2.19 respectively, yielding

∇2B = iωµ0σB + µ0E ×∇σ (2.23)

∇2E = iωµ0σE −∇(E∇ ln σ) (2.24)

In a homogeneous halfspace, the conductivity is constant, (∇σ = 0), and therefore equa-

tions 2.23 and 2.24 simplify to diffusion equations

∇2B = iωµ0σB (2.25)
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∇2E = iωµ0σE (2.26)

These diffusion equations have solutions of the form

B = B1e
iωt−qz + B2e

iωt+qz (2.27)

E = E1e
iωt−qz + E2e

iωt+qz (2.28)

with complex wave number, q,

q =
√

iµ0σω =

√

µ0σω

2
+ i

√

µ0σω

2
(2.29)

The real part of q governs the attenuation, and the inverse of the real part, is the skin

depth (equation 2.8). However, assuming the earth does not generate electromagnetic energy

(assumption ii), B2 = 0 and E2 = 0.

Inserting these solutions into equation 2.18, and assuming Ey = 0, produces

∇× E =
∂Ex

∂z
= −

√

iωµ0σEx (2.30)

= −iωBy, (2.31)

from which can be derived what is known as the Schmucker-Weidelt transfer function (Wei-

delt, 1972; Schmucker, 1973)

C =
1

q
=

1√
iµ0σω

=
Ex

iωBy

= − Ey

iωBx

(2.32)

Combining equation 2.32 with q yields,

ρ =
1

σ
=

1

|q|2µ0ω = |C|2µ0ω, (2.33)

and if C =
M

iω
,

ρa,ij(ω) =
µ0

ω
|Mij(ω)|2 =

1

µ0ω
|Zij(ω)|2 (2.34)

Equation 2.34 provides us with what is known as the apparent resistivity, ρa (Ωm). It is

termed the apparent resistivity because, except in a half-space, it is not the true resistivity,

but an average resistivity for the volume being sensed at a given period. The impedance

phase is the phase lead of the electric over the magnetic field and may be calculated using

equation 2.35.

φij(ω) = tan−1

(

Im{Zij(ω)}
Re{Zij(ω)}

)

(2.35)

Equations 2.34 and 2.35 are not independent of each other. The apparent resistivity

function (ρa) can in fact be predicted from the phase (φ) function, except for a scaling

coefficient (Weidelt, 1972). MT data are most often presented as a plot of apparent resistivity

and phase as a function of increasing period (T ), such as is displayed in figure 2-2.
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Figure 2-2: An example of typical MT data (site: Bot419) as it is most commonly displayed;

apparent resistivities and phases as functions of increasing period (a proxy for increasing

depth) for the two off-diagonal elements (xy and yx).
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2.4 The impedance tensor

A magnetotelluric transfer function is, by definition, a function that relates the measured

electromagnetic fields at given frequencies, and depends only on the electrical properties of

the material and not the nature of the source. MT transfer functions are represented by

impedance or magnetotelluric tensors.

The impedance tensor relates, for each frequency, the orthogonal horizontal electric (Ex, Ey)

and magnetic (Hx, Hy, or equivalently: Bx/µ0, and By/µ0) fields. The impedance tensor,

Z (ω), is thus a complex second-rank tensor, described by equation 2.36.

(

Ex(ω)

Ey(ω)

)

=

(

Zxx Zxy

Zyx Zyy

)(

Bx(ω)/µ0

By(ω)/µ0

)

or E = Z B/µ0 (2.36)

The magnetotelluric tensor, M described by Weaver et al. (2000) is identical, except that

it uses the B instead of the H fields to describe the relationship (equation 2.37).

(

Ex(ω)

Ey(ω)

)

=

(

Mxx Mxy

Myx Myy

)(

Bx(ω)

By(ω)

)

or E = M B (2.37)

M and Z are complex, and thus each component (Mij and Zij) contain real and imaginary

parts, i.e. they not only have a magnitude, but also a phase.

2.4.1 The tipper vector

The tipper vector, also known as the geomagnetic transfer function, is a dimensionless quan-

tity, which is the representation of the ratio of the vertical to horizontal magnetic field

components (equation 2.38).

Hz(ω) = (Tx(ω), Ty(ω))

(

Bx/µ0

By/µ0

)

(2.38)

The tipper vector is normally represented as induction vectors (more commonly described

as induction arrows), the concept of which was first formulated by Parkinson (1959, 1962),

and Wiese (1962). Induction arrows are essentially two real, dimensionless vectors, which

represent the real and imaginary parts of the tipper vector on the xy plane (equations 2.39,

and 2.40).

TRe(ω) = (Re(Tx), Re(Ty)) (2.39)

T Im(ω) = (Im(Tx), Im(Ty)) (2.40)
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Lateral conductivity variations generate vertical magnetic fields, which means that induc-

tion arrows can be used to infer the presence or absence of lateral variations in conductivity

(Jones & Price, 1970; Jones, 1986; Simpson & Bahr, 2005). The Parkinson convention

(Parkinson, 1959), as opposed to the Wiese convention (Wiese, 1962), is the convention

used by most practitioners, where the induction arrows point towards the anomalous current

concentrations rather than away from them (Jones, 1986; Simpson & Bahr, 2005).

2.5 Possible cases of the impedance tensor

2.5.1 The 1D Earth

For a one-dimensional Earth (i.e. the conductivity changes only with depth), the diagonal

components (Zxx and Zyy) of Z, which relate the parallel electric and magnetic fields, are

zero. The off-diagonal terms (Zxy and Zyx) are the same since there are no lateral variations

in conductivity, but are of different sign in order to preserve the right-hand rule. Thus, for

the case of a 1D Earth, Z can be represented by equation 2.41,

Z
1D

(ω) =

(

Zxx(ω) Zxy(ω)

Zyx(ω) Zyy(ω)

)

=

(

0 Zxy(ω)

−Zxy(ω) 0

)

. (2.41)

It is clear from equation 2.29 that the real and imaginary parts of Zij will have the same

magnitudes for a homogeneous half-space (1D Earth). Additionally, Zxy = −Zyx, and the

apparent resistivity is equal to the actual resistivity:

ρa,ij(ω) =
1

µ0ω
|Zij(ω)|2 = ρ1D, (2.42)

Since the real and imaginary parts of the impedance have the same magnitude, and are

the same for both of the off-diagonal terms, the impedance phase is equal to 45° for all ω for

a half-space.

φ1D(ω) = tan−1

(

Im{Zij(ω)}
Re{Zij(ω)}

)

= 45 deg, (2.43)

φyx(ω) = φxy(ω) − π (2.44)

It is worth noting that in the 1D case, given error-free MT data at all frequencies, there

is a unique model that will fit the data (Tikhonov, 1965; Bailey, 1970; Weidelt, 1972; Parker,

1983).
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2.5.2 The 2D Earth, and the fault model

For an Earth model where the conductivity varies with both depth and lateral extent, either

a 2D or 3D interpretation is required. The conditions under which a body may be treated as

2D are explored by Jones (1983b). It is found that it depends largely on the length extent

of the body (L) and the skin depth of the host rock (δh). If the the ratio L
δh

is far greater

than 1 for the frequency of interest, then a 2D interpretation of the structure should give

approximately the correct conductivity structure. If the body is too short (small L) or the

frequency too low (large δh), resulting in the ratio being smaller than 1, then a full 2D

interpretation using both modes will not be valid and a 3D interpretation is necessary. A

real world situation where a 2D model is appropriate could be for example, a crustal inter-

pretation of a transect across a long (>200 km in length) fault structure that is in a fairly

conductive environment (δh <100 km).

The 2D case is obviously more complex than the 1D case. Where there is a conductivity

discontinuity, there will be a build up of charge. This build up of charge at a boundary,

is a direct consequence of Ohm’s law (equation 2.5, page 16) and the boundary condition,

which requires the electric current density, J , to be continuous across the boundary. It

can be seen from equation 2.5 that if J must be continuous across the boundary, and σ is

discontinuous (it has different values (σ1 and σ2) on either side of the boundary), then the

electric field E across the boundary must be discontinuous, and have different amplitudes on

either side of the boundary. This is achieved through the buildup of charge on the boundary

surface. These charges then deflect or refract the electric field at the boundary. The amount

of charge built up in shallower regions is larger than in deeper regions since the impinging

current is more intense in shallower regions due to the skin depth effect. The boundary

effect on electric current is well described by figure 2-3; note also that the current flows

nearer to the surface on the more conductive side (σ1) of the region. A current vortex is

formed in the conductive side of the model (figure 2-3), and there are two vortices of opposite

senses formed during each complete oscillation (Jones & Price, 1970). All components of H

and the tangential components of E are continuous across a boundary (Jones & Price, 1970).

In the 2D case (figure 2-4), there is one lateral direction (defined as x) along which there

are no field variations. The x direction in this case would represent what is known as the

geoelectric strike or strike direction. For the ideal 2D case, electric and magnetic fields are

mutually orthogonal, with electric fields parallel to the strike direction inducing magnetic

fields only perpendicular to strike in the vertical plane, and magnetic fields parallel to the



2.5. Possible cases of the impedance tensor 25

Figure 2-3: Lines of Ey current flow (equivalent to contours of equal Hx) for the TM mode

at a vertical conductivity boundary, for one instant in the oscillation period (1 second).

σ1 = 10σ2. Modified from the numerical solution of Jones & Price (1970).

Figure 2-4: A graphical description of a simple 2 quarter-space model, with different appar-

ent resistivities meeting to form a vertical conductivity boundary. Due to the conservation

of current across a boundary, Ey is discontinuous. In this idealised 2D case, the electromag-

netic fields can be decoupled into what are known as the TE and TM modes. Redrawn and

modified from Simpson & Bahr (2005)

strike direction inducing electric fields only in the vertical plane perpendicular to strike.

Under these circumstances, Maxwell’s equations can be expanded, and decoupled into two

modes, each mode relating 3 parts of the electric and magnetic field. One mode, known as

the Transverse Electric (TE) mode or E-polarisation, is composed of Ex, By, Bz, and de-
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scribes electric currents flowing parallel to the geoelectric strike (x in figure 2-4). The other

mode known as the Transverse Magnetic (TM) mode or B-polarisation, is composed of Bx,

Ey, Ez, and describes magnetic fields parallel to the geoelectric strike and electric currents

flowing perpendicular to the geoelectric strike. The two polarisations may be described by:

∂Ex

∂y
=

∂Bz

∂t
= iωBz,

∂Ex

∂z
=

∂By

∂t
= −iωBy,

∂Bz

∂y
− ∂By

∂z
= µ0σEx,































TE mode. (2.45)

∂Bx

∂y
= µ0σEz,

−∂Bx

∂z
= µ0σEy,

∂Ez

∂y
− ∂Ey

∂z
= −iωBx,































TM mode. (2.46)

The colour in equations 2.45 and 2.46 correspond to the colours used in the description

of the two modes in figure 2-4. In the ideal 2D case, in strike coordinates, the impedance

tensor can be described by equation 2.47.

Z
2D

(ω) =

(

0 Zxy(ω)

Zyx(ω) 0

)

=

(

0 ZTE(ω)

ZTM(ω) 0

)

. (2.47)

The diagonal elements are zero since the electric components are related to orthogonal

magnetic components only. The off-diagonal elements (Zxy and Zyx) represent essentially

the TE and TM modes respectively. They are normally different in magnitude, and have

opposite sign. The opposite sign results in the xy and yx phases being in different quadrants

(1st and 3rd). Note that the tipper vector (equations 2.38, 2.39, and 2.40) is only associated

with the TE mode.

In the 2D case when the impedance tensor is not in strike coordinates, as is generally

the case for recorded data, the diagonal components will not be zero, and the modes will be

mixed up in the impedance tensor. However, it is possible to rotate the impedance tensor

through an angle θ around a vertical axis using a Cartesian rotation matrix R
θ

(equation

2.48) until the diagonal components of Z are zero and the impedance tensor is in strike
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coordinates, Z
2D

(equation 2.49).

R
θ

=

(

cos θ sin θ

− sin θ cos θ

)

, and RT

θ
=

(

cos θ − sin θ

sin θ cos θ

)

, (2.48)

Z
2D

= R
θ

Z
obs

RT

θ
. (2.49)

RT

θ
is the transpose of the rotation matrix R

θ
, Z

obs
is the impedance tensor in the

observational reference frame, and Z
2D

is the impedance tensor rotated through an angle θ

to strike coordinates.

2.5.3 The 3D Earth

If the conductivity distribution varies in all three directions, no matter what the rotation

angle, there will be no angle that results in the diagonal elements vanishing. It is also no

longer possible to separate Maxwell’s equations into two modes. The 3D Earth requires the

determination of the four elements of the full impedance/MT tensor.

2.6 Electrical anisotropy

A substance that is electrically anisotropic has a variation of an electrical property depending

on the direction in which it is measured (Sheriff, 1999). It is possible for Earth materials

to have such properties for a number of reasons and in a number of circumstances which

will be discussed in more detail in a later section. A rock could therefore have a resistivity

structure such that the resistivity measured in the three orthogonal directions of a Cartesian

coordinate system is different in all three directions. This may be represented by a resistivity

matrix, ρ(x, y, z),

ρ(x, y, z) =









ρxx ρxy ρxz

ρyx ρyy ρyz

ρzx ρzy ρzz









. (2.50)

which is symmetric and positive-definite (Pek & Verner, 1997). The symmetric and

positive-definite conditions allow the matrix to be written as a diagonal matrix of three

principal resistivities (ρ1, ρ2, and ρ3, all positive) and three angles, which relate the orienta-

tion of the tensors principal axes to the reference frame used (e.g. (x′, y′, z′) to (x, y, z)) (Heise
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et al., 2006b). Pek & Verner (1997) use three angles in the Cartesian coordinate system (αS,

αD, and αL) known as the strike, dip and slant angles of the anisotropy respectively.

ρ(x, y, z) = RT

z
(αS)RT

x
(αD)RT

z′
(αL)









ρ1 0 0

0 ρ2 0

0 0 ρ3









R
z′
(αL)R

x
(αD)R

z
(αS), (2.51)

R is the Cartesian rotation matrix, RT is its transpose, and the subscript represents the

axis about which the rotation occurs. The rotation angles are applied in the order αS, αD,

then αL around the z-axis for αS, the x-axis for αD, and then around the latest z-axis (z′)

for αL.

Under the plane-wave assumption (assumption iv, page 17), there is no vertical magnetic

field for induction in a 1D Earth. Horizontally varying magnetic fields diffusing downwards in

the Earth will induce horizontal electric fields at right angles, which in turn drive the telluric

currents. Therefore the primary current induced in a 1D Earth has only horizontal compo-

nents. For this reason it is generally not possible to determine the full electrical anisotropy

of a halfspace, and using the MT method it is only possible to measure the anisotropy

of the principal resistivity matrix components projected onto the horizontal plane (Earth’s

surface). This means that we are unable to distinguish between horizontal anisotropy, and

anisotropy that has a dip angle, but produces the same lateral anisotropy when projected

onto the horizontal plane (Heise et al., 2006b). It is important to note that using the MT

method we are measuring a bulk resistivity, and therefore at great depth it is impossible

to resolve the scale of the anisotropic structure (microscopic or macroscopic) (Wannamaker,

2005). Typically, and in a similar manner to the seismic anisotropy approach, electrical

anisotropy is represented by the direction of maximum conductivity, φE, which is either par-

allel or perpendicular to the geoelectric strike direction. The magnitude is often represented

by the phase difference, δθ, between the two off-diagonal elements of the impedance tensor.

A small phase difference indicates a 1D environment, while a larger phase difference would

indicate 2D or 3D regional structures or anisotropy. Electrical anisotropy measurements,

for a given site, for a given frequency or depth, are therefore commonly represented as a

vector, aligned in the conductive direction, and scaled by the phase difference between the

off-diagonal elements of the phase tensor.

It is worth mentioning here the recent study by Heise et al. (2006b). They demonstrate

through modelling that MT phase split is a result of the vertical resistivity contrast in a

1D situation, and that given an anisotropic half-space there will be no phase split, with the
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only information that there is an anisotropic region present contained in the amplitude of

the MT response. It is for this reason that taking the maximum phase split when doing our

calculations (discussed later) is more robust.

2.7 Distortion: the problem

Small-scale or near-surface conductivity inhomogeneities distort the magnetotelluric impedance

tensor in three ways (Groom & Bahr, 1992):

1. They produce the well-known static shift effects sometimes observed on sounding

curves.

2. If the underlying conductivity structure is 2D, then the two regional impedance’s are

mixed in an arbitrary coordinate system. This results in a change in shape and level

of the sounding curve and distortion of the phase curves.

3. At sufficiently high frequencies (short periods) for the size of the distorting body, the

inhomogeneity generates, through induction, anomalous magnetic fields that, in turn,

alter the background phases.

These small-scale, or near-surface, inhomogeneities are either not of interest to the MT practi-

tioner, who is more concerned with the larger-scale, deeper structures, or the inhomogeneities

are too spatially undersampled to allow interpretation. The small-scale inhomogeneities are

necessarily near the surface; otherwise they would merely contribute to the effective bulk

response.

Distortion effects can be viewed as inductive and galvanic, although these effects are not

entirely separate. If the time-varying magnetic field induces currents that flow in a closed

loop, a secondary magnetic field is induced, which adds to the primary magnetic field. This

secondary magnetic field is the inductive distortion effect, which decreases in proportion to

the regional inductive response with increasing period (point three above) (Groom & Bahr,

1992). Due to flux of the regional currents through small-scale conductivity heterogeneities,

surface charges build up at the boundaries, which produce an electrostatic field (similar to

what was described in the previous section “The 2D Earth and the fault model”), result-

ing in the channelling or distorting of the regional currents. This is the galvanic distortion

component (points one and two above), which may persist to the longest periods (Jones,

1988), and may also be a result of topographic effects (Jiracek, 1990). The problem of cur-

rent channelling, as this distortion is often referred to, can therefore be associated with the
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existence of charge distributions on conductivity discontinuities (Jones, 1983b), of which the

magnetic effects can be ignored at sufficiently long periods (Chave & Jones, 1997) due to

their magnitude, but the electric field effects are comparable with the other electromotive

forces present. Price (1973) called these charges the villains of the piece. The currents are

most strongly perturbed when the gradient of the electrostatic potential (scalar, not vector)

is of the same order of magnitude as the normal electric field (Jones, 1983b).

As is well demonstrated by Chave & Smith (1994), magnetic field distortion can be im-

portant in a decomposition analysis, particularly at higher frequencies (shorter periods).

Magnetic distortion decays with increasing period, hence declining in importance as period

increases. Chave & Smith (1994) demonstrate, using an example of data collected in Canada,

that the electric galvanic distortion decomposition does not sufficiently describe the distor-

tion model at higher frequencies, and that it is necessary to incorporate both the electric

and magnetic field galvanic distortion into the model to adequately describe the distortion

affecting the response. This is especially important in the decomposition of seafloor MT data.

The distortion effect of the electric field can mathematically be represented by a real,

frequency-independent 2×2 matrix, C.

C =

(

Cxx Cxy

Cyx Cyy

)

. (2.52)

Where the inductive distortion effects, and those due to the magnetic effects of the

charges, may be neglected, the measured impedance tensor may then be described by equa-

tion 2.53.

Z
obs

= R
θ

C Z
2D

RT

θ
. (2.53)

where Z
obs

is the measured/observed impedance tensor in acquisition coordinates, Z
2D

is

the regional impedance tensor in strike coordinates, C is the telluric distortion tensor, and

R
θ

is the rotation tensor.

The problem of distortion of the impedance tensor is exactly that, a problem. It is a

problem caused by our inability to model the Earth at all scales, from electrode separation

scale (tens of meters) to hundreds of kilometers. There have been many concerted efforts

to counter, characterise, and identify the problem of distortion and its effects in 1D, 2D,

and 3D, some of which will be described in a later section. The techniques have included



2.8. Data acquisition 31

mathematically, statistically, and physically based ideas; however, none have proved ideal

and this remains a significant challenge for the MT practitioner, particularly for the 3D

problem.

2.8 Data acquisition

The collection of MT data involves the recording of fluctuations in the natural horizontal

electric and ideally both horizontal and vertical magnetic fields. There are a number of

types of instrumentation available to make these measurements. In the SAMTEX experi-

ment we used Phoenix Geophysics’ broadband MTU5 and MTU5A instruments, which use

coil magnetometers. At some sites we also used instruments known as LIMS, borrowed from

the Geological Survey of Canada (GSC). The LIMS recorded for longer and use fluxgate

magnetometers that are sensitive to longer periods, aiding us in gaining very long period

data at some of the sites. The electrodes that were used for both of these systems were

non-polarising lead, lead-chloride (Pb-PbCl) electrodes.

Once permission from the landowner to install the MT site has been attained, a suitable

location is sought. An ideal site would be far from human interference, far from electrical

noise (e.g., DC train lines and electric fences), and in an area with minimal topography and

soil that is easy to excavate (for the sake of a happy field crew). Figure 2-5 (page 32) is

a compilation of photographs taken during the field work in South Africa and Botswana,

which portray the instrumentation and practicalities of field work. There are two common

layout possibilities for an MT site (in an L or + design). In this project the instrumentation

has been installed in a layout described schematically in figure 2-6 (page 33). Four of the

electrodes are oriented geographically north-south and east-west, and buried typically 50

metres from the ground electrode. They are all buried in a hole, in mud made with salt wa-

ter to gain a low contact resistance with the ground. The magnetometers are also orientated

north-south and east-west, and levelled. The three magnetometers (north-south, east-west,

and vertical) are all then buried to keep them stable and to help reduce temperature effects

on the readings. Any remaining cable from the electrodes or magnetometers is laid out un-

coiled to avoid inductive coupling.

The station is then left to recorded the time varying electric and magnetic fields, an

example of which is given in figure 2-7 (page 34). Due to the difficulty in digging holes at

this site, the vertical magnetic field sensor could not be buried, and so only the horizontal
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Figure 2-5: Typical instruments and field work. 1: A Phoenix MTU5A recording unit,

with batteries. 2: A broadband coil (magnetometer) levelled, orientated, and ready to be

buried. 3: A lead-lead chloride non-polarising electrode in mud, and ready to be buried. 4:

A LIMS recording unit. 5: A lot of rather interesting driving.



2.9. Data processing 33

Figure 2-6: A schematic plan view of a typical Broadband MT station layout, with 2 photos

on the left of Samtex fieldwork

magnetic fields were measured. Broadband MT stations were left to record for 2 to 3 days,

while the long period systems were left recording for approximately 4 to 6 weeks.

2.9 Data processing

The electrical and magnetic field fluctuations that are measured are now routinely processed

using robust processing techniques (e.g., Jones et al., 1989; Egbert, 1997; Chave & Thom-

son, 2004) in order to gain what is known as a MT response function that is in the form

of an impedance tensor. It is in this area of the MT method, along with inversion, that

the largest strides have been made in recent years due largely to progress in the computing

power available to practitioners. Robust processing codes are termed as such because they

aim through statistical means to be unbiased toward the noise and non-plane-wave compo-

nents contained in the recorded signal. The source of noise (a common problem in MT data)

depends on the environment where the study is taking place; however, common examples of
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Figure 2-7: Typical recorded time series for an MT site. 10 minutes recording of Ex, Ey,

Hx, and Hy. Hz was not recorded for this site.

noise sources include DC train lines, generators, mining activity, and the like. Jones et al.

(1989) demonstrate the importance of using robust processing techniques as well as the use

of a remote reference field. The general steps for the processing of MT data are outlined

below.

2.9.1 Pre-conditioning

The first step in the processing of MT data is the transform of the data from the time domain

to the frequency domain. In order to achieve this, it is necessary to pre-condition the data to

reduce the effect of trends, remove severe noise (spikes), and to reduce the effects caused by

having data of finite length. The pre-conditioning splits the time series into segments, the

size of which depends on the period band being calculated. The more segments there are,

the better the statistical results will be later in the processing sequence. Pre-conditioning is
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normally done with a windowing function such as a Hanning or Hamming window.

2.9.2 Conversion to the frequency domain

Once pre-conditioned, the windowed data are converted to the frequency domain, normally

using either a Fourier Transform (either Fast Fourier Transform or Discrete Fourier Trans-

form), or a wavelet transform. Each field component of the recorded data must be calibrated

with respect to the particular instrument’s sensitivity. Some instrument calibrations (e.g.,

induction coil sensor) are frequency-dependent, and therefore the calibrations need to be

applied as such, while others (e.g., the fluxgate magnetometer) are frequency-independent.

Ideally six to ten frequencies per decade are evaluated; more are unnecessary because the

dispersion relation of Weidelt (1972) predicts similar results for neighbouring frequencies,

however fewer could result in aliasing in the frequency domain (Simpson & Bahr, 2005).

Once in the frequency domain, we have a raw power spectrum for each time segment

for each channel (Ex, Ey, Bx, By, and Bz), from which the 6-10 evaluation frequen-

cies per decade are chosen. The auto and cross spectra for each time segment, which

are essentially the products of the field components and their complex conjugates (e.g.,

Bx(ω) · B∗

x(ω), By(ω) · B∗

x(ω), Bz(ω) · B∗

x(ω), Ex(ω) · B∗

x(ω), Ey(ω) · B∗

x(ω), etc.), for each

evaluation frequency (ω) are then calculated (Marti, 2006). These spectra are stored in what

is termed a spectral matrix (e.g., equation 2.54), for each evaluation frequency. For the same

evaluation frequency, there will be a number of spectral matrices, resulting from each time

segment that is processed. These spectral matrices are stacked for each evaluation frequency,

and may be selected by hand (where noise-free time windows are observed) or weighted using

statistical techniques.

Bx By Bz Ex Ey

Bx · B∗

x Bx · B∗

x Bx · B∗

x Ex · B∗

x Ey · B∗

x Bx

By · B∗

y Bz · B∗

y Ex · B∗

y Ey · B∗

y By

Bz · B∗

z Bz

Ex · E∗

x Ey · E∗

x Ex

Ey · E∗

y Ey

(2.54)
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2.9.3 Estimation of Transfer Functions

Transfer functions, also known as earth response functions, are calculated to remove noise

and to provide us with intuitively meaningful output, such as an impedance tensor (a type

of transfer function). Equations 2.36 and 2.38 can be expanded to:

Ex(ω) = Zxx(ω) · Hx(ω) + Zxy(ω) · Hy(ω), (2.55)

Ey(ω) = Zyx(ω) · Hx(ω) + Zyy(ω) · Hy(ω), (2.56)

Hz(ω) = Tx(ω) · Hx(ω) + Ty(ω) · Hy(ω). (2.57)

In order to solve these equations for the impedance tensor and tipper vector, they are

multiplied by their complex conjugates. If the remote reference processing method (first

introduced by Gamble et al. (1979)) is being utilised, whereby there are simultaneous mea-

surements made at a distance from the recorded site, it is possible to remove uncorrelated

noise between the stations. In order to do this, the remote horizontal magnetic field complex

conjugates are used instead of the locally recorded ones. The magnetic rather than the elec-

tric fields are normally used because the horizontal magnetic fields are more homogeneous

and usually less affected by noise. Of course correlated noise will remain. Equations 2.55,

2.56, and 2.57 can be solved using the following equations whose parameters are elements of

the spectral matrix calculated in the previous step.

Zxx =
〈ExR

∗

x〉〈HyR
∗

y〉 − 〈ExR
∗

y〉〈HyR
∗

x〉
DET

, (2.58)

Zxy =
〈ExR

∗

y〉〈HxR
∗

x〉 − 〈ExR
∗

x〉〈HxR
∗

y〉
DET

, (2.59)

Zyx =
〈EyR

∗

x〉〈HyR
∗

y〉 − 〈EyR
∗

y〉〈HyR
∗

x〉
DET

, (2.60)

Zyy =
〈EyR

∗

y〉〈HxR
∗

x〉 − 〈EyR
∗

x〉〈HxR
∗

y〉
DET

, (2.61)

and for the induction vector elements,

Tx =
〈HzR

∗

x〉〈HyR
∗

y〉 − 〈HzR
∗

y〉〈HyR
∗

x〉
DET

, (2.62)

Ty =
〈HzR

∗

y〉〈HxR
∗

x〉 − 〈HzR
∗

x〉〈HxR
∗

y〉
DET

, (2.63)
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where

DET = 〈HxR
∗

x〉〈HyR
∗

y〉 − 〈HxR
∗

y〉〈HyR
∗

x〉,

and R∗

x, and R∗

y are either local or remote complex conjugate magnetic fields.

It should be noted that since there are four possible series that relate the horizontal

magnetic and electric fields, any two of which may be used to form the auto-spectra and

cross-spectra, there are six possible estimates for each of the four impedance tensor elements,

although two are unstable in the 1D case (Sims et al., 1971). Since generally the electric

fields are far noisier than the magnetic fields, the estimate for each element provided above

is usually the least biased, and statistically the best. It is worth noting that if there is noise

in H, then DET will be large, resulting in impedance estimates being under-estimated.

There are a number of processing codes available, both commercial and free (e.g., Egbert

& Booker, 1986; Egbert, 1997; Chave & Thomson, 2004), that will perform differently de-

pending on the nature and quantity of the noise contained within the recorded signal. If the

noise contamination is coherent between the local and remote station, then remote reference

processing will not remove this. If the noise contamination (signal to noise ratio) is poor

enough, it is possible that robust processing codes could regard the signal as noise, since

there is less of it, and merely enhance the noise by rejecting signal. It is often a worthwhile

exercise to apply more than one processing code to MT data, or to portions of data for a given

site as some times during recording may be quieter (less noise) that others. Additionally,

there are a number of parameters in the different codes that may be adjusted and altered

(coherence thresholds, etc.) to suit and characterise the nature of the noise contamination

in the signal. Processing of MT data is a time consuming task, that is as much detective

work and trial-and-error as it is an art.

2.10 Distortion analysis and removal

The problem of distortion was discussed in a previous section. In order to remove distortion

effects, and to gain a better understanding of the geoelectric dimensionality and directional-

ity inherent in the data, the data are analysed with what is commonly described as distortion

analysis. There are a number of different methods for this analysis and consequently there

are a number of reviews on the subject, and how the problem may be tackled (e.g., Jiracek,

1990; Groom & Bahr, 1992; Groom et al., 1993; McNeice & Jones, 2001). The basic ele-
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ments obtained from the various approaches, although in different forms, generally represent

a regional strike estimation, a measure of the anisotropy, a measure and description of the

galvanic distortion that effects the measurement, and an estimation of the distortion free

impedance tensor. However, some methods, such as the Phase tensor (Caldwell et al., 2004),

do not produce these elements, but are useful for characterising the dimensionality and dis-

tortion inherent in the impedance tensor.

In the following two subsections, the Groom-Bailey (Groom & Bailey, 1989) decomposi-

tion (referred to as GB decomposition from here on) and the phase tensor analysis (Caldwell

et al., 2004) are described. The GB decomposition is one of the most commonly used decom-

position techniques, whereas the phase tensor, although not a decomposition technique, is

a recently developed diagnostic and characterisation technique. These are by no means the

only techniques available; others include Swift (1967), Weaver et al. (2000), and Bahr (1988),

and there are constant efforts being made to improve these existing techniques, as well as to

solve the problem of distortion removal in a 3D environment (e.g. Utada & Munekane, 2000;

Garcia & Jones, 2001).

2.10.1 Groom-Bailey decomposition

Proposed by Bailey & Groom (1987), the GB decomposition technique requires the distortion

to be real and frequency independent, with electric distortion considered to be of greatest

significance rather than magnetic distortion. GB aims to separate the local 3D distortion

from the regional 1D or 2D response by factorising the measured impedance tensor into a

rotation matrix, R
θ
, a distortion tensor, C, and the regional 2D impedance tensor, Z

2D
, as

described by equation 2.53.

This method of distortion analysis is often preferred by practitioners not only because

it gives physically-based meaning to the parametrisation (a few other methods do too), but

also because the parametrisation is in terms of determinable and indeterminable parts. No

other method separates the determinable from indeterminable parameters. The distortion

tensor is itself factorised into a product of three tensors: twist, T , shear, S, local anisotropy,

A, and a scaling or gain factor, g (equation 2.64).

C = g T S A. (2.64)

The twist, shear, and anisotropy may be represented by equations 2.65, 2.66, and 2.67

respectively, where t, e, and s are real values. In general decomposition, there are nine
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unknown parameters (regional strike, the four components of the distortion tensor, and the

two complex regional impedance’s), and we only have eight data (the four complex values of

the impedance tensor). Twist and shear are the determinable parts of the distortion, while

anisotropy and the gain factor, g, are, in the GB factorisation, indeterminable,

T =
1√

1 + t2

(

1 −t

t 1

)

, (2.65)

S =
1√

1 + e2

(

1 e

e 1

)

, (2.66)

A =
1√

1 + s2

(

1 + s 0

0 1 − s

)

. (2.67)

As can be seen from equation 2.65 the effect of the twist tensor is to rotate the elec-

tric field vectors through a clockwise twist angle φtwist = tan−1 t. The shear tensor develops

anisotropy on axes that bisect the principal axes of the regional induction, thereby “shearing”

the fields. The magnitude of shear is normally characterised by a shear angle φshear = tan−1 e

which, if we consider intuitively the effect of the shear operator (equation 2.66), would not

be meaningful for angles greater than 45°. Thus, it is reasonably required that |e| ≤ 1, and

therefore φshear cannot exceed 45°. The anisotropy tensor, also known as the splitting ten-

sor, simply stretches the two field components by different factors. These effects are shown

graphically in figure 2-8.

With nine unknowns and only eight knowns, the problem is underdetermined. How-

ever, the gain and anisotropy factors are indeterminable, and are absorbed into the regional

impedance response, reducing the number of unknown parameters and allowing for a unique

solution, albeit with a scaled regional impedance. The parameters of the distortion model

are solved for simultaneously. The absorption of g and A into Z
2D

results in a regional

impedance tensor, in which the apparent resistivity curves are shifted by an unknown scal-

ing factor. The shapes of the apparent resistivity and impedance phase curves are unchanged.

A least-square fitting procedure is used to try to fit the measured data with a model. The

accuracy of fit of the model to the data is measured by the χ2 misfit term (Groom & Bailey,

1989), which is a misfit parameter calculated from the data, the data errors, and the data

modelled by the decomposition.

McNeice & Jones (2001) extended GB decomposition. In their extension, a global min-

imum is sought to determine an appropriate geoelectric strike direction and distortion pa-
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Figure 2-8: (a) A contrived example of distortion. Conductive overburden (grey), on an

insulating substratum (white). Inside the circular region of overburden is an elliptical and

highly conducting region (black), such as a swamp. Measurements are made at the centre

of the swamp. The swamp first twists the telluric currents through an angle θt, its local

strike. The anomalous environment then imposes shear and anisotropy effects on the data.

(b) A group of unit vectors (left) which have had the twist, shear, and anisotropy tensors

(equations 2.65, 2.66, and 2.67 respectively) applied to them (right). Modified from Simpson

& Bahr (2005), originally from Groom & Bailey (1989).

rameters for a range of frequencies and a set of sites. This is useful when trying to find an

appropriate strike direction for a profile to be modelled in 2D. The method has been written

as a computer program called Strike and is freely available (McNeice & Jones, 2001).

The resulting output of the GB decomposition is a geoelectric strike direction (although

this has 90°ambiguity) and a regional impedance tensor that may be used for modelling,
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although a further correction is necessary due to the scaling of the apparent resistivity

curves.

2.10.2 The MT Phase Tensor

Caldwell et al. (2004) give the first published description of the MT phase tensor method.

The main advantage of this method is that there are no assumptions about the dimension-

ality of the regional structure; it is valid even where both the distorting heterogeneity and

regional structure are 3D. The biggest disadvantage of the method is that it does not help

the MT practitioner to recover an undistorted impedance tensor. However, recently efforts

have been made instead to model the phase tensor estimates themselves (Heise et al., 2006a).

It can be shown that the phase relationships in the impedance tensor are a second-rank

tensor. The phase tensor expresses how the phase relationships change with polarisation.

Unlike the impedance tensor, in the presence of purely electric effects of galvanic distortion,

it preserves the regional phase information, even when the impedance tensor from which it

is calculated is affected by galvanic distortion.

Assuming X is the real part of the impedance tensor, and Y is the imaginary part of

the impedance tensor, the impedance tensor can be written Z = X + i Y . If the regional

impedance tensor is Z
R

= X
R
+i Y

R
, then the distorted real part may be written X = C X

R
,

and the distorted imaginary part may be written Y = C Y
R
. Equation 2.68 demonstrates

that the observed and regional phase tensors are identical and independent of the galvanic

distortion tensor, C, viz.,

Φ = X−1 Y ,

= (C X
R
)−1 (C Y

R
),

= X−1

R
C−1 C Y

R
,

= X−1

R
Y

R
,

= Φ
R
.

(2.68)

The phase tensor may be written in the Cartesian coordinate system in terms of real and

imaginary parts of Z (equation 2.69)

[

Φ11 Φ12

Φ21 Φ22

]

=
1

det(X)

[

X22Y11 − X12Y21 X22Y12 − X12Y22

X11Y21 − X21Y11 X11Y22 − X21Y12

]

, (2.69)
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where det(X) = X11X22−X21X12 is the determinant of X. Through singular or principal

value decomposition, the phase tensor may be represented as the product of three matrices

(equation 2.70) (Caldwell et al., 2004),

Φ = RT (α − β)

[

Φmax 0

0 Φmin

]

R(α + β), (2.70)

where R(α + β) is a rotation matrix (equation 2.71), and RT is its transpose or inverse,

R(α + β) =

[

cos(α + β) sin(α + β)

− sin(α + β) cos(α + β)

]

. (2.71)

The expressions for α and β (also known as the skew angle) are represented by equations

2.72 and 2.73 respectively.

α =
1

2
tan−1

(

Φ12 + Φ21

Φ11 − Φ22

)

, (2.72)

β =
1

2
tan−1

(

Φ12 − Φ21

Φ11 + Φ22

)

. (2.73)

The phase tensor may be characterised by three coordinate invariants (three independent

scalar quantities that are independent of the coordinate system used to express the tensor).

The phase tensor coordinate invariants used by Caldwell et al. (2004) are β, Φmax, and Φmin.

The coordinate invariants Φmax and Φmin may be characterised by equations 2.74 and 2.75

respectively. The skew angle, β, is a measure of the tensor’s asymmetry in the regional MT

response. The angle α expresses the tensor’s dependence on the coordinate system. The

expression α, along with β, Φmax, and Φmin (the three coordinate invariants), completely

define the tensor,

Φmax = (Φ2
1 + Φ2

3)
1/2 + (Φ2

1 + Φ2
3 − Φ2

2)
1/2, (2.74)

Φmin = (Φ2
1 + Φ2

3)
1/2 − (Φ2

1 + Φ2
3 − Φ2

2)
1/2, (2.75)

where Φ1 = (Φ11 + Φ22)/2, Φ2 = [det(Φ)]1/2, and Φ3 = (Φ12 − Φ21)/2.

The phase tensor may be plotted graphically as an ellipse, as is shown in figure 2-9, for

each frequency of each site. The direction of the major axis of the ellipse is given by the

angle α − β, which defines the relationship of the tensor to the observer’s reference frame
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Figure 2-9: The graphical representation of the phase tensor, redrawn from Caldwell et al.

(2004). The ellipse may be described by the three coordinate invariants Φmax, Φmin, β

(should it be non-symmetric), and the angle α.

(X1, X2) (Caldwell et al., 2004).

In the 1D case, Φmax − Φmin should be zero, and the phase tensor ellipse will be repre-

sented by a circle. In the 2D case, Φmax −Φmin will not be zero, and the phase tensor will be

represented by an ellipse. However, in 2D the phase tensor is symmetric, and therefore the

skew angle (β) will be zero. In 3D, the phase tensor is not symmetric, and accordingly, β

will be non-zero. Hence, in an analysis, a large value for β will indicate that the conductivity

structure of the subsurface is 3D. Caldwell et al. (2004) found that a small value of β does

not necessarily mean the regional structure is not 3D, and it is necessary to also look at the

variation in direction of the major axis of the tensor ellipse with period and location. If this

direction is constant, it likely indicates a 2D conductivity structure; however if it is variable,

it may indicate the region is 3D.

In summary, the principal axes of the phase tensor ellipse (Φmax, Φmin) indicate the

horizontal directions of the maximum and minimum induction current, which reflects lateral

variations in the conductivity structure (Caldwell et al., 2004). The phase tensor skew angle

(β), and the variations in the directions of the major axis of the tensor ellipse give an

indication of whether the case is 3D or 2D.
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2.11 Modelling and Inversion of MT data

The ultimate aim of acquiring MT data is to gain a better understanding of the conductivity

structure of the subsurface in order to relate this to geology and Earth processes. The most

common and visual means of gaining an idea of the conductivity structure of the subsurface

is through modelling and inversion of MT response estimates. Once distortion has been re-

moved from the data, and the dimensionality inherent in the data has been analysed (using

methods such as GB decomposition and Phase tensor analysis), the next step is to apply a

modelling and inversion technique suitable for the particular dataset.

The aim is therefore to find a 1D, 2D, or 3D model where conductivity variations with

depth and lateral extent (in 2D and 3D) would produce, through the propagation of elec-

tromagnetic fields in the model in accordance with Maxwell’s equations, model responses

at the surface of the model, such that they are consistent with the observed MT responses.

These model responses are normally in the form of apparent resistivities and phases, and

a misfit between the observed and model responses are normally presented as an RMS misfit.

There are two methods for creating this model: forward modelling and inversion. For-

ward modelling is now routine, and may be readily calculated for any of 1D, 2D, or 3D

conductivity structures, using a variety of codes such as: Wannamaker et al. (1987), finite

elements method; Mackie et al. (1993), finite-difference method, some of which even allow

for the calculation of the responses over a model with electrically anisotropic regions (e.g.,

Pek & Verner, 1997) also a finite-difference method.

The problem of trying to fit measured data with forward modelled data manually is that

finding a model that fits your data can be an incredibly time consuming trial-and-error task,

particularly for 3D models. Many inversion techniques try to do this task automatically,

through a combination of forward modelling and minimisation of the misfit between the

observed responses and the forward model responses. The forward model is adjusted until a

minimum misfit is found between the observed and modelled responses.

Inversion of MT data is common, although almost exclusively for 1D and 2D problems.

Three-dimensional inversion, although huge strides have been made in recent years, remains

very much in the development stages. There are a number of 2D inversion codes avail-

able, which are commonly used among MT practitioners (e.g. REBOCC, Siripunvaraporn &

Egbert (2000), ABIC, Uchida & Ogawa (1993), RLM2DI, Rodi & Mackie (2001), also imple-
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mented in the software WinGlink, produced by Geosystem srl.). Normally, in the 2D case,

MT responses that have had distortion removed are all rotated to the regional geoelectric

strike coordinate system and 2D inversion is performed on the data for a selected profile. It

has been generally observed (SAMTEX, 2005) that, for a given dataset, the larger features

remain consistent in the inversion, regardless of the inversion technique used, although there

are smaller features that may differ.

The technique of 3D inversion of MT data is still in its infancy. It is being largely

restricted by computing power available, and testing with synthetic data is still an important

part of the development. A major step in its development occurred with the release to the

public (i.e. open-source code) of 3D MT inversion code by Siripunvaraporn et al. (2005).

Prior to this, most 3D inversion code has been developed and tested by a select few, or was

only commercially available. Surely the release of this code to the public can only aid in the

progression of techniques of 3D inversion. However, we are still by no means near a stage

where we are able to invert for large datasets of experimental MT data, and for the time

being, the majority of MT practitioners will be restricted to creating interpretive models

using 2D inversion software, and 3D forward models.



3
Seismic anisotropy theory

3.1 What is seismic anisotropy?

Seismic body waves (P-waves and S-waves) travel through the interior of the Earth. Propa-

gation velocity of P-waves, VP ,

VP =

√

K + 4
3
µ

̺
(3.1)

and S-waves, VS,

VS =

√

µ

̺
(3.2)

depends on density, ̺, and the elastic moduli of a material. The bulk modulus, K, is defined

as the pressure increase needed to produce a given relative decrease in volume, while the

shear modulus, µ, is defined as the ratio of the shear stress to the shear strain. P-waves

(compressional waves) are sensitive to both the bulk modulus (incompressibility), and shear

modulus (rigidity), whereas S-waves (transverse waves) are sensitive to the shear modulus

only.

Seismic velocity anisotropy is the property of a material that causes seismic wavefields

to propagate at different velocities in different directions. In an anisotropic medium, wave
46
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propagation is more complicated. There are three plane waves that propagate with different

speeds and perpendicular polarisations. These polarisations are no longer strictly parallel

or perpendicular to the direction of energy propagation, which leads to the three waves

often being referred to as the quasi-P and quasi-S waves (Savage, 1999). Seismic velocity

anisotropy may be broadly separated into two categories. Azimuthal anisotropy, which ef-

fects both compressional and shear waves, refers to velocity variations with azimuth around

a measurement location (station). Wave speeds measured at such a station would have a

variation dependent on the backazimuth1. Polarisation anisotropy refers to the property

that causes shear and surface wave speeds to differ for different polarisations of the wave

travelling along the same path or direction.

There are five seismic methods that yield information on anisotropy in the Earth. These

include: looking at relative arrival/delay times (generally compressional P-waves, but also

S-waves); receiver functions (RF’s); Pn anisotropy; surface waves; and shear wave splitting

(SWS). Each of these techniques has had varying amounts of usage; some are still in the

development stages, whereas others, such as shear wave splitting, are well studied. Fouch

& Rondenay (2006) give a concise summary of these different techniques and their relative

strengths and weaknesses, summarised in table 3.1, with their sampling regions portrayed

schematically in figure 3-1. In this study however, we are concerned only with shear wave

splitting anisotropy from teleseismic events.

3.1.1 What are SKS and shear waves?

When looking at shear wave splitting of phases such as SKS, SKKS, or PKS, we are looking

at teleseismic shear waves that have passed through the Earth’s core, along paths described

in figure 3.2(a). An SKS wave travels from its source to the Earth’s liquid outer core as a

S-wave, where it would be converted to a P-wave as it travels through the outer core (by

convention an outer core P-wave is called a K phase). S-waves cannot travel through the

core since it is liquid, and the shear modulus is equal to zero in a liquid. When the SK

wavefront emerges at the other side of the core, part of it is converted back to an S-wave

that travels to the Earth’s surface, which is what would be observed as an SKS wavefront

at a seismic observation station. SKKS waves travel a similar path, but have an additional

internal reflection as a P-wave off the core-mantle boundary (CMB). When they are observed

at stations on the Earth’s surface, SKS and SKKS waves have near-vertical incidence (figure

1The direction from the seismic station towards a seismic source, clock-wise from north
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Table 3.1: A brief summary of the various advantages and disadvantages of techniques

used for calculating continental seismic anisotropy. The techniques are: shear wave split-

ting (SWS); receiver functions (RF’s); surface waves; looking at relative arrival/delay times

(arrival times); and Pn anisotropy.

Property SWS RF’s Surface waves Arrival times Pn anisotropy

Horizontal resolu-

tion

very good very good poor good poor

Vertical resolution very poor The best of these

techniques.

Good to 300 km Good, but only

samples just be-

neath the crust-

mantle boundary.

Other advantages Given adequate

coverage, dipping

and multiple lay-

ers of anisotropy

may be extracted.

Can gain some

constraints on

dipping axes of

anisotropy. Sim-

ple to compute.

Direct estimate of

uppermost man-

tle with limited

uncertainty as to

depth location.

Other disadvan-

tages

Sufficient data

coverage requires

lengthy recording

periods

It is a non-linear

and underdeter-

mined problem,

requiring simplify-

ing assumptions.

First-order phase

velocity signal

can be explained

by either lat-

eral isotropic

variations, or

by anisotropic

parameters.

Stringent data

coverage require-

ment

3-1). Although SKS, SKKS, and PKS are the most commonly used phases for shear wave

splitting analysis, there are other phases which may be used. Generally the phases that

are used are limited to those that fall within the shear wave window (those waves with

angles of incidence less than 35°) to avoid complications due to nonlinear particle motion.

Additionally, epicentral distances, such that the relevant phases are either the first arrival,

or arrive such that they are not contaminated by other phases arriving at the same time,

are necessary. Figure 3.2(a) is a graphical representation of the paths taken by these and

other teleseismic waves. Their predicted traveltimes as a function of epicentral distance is

displayed in figure 3-3, which is based on the IASP91 standard Earth velocity model of

Kennett & Engdahl (1991). The epicentral distance is the angle subtended at the centre of

the Earth between the source epicenter and seismic recording station positions. There are

many other phases that are not shown in the figure for clarity, but which may also interfere

with these arrivals.
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Figure 3-1: A schematic portrayal of raypaths and their sampling regions for the seismic

anisotropy analyses described in table 3.1. Shaded areas represent sampling areas, including

relative Fresnel zone volumes (not to scale). From Fouch & Rondenay (2006)

3.2 Seismic SKS shear wave splitting

Early work on shear wave splitting of long period converted waves was undertaken by Vinnik

et al. (1984) and Kind et al. (1985), and further advanced by Silver & Chan (1988) and Vin-

nik et al. (1988) (unfortunately Vinnik et al. (1984) and Vinnik et al. (1988) are not easily

accessible, as they are written in Russian). The SKS shear wave splitting method relies

on the birefringence properties of near-vertical incidence shear waves. The incident S-wave,

upon entering the anisotropic medium is split into two orthogonally polarised S-waves, with

different velocities (described schematically in figure 3.2(b) for the more complex 2-layer

case). The amount of birefringence is the fractional difference between these two velocities

(Sheriff, 1999).

Birefringent splitting, also called double refraction, that occurs in seismic waves may

be described in much the same manner as that of optical anisotropy. Light entering an

anisotropic medium (e.g., a crystal of calcite) is split into two refracted light rays polarised

at right angles to one another. Each polarisation encounters a different refractive index (i.e.,

travels at a different velocity), which results in the phenomenon of double refraction. The

classic example of this would be the double image that is produced when a piece of the

mineral calcite is placed over an image. This property of optical anisotropy is used in optical
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(a) (b)

Figure 3-2: (a) Figure describing seismic wave paths through the Earth that have been

used for shear wave splitting studies. Solid lines represent S path segments, while dotted

lines represent P path segments. Modified from Savage (1999). (b) Schematic diagram of

shear wave splitting in the case of two anisotropic layers. From Yardley & Crampin (1991).

mineralogy in conjunction with a polariser for mineral identification.

In its most simple form, the time delay (δt) between the fast and slow polarised seismic

waves passing through an anisotropic medium may be defined as:

δt = L(
1

VS1
− 1

VS2
), (3.3)

where L is the length of the anisotropic path that is traversed by the wave, and VS1 and

VS2 are the propagation velocities for the fast and slow polarisations respectively for the

direction of propagation through the medium. Thus, it is these three factors (L, VS1 and

VS2) that determine the amount of splitting observed between the fast and slow shear waves

at a station. This may also be represented as an anisotropy percentage (AS):

As = 200(VS1 − VS2)/(VS1 + VS2), (3.4)

Seismic shear wave anisotropy is generally characterised by the the measured values of a
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Figure 3-3: Predicted traveltimes plotted versus epicentral distance, for the IASP91 stan-

dard Earth velocity model (Kennett & Engdahl, 1991), for the phases described in figure

3.2(a). Taken from Do (2006).

fast-axis direction φa (same direction as VS1) and either a delay time δta or anisotropy per-

centage As. In some cases a shear wave may be visually observed to have been split into two

polarisations. This occurs when the wavelength of the split shear waves are smaller than

the delay time δt (more common in higher frequency local S waves), and/or the anisotropic

layer has a very high anisotropy magnitude. In such cases the horizontal components of the

observed seismograms may be rotated around an azimuth until the fast or slow azimuth is

attained, where the fast shear wave is seen only on the fast component and the slow shear

wave is seen entirely on the slow component. Thus, the fast-axis and delay time between

the two shear waves are easily quantified. In cases where this is not the case and the two
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waves are not distinct, more sophisticated techniques are necessary for the splitting analysis

(discussed later). It should be noted that for an incident shear wave polarised in the same

direction as the fast or slow polarisation direction of an anisotropic layer, no splitting would

be observed since only the fast or slow shear wave occurs. These measurements, where there

is no splitting, are usually termed null measurements.

Thus, the technique appears very simple at first; however, there are many complicating

factors. If the symmetry system is one of transverse anisotropy with a horizontal symmetry

axis and one layer, then the observations would be relatively straightforward. Given a differ-

ent symmetry system, e.g., one with a dipping symmetry axis, or a situation with multiple

layers or lateral variations, observations become far more complicated and more difficult to

unravel.

Given multiple layers of anisotropy, the shear wave would be split twice, once by the first

(lower) layer, into 2 shear waves, then again by the second (upper) layer, which would split

each of the S-waves from layer one again, resulting in four individual waves being observed

at the receiver (figure 3.2(b)). However, these four individual arrivals are often unresolvable,

and a single apparent fast axis direction, φa, and a single apparent delay time, δta, would be

observed (Silver & Savage, 1994). In a two layer anisotropic system such as this, measured

under the assumption of a single layer, the apparent fast axis direction and the apparent

delay time would produce, as a function of backazimuth, systematic variations with a π/2

periodicity (figure 3-4).

Figure 3-4 displays the π/2 periodicity observed in the splitting parameters as a function

of backazimuth for two cases of two-layer anisotropy. These are synthetic results calculated

using the method of Silver & Savage (1994), and illustrate the need for excellent backaz-

imuthal coverage in order to distinguish between single layer and two layer anisotropy, as

well as the need for even better coverage to be able to determine which layer is on top. Given

very good coverage however, Silver & Savage (1994) demonstrate that properties of observed

splitting parameters measured under the assumption of one layer of anisotropy, when there

are in fact two layers, can still have meaning, and be related in a straightforward manner to

the splitting parameters of two layers.

Rümpker & Silver (1998) show, through modelling, the complexity of backazimuthal

variations in splitting parameters. While the models they test still show the 90° periodicity

shown by Silver & Savage (1994), Rümpker & Silver (1998) show that in using different initial
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Figure 3-4: Curves for predicted apparent splitting parameters (φa, δta) as a function of

incoming polarisation direction. The first case (top two graphs) has φ1=90°(-90°) (bottom

layer) and φ2=140°(-40°) (top layer), δt1 = δt2 = 1.0 s. The second case (bottom two graphs)

is the same as the first, except that φ1 and φ2 are reversed: φ1=140°(-40°) (bottom layer)

and φ2=90°(-90°) (top layer). Straight lines are φ1 and φ2, while curved lines are the analytic

results at periods of 5 s, 8 s, and 20 s (Silver & Savage, 1994). Example taken from Silver &

Savage (1994), recalculated and replotted.

polarisations, multiple anisotropic layers, and smoothly varying fast axis directions within

an anisotropic layer, the backazimuthal patterns are quite variable. Additionally, they note

that the difference in splitting parameters recovered between a two layer model and a single

layer model with a smoothly varying fast axis direction can be virtually indistinguishable.

However, at higher frequencies they may be distinguishable since a two layer model would

produce four distinct arrivals, whereas the smoothly varying model would only produce two

distinct arrivals. Finite-difference modelling of laterally varying anisotropy by Rümpker &

Ryberg (2000) demonstrate that lateral variations produce a 180° periodicity in splitting

parameters as a function of backazimuth, which also occurs at near-vertical incidence for
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anisotropic layers with an inclined symmetry axis (Rümpker & Ryberg, 2000).

A caution worth raising is that in order to obtain an adequate backazimuthal coverage, the

general consensus is that on average about 5 years of recorded data are necessary, depending

also on the region. It is however also clear that even with excellent azimuthal coverage, it can

still be difficult to distinguish between different model cases, and often further constraints

from the deformation history of the study region may be required to resolve ambiguity.

3.3 Where along the path does the anisotropy occur?

One of the biggest drawbacks of the SKS shear wave splitting technique is that there is no

inherent depth information to place a constraint on the depth of the anisotropic layer or

layers. If using direct S-waves, the anisotropy could reside anywhere between the source and

the receiver. Using core-refracted waves, the anisotropy may reside anywhere between the

core-mantle boundary and the surface of the Earth. This is because when the core-refracted

phase is travelling through the liquid outer-core, it is propagating as a P-wave, and when

it exits the core some of it is converted back to an S-wave, which is radially polarised and

not split. The liquid outer-core essentially “resets” the S-wave, removing any splitting that

occurred between the focus (source) and the core.

The only way to gain an idea of the depth at which the anisotropy occurs is through in-

ferences and by using other geophysical results. Commonly, in order to gain information on

the extent of the anisotropy, practitioners will assume an anisotropic symmetry system and

orientation (usually the simplest: transverse anisotropy with a horizontal symmetry axis),

assume the anisotropy has occurred in the upper mantle, assume an average value for the

degree of anisotropy (often ≈4°, as a consequence of laboratory and theoretical results), and

then use δt to calculate possible path lengths in the anisotropic layer. This would provide

information on the thickness of the layer, but still does not provide much information on the

depth location. The alternate approach is to assume a thickness, and a percentage anisotropy

can be calculated (Savage, 1999). Similarly, this gives information on the anisotropic layer,

but still not much information on its depth extent.

A means of gaining information on the depth distribution of the anisotropic data is to

compare splitting with other measures of seismic anisotropy such as Pn or surface waves,

among others, which have better control on the depth distribution of anisotropy. Although
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not as well localised as for MT, the surface wave technique provides a constraint on the depth

of anisotropy in a somewhat similar manner. Another common argument used to gauge the

depth of the anisotropic region is the Fresnel zone argument. A seismic ray is normally

considered to be a tube, the diameter of which is defined as the first Fresnel zone. The size

of the Fresnel zone is dependent on period and traveltime. If one station measures different

anisotropic parameters for events with opposite backazimuths, it suggests that the source of

anisotropy is located beneath the bottom-most point where the Fresnel zones intersect. If

two nearby stations measure different splitting parameters for the same event, it suggests

that the anisotropy resides above the top-most point where the Fresnel zones intersect (fig-

ure 3.5(a)). This means that for a closely spaced seismic array, with good splitting events,

it is possible to use this argument to place approximate bounds on the top and bottom of

the anisotropic layer. The Fresnel zone argument is however an inference, rather than a

constraint, since it involves assumptions as to the true sensitivity functions.

There are other comparisons that can be made, such as comparing splitting from local or

teleseismic direct S and ScS (c indicates a reflection at the core-mantle boundary), with that

from SKS events. However one of the problems with all this evidence for depth distribution

of anisotropy is that it is often conflicting (Savage, 1999). Figure 3.5(b) is a summary of the

depth extent of shear wave anisotropy that has been inferred and determined from various

studies.

3.4 Data preparation and analysis methodology

Before analysing shear wave splitting data there is a lot of data preparation that is necessary.

This ranges from selecting appropriate events and time windows to looking at the data to

see if it is useable or not.

3.4.1 Data Preparation and selection

Converted shear wave phases, such as SKS, SKKS, and PKS, will only be observed at certain

times and locations after an event, such as an earthquake or nuclear explosion. The ideal

criteria for observing these phases, and therefore for shear wave splitting analysis of such

phases is described in this section. Typically, a database of suitable events is compiled from

a number of criteria prior to any analysis.

The first of the criteria that needs to be satisfied is for the event-station pair to have
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(a) (b)

Figure 3-5: (a) A schematic representation of the Fresnel zone as a function of depth,

Z, for SKS phases arriving nearly vertically at two neighbouring seismic stations. Fresnel

zones for paths b and c have the same backazimuth, whereas path a has a backazimuth

from an opposite direction. Overlapping paths would produce similar splitting parameters,

thus if station 1 produces different splitting parameters for event paths a and b, it indicates

that the anisotropy must lie below the depth where they overlap (i.e., below Z1). While if

station 1 and 2 produce different splitting parameters for paths a and c, which have a similar

backazimuth, it indicates that the anisotropy must lie above the depth where they overlap

(i.e., above Z2). Redrawn from Alsina & Snieder (1995). (b) A summary of the depth extent

of shear wave anisotropy determined by various studies. Redrawn from Savage (1999)

an appropriate epicentral distance, ∆, in order to observe the sought after phase. The

angle must be great enough such that the seismic wave can travel through, and be converted

at, the core. Additionally, it is necessary to observe at an epicentral distance where the

arrival in question is isolated and distinct from interference with other phases. Figures such

as figure 3-3, which is based on the IASP91 standard Earth velocity model (Kennett & Eng-

dahl, 1991), give an indication of the epicentral distance that would correspond to locations

where good shear wave observations could be expected. The figure shows that all events

with a distance over 90° are suitable for splitting analysis and that at these distances, core
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converted phases start to become isolated from other phases. High quality SKS phases will

most often be observed from events with distances of 90°-110°, whereas high quality SKKS

phases are most often observed from events with epicentral distances 110°-130°.
The second criteria for event selection is the event magnitude. A higher magnitude

event generally produces a seismogram with a better signal to noise ratio, but can have a far

more complicated wave train. In seismically quiet environments, smaller magnitude earth-

quakes may be used, whereas in noisy environments (e.g. isolated island locations), larger

magnitude events may be required. In general though, events greater than about 5.5 can be

used.

The third criteria is the hypocentral depth of the event. Deeper earthquakes gen-

erally produce better core converted shear waves with lower frequencies. However, deep

earthquakes are not only limited to particular regions (subduction zones) but are also less

frequent than shallower events. Thus it is not practical for most studies to have a limit on

the shallowest hypocentral depth, as one could be left with very few events, and these events

would likely not have a well distributed back azimuthal range.

There are a number of searchable online earthquake catalogues (e.g., Advanced National

Seismic System catalog, ANSS2) from which lists of appropriate events can be compiled

given the criteria above, and information on the duration of recording of each station. From

these event lists, it is possible to calculate the predicted arrival times of body waves at a

specific epicentral distance using a given Earth model (e.g., iasp91 of Kennett & Engdahl,

1991). There are programs available online3 that can be used for this calculation. Once

the predicted body wave travel times have been calculated, appropriate time windows may

be extracted from the seismogram recordings. Once seismic data have been recorded, it is

normally stored and archived by consortiums such as the Incorporated Research Institute

for Seismology, IRIS4, in standard data formats such as sac or seed. From data centres

like IRIS, seismographic data are publically available for the scientific community to freely

download and use for data analysis. Finally, these downloaded seismograms of appropriate

time windows are then ready for whichever analysis technique they are intended.

2http://www.ncedc.org/anss/catalog-search.html
3http://www-gpi.physik.uni-karlsruhe.de/pub/widmer/IASP91/iasp91.html
4http://www.iris.edu/
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3.4.2 Analysis techniques

Where split shear waves are not completely separated, and analysis is not possible visually,

other techniques are necessary for the analysis of shear wave splitting. Vinnik et al. (1989)

and Silver & Chan (1991) describe two popular techniques have been developed in order to

do this. Both techniques, which are very nearly equivalent, seek the fast axis direction and

delay time through a global grid search, with the aim of reproducing or removing the ef-

fect of the anisotropy on the observed horizontal seismogram components of the shear waves.

The observed seismograms are normally recorded on three components, orientated north-

south (the N component), east-west (the E component), and vertically (the Z component).

In the analysis, the horizontal components (N and E), are rotated into the backazimuths,

thereby resolving the radial (SV phase) and transverse (SH phase) components. The first

step in the data analysis is to visually inspect the selected data window to see if there is

a good shear wave arrival, with a suitable signal to noise ratio for a meaningful analysis.

If there is not any anisotropy, the shear wave is not split, and core refracted waves which

are radially polarised will have all the energy from the shear wave on the radial component.

If, however, there is anisotropy, and the shear wave is split, then there will be energy on

the transverse component, the waveform of which approximates the time derivative of the

radial component if the splitting is small compared to the period (Vinnik et al., 1989; Sil-

ver & Chan, 1991). The particle motion is usually displayed in a polarisation diagram or

hodogram, and is a plot of the components of motion against each other. Each point on a

polarisation diagram represents a moment in time, and the amplitudes of two components of

a seismogram at that time. A split shear wave will typically have a cruciform shape for com-

pletely split fast and slow shear waves, or an elliptical particle motion for longer wavelengths

or smaller splits where the two split waves are only separated by a fraction of a period. A

converted shear wave that is not split will simply have a linear particle motion.

The Vinnik et al. (1989) shear wave splitting analysis technique synthesises the transverse

component from the observed radial component of the phase being analysed. This is done

over a range of values for different δt and φ pairs, with the aim of minimising the difference

between the synthesised and observed transverse components, using cross-correlation meth-

ods. It is difficult to quantify the accuracy of the resulting values of δt and φ since the noise

present in the seismic records is not known.

The Silver & Chan (1991) method is a related approach that searches for the best pairs of
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values of δt and φ that will remove the energy from the transverse component. This is done

by searching for the values that reverse the geometrical operations on the split waveform,

i.e. find the inverse operator that returns the split waveform to the waveform as it would

be prior to splitting. This may also be done by finding the value pairs that minimise the

eigenvalues of the covariance matrix of the two rotated seismograms. The method produces

the corrected radial and transverse seismograms, as well as a formal error estimate (Silver

& Chan, 1991).

Figure 3-6 from Savage (1999) (originally from a study by Marson-Pidgeon & Savage,

1997) demonstrates a good shear wave splitting measurement using the method of Silver &

Chan (1991). An important feature to note in figure 3-6 is that there is very little energy on

the “corrected” transverse seismogram (figure 3-6 (b)), indicating that the splitting param-

eters used have “removed” the anisotropy effect adequately. This is also verified by figure

3-6 (c) where the particle motion has changed from elliptical to linear after correction.

The Vinnik et al. (1989) and Wolfe & Silver (1998) methods invert observations simul-

taneously for many different locations, angles of incidence, and back azimuth, to produce a

single apparent fast axis and delay time for a station. Whilst this may be more robust, since

it increases the signal to noise ratio, the validity of the averages depends on the variability

of the parameters for the symmetry system. Single observation methods are better to de-

termine if azimuthal variations are caused by dipping symmetry axes, or by heterogeneous

anisotropic properties (Savage, 1999). It is therefore a worthwhile exercise to look first at

single event splitting analysis for multiple events at a site, prior to the use of these techniques.

The methods of Vinnik et al. (1989) and Silver & Chan (1991) will measure the appar-

ent splitting parameters for any symmetry system, so long as the S arrivals are mainly in

the horizontal plane (Savage, 1999). This restriction is removed when extended to three

components (e.g. Sileny & Plomerova, 1996; Aster et al., 1990), although for nearly vertical

incidence waves (such as SKS and SKKS), the difference between the methods is small.
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Figure 3-6: An example of a good shear wave splitting measurement made using the method

of Silver & Chan (1991) from a station in New Zealand. (a) The original radial, transverse,

and vertical seismograms, with the predicted phase arrival times. The window that was

analysed is between the two vertical lines, A and F. Vertical scale set by radial component

amplitude. (b) The corrected radial and transverse components. (c) The top two plots

show the uncorrected (left) and corrected (right) superposition of the fast (thin black line)

and slow (bold line) components. Note the similar pulse shapes. The bottom two plots

show the uncorrected (left) and corrected (right) particle motion. Note the change in shape

from elliptical to linear of the particle motion after correction. (d) A plot of the energy

on the transverse component after correction with different δt and φ parameters. The ⋆

represents the minimum value, surrounded by the 95% confidence region (double contour),

and multiples of that contout interval. Taken from Savage (1999).



4
The relationship between MT and Seismic

anisotropy

4.1 Why are seismic and MT results complementary?

It will always be possible to garner more information about the subsurface of the Earth from

multiple geophysical methods rather than one since the various techniques and methods each

have their strong points as well as their pitfalls. Through using more than one technique we

have the potential to minimise the effects of these pitfalls, and maximise our understanding

of the Earth. Davis et al. (2003) provide an example of how the combination of different geo-

scientific datasets provide a better understanding of the Slave craton (Canada) than would

be possible by using the datasets individually.

Seismic and MT data are analysed using different techniques, producing results that may

be compared with varying degrees of appropriateness and success. Propagating seismic wave

fields respond to the density, bulk modulus (incompressibility), and shear modulus (rigidity)

of the medium through which they propagate (generally bulk rock properties), while electro-

magnetic fields respond to the conductivity variations of the medium produced for example

61
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by: rock type, fluids present, or melt present (generally minor constituents of the rock).

These are very obviously different physical properties, although it is clear that something

such as a region of partially molten rock, would be observed in both the conductivity and

seismic response of a region due to a change in conductivity as well as a change in the elastic

properties (bulk and shear moduli) of the medium. However, if a seismic effect were observed

due to a density contrast, it will not necessarily contribute to an observable electromagnetic

response. Similarly, the conductivity of a region may be significantly affected by the in-

terconnection of very minor constituents in the rock, which may not have any detectable

effect on the seismic response. Thus, by combining these two geophysical methods, it may

be possible to improve the interpretation of a given region.

One of the most problematic areas for seismic shear wave splitting analysis of teleseismic

phases is vertical resolution, caused by the use of seismic waves with near-vertical ray paths

and long wavelengths. The advantage of using this method to gain information on seismic

anisotropy in the Earth is that, even though there is no inherent depth information in the

technique, the horizontal resolution can be exceptionally good for a closely spaced array.

However, conversely, the MT method has intrinsic vertical dependency due to the skin depth

phenomenon, which assures penetration at any depth depending on the period and the

resistivity of the subsurface. It is therefore quite clear that if electrical and seismic anisotropy

are due to the same causative effect (discussed later), then these two techniques should be

quite exquisitely complementary for the characterisation of the anisotropic layer or body.

4.2 Why would we expect a correlation?

The last statement of the previous paragraph is only true if the cause of anisotropy is the

same for both techniques. In this section we explore the important question of what causes

anisotropy, firstly looking at the likely causes of anisotropy separately for each technique,

followed by a comparison of the probable combined effects.

4.2.1 Causes of electrical anisotropy

A number of different causes have been suggested for electrical anisotropy. Unfortunately,

from MT measurements alone it is very difficult to distinguish one cause from another and

normally the type of geological environment as well as other geoscientific data, such as

petrological or geochemical data, are required to identify the cause with confidence. In the

near-surface or upper crustal regions, electrical anisotropy may be caused by the preferential
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orientation of a mineral fabric in a rock, such as interconnected graphite in a shear zone (Ji

et al., 1996), although this is also a possibility at greater depths (Jones et al., 2001). How-

ever, one of the requisites for a mineral phase giving rise to electrical anisotropy anywhere in

the subsurface is that it be interconnected, or at least partially interconnected in a significant

manner over distances of the order of the inductive scale length (Everett, 2005). It has been

observed that mineral phases such as graphite can form along grain boundaries and therefore

along foliations and lineations, referred to as shape-preferred orientation (Mareschal et al.,

1995; Jones, 1992). Interconnected saline fluid-filled cracks are another possible explanation

for electrical anisotropy, however this would only be a likely cause in the crustal environment

and importantly would contribute to both seismic and electrical anisotropy.

Anisotropic hydrogen diffusion in olivine has been proposed as a mechanism for reducing

electrical resistivity of mantle materials (Karato, 1990; Hirth et al., 2000) and it is a sug-

gestion that has gained a lot of interest due largely to recent laboratory experiments (Wang

et al., 2006; Yoshino et al., 2006), although there remains a great deal of controversy even

in some of these recent results (Hirth, 2006). Poe et al. (2005) suggests that concentra-

tions of a few hundred ppm water is sufficient to raise the conductivity of olivine by several

orders of magnitude compared with dry olivine. Olivine, the most abundant mineral in

the upper mantle, is electrically anisotropic, with the [100] axis (also known as the a-axis)

having the highest rate of hydrogen diffusion, thereby being the most conductive direction

(Schock et al., 1989; Mackwell & Kohlstedt, 1990). The olivine crystal aligns preferentially

when under strain and therefore many crystals with similar alignment would contribute to

an overall anisotropic effect. Initial concerns with respect to this mechanism creating elec-

trical anisotropy in the upper mantle were that it was thought that the amount of electrical

anisotropy that could be produced was insufficient to account for the magnitudes observed.

Random resistor network modelling by Simpson & Tommasi (2005) suggested that it could

only account for, at most, one third of the average measured values. However, more re-

cently, Gatzemeier & Tommasi (2006) showed, using finite-element modelling, that this is

likely a lower bound on estimations of mantle electrical anisotropy and that factors of up

to 10 in electrical anisotropy may be achieved from hydrogen diffusion in olivine. Gatze-

meier & Tommasi (2006) found that factors even greater than 15 were possible in highly

deformed mantle rocks (most likely produced by dislocation creep) where not only strong

crystal preferred orientation, but also shape preferred orientations are produced. Recent

work by Beran & Liboitzky (2006) and Grant et al. (2007) note that for lithospheric rocks,

the water content in olivine is low compared to that of pyroxenes, and Wang et al. (2006)
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infer that the water content in the continental upper mantle is <10−3 wt%. Higher contents

are observed in clinopyroxene (≈400 ppm) and orthopyroxene (≈200 ppm) compared with

olivine (<55 ppm). This work suggests that using hydrogen diffusion in olivine as an expla-

nation for electrical anisotropy for the continental lithosphere (olivine dominated) may be

incorrect (Jones et al., 2007). Interestingly, the values of Grant et al. (2007) also suggest

that the water content is independent of lithospheric age.

If lattice preferred orientation (LPO) of olive is used as an explanation, one of the req-

uisites is that there is a consistent and widespread crystal alignment in the electrically

anisotropic region. Unfortunately, to date there have been no electrical anisotropy measure-

ments made on mantle rocks to corroborate models such as those of Simpson & Tommasi

(2005) and Gatzemeier & Tommasi (2006). This is due largely to the difficulty involved in

making the measurement, and also because laboratory measurements have tended to focus

on physical property measurements other than electrical anisotropy.

It is of course likely that not only does the cause of electrical anisotropy differ slightly

from one geological region to the next, but also that the anisotropy is not only due to one

single factor, but is rather a combination of several factors that may only be valid for cer-

tain depths. It is also important to remember that MT measurements are only measuring

horizontal contributions to electrical anisotropy, and that in some regions, it may have a

greater value, but have a reduced response to the MT measurement if it also has a dip angle.

However, it should also be noted that in non-layered structures, or in the presence large-scale

heterogeneity, the TM mode component of current flow will sense conductivity with currents

that include a vertical component.

4.2.2 Causes of seismic anisotropy

Similarly to electrical anisotropy, there are a number of suggested causes for seismic anisotropy,

which vary from one geological environment to another. There are generally thought to be

three main causes of seismic anisotropy. Firstly, there is what is known as effective anisotropy.

Effective anisotropy depends strongly on wavelength and can be produced by thin isotropic

layers with different elastic properties (Savage, 1999). To seismic waves with wavelengths

longer than the thickness of the layer, these layers will appear anisotropic. If they were

horizontal layers, this would produce radial anisotropy with a vertical slow axis.
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The second main type of seismic anisotropy is thought to be produced by cracks or

fractures, and is known as crack-induced anisotropy. At higher frequencies, and in near-

surface or crustal scale studies, oriented fracture cracks and fluid-filled fractures have been

suggested as a major cause of anisotropy (Crampin, 1987; Kaneshima et al., 1988; Crampin &

Chastin, 2003). The cracks may be filled with gas, liquid, or solid. Vertical parallel fractures

would cause a vertically propagating shear wave to be split into a fast and slow polarisation,

with the fast polarisation direction being parallel to the strike of the cracks as well as parallel

to the maximum horizontal stress direction (figure 4-1 (a)) (Crampin & Chastin, 2003).

Figure 4-1: (a) The effect of parallel vertically aligned fluid-filled cracks on a near-vertically,

downward propagating shear wave. The shear wave is split into a fast polarisation (parallel

to cracks and the direction of maximum horizontal stress) and a slow polarisation. It is

likely that if these were saline fluid-filled cracks, and they have interconnection, that the

fast polarisation would also be the more conductive direction. (b) Plan view schematic

illustration of the evolution of aligned cracks. SH represents values of horizontal differential

stress, normalised to the critical value at which cracks first begin to close. Both figures

modified from Crampin & Chastin (2003), figure (b) originally from Crampin & Zatsepin

(1995).

The third main cause suggested for seismic anisotropy is due to the alignment of anisotropic

mineral crystals, often referred to as anisotropy resulting from LPO, or as intrinsic anisotropy.
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Anisotropic minerals are present in both the crust and mantle. If these anisotropic crystals

become preferentially aligned, then the bulk effect is one of an anisotropic medium. In the

crust, rocks that are anisotropic due to LPO of minerals include; gneisses, schists, sedimen-

tary rocks, and amphibolites, among others. Seismically anisotropic minerals occurring in

the crust that cause these rocks to be anisotropic, and have an orientation that is strain

dependent include amphibole, biotite, and other phyllosilicate minerals (Valcke et al., 2006).

Seismic anisotropy in the mantle is predominantly attributed to LPO anisotropy, and is an

important branch of research in the field of mineral physics. Olivine and pyroxene are both

abundant in the upper mantle and are both seismically anisotropic (though olivine is more

abundant) however, pyroxene is smaller in anisotropic magnitude and also likely to be less

strongly orientated (Mainprice & Silver, 1993). Thus, upper mantle seismic anisotropy from

LPO is commonly attributed to the preferential alignment of olivine and has been for a long

time (e.g. Hess, 1964). It has been suggested that there is seismic anisotropy as deep as

the transition zone, between the 410 km and 660 km discontinuities (Montagner & Kennett,

1996; Vinnik & Montagner, 1996), and that this might be due to LPO of anisotropic miner-

als such as β spinel (Fouch & Fischer, 1996), which is a high pressure polymorph of olivine.

There was originally little support for seismic anisotropy between the transition zone and the

D” layer, as it is thought that the general trend is that anisotropy decreases with increasing

temperature and pressure (i.e. depth) however, recent work suggests that although this may

be generally true it is not always the case (Do et al., 2006). Mainprice et al. (2000) present

a summary of the major physical and chemical variations in the Earth’s mantle that control

seismic anisotropy (figure 4-2).

4.2.3 How are stress and strain related to anisotropy?

Not only is it important to be able to ascertain the cause of anisotropy, be it electrical or

seismic, but it is important to know how the “cause” formed. Without knowledge of how

anisotropy is related to Earth processes, the measurement of electrical and seismic anisotropy

would be meaningless. However, if we are able to relate the anisotropy to past or present

strain, and the resulting stress or deformation, this provides a useful constraint for under-

standing the formation and dynamics of a given geological environment.

Smaller scale near-surface anisotropy has been more thoroughly investigated largely be-

cause the environments under which the stress and strain occur (relatively low pressure and

temperature) are easily reproduced or modelled and contain less unknowns. Additionally,

the results may be readily and directly compared to what is found. Crack formation in
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Figure 4-2: A summary of the major physical and chemical variations in the Earth’s

mantle, which control seismic anisotropy. Taken from Mainprice et al. (2000). The seismic

model SP6-F comes from Montagner & Kennett (1996) and the PREM model comes from

Dziewonski & Anderson (1981)

relation to strain, and therefore anisotropy, has be extensively observed and studied (e.g.

Crampin, 1987; Kaneshima et al., 1988; Crampin & Chastin, 2003). Crampin & Chastin

(2003) and Crampin & Peacock (2005) provide reviews of work done on the modelling of the

formation of strain-induced fluid-filled cracks and its relation to stress. Figure 4-1 (b), orig-

inally from Crampin & Zatsepin (1995) demonstrates through modelling how these cracks

evolve, becoming preferentially aligned with the direction of maximum horizontal differential

stress. Vertical cracks (figure 4-1 (a)) produced in this manner will only occur below a critical

depth where the vertical stress becomes greater than the minimum horizontal stress (usually

between 500 and 1000 m) (Crampin & Peacock, 2005), although laboratory measurements

(Hrouda et al., 1993) suggest that at depths of 10-15 km, these cracks close, and therefore

anisotropy below these depths must be due to other phenomena (Savage, 1999).
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As discussed earlier, LPO, also known as Crystal Preferred Orientation (CPO) may de-

velop in a rock producing a bulk rock anisotropy. The mechanism and environment of

deformation, as well as the type and extent of strain, will control the development of LPO.

The LPO of olivine is one of the preferred theories for lithospheric and sublithospheric seis-

mic and sometimes electrical anisotropy, and therefore the way in which this relates to stress

is an important and currently very active field of study. In upper mantle conditions there

are two important types of deformation, namely; diffusion creep and dislocation creep.

Deformation through diffusion creep occurs at either relatively low stress or small grain

size, or both. This solid-state diffusive mass transport between grain boundaries or across a

crystal lattice has a strain rate that increases linearly with stress, and decreases significantly

with grain size (Karato & Wu, 1993). Under the diffusion creep regime, no preferred orien-

tation is developed, and the deformed material is isotropic attaining no LPO.

Contrastingly, deformation through dislocation creep occurs at high stress levels, large

grain size, or both. Dislocation creep is deformation resulting through the motion of crys-

talline dislocations within grains. The strain rate increases nonlinearly with stress, but is

insensitive to grain size (Karato & Wu, 1993; Savage, 1999). Deformation through the dis-

location creep mechanism will produce a preferred orientation and therefore result in a rock

that has a bulk anisotropy, with the strength of anisotropy (i.e. the strength of preferred

orientation) dependent on the magnitude of strain. Strain rates developed by both mecha-

nisms are sensitive to temperature and pressure, though the magnitude of the temperature

and pressure effects are different for each. Thus, for a given temperature and pressure, the

mechanism that has the higher strain rate becomes the dominant creep mechanism. This

allows the dominating creep deformation mechanism to vary with depth and with regional

temperature deviations (Karato & Wu, 1993). The symmetry of LPO is dependent on the

history of deformation, which may be extremely complex. As an example, symmetrical LPO

with respect to foliation and lineation results from a coaxial deformation history, whereas

asymmetrical LPO results from non-coaxial deformation histories (Do, 2006). Theoretical

and experimental studies suggest that preferred orientation in the mantle forms in aggregates

due to the alignment of slip planes and directions with the shear plane direction (Savage,

1999).

There are two main arguments for LPO anisotropy below continental lithosphere. The

first is that anisotropy correlates with absolute plate velocity directions or mantle flow, being
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formed by the relative motion between the plates and the upper mantle below, resulting in

the fast direction of seismic anisotropy in the upper mantle being parallel to the relative

motion (Vinnik et al., 1992, 1995, 1996). The diametrically opposed counter-hypothesis sug-

gests that anisotropy below older continental regions is dominantly a response to fossil, or

frozen-in, crystal alignment created at the time of primary lithospheric formation (Silver

& Chan, 1991; Silver, 1996) (described schematically in figure 4-3). The hypothesis of Sil-

ver & Chan (1991) is supported by fast axis directions which align with surface structural

features, suggesting that the surface features and the features at depth were formed at the

same time. This argument supports the tectosphere idea proposed by Jordan (1978). How-

ever, in some regions, such as much of North America and southern Africa, the dominant

geological structure is also largely parallel to current plate motion and thus asthenospheric

flow cannot be ruled out as a contributing factor simply by the correlation of geologic struc-

ture with splitting. These two hypotheses have been discussed by a number of authors (e.g.

Silver, 1996; Park & Levin, 2002; Fouch & Rondenay, 2006), and remains a contentious issue.

There are further complexities to these arguments, although some may not be applicable

to the continental craton environment. Jung & Karato (2001) show that the addition of

large amounts of water to olivine (e.g. in subduction zones) can change the relation between

flow geometry and seismic anisotropy by changing the type of fabric that is produced. Jung

& Karato (2001) define three types of fabric (A-type, B-type, and C-type), each of which

would produce different anisotropy results. This theoretical work has been supported by ob-

servations in a subduction-type metamorphic belt by Mizukami et al. (2004). Additionally,

Holtzman et al. (2003) demonstrate that the presence of melt weakens the alignment of the

olivine a axis ([100] axis), and where the melt segregates to form networks of shear zones it

may even cause the alignment to be at 90° to the shear direction. Neither of these mech-

anisms are expected to be currently operative in Archean or Proterozoic aged lithosphere.

However, if the Silver & Chan (1991) hypothesis is valid, perhaps these effects could remain

frozen into the lithosphere during the formation of the region?

Although the general consensus among geophysicists is that seismic anisotropy in the up-

per mantle is due to LPO, it has also been suggested by Crampin & Peacock (2005) that in

the upper 400 km of the mantle, shear wave splitting is in fact caused by films of liquid melt

aligned parallel to the direction of maximum stress, exactly analogous to the fluid-saturated

grain boundary cracks in the crust. Crampin & Peacock (2005) contest that melting in the

mantle would first occur along grain boundaries (Daines & Kohlstedt, 1997), and, given
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Figure 4-3: Schematic representation of a lithospheric-scale shear zone. In this idealised

situation, foliation planes are near-vertical, and a-axis orientation would be horizontal and

parallel to the strike slip motion. The fast axis split direction (and the Pn fast propagation

direction) would be parallel to the trend of the shear zone. It would also be expected that

any interconnected mineral phase would be most likely to be interconnected in the direction

parallel to the trend of the shear zone, producing a situation where the most conductive

direction and fast axis direction are near parallel. From Vauchez et al. (2000).

triaxial stress, the melt would appear as thin films of liquid melt along grain boundaries.

Such films of melt, similarly to the crustal fluid-filled cracks, would be aligned parallel to

the direction of maximum stress, which would infer that the mantle is pushed by spreading

centres rather than pulled by subduction. Although not discussed by Crampin & Peacock

(2005), substantial connectivity of this melt would significantly lower resistivities, and de-

pending on the nature of the connectivity, it might produce significant electrical anisotropy.

In brief, the concept that the olivine a-axis orientates subparallel to horizontal flow

direction, or to the extension direction in the upper mantle, and that for simple shear and

large strains the maximum extension is approximately parallel to shear seems to be valid for

many, but far from all, cases (Savage, 1999). There are many complexities as we move from

one strain and geological environment to another, a factor one should be cognizant of when
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making an interpretation or inference.

4.2.4 Which causes will produce a correlation?

The previous sections discussed some of the causes of electrical and seismic anisotropy sep-

arately, and how they might form. However, the effect may be different for each, it may

enhance or diminish the correlation between the fast axis direction of shear wave splitting

and the most conductive direction of MT anisotropy. Table 4.1 is an attempt to summarise

the effects of some of the proposed causes, as well as whether there would be an overall

correlation increase or decrease between the two.

From table 4.1, we see that LPO, fluid-filled cracks, and cracks of partial melt (should

they exist) would likely cause azimuthal correlation between electrical and seismic anisotropy.

An interconnected mineral phase would likely only affect the electrical anisotropy. Intercon-

nected partial melt could certainly affect electrical anisotropy, although its effect on seismic

anisotropy would likely depend on the nature of the interconnected melt (amount, size, and

shape). The last effect mentioned on the table is 2D heterogeneity, such as a 2D fault or

shear zone, or a terrane boundary. If this structure comprises a conductivity contrast such

as between two geological terranes of differing conductivity, then it will have an effect on the

electrically more conductive direction, although this is not an anisotropic effect (discussed

in more detail later). The structure will also likely have an effect on the seismic anisotropy,

although probably only if the structure is of sufficient size.

4.3 Past studies of MT and teleseismic anisotropy

It is always prudent to inspect past studies that are similar in nature to gain ideas, different

perspectives, and an understanding of the work that has already been carried out. The work

done in this thesis was partly inspired by the work of Ji et al. (1996) and Eaton et al. (2004).

More recently there has been concurrent similar work to the research done here by Frederik-

sen et al. (2006) and Padilha et al. (2006). The four studies mentioned are described briefly

below and, although they are not the only studies of this nature, they are representative of

the type of work that is being done in this field of study. A brief description of each study

along with the main points and conclusions is presented.

The first study looking closely at the correlation between teleseismic shear wave splitting
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Cause Effect on SKS

splitting

Effect on MT

anisotropy

Combined

Effect

Fluid-filled cracks
X X strong X

LPO
X X weak X

Interconnected mineral phase ✘
X strong

?

Interconnected partial melt ?
X strong

?

“cracks” of partial melt
X X strong X

2D heterogeneity ?
X strong

?

Table 4.1: A summary of the different causes of anisotropy and the resulting effect on

the fast axis direction and magnitude of SKS shear wave splitting and the electrical most

conductive direction. The last column indicates whether the combined effect would result in

an enhancement or reduction in the correlation between the two. X implies an increase or

improvement; ✘ implies that there is likely no effect; and ? implies that the effect may be

dependent on the geological situation.

and the geoelectric strike directions of MT data was that of Ji et al. (1996), who undertook a

study of previously collected and analysed data (Senechal et al., 1996; Mareschal et al., 1995)

across the Grenville front, between the Archean craton and Proterozoic Grenville province

in Canada (figure 4-4). With 10 teleseismic stations and 12 MT stations (some nearly co-

located) along the profile, Ji et al. (1996) noted that the MT showed strong anisotropic

behaviour for a given frequency range, with the most conductive directions at an oblique

angle to the fast axis directions determined from teleseismic SKS and SKKS shear wave

splitting. The seismic anisotropy is most easily explained to be due to LPO of upper mantle

minerals, while the electrical anisotropy was thought to arise from the preferred intercon-

nection of a conducting mineral phase since it was thought to be too strong to be due to

LPO, and if it were due to LPO one would expect that the seismic fast axis and electri-

cally more conductive direction would correlate without any obliquity. The suggestion that

the electrical anisotropy is due to a conducting mineral phase is supported by kimberlite

xenolith information from a kimberlite near station 2 on the profile. Given these two likely

causes, Ji et al. (1996) conclude that the obliquity between the two sets of measurements is

a result of fabric symmetry with respect to the structural framework. The fast-axis direction

due to LPO is parallel to the bulk shear direction at large strains, whereas the MT most
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conductive direction is parallel to the foliation and lineation. Ji et al. (1996) further use this

obliquity to infer a dextral shear sense of movement across this boundary, consistant with

surface geology, and providing a possibly useful means of gaining an understanding of the

geodynamics of a region by using these two techniques in conjunction.

Figure 4-4: Amplitudes and azimuths of shear wave splitting and electrical anisotropy over

the Grenville front in Canada. MT azimuths are the most conductive direction scaled by

phase difference, while the teleseismic azimuths are the fast axis directions, scaled by delay

time. From Ji et al. (1996).

The work by Ji et al. (1996) was followed up by Eaton et al. (2004), with the aim of

testing this hypothesis across the Great Slave Lake (GSL) shear zone in northern Canada

(figure 4-5). Eaton et al. (2004) use nearly collocated seismic and MT stations (data results

also published separately in Wu et al. (2002) and Eaton & Hope (2003)) and find a strong

correlation between the seismic fast axis direction and the MT most conductive direction,

and do not observe any systematic obliquity between the two data sets as was observed by

Ji et al. (1996). They use the close correlation to place depth constraints on the seismically

anisotropic region, and suggest that the systematic obliquity observed by Ji et al. (1996) is

absent for one of two reasons. Either both the seismic and electrical anisotropy are a result of

LPO, which would produce aligned anisotropy such as that observed in Fennoscandia (Bahr
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& Simpson, 2002) and Australia (Debayle & Kennett, 2000; Simpson, 2001), although the

latter study consisted of only three MT stations, or, the severity of shearing in the GSL shear

zone has resulted in the LPO and foliation and lineation planes becoming parallel, analo-

gous to the classical schistosite-cisaillement (S-C) fabrics under conditions of high strain.

The work by Ji et al. (1996) and Eaton et al. (2004) is not too dissimilar to the idealised

situation portrayed in figure 4-3.

Figure 4-5: Locations of stations from an MT (Wu et al., 2002) (left) and teleseismic

(right) (Eaton & Hope, 2003) experiment across the Great Slave Lake shear zone, northern

Canada. MT black and grey vectors (left figure) represent geoelectric strike vectors for 0.1-

20s (crustal) and 20-1000s (lithospheric mantle) period bands respectively. Seismic fast-axis

directions (right figure) are single layer averages. From Eaton et al. (2004).

In more recent work, Frederiksen et al. (2006) compare MT geoelectric strike with teleseis-

mic SKS shear wave splitting in eastern Ontario and southwestern Quebéc, Canada (figure

4-6). The geoelectric strike directions plotted by Frederiksen et al. (2006) are not the most

conductive directions, but rather the directions are plotted as the direction that plots closest

to the mean shear wave split fast axis direction. The correlation of mantle with crustal MT

geoelectric strike data (and observed geologic structure) suggest that large parts of the upper

mantle have remained in place since the Neoarchean, while at many sites in the Grenville

province there is a high angle between these strike directions, suggesting that the mantle

below this region has undergone significant deformation since the Grenvillian orogeny. The

region explored by Frederiksen et al. (2006) includes the area studied by Ji et al. (1996).

The systematic obliquity between the seismic fast direction and the electrically most con-

ductive directions observed by Ji et al. (1996) at the Grenville front is restricted to that
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region. Although there does seem to be some clear consistency in some regions between the

fast split and geoelectric strike directions, there is clearly more complexity, particularly in

the Grenville province, than has been observed in some previous studies. Frederiksen et al.

(2006) note that this is likely due to larger scale structure, but that the ≈50 km MT station

spacing does not allow this question to be fully examined.

Figure 4-6: Figure from Frederiksen et al. (2006) comparing SKS fast axis directions with

the geoelectric strike directions across the Grenville Front in Canada. Note that the geo-

electric strike direction is not necessarily the most conductive direction. The MT geoelectric

strikes are for the period range 1-1000 s. The MT strike direction arrows are scaled by phase

difference, and the SKS fast direction arrows are scaled by delay time.

Padilha et al. (2006) report another recent study from south central Brazil (figure 4-7).

They find a strong correlation between the MT most conductive direction and the fast axis
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of shear wave splitting. The correlation shows no consistent obliquity, and appears to be

consistent from the crust to asthenospheric depths; however, the directions are not consistent

with present day apparent plate motion. Padilha et al. (2006) suggest that this could be due

to coherent deformation in the lithosphere, with no deformation between the lithosphere-

asthenosphere boundary either because there is no significant lateral mantle flow, or because

the rigid lithosphere is much thicker than expected. Additionally, it is suspected that the

most conductive direction and the fast axis split direction are both due to the LPO of upper

mantle minerals such as olivine.

Figure 4-7: Azimuths and magnitudes of shear wave splitting (open bars) and geoelectric

anisotropy (solid bars) in south central Brazil for four different depth ranges from Padilha

et al. (2006). The figures are: 10-40km (top left); 50-100km (top right); 150-200km (bottom

left); and >250km (bottom right).

It is clear from the brief recount of these studies that there is potential for gaining

information on the past and present geodynamics of a region using these two techniques,

more so than would be obtained separately. Additionally, there is also the opportunity to
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add constraints and counteract pitfalls of each of the methods (e.g. add depth constraints to

the seismic anisotropy). However, it is also clear that there is variability between different

geological environments, and so one should be careful when interpreting such results.



5
Teleseismic shear-wave splitting in southern

Africa

5.1 Introduction

This study involves the comparison between electrical and seismic anisotropy. Although

there is no reason to suspect that the results of the teleseismic shear wave splitting study

undertaken by Silver et al. (2001) were incorrect, it was decided to re-analyse some of the

data. Firstly, the study of Silver et al. (2001) was published in a very short article considering

the amount of data analysed. With mainly the results, and very little of the data, being

published one does not get to grips fully with the characteristics of the data. Secondly, a

preliminary analysis of some of the MT data from the first field season suggested there may

be two layers of anisotropy, and so one of the aims of reprocessing the seismic data was to

explore the possibility that there may be two layers of seismic anisotropy, or other subtleties

that may have been overlooked in the original analysis. Additionally, since we are using the

results of these data, it is prudent to have a good understanding of how the results were

obtained and of any special features of the data, something that can best be achieved by

doing at least some of the re-processing oneself.

78
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5.2 Southern African Seismic Experiment

The Southern African Seismic Experiment (SASE), as part of the Kaapvaal Craton Project

(Carlson et al., 1996, 2000), was conducted over the southern African region from 1997 to

1999, with the aim of investigating the seismic structure of the region. Broadband seismic

stations covered the Kaapvaal craton, part of the Zimbabwe craton, and some of the sur-

rounding mobile belts, and were known as the Kaapvaal Seismic Array (figure 5-1). In total,

82 stations were occupied during the experiment, with some recording for approximately a

year, and others recording for the full duration of the experiment (≈2 years).

The results of the experiment have been widely reported (e.g. Carlson et al., 2000; James

et al., 2001; James & Fouch, 2002; Silver et al., 2001, 2004) although work on these data con-

tinues. Some of the results are briefly described here: The crustal thickness was inferred over

the different geological terranes (Nguuri et al., 2001; Stankiewicz et al., 2002; James et al.,

2003) showing sharp receiver function responses over cratonic regions. There is a low velocity

zone beneath the Bushveld complex (James et al., 2001) that Shirey et al. (2002) suggest

corresponds to different diamond and diamond inclusion compositions. Seismic anisotropy

inferred from shear-wave splitting analysis, reported by Silver et al. (2001, 2004), shows clear

differences in splitting parameters over the various cratons and terranes, and in their inter-

pretation they suggest that it provides support that mantle deformation is preserved from

as far back as the formation of the Earth’s earliest continents. High-quality seismic data

from 31 stations have also been obtained from a dense broadband array near Kimberley (the

Kimberley Telemetered Array) as part of the SASE experiment. These data have helped to

provide well-resolved constraints on the structure and composition of the lowermost crust

and Moho (James et al., 2003). James & Fouch (2002) give an excellent review of some of

the results of the SASE as well as geochemical studies and interpret the significance of the

results for craton formation and evolution.

5.3 SASE shear wave splitting results

One aspect of the results from the SASE experiment is the seismic anisotropy inferred from

shear-wave splitting measurements reported by Silver et al. (2001, 2004) (figure 5-2). There

was also an additional study done on the Kimberley Telemetered Array by Fouch et al.

(2004b), although the data from this study have not been reprocessed, and are not discussed

in depth here.

The seismic results as reported by Silver et al. (2001, 2004) are presented in figure 5-2.
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Figure 5-1: Location map for the southern African seismic array stations, with political

boundaries, and stations that have been re-analysed circled. Yellow squares denote stations

deployed during the first year of the experiment (April 1997). These stations were redeployed

in April 1998 to station locations denoted by red diamonds. Stations represented by blue

dots were deployed for the full two years of the experiment. The stations were named by

the numbers next to the symbols, with the prefix “SA”. Additionally, the locations of four

permanent stations: SUR, BOSA, LBTB, and TSUM are indicated. In total 82 stations

were occupied during the experiment. NAM: Namibia, BOT: Botswana, ZIM: Zimbabwe,

MOZ: Mozambique, RSA: Republic of South Africa.

They make mention of three interesting and striking observations in their results: 1) an arc

of values from the southwestern Kaapvaal craton up to the Limpopo, where the fast axis

direction is parallel to the trend of the arc; 2) fast axis values are parallel to the Great

Dyke in Zimbabwe; 3) the contrast between the relatively weak anisotropy on the eastern



5.3. SASE shear wave splitting results 81

Figure 5-2: Results of shear wave splitting study reported in Silver et al. (2004). Map

shows the orientation of the fast polarisation direction from the Kaapvaal Seismic Array

(black bars), and the average from the Kimberley Telemetered Array (yellow bar), overlain

on relevant geological features. Only the highest-quality measurements are shown here.

Purple dots represent near-zero splitting delay times. Abbreviations: TML: Thabazimbi

Murchison Lineament, CL: Colesberg Lineament, KGB: Kraaipan Greenstone Belts, SZ:

Shear zone. Major rift systems with basaltic magmatism: Great Dyke, Ventersdorp (surface

exposures), Bushveld and Soutpansberg, shown in red.
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Kaapvaal Craton, with the stronger anisotropy in surrounding areas to the north and west

(not presented in figure 5-2 from Silver et al. (2004)). Silver et al. (2001, 2004) suggest

that seismic anisotropy is dominated by deformational events in the Archean, located within

the lithosphere, rather than by present-day processes in the sublithospheric mantle. Figures

5.3(a) and 5.3(b) were used to support this argument, in addition to a qualitative look at

the results in figure 5-2, which shows clear regional variations in the splitting parameters

within cratonic southern Africa. Figure 5.3(a) compares the splitting results of the study

with two models of absolute plate motion (APM) directions from Gripp & Gordon (1990,

2002). There is no clear trend between the splitting results and the trend of either of the

APM models. Conversely, when the splitting results are plotted with primary surface geo-

logical trends (figure 5.3(b)), there does tend to be a better correlation in many, but by no

means all, areas. Additionally, the results from the smaller array (≈ 60×40 km) surrounding

the Kimberley region (Fouch et al., 2004b) show a systematic variation in splitting delay

time across the array, decreasing from about 0.8 to 0.2 seconds over only 60 km. The small

aperture of the array suggests that these differences are a result of variations in lithospheric

mantle fabric, and not deeper.

Silver et al. (2001, 2004) suggest that the results of the Kaapvaal shear-wave splitting

study represent Archean-aged deformational structures and are not due to absolute plate

motion, after the hypothesis suggested by Vinnik et al. (1992, 1995). It is difficult to gain

accurate depth constraints on shear-wave splitting results however, Silver et al. (2001) infer

that the causative anisotropic layer resides at upper mantle depths, within the lithosphere.

It was inferred to be at these depths for a number of reasons. Firstly, crustal splitting was

measured using P-to-S converted phases at the Moho. The splitting delay time calculated

for the crust was found to be approximately 0.15 s. The fast axis direction of the anisotropy

in the crust is not well constrained due to the small delay times, although the delay times

were thought to be a more robust value. Secondly, using Fresnel-zone arguments (Rümpker

& Ryberg, 2000), the abrupt changes is splitting parameters at nearby stations constrains

the top of the anisotropic layer to be no deeper than 50 - 100 km. Lastly, the surface wave

study of Freybourger et al. (2001) places the anisotropy within the lithosphere.
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(a) (b)

Figure 5-3: The results of the shear wave splitting study reported in Silver et al. (2004)

are thought to be due largely to fabric that has been frozen-in to the lithosphere during the

deformational history of the region. The arguments for this are drawn largely from these

two plots. (a) A comparison of the shear wave splitting results with two models of absolute

plate motion (APM) (Gripp & Gordon, 1990, 2002). (b) A comparison of the shear wave

splitting results with primary surface geological features. The two vertical dashed lines give

the approximate latitude range of the Limpopo belt.

5.4 Re-analysis of SASE shear wave splitting

For reasons relating to resources and expertise, the splitting re-analysis was conducted using

the method of Silver & Chan (1991), utilising code written by Professor David W.S. Eaton1,

with helpfull additional code and advice from Dr. Mark D. Behn2. It was necessary to decide

this early on in the study, as it has consequences, such as to which data format was going

to be downloaded.

5.4.1 Event selection

The first step in the shear wave splitting re-analysis of some of the SASE data was to select

the events that were going to be analysed. In order to reduce the vast amount of data that

are available for download from the IRIS3 data centre, there are a number of criteria that

1University of Western Ontario, Canada. Now at the University of Calgary, Canada.
2Woods Hole Oceanographic Institution, MA, U.S.A.
3http://www.iris.edu/
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may be used to select certain events that will be more likely than others to contain SKS,

SKKS, and PKS splitting (discussed in Chapter 3). The Advanced National Seismic Sys-

tem catalogue, ANSS4, was used to select this list of events. The criteria used to do this

initial selection were: start and end date when the recordings were being made, a minimum

magnitude of 6.0, and epicentral distance criterion. The final list of events to be inspected

for shear wave splitting may be characterised by the histograms in figure 5-4. Figure 5.4(a)

is a histogram of the magnitudes of the events selected; all are above 6.0 (as selected), but

magnitude decreases in number with increasing magnitude as would be expected since larger

magnitude earthquakes occur less frequently. Figure 5.4(b) is a histogram showing the epi-

central distances of the selected events which fall within the window where SKS, SKKS,

and PKS arrivals would be expected. The hypocentral depths (figure 5.4(c)) show more

events at shallower depths, as would also be expected since deep earthquakes are restricted

to regions where there are subducting slabs, and are thus less frequent, less well distributed,

and at the “wrong” epicentral distances. Even though there is a relatively short period of

recording, there does appear to be a fairly good backazimuthal coverage (figures 5.4(d), 5-5)

with respect to the approximate array centre; however, it should also be noted that this will

be different for each station since there is a slight positional difference as well as recording

time period for each. These data were downloaded in compressed sac binary format, for each

site that recorded these events. Data included three components (BHN, BHE, BHZ), with

a time window of 2 minutes before the first P arrival, to 40 minutes after the first P arrival.

Once the first set of criteria has been satisfied, and we have a preliminary list of events

that may be useful for splitting analysis, the next step is to plot the corresponding seis-

mogram for a given event at all the stations, to see if the event has resulted in data that

may be useful in a splitting analysis. This is the first look at the actual data, and is where

obviously poor events (e.g. figure 5-6), with low signal to noise ratios and no clear shear

wave arrival, may be removed from the list for further analysis, while high quality events

(e.g. figure 5-7) are retained for the splitting analysis. This process is only done for one

horizontal component of the seismogram, and if an event shows no clear shear wave arrival,

it is necessary to check the other horizontal component seismogram before discarding. This

is necessary because if it happens that the seismic anisotropy in the region is, for example,

predominantly east-west, and the backazimuth of the event is east or west of the station, it

is likely that most of the shear wave energy may be on the E component seismogram. If we

were to look only at the N component seismogram in this process, we would likely throw this

4http://www.ncedc.org/anss/catalog-search.html
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Figure 5-4: Histograms describing the nature of all the events originally selected for shear

wave splitting re-analysis of the SASE array data. (a) The magnitudes selected are all 6.0 or

greater, as these generally provide better signal to noise ratios. (b) The epicentral distances

of the events selected are in the range 85°to 135°, which encompasses the range where SKS,

SKKS, and PKS are expected. (c) The hypocentral depth of the events. (d) Backazimuthal

coverage of events.

event away, when, in actual fact, it provides very useful information. An event such as this

would be recorded as a null event, with the E component (the radial component) having the

majority of the shear wave energy.

5.4.2 Station selection

The next step in the re-analysis was to select the stations that were to be re-analysed. The

first criteria for this was to, where possible, select stations that had recorded for longer peri-

ods of time and would therefore be likely to have more splitting data (blue stations in figure
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Figure 5-5: Event locations for the preliminary list of events to be used in the splitting

analysis of the SASE stations (Appendix 3).

5-1). Additionally, it was decided that it would be best to select sites that were representative

of the different geological regions (on craton, off craton, etc.), as well as sites with different

splitting results (nulls and good splits). Using these criteria, the sites that were originally

selected for reprocessing were sites: SA18, SA39, SA56, SA82, SA09, SA60, SA71, SA42,

and SA44 (figure 5-1, table 5.1). Although the last five only recorded for one year, they

were selected because they were representative of different splitting parameters and different

regions. Subsequent to the original re-analysis, other stations that were re-analysed in order

to try to gain further information, include the three permanent stations: SUR, LBTB, and

BOSA (figure 5-1) (Appendix 4).
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Figure 5-6: Plot of the seismogram of the N component for each site as a function of

epicentral distance, for the range where an SKS split would be expected. This plot is for a

magnitude 6.0 event at a depth of ≈139 km, located near Fiji occurring on 14/12/1998 at

19:35:27. There is no clear shear wave arrival at any of the stations for the N component

seismogram. This was repeated for the E component seismogram, which provided a similar

result. This event was therefore discarded, and was not used for the splitting analysis.

Station Fast axis Delay time Location Record time

SA18 48° 0.75 s western Kaapvaal craton 2 years

SA39 47° 0.80 s western Kaapvaal craton 2 years

SA56 75° 0.60 s Limpopo belt 2 years

SA82 null 0.00 s Namaqua-Natal mobile belt 2 years

SA09 21° 0.50 s Namaqua-Natal mobile belt 1 year

SA60 58° 0.85 s western Kaapvaal craton/Kheis belt 1 year

SA71 51° 0.75 s Zimbabwe craton 1 year

SA42 null 0.00 s eastern Kaapvaal craton 1 year

SA44 null 0.00 s eastern Kaapvaal craton 1 year

Table 5.1: Table with seismic stations selected for shear wave splitting reanalysis. Splitting

parameters are those of Silver et al. (2001).

5.4.3 Preparation for splitting analysis

Data from each of these stations were then analysed for SKS, SKKS, and PKS splitting for

each of the events on the list of good potential splits. This was done by plotting the radial and
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Figure 5-7: A plot of the seismogram of the N component for each site as a function of

epicentral distance, for the range where an SKS split would be expected. This plot is for a

magnitude 7.0 event at a depth of ≈24 km, located near Indonesia occurring on 25/11/1997

at 12:14:34. There is a very clear shear wave arrival at most of the stations for the N

component seismogram. This event might produce a good splitting result at some of the

stations, and was therefore retained for the splitting analysis.

transverse traces for each event over a time interval that encompasses the predicted travel

time using the IASP91 model (vertical red line in figure 5-8) for each phase for the given

event-station pair. The recording in figure 5-8 is a good example of a null, since visually

all the energy is on the radial component. From this analysis, a time window is selected

around the split phase, defining the time segment to be used later in the splitting analysis.

If necessary this time window may be changed slightly at a later stage in the analysis in

order to get a complete ellipse of the particle motion.

5.4.4 Splitting analysis

Once the time window for each possible splitting at a station had been selected for the list

of events, the windowed data segments were analysed using the method of Silver & Chan

(1991). The quality of the splitting analysis, or the splitting itself, can then be seen quite

clearly. Examples of various quality splits are displayed in the analysis results in figures 5-9,

5-10, and 5-11. Figure 5-9 displays the results from a good split. Importantly, the particle
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Figure 5-8: A radial and transverse trace of an event on the 08/04/1999, recorded at

station SA44. Vertical axis is the scaled magnitude, scaled by the maximum amplitude of

both traces. The red line is the predicted arrival time of the SKS phase from the IASP91

model. This is a good example of a null result, with all the energy on the radial trace.

motion (portrayed in the hodogram) has changed from elliptical, prior to the analysis (red

line), to near linear after splitting has been removed (blue line). This indicates that the

splitting parameters obtained in the analysis are appropriate. Additionally, the error map

shows a fairly well constrained region of lowest error (dark blue).

In contrast to figure 5-9, figure 5-10 is a medium quality split, and figure 5-11 is a poor

split. In figure 5-11 there is poor signal-to-noise ratio in the seismograms (visible in the plot

of the unrotated waveforms). Additionally, not only is the particle motion, after splitting

has been removed, still not linear, but the error surface in the error map is not very tightly

constrained (there is a large region of dark blue, where the splitting parameters may fall).

Another situation where the parameters are not normally well constrained is when there

is a null splitting result (figure 5.12(a)). A null response is characterised by having nearly

all the energy on one component, producing a particle motion that is already near linear.

This constrains a possible splitting direction to ± 90°, although the delay time is not well

constrained. Quite often the data windows for the analysis need to be edited slightly to

obtain a window containing only the split shear wave of interest, although from experience
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this seldom alters significantly the results of the splitting analysis.

Once these analyses have been completed, we are able to plot splitting parameters as a

function of backazimuth. This provides a means with which to infer whether there is a more

complex anisotropy system than a single horizontal layer (the simplest), as was discussed in

chapter 3. Figure 5-13 is a an example of this from one of the reanalysed sites (SA71). Of

the sites that were analysed, this is the site with the most high-quality splitting results, and

with probably the best backazimuthal coverage. Figure 5.12(b) is a plot of the backazimuth

directions (black lines) of null splitting results from SA82. Of the sites analysed, this has

the most null values. Since a null result has 90° ambiguity for a possible fast axis direction,

we also plot the backazimuth+90° (blue lines). It is then possible for us to take these single

event splitting results for each station, and stack the events using the method of Wolfe

& Silver (1998). This assumes that there is a single layer of anisotropy with a horizontal

symmetry system. The results of this multi-event stacking procedure is an error map of the

fast axis and delay time over the searched parameters, the minimum of which corresponds

to the single fast axis direction and delay time value appropriate for a single horizontal layer

of seismic anisotropy. These results are described later in table 5.2, with an example of the

error map produced in this analysis displayed for site SA71 in figure 5-13.

5.5 Results of splitting re-analysis

One of the aims of this part of the study was to become more familiar with the SASE seismic

data and to see if there were any peculiarities in the data that might have been overlooked in

the Silver et al. (2001) study. In order to asses if there may be anything unusual, we plot the

splitting parameters as a function of backazimuth (as discussed earlier). The upper two plots

in figure 5-13 display this for station SA71, which has the best backazimuthal variation and

good splits of all of the re-analysed sites. It is clear that although this is one of the better

sites the backazimuthal coverage is still relatively poor. A model for a single horizontal layer

of anisotropy would correspond to two horizontal lines in these plots, and could, for the most

part, fit our data (figure 5-13). This is the case for most of the sites re-analysed. However,

there is one data point in the fast-axis vs. backazimuth plot in figure 5-13 that has a fast

axis direction of 85° and appears to contradict this simple model, since all the other fast axis

directions are around 45°. However it is only one data point, and unfortunately the splitting

analysis for this station-event pair is not well constrained (lower left in figure 5-13), having

a low signal-to-noise ratio and a fairly poorly constrained error map.
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Figure 5-9: An example of a good splitting result at station SA39 for a single event at 07h50

on the 22/05/1997. Top left: Radial (top) and transverse (bottom) seismograms in window

around split phase. Top right: Error map of delay time and fast axis direction over searched

parameters. Minimum value marked with white star. Bottom Left: Rotated fast (top)

and slow (bottom) seismograms over the time window analysed. Bottom right: Normalised

particle motion diagram (hodogram) of original (red) and corrected (blue) seismograms.

It was the result obtained for station SA71 that was the motivation behind the reanal-

ysis of the permanent stations BOSA, LBTB, and SUR. It was thought that, since there

was a longer period of recording at these stations, they may provide splitting results with

better backazimuthal coverage, and therefore a better indication as to whether the unusual

data point observed at station SA71 is likely to indicate more complex anisotropy or if it

is merely a poor splitting result. After careful event selection, the analysis did not provide

the significantly better backazimuthal coverage that was hoped for. The three permanent

stations have clearly had some operational difficulties, however, this situation does seem to

be better for more recent events. Station SUR is a null station (as was observed by Silver

et al. (2001)). Stations BOSA and LBTB provide fair splitting results, although they are

generally not of high quality. Both stations LBTB and BOSA do each have a single event

analysis (different events) that would contradict a single layer model. Both of these unusual
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Figure 5-10: An example of a medium quality splitting result at station SA18 for a single

event at 06h15 on the 28/10/1997. Explanation as in figure 5-9.
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Figure 5-11: An example of a poor quality splitting result at station SA71 for a single

event at 16h33 on the 21/03/1998. Explanation as in figure 5-9.



5.5. Results of splitting re-analysis 93

1480 1500 1520 1540 1560 1580
Time (s)

Unrotated waveforms

Fast polarization angle, φ (deg)

D
el

ay
 ti

m
e,

 δ
t (

s)

Error map. φ = 110.721 (deg)  δt = 2.4992 (s)

0 50 100 150

0

0.5

1

1.5

2

2.5

3

1525 1530 1535
Time (s)

Rotated waveforms

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Normalised particle motion

(a) (b)

Figure 5-12: (a) An example of a null splitting result at station SA82 for a single event at

11h08 on the 05/04/1999. Explanation as in figure 5-9. (b) The null results as a function

of backazimuth (compass plot) for station SA82. Black lines are the actual backazimuth

directions, while the blue lines are 90° to the backazimuth.

splits are of medium/poor quality, and occur at backazimuths both different to that observed

in SA71. Unfortunately, after systematically searching and analysing events for each of these

stations with backazimuths around the same values as the unusual splitting results, there was

no other split that could be found to support, or to contradict, this result. Since the unusual

results are singular at each station, medium/poor in quality, and cannot be supported by

other splitting analysis at a nearby backazimuth, we cannot make any further deductions

from these data with any confidence. Of course, with the backazimuthal coverage we obtain,

it would likely be possible to fit a huge number of models to these data by simply using a

forward model, such as that of Silver & Savage (1994) (figure 3-4), and thus we are unable

to exclude, with confidence, the existence of more complex anisotropy.

The waveform inversion method of Özalaybey & Savage (1994) was used on four sites

with good splitting results to try to estimate splitting parameters assuming two horizon-

tal anisotropic layers. This inversion method is very similar to the multi-event averaging

technique of Wolfe & Silver (1998), except that the effects of double, rather than single,

layer splitting are modelled. Unfortunately, the results of this analysis did not provide any
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Figure 5-13: Splitting results from station SA71 as a function of backazimuth. Top left:

Fast axis direction versus backazimuth. Top right: Delay time versus backazimuth. Red

vertical lines are null measurements. Bottom left: Single event splitting analysis from a

magnitude 7.2 event in eastern New Guinea on 22/12/1997 at 02h05. Bottom right: Results

of multi-event stacking for station SA71.

conclusive constraints on two-layer anisotropy for any of the four stations that were used for

this analysis.

Table 5.2 is a summary table of the multi-event stacking results obtained in this study

compared with the results from the Silver et al. (2001) study. Note that the number of events

used in this study (last column in table 5.2) is counted multiple times if multiple split phases

(e.g. SKS and PKS) are used from the same event. We were unable to obtain from Silver
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et al. (2001) a list of the events and phases that they used for their analysis, so differences

may be due to choice of events. As can be seen in the table below, apart from LBTB and

possibly SA18, there are no statistically significant differences between the results of Silver

et al. (2001) and this study. The null stations that were observed by Silver et al. (2001) are

all observed as nulls in this study (SA82, SA42, SA44, SUR). Taking errors into account,

sites SA39, SA56, SA09, SA60, and SA71 are statistically the same, although stations SA09

and SA60 have large errors due to the low number of splitting events found in the analysis (1

and 2 respectively). Again, taking errors into account, station SA18 is only different in the

two studies by one degree for the fast axis direction, with the delay times calculated being

statistically the same. However, assuming normal distributions of 10000 samples (simply

a rough reference value of samples), the null hypothesis that the mean fast axis directions

(37° and 48°) are equal at the 0.05 significance level can be rejected. Station BOSA has

exactly the same fast axis direction in the two studies, although the delay times are not

within error of each other by 0.08 s. Station LBTB has different fast axis directions, but

delay times that correspond between the two studies, only because the error on the delay

time is large for this study. Our results for BOSA and LBTB are however far more consistent

with, and are statistically the same as, the analysis done by Barruol & Ben Ismail (2001)

on permanent stations in the region. A feature that is consistant throughout the results of

our study is that the errors that we derive are consistently larger than those of Silver et al.

(2001). Since we might be using different events for our analysis, it is unlikely that we would

get exactly the same results, and it was thought that it may be due to this study using

less events. Although, from discussion with these authors (Gao, S.S. Personal communica-

tion, September 2007), other possibilities that were suggested which may contribute to the

discrepancy in errors is the use of different filtering parameters, as well as using different

beginning and end times of the seismogram section for the splitting measurements (window

times).

It is pleasing that the measured parameters of Silver et al. (2001) and this study are very

similar, indicating that the results are robust, and that our analysis techniques and programs

are sound. What is not so satisfying about the measurements is the lack of quality splitting

results for a broad backazimuth, which would allow us to have more certainty on the nature

of the anisotropy. However, this was to be expected due to the relatively short recording

time of the array.
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Table 5.2: A comparison of the splitting parameters obtained by Silver et al. (2001), with

the parameters obtained in this study, for the reprocessed sites. Parameters include: fast

axis direction and error (φ, and σφ), delay time and error (δt, and σδt), as well as the number

of events actually used in this study for each station. First number is split events, number

in brackets includes null events. The last column indicates if results are in agreement, Y;

marginally different, M; or completely different, N. Y(B) indicates agreement with the study

by Barruol & Ben Ismail (2001).

Silver et al. (2001) This study Agreement

Station φ σφ δt σδt φ σφ δt σδt # events Y/M/N

SA18 48° 4° 0.75 s 0.08 s 37° 6° 0.97 s 0.14 s 7 (22) N

SA39 47° 3° 0.80 s 0.10 s 40° 5° 0.78 s 0.10 s 5 (12) Y

SA56 75° 2° 0.60 s 0.12 s 68° 14° 0.76 s 0.20 s 2 (26) Y

SA82 null - 0.00 s - null - 0.00 s - 0 (20) Y

SA09 21° 8° 0.50 s 0.12 s 32° 31° 0.52 s 0.80 s 1 (5) Y

SA60 58° 4° 0.85 s 0.12 s 45° 22° 0.77 s 0.32 s 2 (8) Y

SA71 51° 4° 0.75 s 0.07 s 43° 8° 0.90 s 0.16 s 10 (14) Y

SA42 null - 0.00 s - null - 0.00 s - 0 (9) Y

SA44 null - 0.00 s - null - 0.00 s - 0 (15) Y

SUR null - 0.00 s - null - 0.00 s - 0 (6) Y / Y(B)

LBTB 80° 5° 0.45 s 0.18 s 47° 15° 0.69 s 0.41 s 5 (15) N / Y(B)

BOSA 54° 4° 0.45 s 0.08 s 54° 11° 0.92 s 0.31 s 5 (13) M / Y(B)

5.6 Comparison with plate motion and mantle flow

LPO from asthenospheric flow, or the resulting present-day deformation within the astheno-

sphere that is a result of the motion of the tectonic plate over the deeper mantle, is a

commonly invoked explanation for teleseismic shear wave splitting. It is therefore necessary

to compare the fast axis direction of the splitting results with models of flow and plate mo-

tion in order to observe if there is a correlation, and whether this may be the cause of shear

wave splitting in a region. This was considered by Silver et al. (2001) but we take a closer

look at it here.

There are many different models that have been proposed and created for both plate

motion as well as mantle flow. The two plate motion models that are plotted in figure

5.3(a) are HS2-NUVEL1A (Gripp & Gordon, 1990) and HS3-NUVEL1A (Gripp & Gordon,

2002), both of which are models that represent motion relative to a fixed hotspot reference
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frame. The HS3-NUVEL1A model is newer, with smaller uncertainties, being averaged over

a shorter and more uniform time interval. However, Gripp & Gordon (2002) suggest that

the movement of the African plate in the HS3-NUVEL1A model may be subject to small

systematic errors. If the asthenospheric mantle is assumed to be fixed in a hotspot reference

frame, then these model plate motion directions would likely represent the fast axis splitting

directions if the anisotropy is due to shear at the base of the lithosphere. It will be noted

that there appears to be a very strong difference between the two models for the motion of

the African plate (figure 5.3(a)). This is likely because the absolute velocity of Africa is not

well constrained, since plate velocities are small.

The earlier HS2-NUVEL1A model of Gripp & Gordon (1990) does tend to fit GPS data

for the region far better than the HS3-NUVEL1A model, even although the GPS data are

sparse (figure 5-14). We have used GPS data analysed by the Jet Propulsion Laboratory,

California Institute of Technology5, with the ITRF20056 reference frame. The plate motion

models of Gripp & Gordon (1990, 2002), which are referenced to the fixed “hotspot” frame

were calculated using the calculator provided by UNAVCO7.

5.6.1 Seismic anisotropy from mantle flow models

Mantle flow modelling is a very active field of research, with models continually adding

more constraints from various geoscientific techniques (e.g., geochemistry, petrology, etc.).

It is possible to predict the seismic anisotropy direction from mantle flow models. Simple

shear flow is a flow pattern expected to prevail throughout most of the asthenosphere, as

the differential motion between the lithosphere and upper mantle is accommodated within

the low-viscosity asthenosphere (Conrad et al., 2007). Although unusual fabrics may occur

in certain regions which are high stress and/or water-rich (Jung & Karato, 2001; Mizukami

et al., 2004; Kneller et al., 2005) such as subduction zones, the a-type fabric is expected to be

dominant for most regions of the asthenosphere. Therefore for asthenospheric simple shear,

with a horizontal shear plane, the horizontal projection of the LPO may be used to predict

seismic anisotropy. The assumption here is that the anisotropy forms quickly and does not

depend on the deformation history.

5http://sideshow.jpl.nasa.gov/mbh/series.html
6http://itrf.ensg.ign.fr/ITRF solutions/2005/ITRF2005.php
7http://sps.unavco.org/crustal motion/dxdt/model/
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If the flow is more complex due to spatial and time variations, it is necessary to consider

finite strain accumulation. Kaminski & Ribe (2002) introduced the infinite strain axis (ISA)

to determine the conditions under which it is necessary to integrate LPO along flow lines

(Conrad et al., 2007). The ISA is defined as the asymptotic orientation of the long axis of

the finite strain ellipsoid in the time limit of infinite strain (Kaminski & Ribe, 2002). The

ISA can be defined for every point and time in a time variable flow field, and since the olivine

a-axis aligns with the finite strain ellipsoid for the a-type fabric (Zhang & Karato, 1995), the

ISA should approximate the LPO in the upper mantle, assuming that the velocity gradient

tensor remains constant for olivine crystals moving along flow lines. Since this is generally

not likely to be the case, the ISA direction may change with time, and will only be a good

approximation for LPO if the olivine crystals rotate towards the ISA faster than the ISA

changes along flow lines (Kaminski & Ribe, 2002). In order to determine if this happens fast

enough, Kaminski & Ribe (2002) introduce the grain orientation lag parameter (Π), which

is a purely local parameter whose value will in general depend on position and on time if the

flow is unsteady. They find that if Π<0.5, the ISA is a good approximation for LPO. This

simplifies the predictions of anisotropy from a given flow field since finite strain calculations

are unnecessary.

In this study, we have used the recent mantle flow model constructed by Conrad et al.

(2007) using finite element modelling, which is driven by combinations of mantle density

heterogeneity inferred from seismic tomography (density-driven flow) and surface plate mo-

tions (plate driven flow), as undertaken by Behn et al. (2004). For the flow fields in their

model, they calculate the ISA as well as the Π parameter of Kaminski & Ribe (2002). This

means that, from their model, the ISA can be used as an approximation for LPO, and it

can be used to test if the approximation is valid by determining if Π<0.5. Conrad et al.

(2007) show that Π is small throughout the asthenosphere away from plate boundaries. At

plate boundaries, the strain history of flow needs to be considered, and computing strain

deformation may involve complex, and often poorly constrained, modelling of the time de-

pendence of the flow field (Kaminski & Ribe, 2001; Becker et al., 2003; Kaminski et al., 2004;

Becker et al., 2006). Southern Africa, however, is far from plate boundaries, and so this is

not a concern while employing this model in our study. In general, Conrad et al. (2007) find

that their predictions of LPO (assuming ISA orientation approximates asthenospheric LPO)

agree better with shear wave splitting observations below the oceanic regions, while there is

a generally poorer fit below continental regions. However, this is not always the case, as they

observe in western North America, although lithosphere is known to be thin there. They
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conclude that asthenospheric anisotropy is probably present beneath oceanic and continental

regions. However, below continents, the lithosphere may retain a fossil fabric that controls

the net anisotropy.

5.7 Correlation with plate motion and mantle flow

We take the two plate motion models, HS2-NUVEL1A (Gripp & Gordon, 1990) and HS3-

NUVEL1A (Gripp & Gordon, 2002) used by Silver et al. (2001), as well as the mantle flow

model of Conrad et al. (2007) and GPS measurements for comparison with the SASE results.

The analysis is done on a map projection so that latitudinal as well as longitudinal variations

are visible. These three models are plotted in figure 5-14 together with GPS plate motion

directions.
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Figure 5-14: (a) Plate motion models of Gripp & Gordon (1990) (G&G 90) and Gripp &

Gordon (2002) (G&G 02), plotted together with results from GPS measurements. (b) The

resulting ISA directions (analogous to splitting fast axis directions) for the flow model of

Conrad et al. (2007) (Conrad 07) at 225km depth, plotted together with results from GPS

measurements.

It is clear that the model of Gripp & Gordon (2002) is completely different from the

other two models as well as the GPS data, which, for the most part, all correlate relatively

well with a general northeast-southwest trend. The GPS data, displaying measured plate
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velocities in the region of 25 mm/yr, are too sparse to use for a correlation plot with the

SASE results (although it is likely to be a linear trend), but they do provide added confidence

in the Gripp & Gordon (1990) model. The predicted splitting fast axis direction from the

flow model of Conrad et al. (2007) is also remarkably similar to the plate motion directions

of the Gripp & Gordon (1990) model. There are a few points from the Conrad et al. (2007)

model over Namibia and one over the Indian Ocean that do not appear to be consistant. It

is unclear what has caused these anomalous directions in the model, but since they are away

from the SASE array region, and the general trend is consistent with what is presented in

the broader global model plot of Conrad et al. (2007), these anomalous directions are ignored.

We take the Gripp & Gordon (1990) and Conrad et al. (2007) models and subtract the

direction of the SASE fast axis splitting directions from the direction predicted by the mod-

els in order to gain a measure of the misfit between the observations and model predictions.

The SASE splitting directions are then plotted and coloured according to the misfit between

the models and the measurements. These results are displayed in figures 5.15(a) and 5.15(b).

It should be noted that these results do not take into account the uncertainty in the mod-

els, or the errors in the splitting measurements, both of which could improve the correlation

and lower the misfit value. This is therefore essentially a “worst case” or “worst fit” scenario.

Since the general trends of the Gripp & Gordon (1990) and Conrad et al. (2007) models

are very similar, it is not unexpected that figures 5.15(a) and 5.15(b) produce similar results.

The western Kaapvaal craton and the Zimbabwe craton are the two regions where there is

an excellent fit (blue coloured bars) with the model data. The fit is not as good on the

southwestern Kaapvaal craton, and the areas where the fit is worst is in the northeastern

Kaapvaal craton and in the Limpopo belt (yellow-orange coloured bars). As noted by Silver

et al. (2001), the “null” results tend to be clustered on the mobile belts to the southwest, and

on the eastern Kaapvaal craton. The implications of these correlation plots are discussed in

chapter 7.
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Figure 5-15: (a) Correlation between the observed SKS fast axis directions, and the plate

motion model of Gripp & Gordon (1990). (b) Correlation between the observed SKS fast

axis directions, and the ISA directions from the mantle flow model of Conrad et al. (2007)

at 225 km depth. The misfit in degrees is indicated by the colour of the bar of the SASE

results. Null stations are represented by open circles, and poorly constrained splitting results

are plotted with a black outline.



6
MT data analysis

The SAMTEX experiment consists of more than 516 distinct sites located over a huge region

in southern Africa (> one million square kilometers). The data have been processed using

a variety of processing codes such as those described by Jones et al. (1989), Egbert (1997),

and Chave & Thomson (2004). Primarily, we have used the commercial processing software

of Phoenix Geophysics1, which is based on Jones et al. (1989) method 6, and where data are

more contaminated by noise, we generally obtained better results using the code of Egbert

(1997). Data are of varying quality with some severely affected by DC train noise and

mining related noise, particularly around the Witwatersrand basin where there are many

DC train lines and gold mines, and also around the Kimberly region where there are many

diamond mines with DC-powered lifts. The poorest data, which are therefore not analysed

here, are in the south eastern Kaapvaal craton, where pipelines that carry a DC current

to prevent corrosion, together with poor MT signal, have combined to produce very poor

quality recorded data. Data collected in Botswana and Namibia are generally of significantly

better quality due to the minimal cultural noise in these regions. The resulting output from

processing are impedance tensors, from which apparent resistivity and phase curves are

derived. The analysis of the impedance tensor and the resulting geoelectric strike directions

1http://www.phoenix-geophysics.com

102
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are the focus of this chapter.

6.1 Depth of investigation

In previous studies utilising MT geoelectric strike directions to gain information on the ge-

ology of a region, investigators have plotted results for a given period of the data, which

corresponds to a certain penetration depth, or depth of investigation. The depth of pene-

tration is determined by the period of the data as well as the subsurface conductivity. Since

many of the regions that have been explored have generally been smaller in size, a given

period would likely penetrate to an approximately uniform depth over the surveyed region,

and thus to plot a map of geoelectric strike directions for a given period is useful. However,

it is obvious that simply due to the size of the SAMTEX survey, and the various conduc-

tively distinct regions it covers, it is highly unlikely that the electromagnetic penetration

will be the same across the entire region. It is therefore necessary to gain information on the

penetration depth at each site prior to the analysis.

There are three common methods in use to gain a quantitative approximation of the

penetration of an MT response. These are: 1) the Schmucker ρ∗ − z∗ scheme (Schmucker,

1970, 1973), 2) the Bostick transformation (Bostick, 1977), and 3) the Niblett approximation

(Niblett & Sayn-Wittgenstein, 1960). Jones (1983a) showed that the Niblett approximation

and the Bostick transformation are in fact exactly equivalent, referred to from here on as

Niblett-Bostick depth estimates. The real part of the inductive c-response function (ρ∗− z∗)

(Schmucker, 1970; Jones, 1980), related to MT impedance by a factor of 1
ωµ

, was shown to be

the depth of maximum eddy current flow by Weidelt (1972), and is a measure of the depth

of investigation. A model across a 2D conductivity heterogeneity (e.g. a terrane boundary

or fault) is displayed in figure 6-1, with a resistivity of 500 Ω.m on the left and 5000 Ω.m on

the right. Niblett-Bostick (NB) depth estimates (equation 6.1)

hNB =

√

ρa(T )T

2πµ0

(6.1)

were calculated for the model responses using a geometric average (determinant average)

of the apparent resistivity for the TE and TM modes. It is clear through looking at the

different penetration on either side of the heterogeneity, that they are sensing very different



6.1. Depth of investigation 104

depths for the same periods. 123 s represents ≈75 km depth on the more conductive (left)

side, while the same period is sensing a depth of >200 km on the resistive side (right).

Figure 6-1: Approximate Niblett-Bostick penetration depths across a 2D fault model for

periods of 1.64 s, 13 s, and 123 s. The average of the two modes was used in the penetration

calculation.

Similarly, this can be very nicely demonstrated in our data. Figure 6-2 shows the Niblett-

Bostick approximate depth of penetration (for an average of the TE and TM mode resistivity)

across the main kap03 profile for the period of 100 s. This plot is worth considering closely.

Given a period of 100 s, the depths that are being sensed across the profile vary hugely.

Notwithstanding the scatter, there are clear trends visible; in the centre of the resistive cra-

ton the penetration is >200 km, whereas over the Bushveld (red bar above Kaapvaal craton)

and the Namaqua-Natal metamorphic belt, the penetration depth is only about 10 km. The

depth calculations for this plot were done on the original processed data that have not had

distortion removed, which would contribute to the scatter in the plot. Static shift effects

(not removed by distortion analysis) would also likely influence depth estimates, but by the

square root of their value (equation 6.1) (Jones, 1988). Clearly, a map of period dependent

results would be meaningless if plotted across this region for one single period value, and

a more appropriate means of tackling this problem would be to either split the data into
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sections, or to plot results for given depths as opposed to periods. The effect is a direct

consequence of the huge variation in the parameter that electromagnetic studies are sensing

(figure 2-1), namely electrical resistivity.

Figure 6-2: Approximate Niblett-Bostick penetration depths along the kap03 profile

(>1500 km in length) at a period of 100 s. The scatter is likely due to local distortion

and static shift effects. Red line is a 5-point box car moving average. Note the significant

variation in penetration along the profile. NNMB: Namaqua-Natal metamorphic belt. LB:

Limpopo Belt. Red bar above the Kaapvaal craton represents the location of the Bushveld

Igneous Complex, where there is low penetration.

A caution which has been raised by Jones (2006) is that the TE and TM modes may

penetrate to different depths for a given frequency (where apparent resistivity curves split).

This is demonstrated in figure 6-3, where a response from a 2D model is plotted as a function

of period, and then as a function of Niblett-Bostick depth. It is clear simply by looking at

the marked data points in the plot versus period and their corresponding penetration depths,

that there is significantly different penetration for each mode. This is something that should

be taken note of. However, there is little that can be done to get around this in current de-

composition analysis approaches, and the problematic effect is still present whether plotting

versus period or depth. It is, however, still likely to be far more meaningful to plot data for

a given average penetration depth in an area than for a given frequency.
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(a) (b)

Figure 6-3: Model data from a site along a 2D profile such as that in figure 6-1, plotted as a

function of period (a), and as a function of Niblett-Bostick depth estimates (b). The circled

data points at ≈20 s in (a) are circled in (b), to clearly indicate the different penetration

depths for the same period of data.

It has been observed in other studies (e.g., Eaton et al., 2004) that there is sometimes

a different geoelectric strike direction and/or seismic fast axis direction for different depths.

One of the aims of this study was to place bounds on the depth of the seismic anisotropy that

has been observed in the shear wave splitting results from the SASE project. We therefore

wanted to be able to identify variations with depth. For this reason it was decided to find

separate representative strike directions at each site, one representative of the crust, and

one that was representative of lithospheric mantle, since, if there are different geoelectric

strikes at different depths, it is not unreasonable to suspect that the Moho discontinuity

may separate them.

Crustal thickness, as defined by the seismic results of the SASE experiment (Nguuri

et al., 2001; Stankiewicz et al., 2002; James et al., 2003), varies from ≈35-40 km below the

craton, to ≈45-50 km below the Proterozoic regions where the Moho also appears to be more

complex. Our aim was therefore to gain a strike direction representative of the crust and

a strike direction representative of the upper lithospheric mantle, while avoiding complex

structures at the crust-mantle boundary. In order to do this, and at the same time not

bias any one site with more or less data, we analyse each profile, as portrayed in figure 6-4.

The corresponding periods for Niblett-Bostick depth estimates were calculated for depths of

35 km (open circles) and 45 km (filled circles), which correspond to the approximate crust-



6.2. GB decomposition analysis 107

mantle depth. It is the corresponding periods for these depths that is then plotted in this

figure. From figure 6-4, a decade-wide band of data was selected above these periods to be

analysed for crustal geoelectric strike, and a decade-wide band of data were selected below

these points to be analysed for the lithospheric mantle geoelectric strike. The decade-wide

bands of data that were selected are quite smoothly varying, and the advantage of doing

this for each profile is that we can easily observe any single site that is badly effected by a

static shift or instrument calibration error since it will likely be a scattered point along the

profile (e.g. site 12 in the OKA profile in figure 6-4). The reason for selecting a decade-wide

band for each analysis was to not bias the analysis for any one station with more or less data

compared to its neighbours.

Figure 6-4: A plot of the corresponding periods for Niblett-Bostick depth estimates of

35 km (open circles) and 45 km (filled circles) depths along the K2G (left) and OKA (right)

survey lines (see figure 1-1). Figures such as this were used along each profile (Appendix 1)

to then select a corresponding decade-wide band of data representative of the crust (upper

grey shaded region) and the lithospheric mantle (lower grey shaded region).

6.2 GB decomposition analysis

Each site was then analysed twice, separately for each frequency band using the single site

Groom-Bailey (GB) approach (Groom & Bailey, 1989) for a range of frequencies, as imple-

mented by McNeice & Jones (2001). The MT phase tensor analysis (Caldwell et al., 2004)

was applied to a few of the sites in a preliminary analysis. However; the results were not
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strongly different from the GB results at these sites, previous studies had used impedance

tensor decomposition techniques, the phase tensor technique was very new at the time of this

analysis, and the GB approach is widely accepted, it was decided to conduct the analysis

using the GB approach. Our analysis provides us with two (crustal and lithospheric mantle)

regional geoelectric strike estimates for each site. The data were analysed using an assumed

error floor of 2° for phase, which is equivalent to 7% for apparent resistivity.

The data that are represented below include the majority of, but not all sites. This is

because, after the GB analysis, the output data for each site were plotted, visually inspected,

and omitted if necessary. Sites were omitted for any of the following reasons: data were very

poor, with large scatter and errors; data were insufficient (no penetration to the desired

depth); there was a definite crossover between the two modes of the data in the period band

of interest, making the task of picking the more conductive direction difficult since it would

depend on whether it is taken above or below the crossover point. The conductive direction

was taken to be the direction of the mode with the higher phase value, to avoid ambiguities

due to static shift (discussed more thoroughly in section 6.3).

The mean RMS values for the one-decade wide GB decomposition for both the crustal

and lithospheric mantle results fall below 1.5 for the majority of the sites, with the peak

in the values being around 0.5 (figures 6.5(a) and 6.5(b)). This indicates that the data are

overfit, and that we could probably reduce the error floor. The histograms in figure 6-5

appear to have a χ2 distribution, which would be expected if the misfit to the GB model

had a normal distribution. Figures 6.5(a) and 6.5(b) therefore provide strong justification

for the use of the χ2 statistic as a means of assessing the validity of the GB model. There is

no clear spatial pattern as to certain regions that are well or poorly fit by the decomposition

model (figures 6.5(c), 6.5(d)).

The average twist values that are observed from both sets of data fall largely within the

range ±15° for the crust and ±25° for the lithospheric mantle band (figures 6.6(a) and 6.6(b)

respectively). There are regions (figures 6.6(c), 6.6(d)) that have consistently low twist val-

ues, for both the crustal and lithospheric mantle depths (e.g. over the Rehoboth terrane).

The low distortion is likely due to the uniform conductive cover in the region, which results

in low distortion.

The average shear values fall predominantly in the range ±20° for the crust, while the
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Figure 6-5: Mean RMS values from the unconstrained GB analysis of crustal (a and c)

and lithospheric mantle (b and d) periods. Both the crust and lithospheric mantle analysis

result in RMS values that are quite small, with the majority falling below a value of 1, and

the mean value being around 0.5.

lithospheric mantle shear values are far more spread out over the possible ±45° range. Simi-

larly to the twist results, there does appear as though there are regions that have consistently

lower shear values (e.g. over the Rehoboth terrane, the Okwa terrane, and the Magondi mo-

bile belt). The observation of spatial variation in the data is important as it gives us an

idea as to regions of low distortion. The station responses over the central Rehoboth are

high quality and a first look at the apparent resistivity and phase curves indicates that they

are generally 1D in nature, so these are consistent and pleasing results. The reason that
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(d) Lithospheric mantle twist

Figure 6-6: Mean twist values (in ± degrees) from the unconstrained GB analysis of crustal

(a and c) and lithospheric mantle (b and d) period bands. Both crustal and lithospheric

mantle twist values are reasonably small, mostly within the range ±15° for the crust, and

±25° for the lithospheric mantle. Note the regions of low twist values across the Rehoboth

terrane (RT) as well as the Okwa terrane (OT) and Magondi orogenic belt (MMB).

the rms, twist, and shear values are generally slightly larger for the lithospheric mantle than

for the crustal analysis, is likely due to the data at longer periods having worse signal to

noise ratios and therefore larger scatter and errors. Additionally, at these longer periods,

the larger skin depth results in additional and larger-scale crustal features acting as scat-

terers. Overall, the majority of the data has reasonably low distortion values compared to
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what is often observed on shield regions such as the Fennoscandian Shield (Lahti et al., 2005).
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Figure 6-7: Mean shear values (in ± degrees) from the unconstrained GB analysis of crustal

and lithospheric mantle period bands. Maximum values for shear are ±45°. The crustal shear

values generally fall within the ±20° range, while the lithospheric mantle values are more

uniformly distributed over the ±45° range.

Further to this analysis, we have found a few regions that are resistive enough, and have

sufficiently long periods recorded, such that there is penetration to asthenospheric depths.

In these cases there are only a few long period data points corresponding to signals that

penetrate to these depths. Additionally these are normally the data with the larger error
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bars and scatter. It is therefore impossible to do the same analysis that was done for the

crust and lithospheric mantle for the asthenosphere, as there are not enough data to select an

entire decade-wide band of data and they are generally of poorer quality. In order to counter

this, we have analysed the regions where there is penetration to asthenospheric depths using

a multi-site GB decomposition (McNeice & Jones, 2001). Most of the groups use between 4

and 10 sites, with only one group using 2 sites, and one group using 3 sites (Appendix 2).

This allows us to compute the best fitting strike direction for all the sites in the group and

provides extra constraints to counter that which is lost by using less, and poorer data. This

would provide us with less strike directions, but at asthenospheric depths we would expect

that MT stations 20 km apart would be sensing the same region, making this analysis both

appropriate and satisfactory.

6.3 The electrically more conductive direction

To avoid the 90° ambiguity in the geoelectric strike from the output of the GB analysis,

we plot the more conductive direction of the two. This would correspond to the more

conductive direction in a region of strong electrical anisotropy and no other structures,

thereby providing a measurement of horizontal electrical anisotropy alone. However, it is

not only the electrical anisotropy of a region that influences the geoelectric strike direction.

Large-scale conductivity heterogeneity, such as that that may be found at a fault or terrane

boundary, will also influence the geoelectric strike direction.

6.3.1 The more conductive direction across a fault

The effect on geoelectric strike, plotted as the more conductive direction in the presence

of 2D heterogeneity, can most easily be demonstrated with a 2 quarter-space model. This

might represent a boundary between two geological regions of differing electrical properties

or a large fault. Model responses for a 2 quarter-space fault model, with a conductivity het-

erogeneity (500 Ω.m and 5000 Ω.m) were calculated using the code of Pek & Verner (1997).

Figure 6-8 was then generated by calculating the appropriate period at each site for an ap-

proximate Niblett-Bostick (Niblett & Sayn-Wittgenstein, 1960; Bostick, 1977; Jones, 1983a)

penetration depth of 35 km, and then plotting the corresponding apparent resistivities and

phases for each of the two modes at that particular period (representative of ≈35 km depth)

for each site.

In this paragraph, we discuss three different directional properties; the geoelectric strike



6.3. The electrically more conductive direction 113

Figure 6-8: A plot of the variation of apparent resistivity and phase for the xy and yx

modes for a Niblett-Bostick depth of ≈35 km along a model profile. The modelled data

come from a 2 quarter-space fault model with resistivities of 500 Ω.m on the left of the fault

(vertical green line), and 5000 Ω.m on the right of the fault. Data were modelled using

finite-difference modelling code after Pek & Verner (1997).

(which possesses a 90° ambiguity), the geological strike of the model (which in this case

coincides with one of the geoelectric strike directions), and the most conductive direction

(which in this case also coincides with one of the geoelectric strike directions, and possibly

the geological strike direction of the model). If we plot the more conductive direction across

the model for the analysis described in the previous paragraph, we would be plotting the

TE mode on the right (resistive) side of the structure, which is correctly the geological strike

direction of the fault as the TE electric field is parallel to geological strike. Conversely

however, the more conductive direction corresponds to the TM mode on the conductive

side of the structure, which is perpendicular to the geological strike direction of the fault.

Thus, if we plot the geoelectric strike directions as the most conductive directions across a



6.4. MT results 114

conductivity boundary (thereby removing the 90° ambiguity is geoelectric strike), we would

expect to see a 90° flip in the conductive direction as we move from one side of the fault

structure to the other. In order to plot the most conductive direction, one might simply take

the mode with the lower resistivity, which would be correct in this idealised, distortion-free

2D model. However, this is liable to be incorrect if one of the modes has a static shift

(something not removed by the GB decomposition). Thus, in order to avoid this occurring

we choose to plot the mode with the higher phase, since phase is not affected by static

shifts, which also corresponds to the more conductive direction. This is clear in figure 6-8,

where one can see that regardless of whether we plot the strike direction corresponding to

the mode with the lower resistivity or the higher phase, we are plotting the same direction.

Importantly, we are not using the more conductive geoelectric strike directions to define the

strike direction of structures for 2D interpretation, but we are only concerned with the more

conductive direction to remove 90° ambiguity in the correlation with the fast axis direction

from seismic anisotropy.

6.4 MT results

The results from the GB analysis of our MT data, using the methodology described above,

are presented here, while the discussion of these results is presented in the following chapter.

There are essentially three sets of results: The crustal MT results (figure 6-9), the lithospheric

mantle MT results (figure 6-10), and the asthenospheric multi-site MT results (figure 6-11).

All the MT results are plotted as red bars aligned in the most conductive direction, and are

scaled by the maximum phase difference (normalised to a maximum of 30°) between the TE

and TM mode in the band analysed, which is a measure of the magnitude of the anisotropy.

These values (direction and phase difference) have a somewhat similar manner of describing

electrical anisotropy to the fast axis direction and delay time in shear-wave splitting studies.

It was decided to use the maximum phase difference in the entire band of data that was

analysed, which is likely to be more robust given the study by Heise et al. (2006b) who show

that the maximum phase split/difference occurs at the vertical resistivity contrast between

regions (in 1D), and not in the centre of the region even if it is anisotropic.

The more conductive results for the crust are overlain on the regional magnetic data of

southern Africa (figure 6-9). A large portion of the shorter wavelength structure visible in

the magnetic data is likely to be related to structures that are confined to the crust, and

these data are thus a suitable complimentary background. If these features represent bound-
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aries of conductivity heterogeneities, we expect the MT to have some correlation with the

structure.

The lithospheric and asthenospheric mantle MT results are plotted over the seismic SKS

results of Silver et al. (2001), as it is these seismic results, thought to originate from litho-

spheric mantle depths with which we want to compare our MT data. The shear-wave splitting

results are plotted as green bars aligned with the fast axis direction, and scaled by delay

time. Light green bars are poorly constrained stations, while blue dots are null stations. Ap-

proximate geological terrane boundaries (Nguuri et al., 2001) are plotted on these three sets

of results, and are derived largely from potential field data and geological maps. However,

large portions of the region, covered by our results are concealed by unconsolidated Kalahari

desert sands and are not well known or understood.

The results from our MT analysis are far more complex than has been previously observed

in most other studies of this scale (e.g. Ji et al., 1996; Eaton et al., 2004; Frederiksen et al.,

2006; Padilha et al., 2006), although this may also be a slightly misleading impression as

there is also simply far more data than have been previously analysed for any given study

region. While it is possible to gain an overall impression of the results and make a qualitative

interpretation as to the meaning of these results, it was decided that a further analysis of

these results may prove to be more useful, and to reveal any underlying trends or patterns

that may otherwise be overlooked.

6.5 Cluster analysis

In order to try to gain a better understanding of the results and to see if there are any un-

derlying trends that might otherwise be missed, it was decided to use a cluster analysis tool

on the results. The term cluster analysis is a general term for a number of different methods

and algorithms that are used to group similar kinds of objects into respective categories or

meaningful structures. In science it is generally used to partition a data set into subsets

or clusters based on some common characteristic, which is often in the form of a type of

distance measure. How this common characteristic is described depends on the dataset and

what sort of data characteristics one wishes to group or classify. Cluster analysis algorithms

fall into two broad categories: hierarchical algorithms and partitional algorithms. Hierar-

chical algorithms find successive clusters from previously established clusters, resulting in a

“tree structure” type of classification with different levels, while partitional clustering algo-
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Figure 6-9: Crustal MT most conductive directions, plotted as red bars, with the length

scaled by phase difference, overlain on the regional magnetic data of southern Africa. Geo-

logical terrane boundaries are derived largely from regional potential field data (Nguuri et al.,

2001). KC: Kaapvaal craton. LB: Limpopo belt. ZC: Zimbabwe craton. NN: Namaqua-

Natal mobile belt. CFB: Cape Fold belt. KB: Kheis Proterozoic fold and thrust belt. MMB:

Magondi mobile belt. RT: Rehoboth terrane. GB: Gariep Belt. OT: Okwa Terrane. DMB:

Damara mobile belt. CC: Congo craton.
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Figure 6-10: Lithospheric mantle MT most conductive directions, displayed as red bars,

with the length scaled by phase difference, overlain on SKS splitting results of Silver et al.

(2001), plotted as green bars parallel to the fast axis splitting direction, with the length

scaled by delay time. Light green bars are poorly constrained splits, and blue dots represent

null sites. Geological terrane boundaries are derived largely from regional potential field

data (Nguuri et al., 2001). Terrane names are as in figure 6-9.
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Figure 6-11: Asthenospheric MT most conductive directions, displayed as red bars with

the length scaled by phase difference, overlain on SKS splitting results of Silver et al. (2001),

plotted as green bars parallel to the fast axis splitting direction, with the length scaled by

delay time. Light green bars are poorly constrained splits, and blue dots represent null sites.

Geological terrane boundaries are derived largely from regional potential field data (Nguuri

et al., 2001). Terrane names are as in figure 6-9.
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rithms determine all the clusters at the same instance and generally create a single level of

clusters.

The hope was that a cluster analysis might prove to be a useful tool for this study, as it

may identify trends of regionally distinct areas of geoelectric strike from our MT results. The

cluster analysis technique chosen for this analysis is a method known as k-means clustering

(MacQueen, 1967). This is a partitional clustering technique that is commonly used and is

an unsupervised learning algorithm. It involves essentially four steps:

1. Place k random points into the data space that is represented by the objects being

clustered. These represent the initial k group centroids.

2. Assign each data point to the group with the closest centroid.

3. When all the data points have been assigned, the positions of the k centroids are

recalculated to minimise the variance.

4. Steps (2) and (3) are repeated until the centroid locations no longer move. This

produces groups of data that fall into k different groups.

The method seeks to minimise the sum of the within-cluster variances. Conditions of

the method include: different clusters may not contain the same data point; no data points

are excluded; each cluster contains at least one data point. The initial assignment of cluster

means is normally random (but may be predetermined), and can have a significant bearing

on the final model performance. It is therefore prudent to re-run the cluster analysis multiple

times in order to avoid local minima, and to find the result with minimum variance. An

important question is how many clusters we want to group the data into. Obviously there

is the upper limit, where the number of clusters is the same as the number of data points,

and the lower limit, in which there is only one cluster. There is a tradeoff between having

many clusters, with a correspondingly small variance, and having only a few clusters with a

higher variance. A common way of deciding on the appropriate number of clusters is using

what is termed the elbow criterion (known as the L-curve in inverse theory), where the num-

ber of clusters versus a measure of the variance is plotted. Figure 6.12(a) is such a plot for

our crustal MT results, with the conductive direction being the criteria that we are clustering.

From figures 6.12(a) and 6.12(b) a suitable number of clusters may be selected, where

the variance is not too large, while having a small enough number of clusters to make the

analysis meaningful. Approximately five clusters appears to be a suitable number for both
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Figure 6-12: (a and b) Elbow criterion plot for clustering of the conductive directions of

the crustal and lithospheric mantle MT results respectively. The vertical axis is the ratio

of within-group variance to total variance, plotted against number of clusters. These are

the mean results for well over 500 restarts on each number of clusters. This tradeoff curve

shows that we certainly do not gain much using more than 10 clusters in either case, and

that the optimal number of clusters is likely around 5, where the gradient of the curve is

greatest. (c and d) Silhouette plots for a k-means cluster analysis using 5 clusters, applied

to the conductive directions of the crustal and lithospheric mantle MT results respectively.

crust and lithospheric mantle datasets, although a cluster analysis for 2 to 18 clusters was

carried out on both datasets prior to deciding on 5 clusters. A means of visually inspecting
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how well separated the resulting clusters are is by creating a silhouette plot (e.g. figures

6.12(c) and 6.12(d)). The silhouette plot displays a measure of how close each data point

in one cluster is to points in the neighbouring clusters. A value of +1 indicates that the

points are very distant, or well-separated, from neighbouring clusters, while 0 indicates that

the data points are not distinctly in one cluster or another. A value of -1 indicates that

the points are likely assigned to the wrong cluster. For perfectly separated clusters, a sil-

houette plot would produce essentially a bar graph with values of +1, although this would

seldom be the case for real data. Figures 6.12(c) and 6.12(d) are silhouette plots of our

crust and lithospheric mantle MT results respectively, clustered by the conductive direction

into 5 groups. The results are pleasing, with the majority of the points having a value

above 0.8, and an average silhouette value of 0.76 for both data sets. There is no single clus-

ter that is significantly poorer than the others, and minimal points that have negative values.

Finally, after conducting the analysis to decide on the appropriate number of clusters,

a k-means clustering analysis of crustal and lithospheric mantle MT results was done for

5 clusters. The initial cluster locations were randomly chosen (within the data space) and

this was repeated multiple time (≫500) to avoid local minima in the analysis. The final re-

sults used were the ones with the minimum variance from repeated clustering with randomly

chosen cluster centroids. The results of the analysis for the crustal and lithospheric mantle

conductive directions are displayed in figures 6.13(a) and 6.13(b) respectively. It should be

noted that this analysis was done to extract conducting directions that may be related to

anisotropy. If it were done primarily in order to extract geoelectric strike directions, we

would need to account for 90° ambiguity, and would need to alter this cluster analysis to

account for this. The cluster centroid values for the crustal results are: 13.6°, 48.5°, 80.75°,
120.6°, and 158.7°. The cluster centroids for the lithospheric mantle results are: 9.0°, 31.0°,
70.1°, 119.1°, and 164.6°.

This cluster analysis is able to improve the ease with which regions of similar geoelectric

strike directions may be visually identified. It is difficult to identify any single direction

that is dominant throughout the entire region, or even one general direction/cluster that is

prevalent and parallel away from known terrane boundaries. This is something we might

expect if the electrical anisotropy was due to the same cause of the seismic anisotropy, which

appears to be smoothly varying across the region. Since we felt that 2D structure was having

a strong effect on the MT results, particularly the crustal results, we decided that it would

be beneficial to analyse major geological features that may be influencing these results to
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Figure 6-13: Results of K-means cluster analysis for 5 clusters, on the conductive directions

from the crustal (a) and lithospheric mantle (b) MT results. The cluster centroid locations

for each are denoted in the key. These plots allow us to more easily see where there are

clusters/regions with similar conductive directions. Terrane names are as in figure 6-9.

see if there is any relationship between the two.

6.6 Correlation of lineaments with MT

A thorough study by Jelsma et al. (2004) on major lineaments and their contribution to

kimberlite distribution was the starting point for this part in our analysis. Unfortunately we

were unable to get the lineament data used in that paper, and so the map was geo-referenced

and most of the important lineaments from the map of magnetic lineaments from Jelsma

et al. (2004) were digitised. Lineaments that were considered “important” were features of

substantial length, which are therefore likely to extend to greater depths, and those which

appeared to spatially correlate with known terrane boundaries. In total ≈50 major linea-

ments were digitised (figure 6.14(a)). At this stage we simply plotted each group from our

cluster analysis over the lineaments. While this does help to focus on certain data and where

they do, and do not, seem to be effected by lineaments, it is also a relatively subjective

analysis. There are no given clusters for either the crustal or lithospheric mantle MT results
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that appear to be completely related to, or completely unaffected by, the lineaments.
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Figure 6-14: (a) Significant magnetic lineaments across southern Africa, digitised from

Jelsma et al. (2004). Longer lineaments and lineaments that correspond to known terrane

boundaries were digitised as they were considered more significant. (b) The lineaments from

(a), converted to points and angles east of north, for subsequent analysis.

In order to gain a more quantitative description of the lineaments, we convert each lin-

eament to points of latitude and longitude, and to angles east of north as is portrayed in

figure 6.14(b). We then correlate these points and angles with our MT conductive directions,

calculating a misfit between the MT conductive direction and the nearest lineament. The

problem with this approach however, is that in some cases such as where multiple lineaments

cross, it may be such that the closest lineament is not necessarily the major lineament, or

the lineament which has the greatest effect on conductivity. To simply choose the “better”

lineament is too subjective and open to interpretation.

We try to address this issue by using rose diagrams (a histogram for angles) to gain

information on any significant correlation. The unfortunate side of this approach is that

spatial information is lost. In an attempt to weight more significant features in the linea-

ment data, without simply picking lineaments that appear more important, the data for the
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rose diagram are binned, with every 100 km of lineament length corresponding to one angle

that has to be binned in the rose diagram. This means that longer, and therefore likely

more significant and vertically extensive lineaments, are counted multiple times. Similarly,

for the MT more conductive directions, we weight each conductive direction by its phase

difference. Each 5° of phase difference corresponds to one occurrence of the angle that is

then binned in the rose diagram. This means that conductive directions that show stronger

magnitudes (phase difference), are counted multiple times. The results of this analysis are

presented in figures 6.15(a), 6.15(b), and 6.15(c) for the lineament data, crustal MT, and

lithospheric mantle MT results respectively. These weighting schemes obviously do change

the rose diagrams however, the general pattern that is observed is in fact quite similar to

the same plots without weighting.

The crustal MT results show a broad azimuthal distribution, with major peaks around

0° and ≈80°. Bearing in mind the physics described for the 2D conductivity heterogeneity

model in figure 6-8, we would expect that if the more conductive geoelectric strike direction

obtained is purely a result of large 2D heterogeneity, and that the profile extends both

sides of the feature, that any peaks observed in the rose diagram due to this would have a

corresponding peak ≈90° to it. This is better observed in the unweighted rose diagrams for

the MT results (figure 6-16), where peaks that are ≈90° to each other are clearly visible in

both the crustal and lithospheric mantle MT results. However, this pattern is not observed

for all the peaks in the MT results. The implications of these plots are described in chapter 7.
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(a) Magnetic lineaments

(b) Crustal MT (c) Lithospheric mantle MT

Figure 6-15: (a) Rose diagram of magnetic lineament angles digitised from Jelsma et al.

(2004). Each 100 km of lineament length counts as one occurrence for that angle. (b)

Rose diagram of crustal MT conductive directions. Each 5° of phase difference counts as

an occurrence for that direction/angle. (c) Rose diagram of lithospheric mantle MT direc-

tions, also weighted such that each 5° of phase difference counts as an occurrence for that

direction/angle.
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(a) Crustal MT (b) Lithospheric mantle MT

Figure 6-16: (a) Rose diagram of crustal MT conductive directions, with one angle for each

site. (b) Rose diagram of lithospheric mantle MT directions, with one angle for each site.

Red, black, and green lines indicate peaks in conductive directions that have a corresponding

peak ≈90° to it.



7
Discussion of MT and seismic results

7.1 The MT conductive direction results

We are fortunate to have a very large MT data set with extensive coverage to conduct this

study. The MT most conductive directions that we observe across the southern African

region, both for crustal and lithospheric mantle depths, are generally far more complex

in nature than has been observed in previous studies. To facilitate ease of reading and

discussion, some of the important figures from previous chapters are repeated in this chapter.

7.1.1 Crustal MT results

The crustal MT results are, for the most part, high quality, as it is generally at the longer

periods where data are poorer. The eastern Kaapvaal data are not of adequate quality due

to both noise and poor signal during recording and have therefore been excluded. The first

impression one gets when viewing the crustal results (figure 7-2) is that they are quite vari-

able and rather complex, although there are some regions that display systematic trends.

However, bearing in mind the physics of the model described in figure 6-8, our crustal MT

results are quite pleasing. There are clear cases where we observe a near-90° flip in the most

conductive direction at known terrane boundaries. It should be remembered however, that
127
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Figure 7-1: The southern African magnetotelluric experiment (SAMTEX) profile/site lo-

cations, and the SASE seismic array station locations, overlain on a map of southern Africa

with schematic geological provinces (after Nguuri et al., 2001).
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Figure 7-2: Crustal MT most conductive directions, plotted as red bars, with the length

scaled by phase difference, overlain on the regional magnetic data of southern Africa. Geo-

logical terrane boundaries are derived largely from regional potential field data (Nguuri et al.,

2001). KC: Kaapvaal craton. LB: Limpopo belt. ZC: Zimbabwe craton. NN: Namaqua-

Natal mobile belt. CFB: Cape Fold belt. KB: Kheis Proterozoic fold and thrust belt. MMB:

Magondi mobile belt. RT: Rehoboth terrane. GB: Gariep Belt. OT: Okwa Terrane. DMB:

Damara mobile belt.
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these need to be boundaries that separate regions of differing conductivity, otherwise this

boundary effect will not be observed.

For the purpose of the discussion of our MT results, we will refer to the effect on conduc-

tive directions due to boundaries between different conductivities as heterogeneity effects,

while electrical anisotropy will refer to anisotropy due to lineaments or cracks, sometimes

called macro anisotropy (sketched schematically in figure 7-3). Where discussed, electrical

anisotropy due to very small-scale features, such as aligned electrically anisotropic mineral

grains, will be termed micro anisotropy. Of course, since MT senses a volume, it is difficult

to impossible to distinguish between macro and micro electrical anisotropy.

Figure 7-3: Schematic diagram describing the different effects of conductivity heterogeneity

(left) and macro anisotropy due to lineaments or cracks (right) on the electrically conductive

directions. It should be noted that for small scale and high frequencies, the right model will

produce similar effects at the boundaries to the left model. It is a question of the scale of

the inhomogeneity compared with the inductive scale length.

One of the most clear examples of this 2D heterogeneity effect is on the Kap03 line (figure

7-1, page 128), at the southwestern boundary between the Namaqua-Natal mobile belt and

the Kaapvaal craton (figure 7-2). Although slightly more complex than would be observed in

the ideal model scenario, we see the more conductive directions change from being parallel

to the boundary on the Namaqua-Natal belt, to being nearly perpendicular to the boundary

on the Kaapvaal craton (figure 7-2). Another region where we see this effect quite clearly

is in the northwest of our survey area on the DMB line (figure 7-1, page 128) as we move

from the Damara belt onto the Congo craton; the conductive direction changes from parallel

on the northern edge of the Damara belt, to perpendicular to the boundary on the Congo

craton (figure 7-2). This has been substantiated by 2D modelling (Spratt et al., 2007), where

a conductive crustal feature is imaged on the Damara Belt side of the contact. Other regions

where this effect can be observed, though perhaps not quite as clearly, are: on the Kim04 line
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as we move from the Kheis Belt onto the Rehoboth terrane, on the Kap03 line as we move

across the Colesberg trend, and on the Kap03 line as we move from the Kaapvaal craton

onto the Limpopo belt (figures 7-1, 7-2).

It was hoped that the cluster analysis undertaken on the crustal MT data would help

to gain a better understanding of the patterns observed in the results. Specifically, we were

hoping that this analysis would extract from the complex data set regions that posses a

pervasive conductive direction that would more likely be due to electrical anisotropy rather

than 2D heterogeneity effects. The results of the analysis (figure 7.4(a)) do serve this purpose

to some degree. In the southwestern Okwa terrane, most of the K2G line is classed in one

group, with a cluster centroid value of 158°. Another region where there does appear to be a

consistent trend is in the central northern Rehoboth terrane, where there is a common north-

easterly trend in the data. An additional area with consistent directions is the southwestern

Zimbabwe craton and western Limpopo belt, where a northeasterly direction is observed. A

direction of around 40° is observed on the Kap03 line in the central Namaqua-Natal belt.

These regions, particularly those away from any boundaries such as in the Rehoboth terrane,

would provide support for electrical anisotropy as being the predominant cause of conductive

direction orientations. However, one feature that was unexpectedly enhanced through the

use of the clustering technique is the effect of heterogeneity, discussed above. This is because

on either side of the structure, the conductive directions are generally classed into different

clusters creating a colour contrast across the boundary to which the eye is drawn. This

can be clearly observed in figure 7.4(a) when looking at the regions with boundary effects

mentioned at the end of the previous paragraph.

The obvious contribution from heterogeneity to the crustal MT results led us to inves-

tigate whether we could find a correlation between major lineaments and boundaries in the

region and our MT results. Magnetic lineaments of major extent were digitised from Jelsma

et al. (2004) and converted to points and angles for the analysis. There were difficulties

encountered when trying to spatially correlate these with the MT data orientations because

in certain areas there are multiple lineaments and it is impossible to assess in a statistical

manner which lineament is the one affecting the MT result, and so it was thought that rose

diagrams may be a better means of comparing the results. The lineament data were weighted

by length, whereas the MT data were weighted by phase difference; however, the resulting

patterns are not too dissimilar to the unweighted versions.
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Figure 7-4: (a) Results of K-means cluster analysis for 5 clusters, on the conductive di-

rections from the crustal MT results. The cluster centroid locations for each are denoted

in the key. Terrane names are as in figure 7-2. (b) Rose diagram of crustal MT conductive

directions. Each 5° of phase difference counts as an occurrence for that direction/angle.

The crustal MT results, regardless of whether they are weighted by phase difference (fig-

ure 7.4(b)) or unweighted (figure 6.16(a)), show a broad azimuthal distribution. There is no

direct correlation that can be made between the major peak in the lineament rose diagram

(figure 6.15(a)), and the MT rose diagram for crustal depths, indicating that for the longer

magnetic lineaments, which likely correspond to deeper and more substantial structures,

there does not seem to be a major conductivity signature associated with them in the crust.

This is not to say that there is no direct correlation at all, as some of the smaller peaks

in the lineament rose diagram do seem to have a somewhat better correlation with the MT

results (e.g. at 90° and 120°). There are two large peaks in the crustal MT rose diagrams

at ≈0° and ≈75°. If the MT conductive directions are due to heterogeneity, and the data

fall on both sides of a given conductivity heterogeneity, we would expect that, given the

physics described in figure 6-8, we would have corresponding peaks in conductive directions

approximately 90° to each other. Our crustal MT results are therefore quite pleasing, and

indicate one of two things. The two major peaks are not quite 90° to one another because

of the complexities of real geological situations, and these are, in fact, the complementary
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peaks, indicating that there are some largely north-south and/or east-west features causing

these peaks. Alternatively, as indicated in figure 6.16(a), these peaks correlate with other

peaks almost exactly 90° apart, but of slightly different size. The difference in size could

be explained by the MT data not having equal stations on either side of the heterogeneity,

or by having additional (non-heterogeneous/anisotropic) influences in the directions where

the peak is larger. If we had done our analysis for given frequencies, the drop-off of the

heterogeneity effect will be stronger on the conductive side of a contact compared with the

resistive side, which would mean that even for equi-spaced stations there would be a bias

towards the resistive side (the direction parallel to the contact). This effect is approximately

cancelled by taking approximate depths for the analysis and not a constant frequency for all

sites; see figure 6-8, where the constant depth analysis shows a near-equal drop-off on both

sides of the fault.

Regardless of which explanation applies, what the rose diagrams do tell us is that there

are strong effects due to heterogeneity visible in the crustal MT results that are likely not

related to the longer magnetic lineaments with azimuths of ≈50°. The crustal MT results

may, however, be related to the lineament peaks at ≈90°, and ≈120°, while there is a peak in

the MT results around 75°, which, if not related to the 0° peak, corresponds to heterogeneities

with a strike of either ≈75° or ≈165°.
7.1.2 Lithospheric mantle MT results

Since the seismic anisotropy from shear wave splitting analysis had been interpreted to be

due to LPO of olivine located in the lithospheric mantle by Silver et al. (2001), it was ex-

pected that if the seismic anisotropy had an electrical anisotropy signature, we would find

a very similar pattern in the lithospheric MT results to those observed in the seismic shear

wave splitting analysis. Our analysis shows that this is most certainly not the case, and

therefore requires futher analysis and explanation.

Our lithospheric mantle results (figure 6-10) show a stark contrast to the seismic results

over which they are plotted, and show a level of complexity comparable to that of the crustal

MT results. While in some regions, such as the northeastern and southwestern Kaapvaal

craton, there appears to be quite a close correlation between the directions of the MT and

seismic fast axis directions, there are also regions where this is certainly not the case, such

as on the Limpopo belt where the electrically more conducting directions are near perpen-

dicular to the seismic fast axis direction.



7.1. The MT conductive direction results 134

16˚ 20˚ 24˚ 28˚ 32˚

−32˚

−28˚

−24˚

−20˚ ZC

LB

KC

NN

KB

CFB

RT

OT

MMB

DMB

9.0°
31.0°

70.1°

119.1°

164.6°

(a) Lithospheric mantle clusters (b) Lithospheric mantle MT

Figure 7-5: (a) Results of K-means cluster analysis for 5 clusters, on the conductive direc-

tions from the lithospheric mantle MT results. The cluster centroid locations for each are

denoted in the key. Terrane names are as in figure 7-2. (b) Rose diagram of lithospheric

mantle MT conductive directions. Each 5° of phase difference counts as an occurrence for

that direction/angle.

There are certainly still some areas that seem to be affected by large-scale conductivity

structures, such as in the northern part of the OKA line as we move from the Damara belt

onto the Congo craton (figures 6-10, 7-1). In order to extract any pervasive directional pat-

terns that may exist in the data, we conducted the same cluster analysis that was undertaken

on the crustal MT results, on the lithospheric mantle results, having found five clusters to be

appropriate for both sets of data. The results of the cluster analysis (figure 7.5(a)), although

still quite complex, do appear to show more uniformity across regions, as one might expect

when looking deeper into the Earth due to the spatial averaging nature of EM fields. The

southeastern Rehoboth terrane displays a dominantly northeast conductive direction, while

the southwestern Kaapvaal craton appears to have a more conductive direction of around

70° (green cluster). Additionally, the northeasterly trend on the Namaqua-Natal belt that

was observed in the crustal MT results, appears to be consistent in the lithospheric man-

tle results. On the southwestern Zimbabwe craton and western Limpopo craton there is a
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consistant conductive direction, although it does appear to have a lower angle to the trend

observed in the crustal results. These larger regions of consistent conductive direction are

likely due to anisotropy rather than heterogeneity effects, as most are away from known

large-scale terrane boundaries. Since vertical magnetic fields are generated by lateral con-

ductivity variations and not by anisotropy, the tipper vectors would be an ideal means to

confirm our interpretation. However, due to the difficulty of installing vertical magnetome-

ters, there are very little vertical field data in the SAMTEX experiment, particularly over

South Africa and the southern regions of Botswana and Namibia.

Similarly to the analysis for the crustal MT, we plot our lithospheric mantle conductive

directions on a rose diagram, and compare the results to lineament directions. Again, we

see no strong correlation between the major peak at ≈50° in the lineament directions (fig-

ure 6.15(a)) and any of the peaks in the conductive directions (figure 7.5(b)). The longer

magnetic lineaments likely correspond indirectly to deeper and more substantial structures.

The magnetic response of these features would be limited to depths shallower than the Curie

depth, although the geological structure may continue deeper. It was therefore expected

that, if these longer features do have a conductivity signature, they would be more likely

to correspond to our lithospheric mantle, rather than crustal MT results. This provides a

strong argument that for the majority of the longer lineaments with ≈50° strike, there is

no conductivity signature present. However, we do again note that there are conductive

direction peaks that are near-90° apart, albeit of differing sizes, for directions of ≈30° (cor-

responding peak at ≈120°) and ≈75° (corresponding peak at ≈165°). The directions of both

of these peaks correspond well with the crustal results, suggesting that if they are indeed

caused by large-scale structure, such as conductivity boundaries, then these boundaries are

present at both crustal and lithospheric mantle depths.

This brings us to an important question; where, and by how much, do the crustal and

lithospheric mantle results differ? While a qualitative look at the rose diagrams for each

depth (figures 7.5(b), 7.4(b)), indicates that although there are some similarities, the results

show generally quite different patterns. However, the differences are best presented with

more spatial information in figure 7-6, where we plot the lithospheric mantle results scaled

by phase difference (as plotted in figure 6-10), but colour the bars by the difference in angle

in degrees between the crustal and lithospheric mantle conductive directions. Red bars indi-

cate strong variations between crustal and lithospheric mantle conductive directions, while

blue bars highlight areas where there is no significant variation between the crustal and
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lithospheric strike directions.

There is a lot of information that may be obtained from figure 7-6. Firstly, we look at

the red bars on the Namaqua-Natal belt. In the crustal results there is a strong effect on

the conductive directions from the boundary between the Kaapvaal and the Namaqua-Natal,

whereas in the deeper lithospheric results, there appears to be far less of an affect. A similar

pattern may be observed on the Kim04 line (figure 7-1) at the boundary between the Kheis

belt and the Rehoboth terrane. This clear change from our crustal to lithospheric mantle

results suggests that these boundaries, at least as far as the conductivity variations are con-

cerned, are located largely in the crust, and do not have the same signature at lithospheric

mantle depths.

Conversely to this, we observe that on the central Rehoboth terrane there is a heterogene-

ity effect in our lithospheric mantle results, which is not apparent in our crustal results (hence

the presence of red coloured bars). This is coincident with, or perhaps slightly further north-

west of, the approximate position of the Makgadikgadi line (dashed black line in figure 7-6).

The Makgadikgadi line, which is not well understood, subdivides the Rehoboth terrane into

two subprovinces; the northern Tses Subprovince, which has a weaker magnetic signature

than the southern Aroab Subprovince. The change in magnetic signature is thought to reflect

a potential transition in the crustal basement across a northeast trending discontinuity (Hoal

et al., 1995). However, our results suggest that the conductivity signature of this boundary

is, in fact, subcrustal in depth, and perhaps slightly further northwest of the approximate po-

sition given by Hoal et al. (1995). This places important constraints on a feature, the nature

and position of which, are poorly defined (Hoal et al., 1995). Interestingly, the same effect

is not clear on the RTZ400 and K2G lines (figure 7-1) further to the northeast (also crossing

the black dashed line indicating the approximate position of the Makgadikgadi line in figure

7-6), which, if the lineament is as extensive as it is thought to be, they should be. These

interpretations can be further verified with 2D inversions of the MT data along these profiles.

Regions where we see very little variation between the crustal and lithospheric mantle

conductive directions are indicated as blue coloured bars in figure 7-6. There are three main

regions where this is clearly the case; on the Namaqua-Natal belt (southwest Kap03 line),

in the south central Rehoboth terrane (Kim04 line), and in the Okwa terrane (K2G line).

This provides an important tectonic constraint on the formation of these regions, regardless

of whether the conductive directions are due to structural or anisotropic effects. The impli-
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Figure 7-6: Spatial correlation between the crustal and lithospheric mantle MT most con-

ductive directions. The lithospheric mantle results are plotted with bar lengths scaled by

phase difference as before, and with the bars coloured by the difference in degrees between

the crustal and lithospheric mantle directions. Red indicates a strong difference, while blue

indicates that the two sets of results are similar. Terrane boundaries are as in previous

figures, and the dashed black line indicates the approximate position of the Makgadikgadi

Line, from Hoal et al. (1995).
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cation is that these features are coherent and consistent from crustal through to lithospheric

mantle depths, indicating that they likely represent large-scale features that formed through

coherent deformation between the crust and lithospheric mantle. In contrast to this, regions

with yellow/red bars, indicate either a change in heterogeneity or anisotropy between the

crust and lithospheric mantle, perhaps suggesting that deformation has occurred separately,

or differently, for the crust and lithospheric mantle.

Although there are substantial heterogeneity effects, both the crust and lithospheric

mantle MT results are significantly different from the seismic shear wave splitting results. If

the seismic anisotropy has a significant lithospheric component, as is suggested by xenolith

studies and the interpretation of Silver et al. (2001), then it does not have the same effect

on electrical anisotropy. This likely indicates that electrical micro anisotropy due to LPO of

olivine is very small, which implies that hydrogen diffusion in olivine is small, and therefore

that water content in the southern African continental lithosphere is below 100 ppm in olivine

(Poe et al., 2005; Beran & Liboitzky, 2006; Wang et al., 2006; Grant et al., 2007).

7.1.3 Asthenospheric MT results

Our lithospheric mantle results are clearly different to the SASE fast axis directions, which

was not what was anticipated from observations in previous studies, although this was per-

haps naive to expect considering the complexity of this region. However, this difference

hinted that perhaps the lithosphere is not the source of the seismic anisotropy, and is what

prompted us to analyse the regions of the MT data that penetrated to asthenospheric depths.

The regions where this occurs are sparsly distributed, and also have minimal, and poorer

data, which therefore necessitated multi-site analysis to counter these difficulties. Unfor-

tunately the results that we obtain for asthenospheric depths (figures 6-11, 7.7(b)) are not

sufficient in number to allow for similar analyses such as those that were conducted on the

crustal and lithospheric mantle results.

We compare our asthenospheric MT conductive directions with the plate motion model

of Gripp & Gordon (1990) (figure 7.7(a)) and with the shear wave splitting results of Silver

et al. (2001) (figure 7.7(b)). From figure 7.7(a) we can see that there is, in fact, generally

very good agreement between the majority of the asthenospheric MT results and the plate

motion model of Gripp & Gordon (1990). If electrical anisotropy does form from aligned

olivine (micro anisotropy), in a similar manner to that suggested for seismic anisotropy at

the lithosphere-asthenosphere boundary, then this is a very pleasing result. Indeed, the
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(a) Asthenospheric MT & plate motion (b) Asthenospheric MT & splitting results

Figure 7-7: (a) Asthenospheric MT conductive directions compared with the plate motion

model of Gripp & Gordon (1990) (grey bars). The MT bars are coloured by misfit (0-90°)
between the MT direction and the plate motion direction. (b) Asthenospheric MT conductive

directions compared with SASE shear wave splitting results from Silver et al. (2001), as in

figure 6-11.

fact that the majority of our results do align well with what is predicted substantiates this

suggestion, and adds another constraint for mantle flow and plate motion models in the

region. There is only one region where the conductive direction is very different to the plate

motion direction, in the northwestern Rehoboth terrane, although there are also two other

regions where conductive directions which are also somewhat different (yellow bars). This

is possibly due to poor data quality, or very strong lithospheric effects that are masking the

asthenospheric response. Additionally, we note that the significantly different direction on

the Rehoboth may be related to problems discussed by Jones (2006) where the modes have

significantly different penetration, and may result in an analysis of data for the two modes

that correspond to different depths. The results observed by plotting the data against NB

depths instead of period, such as in figure 7-8, indicates that this latter explanation may be

quite plausible. A decomposition analysis conducted on this site for the longest periods, will

produce a decomposition result that applies to different depths for each mode, and therefore,

depending on the conductivity at those different depths, may result in the erroneous selection

of the more conductive direction.
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Figure 7-8: Apparent resistivity and phase for site dmb030 (prior to decomposition) plotted

against NB depth as opposed to period, indicating that the two modes have quite different

penetration, particularly at the longer periods. The longest periods penetrate to approxi-

mately 120 km depth for the xy mode, but these same periods penetrate to approximately

250 km for the yx mode.

Unfortunately the overlap between the coverage of the SASE experiment and the regions

where our MT results penetrate to sub-lithospheric depths is minimal (figure 7.7(b)). There

are only three locations where there are deep penetrating MT responses that fall within the

SASE array. In two of these three cases the conductive directions are nearly exactly parallel

to the fast axis direction of the nearby SASE stations. In the third case, on the southwestern

Zimbabwe craton border, the conductive direction is not quite parallel to the fast axis split-

ting directions that surround it, although it is not completely disparate either (≈35° differ-

ent). One might be tempted to use these results as evidence that the seismic anisotropy is, in

fact, situated at asthenospheric depths, or at least at the lithosphere/asthenosphere bound-

ary, and not within the lithospheric mantle as suggested by Silver et al. (2001). However, if

we consider the comparative conductive directions obtained for lithospheric mantle depths

(figures 6-10, 7-6), we notice that the difference between the conductive directions obtained
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for asthenospheric depths and those obtained for the corresponding regions at lithospheric

depths are generally not very different. While this prevents us from using these results to

localise the depth of the seismic anisotropy to be in the asthenosphere alone (assuming the

same causative feature is responsible for both electrical and seismic anisotropy), it does not

exclude this possibility, but does allow the possibility that it is located at either or both of

lithospheric and asthenospheric depths.

Excluding the two yellow and one red bar from the asthenospheric results plotted against

plate motion (figure 7.7(a)), the average phase split observed between the two modes is ≈15°.
If this phase split is purely a result of anisotropy, and for arguments sake the lithosphere is

electrically isotropic (figure 7-9), modelling using the 2D anisotropic forward modelling code

of Pek & Verner (1997) suggests this phase split would require a horizontal anisotropy with

a ratio of ≈10:1. If the electrical anisotropy in the asthenosphere is micro anisotropy due to

LPO of olivine which seems to be the only plausible cause, then this indicates that the olivine

in this region is likely wet and strongly deformed, with well developed LPO (Gatzemeier &

Tommasi, 2006) in order to account for these phase split magnitudes.

(a) Anisotropic asthenosphere

model

(b) Model response

Figure 7-9: (a) An example of a 2D anisotropic model run using the code of Pek & Verner

(1997), with an isotropic 1000 Ω.m lithosphere overlying an anisotropic asthenosphere of

vertical conductive sheets of 10 Ω.m (x and z directions) in a 100 Ω.m halfspace (y direction).

(b) One of the model responses from (a), which produces a phase split of ≈15°.
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7.2 The SASE shear-wave splitting results

The SASE experiment was conducted from 1997 to 1999, and there have since been three

main papers discussing the results of the shear wave splitting analysis. Silver et al. (2001)

and Silver et al. (2004) discuss the analysis and interpretation of the broader SASE stations,

while Fouch et al. (2004b) describe the results from the smaller array that was deployed for

five months around the Kimberly region. Here we discuss briefly what we have learnt from

our re-analysis, the key features of the shear wave splitting results, and how and why our

interpretation differs from that of Silver et al. (2001, 2004).

7.2.1 Shear wave splitting re-analysis. What have we learnt?

One of the main objectives of this part of the study was to become more familiar with the

SASE data, and particularly with the shear wave splitting technique itself, something that

was certainly worthwhile and successfully accomplished. The multi-event splitting analysis

conducted in this study utilised the same technique used by Silver et al. (2001), and pro-

duced splitting parameters very similar to the results obtained by Silver et al. (2001, 2004).

As discussed in Chapter 6, in most cases the sites we chose to re-analyse produced results

that are statistically identical to those of Silver et al. (2001), which is why we decided to use

the Silver et al. (2001) results for our comparisons with plate motion and flow models, and

with our MT results.

Another of the objectives of the re-analysis was to search for any patterns in the single-

event splitting analysis as a function of backazimuth that may have been missed, and may

indicate that a more complex anisotropy system was present than the single horizontal layer

assumed by Silver et al. (2001). Although Silver et al. (2001) state that they did search

for variations in backazimuth, a preliminary study of some of the MT data suggested that

there may be two layers of electrical anisotropy, which, as discussed earlier, does appear

to be the case in certain areas, and so we considered it prudent to re-examine the seismic

data. After careful event selection and systematic backazimuthal searching, including at

the three permanent stations, we were unable to confirm that there may be more complex

seismic anisotropy. An exercise involving waveform inversion that calculates the splitting

parameters assuming two horizontal anisotropic layers was also inconclusive. However, given

the poor backazimuthal coverage, we were also unable to discount the possibility that there

may be two layers of anisotropy present.
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7.2.2 Key features of splitting results

The splitting results are discussed at length by Silver et al. (2001) and Silver et al. (2004).

We will briefly describe the most important features of the results, the key arguments pro-

posed by Silver et al. (2001, 2004), as well as constraints from other studies, before adding

additional arguments of our own.

The splitting results show significant variation across the array (figure 6-11/7.7(b)).

Strong splitting is observed in the central western Kaapvaal craton, on the Limpopo belt, and

on the Zimbabwe craton. Small splitting values, and null splitting stations are observed on

the eastern Limpopo belt and in the southwestern part of the array, over the Namaqua-Natal

and Cape fold belt. The fast axis directions that are observed where there is splitting tend to

have a general northeast-southwest splitting direction, except over the northeastern Kaapvaal

craton and the Limpopo belt, where the fast axis directions are more east-west in orientation.

Silver et al. (2001) constrain the depth of the seismically anisotropic layer, based on

four main arguments. First, they measure crustal splitting from P-to-S phases converted

at the Moho, and find that the median delay time is small (≈0.15 s), consistant with nor-

mally observed crustal splitting values (Savage, 1999). Second, based on Fresnel zone argu-

ments (Rümpker & Ryberg, 2000), abrupt changes in splitting parameters between stations

100 km apart suggest that the top of the anisotropic layer is not deeper than 50-100 km.

The third argument is that the surface wave study of Freybourger et al. (2001) places the

anisotropy within the lithosphere. Lastly, they argue that the splitting is a result of litho-

spheric anisotropy because the fast axis directions do not align with the predicted directions

from plate motion models (figures 5.3(a) and 5.3(b)), but in fact are more consistent with

large-scale geologic structures.

Silver et al. (2001) note the significant variation in splitting delay time. Splitting observed

in this experiment is absent at about 25% of stations, and where splitting does occur, the

delay time observed is generally about half the global average of ≈1.0 s (figure 7-10). Silver

et al. (2001) note that there is a strong correlation between the surface geologic structures

of particularly the Limpopo belt and the Great Dyke of Zimbabwe, and suggest that these

surface structures posses counterparts in mantle anisotropy indicating a close relationship

between surface and mantle deformation.

An important question to address is: how do we explain the stations with null splitting



7.2. The SASE shear-wave splitting results 144

0

5

10

15

20

25

30

35

40

45

N
um

be
r

0.0 0.5 1.0 1.5 2.0 2.5

δt (seconds)

0

5

10

15

20

25

30

35

40

45

N
um

be
r

0.0 0.5 1.0 1.5 2.0 2.5

δt (seconds)

Figure 7-10: Delay time averages from global studies (compiled from Silver (1996)), with

the results of the SASE data overlain in darker grey. Note that splitting delay times (a proxy

for anisotropy strength) are significantly less than averages. Null results ignored.

(taken by Silver et al. (2001) to be stations with <0.25 s splitting delay time)? The region

may be seismically isotropic, although this is often difficult to invoke as an explanation in

geologically complex regions. Silver et al. (2001) suggest that since the anisotropy is located

within the lithosphere (based on their arguments above), the weak splitting in the off-craton

regions is simply due to thinner lithosphere. Silver et al. (2001) also state that the eastern

Kaapvaal has thicker lithosphere, and therefore the weak anisotropy in this region cannot be

simply due to thinner lithosphere, but is likely due to either a difference in vertical coherence

of deformation (Rümpker & Silver, 1998; Saltzer et al., 2000) or weaker intrinsic anisotropy

(Ben-Ismäıl et al., 2001).

The study by Saltzer et al. (2000) used synthetic seismograms to explore how a vertically

anisotropic medium affects shear wave splitting measurements. They found that measure-

ments made in typical frequency bands produce an apparent orientation direction that is

consistently different to the average of the medium, and is, in fact, weighted towards the

upper portions of the model (referred to from here on as the Saltzer et al. (2000) weighted

splitting argument). Additionally, they observed that, for strong heterogeneity, multiple

scattering reduces the amplitude of the tangential component seismogram and the associ-

ated splitting time, which may result in a null observation when in actual fact there is strong

anisotropy present (referred to from here on as the Saltzer et al. (2000) null splitting argu-

ment). Heintz & Kennett (2006) find that from shear wave splitting observations a large

part of the Australian region appears isotropic, a result of measurements performed under

the assumption of a single layer of anisotropy when two layers with perpendicular fast axis
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directions are present (referred to from here on as the Heintz & Kennett (2006) null splitting

argument). Heintz & Kennett (2006) also caution that for short term deployments data

should be analysed and interpreted carefully, as a small amount of data recorded in a highly

heterogeneous region may potentially be very misleading.

An examination of mantle xenolith petrofabrics (e.g. Long & Christensen, 2000; Ben-

Ismäıl et al., 2001) shows that, at hand sample scale, the rocks of the Kaapvaal Craton

lithospheric mantle certainly are seismically anisotropic, although the results reported for

the strength of this seismic anisotropy do vary (Ben-Ismäıl et al., 2001; Long & Christensen,

2000; Mainprice & Silver, 1993). Ben-Ismäıl et al. (2001) report a mean S-wave anisotropy

of 2.64%, while Long & Christensen (2000) and Mainprice & Silver (1993) report maximum

S-wave anisotropy values of 4.4% and 3.7% respectively. Mainprice & Silver (1993) indicate

that given the ideal orientation of the fabric, it would be possible to observe delay times of

over 1 s given the average S-wave anisotropy they calculate.

Silver et al. (2001) use the surface wave study of Freybourger et al. (2001) as a depth

constraint on the seismic anisotropy. The Freybourger et al. (2001) study suggests that the

anisotropy resides between 40 and 100 km depth. A second look at the surface wave analysis

by Saltzer (2002) suggests that the shallowest depths to which the anisotropy can be confined

is ≈150 km, but that the data do not confine how deep the anisotropy can extend. Saltzer

(2002) suggest that the difference in results between the two studies is due to the improper

use of a phaseless filter by Freybourger et al. (2001). Additionally, the surface wave study of

Saltzer (2002) suggests that shear wave splitting anisotropy should produce ≈2 s of splitting.

An additional study of anisotropy in the region was conducted by Kwadiba et al. (2003)

on Pn anisotropy from local mining earthquakes on the central Kaapvaal craton. The Pn

phase propagates on, or just below, the crust-mantle boundary at upper mantle velocities

and may be used to gain information on azimuthal anisotropy. Of course, there is also a

tradeoff between apparent anisotropy due to seismic velocity heterogeneity and anisotropy

due to aligned fabric. Kwadiba et al. (2003) observe a small, but pervasive, azimuthal

anisotropy throughout the Kaapvaal craton, with maximum wavespeeds at azimuths of about

15° and 217° in the northern and southern regions of the craton respectively. While the fast

wavespeed azimuths are relatively consistent with the shear wave splitting azimuths for the

region, Kwadiba et al. (2003) do note that they cannot be sure they are measuring azimuthal

anisotropy, and the results may in fact be a result of seismic velocity heterogeneity.
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7.2.3 Further arguments from this study

Silver et al. (2001) discounted the asthenosphere as the main contributor for the SASE re-

sults, based largely on the argument generated by figures 5.3(a) and 5.3(b), which show that

the observed splitting directions do not follow the plate motion models of Gripp & Gordon

(1990, 2002). However, since the inference is being made on a spatially varying data set,

this plot is misleading since it is only a plot of the delay time versus latitude, while they

should be compared with both latitude and longitude to obtain a better spatial observation

of where any correlation exists, or does not exist.

We first plot the shear wave splitting results over the regional magnetic data for southern

Africa (figure 7-11) in order to gain a better spatial understanding, compared with figure

5.3(b), of where there is a strong correlation with surface geological trends. Although there

certainly does appear to be some strong correlations with large scale features displayed in the

magnetic data, such as with the Limpopo Belt structures and the Great Dyke of Zimbabwe,

there are also large portions of the region where there is very little correlation. The western

Kaapvaal craton in particular, has largely north-south trending geological structures (Corner

et al., 1990; de Wit et al., 1992), whereas the fast axis splitting directions over this region

are predominantly northeast.

In order to gain a better spatial correlation between plate motion directions and fast

axis directions, we plot the fast axis directions of splitting against the plate motion model

of Gripp & Gordon (1990) (figure 5.15(a)) and the inferred splitting from the mantle flow

model of Conrad et al. (2007) (figure 5.15(b)) on maps. The shear wave splitting bars are

coloured by the “misfit” angle between the fast axis and plate motion/mantle flow directions.

Not surprisingly, since both the plate motion model and mantle flow model have a similar

general orientation, these results are quite similar. There is a region of good correlation with

the plate motion model in the central-western Kaapvaal craton, and fairly good correlation

over the Zimbabwe craton. The region where there is poorest correlation between the fast

axis directions and the plate motion or flow model is over the northeastern Kaapvaal craton

and Limpopo Belt. We plot these “misfit” results over the S-wave tomography model of

southern Africa at 200 km depth from Fouch et al. (2004a) (figure 7-12). The tomography

model (both in cross-sections and plan view) from Fouch et al. (2004a) has clear correlations

with geological terrane boundaries and shows strong indications for thick cratonic keels (blue

regions) beneath the Kaapvaal and Zimbabwe cratons (Fouch et al., 2004a). Thus, although

there are a number of factors to be taken into account, from the observations of Fouch et al.
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Figure 7-11: Shear wave splitting results of Silver et al. (2001) (fast axis directions, scaled

by delay time), overlain on the regional magnetic data of southern Africa. Green bars

outlined in white indicate poor quality splitting results. Top left inset presents the results

of Vinnik et al. (1995).

(2004a) we use the tomography model at 200 km depth to provide an indication of the lat-

eral extent of regions where the lithosphere appears to be thin and where it appears to be

thick. This is done by taking the colours of the tomographic image to be somewhat akin

to lithospheric thickness. We observe an intriguing correlation in figure 7-12; we observe a

good correlation between the fast axis directions and the plate motion model where there

is a thick/cold lithospheric keel (over the central-western Kaapvaal craton, and over the

southwestern Zimbabwe craton). Where there is a thinner lithosphere, and no keel visible

(Namaqua-Natal belt, Cape fold belt, and possibly the southeastern Kaapvaal craton) we
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observe a poor correlation between the fast axis direction and plate motion direction, or null

splitting observations. We also note an anomalous region over the Limpopo belt and the

very northeastern Kaapvaal craton, where, from the tomography at least, the lithosphere

appears to be relatively thick but the correlation between shear wave splitting and plate

motion quite poor.

Based on figure 7-12, we assign each of the SASE stations to one of five groups (red,

orange/yellow, green, turquoise, blue), corresponding to the tomography model variation

percentage. These variations are related, and somewhat akin, to lithospheric thickness,

which is how we will refer to them for the purpose of this discussion. However, one should

also bear in mind that these anomalies may well be influenced by composition and tempera-

ture, as is the suggested cause of the anomaly coinciding with the Bushveld complex (Fouch

et al., 2004a). Null splitting stations are assigned a splitting delay time of 0.1 s, and a corre-

lation angle between the fast axis and plate motion directions of 90° (no correlation). From

this assignment, we plot the mean delay time against lithospheric thickness (the tomography

model variation percentage) (figure 7.13(a)), and the mean correlation/misfit angle against

lithospheric thickness (figure 7.13(b)).

If one subscribes to the theory that the seismic anisotropy resides only in the lithospheric

mantle, then the difference in splitting magnitude could be explained by simply having less

or more anisotropy due to thinner or thicker lithosphere respectively, strongly supported

by figure 7.13(a). However, this would not explain why we observe an excellent correla-

tion between plate motion and splitting directions over the majority of regions with a thick

lithosphere keel, and a generally poorer correlation over regions with thinner lithosphere

(figure 7.13(b)). Silver et al. (2001) do acknowledge that thinner lithosphere is correlated

with weaker splitting, but do not discuss the observation that splitting on thicker lithosphere

correlates well with plate motion. They therefore attribute the difference in splitting to be

primarily due to a thinner anisotropic layer (thinner lithosphere) and thicker anisotropic

layer (thicker lithosphere).

7.2.4 Possible explanations for SASE splitting

These observations and measurements provide for multiple models that may explain the

shear wave splitting results observed across the southern African region. We describe three

models that have been previously invoked to explain seismic shear wave splitting anisotropy
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Figure 7-12: The correlation between the fast axis direction of the SASE splitting results,

and the plate motion model of Gripp & Gordon (1990), with the misfit (0°-90°) indicated by

the colour of the bar of the SASE results (as in figure 5.15(a)). These results are overlain

on the seismic S-wave tomography model of southern Africa at 200 km depth, from Fouch

et al. (2004a), with percentage variations (-1.2 to 1.2). Null stations are represented by open

circles, and poorly constrained splitting results are plotted with a black outline.
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(a) Delay time vs. velocity anomaly (b) Direction correlation vs. velocity anomaly

Figure 7-13: (a) Mean shear wave splitting delay times plotted against velocity anomaly

(akin to lithospheric thickness) from 200 km depth S-wave tomography model. (b) Mean

correlation between fast axis direction and plate motion against velocity anomaly. Stations

were assigned to a group/corresponding colour based on figure 7-12 (values on colour bar

are approximate velocity percentage variations from figure 7-12), and null splitting stations

were assigned a delay time of 0.1 s, and a correlation with the plate motion direction of 90°.
below continental regions with thick lithospheric keels (Silver & Chan, 1991; Vinnik et al.,

1992; Fouch et al., 2000b), and describe how they may and may not be supported by the

observations.

The three models (A to C) are shown schematically in figure 7-14, each of which we will

consider in turn. The first two models, A and B, depict essentially the two end members

of the arguments for shear wave splitting below continental lithosphere. Model A describes

the hypothesis of Silver & Chan (1991), who suggest that anisotropy in continental craton

regions is dominantly a response to fossil crystal alignment in the lithosphere, with little

to no contribution from dislocation creep or mantle flow. This is the model described by

Silver et al. (2001, 2004) to explain the SASE shear wave splitting observations. The pri-

mary supporting observations for this model include (a) the correlation of the splitting with

large-scale surface geological features, such as the Limpopo belt, that are not parallel to plate

motion, (b) evidence from mantle nodules that the lithosphere is seismically anisotropic (e.g.

Ben-Ismäıl et al., 2001), (c) the fact that Fresnel zone arguments suggest that the top of

the anisotropic layer is no deeper than about 50-100 km, and (d) the observation that the

splitting delay time increases with increasing lithospheric thickness (figure 7.13(a)). The
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main argument against this model is the observation of a strong correlation between plate

motion and splitting results in the central western Kaapvaal craton, where the surface geo-

logical trends do not mimic the splitting directions well at all. In this region, the geological

trends are predominantly N-S, whereas the fast axis direction of splitting is NE. In fact, the

general northeast direction of splitting across the array is consistent with the plate motion

direction. Furthermore, the correlation of the fast axis direction with plate motion increases

with lithospheric thickness, whereas one would expect the lithospheric anisotropy directions

to dominate the anisotropy where it is thick. Thus, this is completely contrary to what one

would expect if the lithosphere was the primary source of anisotropy.

Figure 7-14: Three cross sectional schematic models (A to C) that have been used to

describe shear wave splitting observations in southern Africa (A and B) and elsewhere (C).

Additionally, it is difficult to reconcile that under oceanic lithosphere, there is splitting

interpreted to be induced by asthenospheric flow or dislocation creep, which produces split-

ting of around 0.8 s (e.g. station SHEL off the west coast of Africa (Behn et al., 2004)), and

that this asthenospherically induced contribution disappears below continental lithosphere.

An argument that may explain this is that if mantle flow is confined to be between the base

of the lithosphere and the 410 km discontinuity, then the flow layer would be greater below

thin lithosphere, but possibly negligible below the smaller region between thick lithosphere

and the 410 km discontinuity. If this were the case, one might expect to find a systematic
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decrease in splitting delay time with lithospheric thickness, an observation not reported in

the literature. Substantial arguments may be made for different mantle flow below continent

and oceanic lithosphere at active margins, such as an active margin where the oceanic plate

is being subducted and is strongly influencing the mantle flow. However the continental-

oceanic margins of southern Africa are passive and old, and therefore these arguments do

not hold in this region.

Model B essentially describes the hypothesis of Vinnik et al. (1992), where anisotropy is

believed to form due to the relative motion between the plate and the upper mantle below,

and also through mantle flow. It is essentially thought to be of asthenospheric origin, with

little to no anisotropy present in the rigid lithospheric mantle. This is the model that is

used to explain shear wave splitting results of 8 stations on the Kaapvaal craton region by

Vinnik et al. (1995) (figure 7-11). Observations favouring this model include the excellent

agreement between some splitting directions and the plate motion direction, coupled with

the intuition that, certainly under thinner continental lithosphere, there is no reason why

flow induced or dislocation creep induced LPO should suddenly cease upon moving from the

oceanic to continental lithosphere.

Primary factors that contradict this model include the strong variations in both direction

and magnitude between splitting parameters of nearby stations, as well as the presence of null

splitting stations. If the splitting was only due to differential flow between the lithosphere

and asthenosphere, we would expect to observe more smoothly varying splitting parame-

ters. Also, given asthenospheric anisotropy, an isotropic lithosphere, and fair backazimuthal

coverage, there is no reason why null splitting should be observed, particularly over thinner

lithosphere, nor why there should be strong variations in the splitting magnitudes.

In neither of the cases presented by models A or B do all the observations support either

model completely. We therefore turn to more complex models, which may be supported

by all the observations, while still attempting to keep the model as simple as possible (the

principle of Occam’s razor). Model C represents a combination of both model A and B,

with a rigid anisotropic lithosphere from frozen-in past deformation, and an anisotropic as-

thenosphere due to LPO from mantle flow and dislocation creep. This is very similar to

the model proposed by Fouch et al. (2000a) for eastern North America. The primary fea-

tures that support this model include those discussed for models A and B, where there is

both correlation between plate motion and splitting directions, as well as a relationship with
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geological structure, and the findings of seismic anisotropy measurements on lithospheric

mantle nodules. However, there are major contradicting observations in the splitting results

for southern Africa to this model. Assuming uniform anisotropy strength in the astheno-

sphere and the lithosphere, this model would predict the contribution from the asthenosphere

to be a maximum in regions where there is thin lithosphere. Additionally, we would expect

that over regions of thicker lithosphere, the anisotropy of the lithosphere would dominate,

quite contrary to our observations (figures 7-12, 7-13). This model would create 2-layer

anisotropy effects, which may be observed in the backazimuthal variations of single splitting

measurements. We have searched for this effect in our seismic re-analysis however, our re-

sults were inconclusive, and thus we hesitate to use this as a complimenting or contradicting

argument to this model. Lastly, the surface wave analysis of Saltzer (2002), contrary to that

of Freybourger et al. (2001), suggests that there could be splitting of up to 2 s from litho-

spheric contributions. Thus, if we had this contribution aligned with plate motion/mantle

flow contributions we should expect that, at least in some regions where the two are aligned,

we observe splitting delay times strong in magnitude, something that is not observed at any

of the stations (figure 7-10).

7.2.5 Mantle flow below thick lithosphere

A persistent question, which contradicts all three of the models proposed above, is how we

can explain the excellent correlation that we observe between thicker lithosphere and well

correlated splitting and plate motion directions. We introduce a strongly anisotropic layer at

the base of the lithospheric keel found below old continental regions in an attempt to explain

this feature of the observations (similar to a model proposed by Fouch et al. (2000a)). In the

model for eastern North America, ultimately rejected by Fouch et al. (2000b), they suggest

that a strong anisotropic layer below the lithospheric keel may be caused by viscosity vari-

ations beneath the keel. We suggest that for southern Africa this layer of strong anisotropy

is largely a result of increased basal shear below thick lithosphere causing strong LPO from

dislocation creep.

If we assume that the flux of mantle material over a vertical column is equal throughout

the region, then in order to conserve momentum, it is required that flow be faster below thick

lithospheric keels where the flow layer thickness is reduced, similar to the simple mantle flow

behaviour modelled by Fouch et al. (2000b). Additionally, if this flow is further restricted to

be between the base of the lithospheric keel and the 410 km discontinuity as suggested by the
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relatively flat 410 km discontinuity observed in the region (Wittlinger & Farra, 2007), rela-

tive flow would need to be even faster to conserve momentum. This increased relative flow

velocity would likely increase the strain rate and stress levels, resulting in increased strength

of LPO due to dislocation creep in this region. Below regions of thinner lithosphere, where

the flow layer thickness is greater, and thus the relative flow is slower, the slow moving

African plate may not generate stresses and therefore LPO alignment as strongly, resulting

in weaker anisotropy below thinner lithosphere. These proposed flow variations are described

in the schematic cross section in figure 7-15. Some authors suggest that dislocation creep,

causing LPO, is dominant over diffusion creep only down to depths of 250-350 km (Hirth &

Kohlstedt, 2003), although seismic studies cannot, at present, put firm constraints on the

depth extent of dislocation creep (e.g. Trampert & van Heijst, 2002; Wookey & Kendall,

2004; Do et al., 2006). Dislocation creep is also favoured at lower temperatures, and perhaps

lower temperatures may be caused in this region due to cooler keel temperatures?

Figure 7-15: Schematic cross section portraying mantle flow (red arrows) below a litho-

spheric keel. Longer arrows indicate increased velocity below thicker lithosphere, where there

is a smaller flow layer thickness.

If we were to add this layer of strong anisotropy below thick lithosphere to model B, it

would improve the model substantially in that it would account for stronger splitting, bet-

ter aligned with plate motion directions below the lithospheric mantle. If the contribution

from mantle flow and dislocation creep at the lithosphere/asthenosphere boundary is small

elsewhere, then this model could very nearly satisfy all of the observations. However, the
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major contradicting observation is the splitting that is observed on the Limpopo belt and

northeastern Kaapvaal craton, where lithosphere appears relatively thick (assuming the to-

mography is akin to lithospheric thickness, and excluding the Bushveld complex anomaly),

but not as fast/cold as below cratons (figure 7-12), and splitting does not correlate well with

plate motion. Additionally, surface wave studies and lithospheric mantle xenolith studies

suggest seismic anisotropy in the lithosphere, and our lithospheric mantle MT results give

support to having strong heterogeneity in the lithosphere. If we were to add this layer of

strong anisotropy below thick lithosphere to model C, it could very nearly explain all the re-

sults however, we would still struggle to explain the anisotropy being parallel to plate motion

below thick lithosphere. Even with the layer of strong LPO beneath the thicker lithosphere,

we would still expect a strong contribution from the lithosphere, which would likely result in

splitting fast axis directions that are a combination of both layers, and which display complex

backazimuthal variations. While we are unable to verify observations of these backazimuthal

variations due to the nature of the recorded data, we are still able to further constrain and

explain this model using other observations, such as xenolith studies and our MT results.

This leads us to our preferred general model for anisotropy (both electrical and seismic) in

southern Africa, discussed below.

7.3 A model for anisotropy in southern Africa

Our proposed model for anisotropy over southern Africa is described schematically in figure

7-16. This model proposes a rigid lithosphere of variable anisotropy and degree of hetero-

geneity. Over mobile belts, where significant deformation has occurred with a reasonably

consistent orientation, we suggest that the degree of heterogeneity is less than in the complex

cratonic lithosphere. Underlying the lithosphere is an anisotropic mantle due to LPO from

mantle flow and dislocation creep at the lithosphere/asthenosphere boundary. Additionally,

we include the strong layer of anisotropy below the thicker lithospheric keel, for the reasons

described in the previous section.

Laboratory studies of lithospheric mantle xenoliths provide strong evidence that the litho-

spheric mantle of southern Africa is seismically anisotropic (Mainprice & Silver, 1993; Long

& Christensen, 2000; Ben-Ismäıl et al., 2001). Unfortunately, similar laboratory studies of

electrical anisotropy on xenolith samples have yet to be conducted. It should be remembered

however, that these samples represent an extremely small region of the subsurface, and the

grain size scale of these samples must be compared with the hundreds of metres to kilometres
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Figure 7-16: A proposed model for the origin and structure of anisotropy in southern

Africa.

scale of SKS waves. That the lithosphere is anisotropic is also supported by surface wave

studies (Saltzer, 2002; Freybourger et al., 2001). However, Saltzer (2002) also suggests that

the lower splitting values observed (mean of ≈0.6 s), compared with what is predicted from

surface wave results, is due to strong variability in anisotropy as a function of depth. In our

proposed model, we have an anisotropic, but heterogeneous, lithosphere over the Archean

craton. Certainly, if we consider the complexity of the surface geology of the region (partic-

ularly on the cratons), it is likely that there is a significant amount of heterogeneity in the

lithospheric mantle.

Heterogeneity in the lithosphere, both laterally and as a function of depth, is strongly

supported by our MT results. Figure 7-6 shows that a large proportion of the conductive

directions change significantly from crustal to lithospheric mantle depths (yellow and red

bars). While some of this can be attributed to effects of heterogeneity, some can surely

be attributed to vertical variations in anisotropy. For example, on the central southern Re-

hoboth, far from any known boundaries, there is a group of conductive directions that cluster

around 158° in the crustal results, whereas they fall into a cluster of 10° in the lithospheric

mantle, a vertical rotation of about 30° from the crust to the lithospheric mantle. Addi-

tionally, and perhaps lending even stronger support to the argument of vertically varying

anisotropy and heterogeneity, are the rose diagrams for the crust and lithospheric mantle
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conductive directions (figures 6.15(b), 6.15(c)). Whether from heterogeneity, anisotropy, or

both, the rose diagrams of the conductive directions for crustal and lithospheric mantle have

some similarity, but are generally quite different in pattern, with some major peaks not

present in both sets of results, further arguing for vertical variations in the lithosphere.

While our model, and arguments thus far, promote a significant amount of vertical vari-

ation in anisotropy and heterogeneity, it should also be noted that there are regions where

this vertical variation is far smaller in magnitude. Such areas are likely to be regions where

lithospheric deformation has been vertically coherent, such as the regions represented by blue

bars in figure 7-6 that indicate that MT conductive directions do not vary as a function of

depth, suggesting the heterogeneity or anisotropy is vertically coherent. An example of this

is on the Namaqua-Natal belt (away from the boundaries), where crustal and lithospheric

mantle conductive directions are consistent. Of course, we should also note that the electrical

conductive directions may not always represent the seismic fast axis direction, particularly if

the lithosphere is dry. In the case of the Namaqua-Natal belt, the MT conductive directions

are in the same general direction as the compressional direction when the belt accreted onto

the Kaapvaal craton. It is therefore possible that the MT anisotropy is a result of sparse

fractures or cracks that are conductive, whereas LPO alignment of olivine with these stresses

may in fact be perpendicular to this direction. This is the proposal of Ji et al. (1996), where

the seismic direction results from LPO, while the electrical direction results from fabric ori-

entation. If this is the case, it means that the MT is far more sensitive to the fractures or

cracks rather than the contribution of olivine LPO, indicating that the lithosphere here is

rather dry. Dry olivine has lower hydrogen diffusion, and is less electrically anisotropic.

Over the regions with thicker lithosphere our model proposes a strongly anisotropic layer

due to increased differential flow described in the previous section. Given a heterogeneous

lithosphere, or a lithosphere that does not contribute a huge amount to the anisotropic sig-

nature, we would expect to see a good correlation between the splitting fast axis direction

and plate motion; our MT results promote the former explanation.

As noted in the discussion of model A, it is difficult to imagine that there is not any com-

ponent of anisotropy below continental lithosphere as observed below oceanic lithosphere,

due to either mantle flow or dislocation creep. Additionally, our asthenospheric MT results,

while perhaps not necessarily requiring a stronger anisotropic layer beneath the thicker litho-

sphere, are consistent with an asthenospheric component. The few regions where we have MT



7.3. A model for anisotropy in southern Africa 158

results at asthenospheric depths have strong correlations with both the seismic anisotropy

and plate motion directions. However, assuming there is a component of anisotropy from

the asthenosphere or lithosphere/asthenosphere boundary, in addition to a lithosphere com-

ponent, there are two questions that need to be answered.

First, why are there not any backazimuthal variations in the splitting parameters? We

believe the answer to this is simple - insufficient data. In our analysis, as well as the analysis

of Barruol & Ben Ismail (2001), there is insufficient backazimuthal coverage to make a con-

clusive judgement on this. We therefore cannot use this as an argument against this model,

as it may well be present.

Second, given these contributing anisotropic layers, how do we explain the null splitting

observations on the Namaqua-Natal mobile belt, and the southeastern Kaapvaal craton?

For the null splitting measurements over the Namaqua-Natal mobile belt region, we can

appeal to the Heintz & Kennett (2006) null splitting argument. We suggested earlier from

our MT observations that there is coherent deformation and anisotropy in the lithosphere

of this region, and that the trend of the LPO alignment may be NW-SE in orientation

(perpendicular to the MT conductive directions) as a result of stresses and strains during

accretion. If there is a component of anisotropy from mantle flow or dislocation creep at the

lithosphere/asthenosphere boundary, this may lead to a model of two layers of anisotropy

with near-perpendicular fast axis directions, analogous to the situation described by Heintz

& Kennett (2006) in Australia that produces apparent isotropic measurements. The null

splitting measurements observed over the southeastern Kaapvaal craton however, have little

constraint from MT on the heterogeneity of the region due to the poor quality of the data

recorded in this area. It is unlikely to be isotropic given xenolith studies and the fact that

the lithosphere is relatively thick and therefore there is likely a component, possibly even a

strong component, of LPO from dislocation creep at the lithosphere/asthenosphere bound-

ary. Surface structural trends in the region are complex, and there is no prevalent NW-SE

orientation in orientation of structures, making the Heintz & Kennett (2006) null splitting

argument an unlikely explanation. We therefore, similarly to Silver et al. (2001), turn to the

Saltzer et al. (2000) null splitting argument to explain these results, which suggests that very

strong vertical variations in anisotropy results in scattering and apparent null measurements.

A region that requires additional explanation is the northeastern Kaapvaal craton, and

the Limpopo belt. The shear wave splitting fast axis directions over the Limpopo belt and
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northeastern Kaapvaal craton follow the surface geological trends and do not correlate well

with the plate motion direction. According to our MT results, there are vertical variations in

conductive directions, although some of this may be attributed to heterogeneity. The seismic

tomography indicates that this region also has fairly thick lithosphere, and therefore does

not fall in the “mobile belt” end member of our model, but neither in the “Archean craton”

end member of our model. It is likely that this region forms a mixture of the two, hav-

ing a relatively thick lithosphere, but also a relatively well ordered anisotropic lithospheric

component. The Limpopo belt and northeastern Kaapvaal regions are known to be strongly

deformed, with structures having a dominantly E-W or ENE-WSW alignment (McCourt

& Vearncombe, 1992; de Wit et al., 1992; Good & DeWit, 1997). This trend is visible in

features such as the prominent Thabazimbi-Murchison Lineament (TML) (Good & DeWit,

1997), the Palala shear zone (PSZ) (Bumby et al., 2001), as well as in the Limpopo belt itself

(McCourt & Vearncombe, 1992). This deformation is large-scale, and is likely to produce

anisotropy that is perhaps still variable as we move from brittle to ductile deformation as

well as moving from lithosphere to asthenosphere, but it is also likely to be more ordered

than in other regions due to the consistent orientation of structures and magnitude of defor-

mation. It is somewhat analogous to the schematic diagram of a shear zone (although there

is significant compression here too) portrayed in figure 4-3.

The vertical variations in our MT results are around 35° from crust to lithospheric mantle

in this region. The MT conductive directions are near-parallel to surface features in the crust,

but quite different from these features, or the seismic splitting results, at lithospheric mantle

depths. These large-scale structures are highly unlikely to be confined to the crust, and we

therefore suggest that the difference between the crust and mantle MT results may be due

to the lithospheric MT results being sensitive to another factor, perhaps cracks or fractures

formed during compression, which need not be dense in abundance to have a significant

effect on the MT. In order to explain the seismic anisotropy in this region, we appeal to the

Saltzer et al. (2000) weighted splitting argument which indicates that given a medium with

variable anisotropy, assuming the medium is not too strongly heterogeneous such that scat-

tering results in null observations, the shear wave splitting measurements that are observed

are more sensitive to the upper anisotropic portions. The observed seismic anisotropy in this

region is likely weighted towards the upper Limpopo belt/TML/PSZ orientation (Saltzer

et al., 2000), which is well ordered due to the strength of the deformation that this region

has undergone. This may explain why the splitting observations over this area correlate

better with large-scale geological structure rather than with the plate motion direction, even
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although the lithosphere is thick and there probably is a component of anisotropy linked to

plate motion and mantle flow.

Our proposed model and the anisotropy produced, slightly modified from figure 7-16 to

include complexities described around the northeastern Kaapvaal craton and Limpopo Belt

region (LB), can be summarised in figure 7-17. The Namaqua-Natal region can be explained

by the “Mobile belt” part of the model. The majority of the Kaapvaal and Zimbabwe

cratons may be explained by the “Archean craton” region of the model, and the northeastern

Kaapvaal craton and Limpopo belt may be explained by a blend of these two, described

schematically as the “LB” part of the model. Although there is speculation involved in our

interpretation, such will always be the case due to the lack of constraints that we have for

deep regions. Nevertheless, we believe that this is a reasonable and not unnecessarily complex

model, that provides the best explanation for the MT and seismic anisotropy observations

of the southern African region.

Figure 7-17: The anisotropy produced by a proposed model for the anisotropy in southern

Africa. LB indicates the northeastern Kaapvaal and Limpopo belt region.
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7.4 The correlation between MT and seismic results

At the outset of this study it was hoped that we may find a strong correlation between the

SAMTEX MT anisotropy and the SASE seismic anisotropy from shear wave splitting, as

had been observed in the earlier studies of Ji et al. (1996) and Eaton et al. (2004). The

hope was that we may be able to use this correlation to place more accurate bounds on the

depth and extent of the seismic anisotropy. It is clear from the results of the MT analysis

that there is not a ubiquitous correlation for any of the depths analysed (crustal (figure 7-2),

lithospheric mantle (figure 6-10), or asthenospheric (figure 6-11)). There does appear to

be, at least qualitatively, a significantly better correlation between the MT asthenospheric

results and shear wave splitting results; however there are only three regions where we have

penetration to asthenospheric depths that are within the SASE seismic array. In these three

regions the asthenospheric and lithospheric mantle most conductive directions are not too

dissimilar, and thus we are unable to make a definite judgement on whether this tells us

that the seismic anisotropy is coming from asthenospheric depths or not. However, from our

interpretation of the seismic shear wave splitting data and our MT observations, described

by our proposed model for anisotropy (figure 7-16), this does appear to be the case.

MT anisotropy can be due to either or both intrinsic anisotropy and 2D heterogeneity,

as described in figure 6-8. Seismic anisotropy from the SKS study was thought to originate

in the lithospheric mantle, and generally <0.3 s of delay time can be attributed to crustal

shear wave splitting anisotropy (figure 3.5(b)) (Savage, 1999). Thus, the lack of correlation

between the seismic shear wave splitting and crustal MT results was expected due to the

degree of geological heterogeneity that is present throughout the region and due to the likely

small contribution to the seismic anisotropy from the crust.

If the seismic anisotropy observed through the shear wave splitting analysis is located in

the lithospheric mantle, as Silver et al. (2001) suggest, and it is due to the frozen-in LPO of

olivine, then assuming there is no other effect on electrical anisotropy we would expect to see

a good correlation between the two sets of results since the fast axis of olivine is also the more

conductive direction. The correlation observed (figure 6-10) is not what we would expect

given this situation. This may indicate that the source region of the seismic anisotropy is

in the asthenosphere, however it may also indicate that the electrical anisotropy is being

controlled by other factors, indicating that the lithosphere is dry, and electrical anisotropy

of olivine is insignificant. We suggest, as proposed in our model for anisotropy in the region,

that it is a combination of large-scale 2D heterogeneity effects as well as anisotropy.
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7.4.1 Correlation between seismic and MT parameters

Here we take a closer look at the correlation between the shear wave splitting parameters

observed from the SASE data with the results obtained from the GB analysis of the SAM-

TEX MT data.

We take MT sites that are located within 50 km of a seismic station that displays splitting

(i.e. nulls excluded) and plot the fast axis direction versus the conductive direction for both

our crustal and lithospheric mantle results (figures 7.18(a) and 7.18(b) respectively). We also

plot the seismic delay times against the MT phase difference between the two modes for both

crustal (figure 7.19(a)) and lithospheric mantle results (figure 7.19(b)). The scatter between

points in these four plots is large, and it is clear that there is weak overall correlation and no

significant trend observed between the anisotropy direction and magnitude parameters of the

two techniques. Frederiksen et al. (2006) note that, in general, one would not expect a full

correlation between the delay time and phase difference as, for example, the phase difference

of an MT response near a conductivity contrast is a function of both the resistivity contrast

as well as the distance from the contact. Additionally, particularly at greater depths, it is

likely that the MT response is sensing a horizontally broader region than the region being

sensed by the near-vertically propagating shear wave.

We examine whether or not there is any spatial correlation between these splitting and

MT parameters by plotting the results on maps (figures 7-18 and 7-19). We take MT sta-

tions that lie within 50 km of seismic stations that exhibit splitting, and plot both sets of

results on a map of the region for crustal and lithospheric mantle MT results. Where we

compare the conductive directions with the fast axis directions, we colour the MT conductive

direction bars by the misfit in direction between the two sets of results (figures 7.18(c) and

7.18(d)). Similarly, where we compare the delay time with the phase difference, we colour the

MT conductive direction bars (scaled by phase difference) by the misfit between the delay

time (0-1 s), and the phase difference (normalised to be from 0 to 1, with 1 representing a

maximum phase difference of 30°) (figures 7.19(c) and 7.19(d)). Assuming we are looking at

anisotropy and not heterogeneity, where we would need to account for 90° ambiguity, there

does not appear as though there are any regions where correlation between azimuths is spa-

tially stronger that other regions. Similarly, the delay times and phase difference, although

not hugely different or variable, do not show any specific regions where the correlation is

consistently stronger or weaker. This observation tells us that either the MT and seismic

data have significantly different responses to the same causative feature, or that they are in
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fact responding to different features that may not even be located at the same depth. This,

along with the complexity of the MT results, supports our proposed model for anisotropy

in southern Africa in figure 7-16 as being a viable model to explain seismic and electrical

anisotropy in the region.

7.4.2 Causes of anisotropy

The results of the seismic and MT studies have been described in the first two section of

this chapter, where we also look at possible causes of anisotropy. Essentially, in our view

seismic anisotropy is interpreted to arise at both lithospheric and asthenospheric depths,

with a strongly anisotropic layer observed beneath the centre of the cratons where litho-

sphere is thicker. Additionally, lithospheric anisotropy, while certainly present, is also likely

to be heterogeneous in nature, supported by the crustal and lithospheric mantle MT results,

which appear strongly affected by vertical variations and lateral heterogeneity. Taking into

account table 4.1 in chapter 4, the causes of anisotropy are likely to be multiple. Certainly,

xenolith studies require LPO of olivine to be a cause for seismic anisotropy (lithospheric),

which might possibly also have an electrical anisotropy response, although this is less certain

and is possibly very weak due to a dry lithosphere. Fluid-filled cracks are not an unlikely

possibility, especially for crustal regions where significant deformation has occurred such as

in the Limpopo region and Namaqua-Natal belt. While we cannot rule out the contribution

to electrical anisotropy from an interconnected mineral phase, such as graphite, particularly

in these regions of high deformation, it is not required by our data and if present is likely

localised. Our results also provide no reason to believe that cracks of partial melt, or in-

terconnected partial melt, contribute towards either electrical or seismic anisotropy in the

southern African region.
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Figure 7-18: The top two graphs (a and b) are plots of the shear wave splitting fast axis

direction versus the MT most conductive direction for the crustal and lithospheric mantle

bands respectively, for MT sites within ≈50 km of a seismic station. Poor quality splitting

and null seismic stations are ignored. Below are plotted (c and d) the corresponding seismic

splitting directions (grey bars) and MT most conductive directions (coloured bars), with the

MT results coloured by the misfit in degrees between the fast axis direction and the most

conductive direction.
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Figure 7-19: The top two graphs (a and b) are plots of the shear wave splitting delay time

versus the MT phase difference for the crustal and lithospheric mantle bands respectively,

for MT sites within ≈50 km of a seismic station. Poor quality splitting and null seismic

stations are ignored. Below are plotted (c and d) the corresponding seismic (grey bars) and

MT results (coloured bars), with the MT results coloured by the misfit between the delay

time (0 to 1) and the phase difference (normalised to be from 0 to 1, with 1 representing a

maximum phase difference of 30°).
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Summary and conclusions

8.1 Summary and main conclusions

This study has utilised extensive MT and seismic data. The SAMTEX MT study, the largest

of its kind, has covered broad regions that are largely terra incognita with respect to any

deep-probing geophysics, in particular MT. With well over 525 broadband MT sites cov-

ering the southern African region and with additional phases of data collection to come,

this experiment provides an extensive data set that has, and will continue, to add to our

understanding of the geology and tectonics of southern Africa. The seismic data from the

SASE experiment was collected prior to this study and has been extensively analysed and

reported on using various analysis techniques.

The MT data were processed and analysed using well established methodologies and

techniques. However, due to the scale of the survey we have conducted a comprehensive

Groom-Bailey type decomposition distortion analysis for various periods that represent the

same penetration depths across the region, unlike the traditional approach which is to take

one period for a given region that approximates a certain depth for the survey. We have

demonstrated the necessity for doing this by demonstrating the variation in penetration

166
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observed with our data. We have explored further the results by using techniques such as

cluster analysis and comparing the results with significant lineament features reported in the

literature. The main conclusions from the MT results are summarised as follows:� The crustal MT results suggest that the main cause of variations in the conductive

directions is due to large-scale heterogeneity, particularly at terrane boundaries, which

are observed as a near-90° flip in the more conductive azimuths.� Lithospheric mantle MT results are more complex than anticipated, but are marginally

less complex than the crustal MT results. There are regions where the effects of

heterogeneity observed in the crustal MT results are no longer visible, indicating that

these structures are likely only crustal in origin. However, there are regions where the

effects of heterogeneity are clearly observed, indicating that the structures contributing

to them extend to lithospheric mantle depths.� The cluster analysis has aided in highlighting regions of consistent strike, as well as

strong contrasts, but has failed to identify a ubiquitous conductive direction across the

region with similar trends to the shear wave splitting results (≈NE-SW).� Weak correlations between MT results and major lineaments indicate that, although

there certainly are heterogeneity effects in the MT data, they are not likely related to

the lineaments of large length extent across the region, though they may be related to

lineaments shorter in length. The lineament strike directions do not show a significantly

better fit to either one of the crustal and lithospheric mantle MT results.� Overall, our MT results indicate that the lithosphere has strong variations in anisotropy

and heterogeneity, both as a function of depth, and laterally. Additionally, our litho-

spheric results do not appear to be a result of LPO and thus give support for a dry

lithosphere.� Asthenospheric mantle MT results, although sparse, appear to be better correlated

with plate motion directions, as well as shear wave splitting fast axis directions. The

results promote a wet asthenosphere, with strongly developed LPO.

The SASE data from representative stations, as well as three permanent stations, were

re-analysed for shear wave splitting. This analysis was undertaken using established method-

ologies and tested codes in order to gain a greater understanding of the results and to search

for any indications of more complex anisotropy that may have been missed by the previous

studies. Additionally, we have investigated further the correlation of shear wave splitting
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results with plate motion and mantle flow models, as well as with tomography results from

the SASE study. Below are the main results of the seismic re-analysis and investigation:� Re-analysis of shear wave splitting results provide multi-event measurements consistent

with those of previous authors (Silver et al., 2001; Barruol & Ben Ismail, 2001).� We find that while the splitting parameters plotted as a function of backazimuth do

not suggest more complex anisotropy than a single horizontal layer, the data are also

insufficient to reject this possibility. Waveform inversion that searches for parameters

for two layer splitting was inconclusive.� An important observation established in this study is that regions where there is good

correlation between seismic fast axis directions and plate motion or mantle flow di-

rections occur primarily where thick lithosphere is indicated by tomography models.

This argues for a component of seismic anisotropy at the lithosphere/asthenosphere

boundary, or within the asthenosphere. We suggest that this is a result of increased

flow velocity below thick lithosphere.

Comparing the measured splitting parameters (fast axis direction and delay time) with

the MT parameters (conductive direction and phase difference), we find no clear relationship.

Additionally, there are no regions where these parameters agree significantly better or worse.

While this may in some cases be due to seismic and electrical anisotropy being a result of

different causes, we also suggest that an explanation for this lack of correlation is due to

the different source regions of anisotropy. We propose a new model for the region, which

explains both the seismic shear wave splitting and MT results. The proposed model (figures

7-16, 7-17) has an anisotropic, but heterogeneous, lithosphere on the cratonic region, with

better ordered structures and anisotropy in the lithosphere of mobile belts. The lithosphere

is underlain by anisotropic asthenosphere, as well as a strongly anisotropic region below the

thicker cratonic keels in the region.

The stronger anisotropic region beneath the keel is required to explain the good correla-

tion we observe over thick lithosphere between the splitting direction and the plate motion

direction. It is possible that this might form due to increased flow velocity beneath the thick

keel required in order to conserve momentum. If this is occurring, it is unlikely that there

would not be any contribution in thinner parts of the lithosphere however, the contribution

to anisotropy would probably be smaller in magnitude. The lithosphere is required to be

anisotropic primarily due to xenolith studies, but also from surface wave studies. However,
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our MT results advocate that large portions of the lithosphere are also strongly heteroge-

neous, an argument that has also been suggested in surface wave studies (Saltzer, 2002). We

propose that the null splitting observations on the southeastern Kaapvaal craton are due

to very strong heterogeneity in anisotropy resulting in severe scattering that can produce

essentially a null observation (Saltzer et al., 2000). The MT observations over the Namaqua-

Natal mobile belt suggest coherent deformation that may align lithospheric LPO ≈90° to

plate motion directions. We therefore appeal to the argument of Heintz & Kennett (2006)

to explain the null splitting observations in this region. Additionally, the splitting directions

over the Limpopo belt and northeastern Kaapvaal craton are predominantly aligned with

surface deformational structures and not with plate motion direction, even though there is

relatively thick lithosphere in this region. The severe deformation in this region may have

produced a more well-ordered, less anisotropically heterogeneous region, which may result in

shear wave splitting that tends to be weighted towards the upper portion of the anisotropic

region. This is what we propose is occurring in the Limpopo belt and northeastern Kaapvaal

craton. Thus, the model that we propose is not unnecessarily complex, with all the features

required to support the observations in the region.

8.2 Future work and possible improvements

The study that we have conducted here can be extended and improved in a number of ways.

Below, we summarise where extension and improvements may be made in order to reduce

uncertainties and improve results obtained through this study:� Of course, more stations and data will always be useful to gain further constraints. The

main question is where these stations are located, and additionally whether a profile

or grid of stations is preferable. Ideally the stations should be placed where there is

poor coverage from existing profiles and also where poor data were obtained previously

(only if there is reason to believe the results of a re-occupied station would be better

for some reason). Profiles have the advantage for MT of having closer, more regular,

station spacings which may be modelled using well developed 2D inversions, whereas

a grid has the advantage of gaining broader and more uniform coverage. Ideally, given

that the seismic study is an array, this aspect of the MT study may be better performed

in an array with sites co-located with the seismic stations. Additionally, it would be

very useful to have a SASE follow-up experiment extend further into Botswana and

Namibia, as this is where we have far more MT coverage and better quality data. It

would also be preferable for seismic stations to be left to record for longer periods
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of time in order to gain a better backazimuthal distribution of splitting events. The

AfricaArray research program will likely help in this regard.� Another aspect to do with data collection that would improve this experiment, would

be to have vertical magnetic field data collected at each site. This would substantially

aid in determining whether regions that appear to be electrically anisotropic are a

result of anisotropy, or a result of heterogeneity.� In order to constrain further MT observations of the asthenosphere, it would be useful

to return to areas where we have good penetration with long period MT systems during

a sun spot maximum, in order to gain high quality data representative of asthenospheric

depths.� A drawback of shear wave splitting of teleseismic events, is that it has poor vertical

resolution, something we try to counter by using MT. However, it may well be more

appropriate to compare our MT data with surface wave anisotropy, as the latter has

far better control on depth than teleseismic shear wave splitting. A drawback of this

however is that you would lose the excellent horizontal resolution (in comparison to

surface waves) afforded by the near-vertically travelling teleseismic waves. Nevertheless

I feel this would be a worthwhile investigation.� Future work on SAMTEX will include 2D and 3D inversion of the data, which will

certainly provide some interesting results and further geological constraints (such as

the size and shape of resistivity heterogeneities) for the region.
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Ben-Ismäıl, W., Barruol, G., & Mainprice, D. 2001. The Kaapvaal craton seismic anisotropy:

petrophysical analyses of upper mantle kimberlite nodules. Geophysical Research Letters,

28(13), 2497–2500.

Beran, A., & Liboitzky, E. 2006. Water in Natural Mantle Minerals II: Olivine, Garnet and

Accessory Minerals. Reviews in Mineralogy and Geochemistry, 62, 169–191.

Blohm, E.K., Worzyk, P., & Scriba, H. 1977. Geoelectrical deep soundings in southern Africa

using the Cabora Bassa power line. Journal of Geophysics, 43, 665–679.

Bochannon, J. 2004. Earth Sciences seek niche apart from mining industry. Science, 304,

380–381.

Bostick, F X. 1977. A simple almost exact method of MT analysis.

Bumby, A. J., Eriksson, P. G., van der Merwe, R., & Maier, W.D. 2001. The stratigraphic re-

lationship between the Waterberg and Soutpansberg Groups in Northern Province, South

Africa: Evidence from the Blouberg area. South African Journal of Geology, 104, 205–216.

Cagniard, L. 1953. Basic theory of the magneto-telluric method of geophysical prospecting.

Geophysics, 18, 605 – 635.

Caldwell, T G, Bibby, H M, & Brown, C. 2004. The magnetotelluric phase tensor. Geophysical

Journal International, 158, 457–469.

Carlson, R. W., Grove, T. L., de Wit, M. J., & Gurney, J. J. 1996. Anatomy of an Archean

craton: A program for interdisciplinary studies of the Kaapvaal craton, southern Africa.

EOS, Transactions of the American Geophysical Union, 77(29), 273, 277.

Carlson, R. W., Boyd, F. R., Shirey, S. B., Janney, P. E., Grove, T. L., Bowring, S. A.,

Schmitz, M. D., Dann, J. C., Bell, D. R., Gurney, J. J., Richardson, S. H., Tredoux, M.,

Menzies, A. H., Pearson, D. G., Hart, R. J., Wilson, A. H., & Moser, D. 2000. Continental

growth, preservation and modification in southern Africa. GSA Today, 10(2), 1–7.



REFERENCES 173

Carney, J. N., Aldiss, D. T., & Lock, N. P. 1994. The geology of Botswana. Tech. rept.

Private Bag 14, Lobatse, Botswana.

Chave, A D, & Jones, A G. 1997. Electric and magnetic field distortion decomposition of

BC87 data. Journal of Geomagnetism and Geoeletricity, 49, 767–789.

Chave, A D, & Smith, J T. 1994. On electric and magnetic galvanic distortion tensor

decompositions. Journal of Geophysical Reasearch, 99, 4669–4682.

Chave, A D, & Thomson, DJ. 2004. Bounded influence magnetotelluric response function

estimation. Geophysical Journal International, 157, 988–1006.

Chave, A D, Evans, R L, & Jones, A G. 2002. An Electromagnetic Experiment across the

Kaapvaal craton and its bounding terranes. Collaborative Research Proposal submitted to

NSF, 1–26.

Conrad, C. P., Behn, M. D., & Silver, P. G. 2007. Global mantle flow and the development of

seismic anisotropy: Differences between the oceanic and continental upper mantle. Journal

of Geophysical Research, B07317.

Corner, B., Durrheim, R. J., & Nicolaysen, L. O. 1990. Relationships between the Vredefort

structure and the Witwatersrand basin within the tectonic framework of the Kaapvaal

craton as interpreted from regional gravity and aeromagnetic data. Tectonophysics, 171,

49–61.

Crampin, S. 1987. Geological and industrial implications of extensive-dilatancy anisotropy.

Nature, 328, 491–496.

Crampin, S, & Chastin, S. 2003. A review of shear wave splitting in the crack-critical crust.

Geophysical Journal International, 155, 221–240.

Crampin, S, & Peacock, S. 2005. A review of shear-wave splitting in the compliant crack-

critical anisotropic Earth. Wave Motion, 41, 57–77.

Crampin, S., & Zatsepin, S.V. 1995. Production seismology: the use of shearwaves to

monitor and model production in a poro-reactive and interactive reservoir. Pages 199–202

of: Proceedings of the 65th Annual International SEG Meeting, Expanded Abstracts.

Cull, J P. 1985. Magnetotelluric soundings over a Precambrian contact in Australia. Geo-

physical Journal of the Royal Astronomical Society, 80, 661–675.



REFERENCES 174

Daines, M.J., & Kohlstedt, D.L. 1997. Influence of deformation on melt topology in peri-

dotites. Journal of Geophysical Research, 102(B5), 10,257–10,271.

Davis, W. J., Jones, A. G., Bleeker, W., & Grutter, H. 2003. Lithosphere development in

the Slave craton: a linked crustal and mantle perspective. Lithos, 71(2-4), 575–589.

de Beer, J. H., & Gough, D. I. 1980. Conductive structures in southernmost Africa: a

magnetometer array study. Geophysical Journal International, 63(Number 2), 479–495.

de Wit, M, & Horsfield, B. 2006. Inkaba yeAfrica project surveys sector of Earth from core

to space. EOS Transactions of the American Geophysical Union, 87(11), 113.

de Wit, M. J., Roering, C., Hart, R. J., Armstrong, R. A., de Ronde, C. E. J., Green, R.

W. E., Tredoux, M., Peberdy, E., & Hart, R. A. 1992. Formation of an Archaean continent.

Nature, 357(6379), 553–562.

Debayle, E., & Kennett, B. L. N. 2000. The Australian continental upper mantle: Structure

and deformation inferred from surface waves. Journal of Geophysical Research, 105(B11),

25,423–25,450.

d’Erceville, E J, & Kunetz, G. 1962. The effect of a fault on the earths natural electromag-

netic field. Geophysics, 27, 651–665.

Do, V.C. 2006. A study of seismic anisotropy in Ireland. Ph.D. thesis, University College

Dublin, Ireland, and Dublin Institute for Advanced Studies, Ireland.

Do, V.C., Readman, P.W., OReilly, B.M., & Landes, M. 2006. Shear-wave splitting obser-

vations across southwest Ireland. Geophysical Research Letters, 33(L03309), 1–4.

Dziewonski, A. M., & Anderson, D. L. 1981. Preliminary reference Earth model. Physics of

the Earth and Planetary Interiors, 25(4), 297–356.

Eaton, D. W., Jones, A. G., & Ferguson, I. J. 2004. Lithospheric anisotropy structure

inferred from collocated teleseismic and magnetotelluric observations: Great Slave Lake

shear zone, northern Canada. Geophysical Research Letters, 31(19), L19614.

Eaton, D.W., & Hope, J. 2003. Structure of the crust and upper mantle of the Great Slave

Lake shear zone, northwestern Canada, from teleseismic analysis and gravity modeling.

Canadian Journal of Earth Science, 40, 1203–1218.

Egbert, G D. 1997. Robust multiple-station magnetotelluric data processing. Geophysical

Journal International, 130, 475–496.



REFERENCES 175

Egbert, G D, & Booker, J R. 1986. Robust estimation of geomagnetic transfer functions.

Geophysical Journal of the Royal Astronomical Society, 87, 173–194.

Eggers, D E. 1982. An eigenstate formulation of the magnetotelluric impedance tensor.

Geophysics, 47, 1204–1214.

Eglington, B. M., & Armstrong, R. A. 2004. The Kaapvaal Craton and adjacent orogens,

southern Africa: a geochronological database and overview of the geological development

of the craton. South African Journal of Geology, 107, 13–32.

Everett, M. 2005. What do electromagnetic induction responses measure? The Leading

Edge, 24(2), 154–157.

Feynman, R.P., Leighton, R.B., & Sands, M. 1964. Mainly Electromagnetism and Mat-

ter. The Feynman Lectures on Physics, vol. 2. Menlo Park: Addison-Wesley Publishing

Company.

Fouch, M. J., & Fischer, K. M. 1996. Mantle anisotropy beneath northwest Pacific subduction

zones. Journal of Geophysical Research, 101(B7), 15,987–16,002.

Fouch, M. J., & Rondenay, S. 2006. Seismic anisotropy beneath stable continental interiors.

Physics of the Earth and Planetary Interiors, 158, 292–320.

Fouch, M. J., James, D. E., VanDecar, J. C., van der Lee, S., & Group, Kaapvaal Seismic.

2000a. Mantle seismic structure beneath southern Africa. Page F834 of: AGU 2000 fall

meeting, abstracts.

Fouch, M. J., Fischer, K. M., Parmentier, E. M., Wysession, M. E., & Clarke, T. J. 2000b.

Shear wave splitting, continental keels, and patterns of mantle flow. Journal of Geophysical

Research, 105(B3), 6255–6275.

Fouch, M. J., James, D. E., VanDecar, J. C., van der Lee, S., & Group, the Kaapvaal Seismic.

2004a. Mantle seismic structure beneath the Kaapvaal and Zimbabwe cratons. South

African Journal of Geology, 107, 35–46.

Fouch, M. J., Silver, P. G., Bell, D. R., & Lee, J. N. 2004b. Small-scale variations in seismic

anisotropy beneath Kimberley, South Africa. Geophysical Journal International, 157(2),

764–774.



REFERENCES 176

Frederiksen, A.W., Ferguson, I.J., Eaton, D., S.-K., Miong, & Gowan, E. 2006. Mantle

fabric at multiple scales across an ArcheanProterozoic boundary, Grenville Front, Canada.

Physics of the Earth and Planetary Interiors, 158, 240–263.

Freybourger, M., Gaherty, J. B., Jordan, T. H., & Group, Kaapvaal Seismic. 2001. Structure

of the Kaapvaal craton from surface waves. Geophysical Research Letters, 28(13), 2489–

2492.

Gamble, T.G., Goubau, W.M., & Clarke, J. 1979. Magnetotellurics with a remote magnetic

reference. Geophysics, 44(1), 53–68.

Garcia, X, & Jones, A G. 2001. Decomposition of three-dimensional magnetotelluric data.

Pages 235–250 of: Zhdanov, M S, & Wannamaker, P. E. (eds), Three-Dimensional Elec-

tromagnetics. Methods in Geochemistry and Geophysics, vol. 35. Elsevier.

Gatzemeier, A., & Tommasi, A. 2006. Flow and electrical anisotropy in the upper mantle:

Finite-element models constraints on the effects of olivine crystal preferred orientation and

microstructure. Physics of the Earth and Planetary Interiors, 158, 92–106.

Good, N., & DeWit, M. J. 1997. The Thabazimbi-Murchison Lineament of the Kaapvaal

Craton, South Africa: 2700 Ma of episodic deformation. Journal of the Geological Society

of London, 154(1), 93–97.

Gough, D. I., de Beer, J. H., & van Zijl, J. S. V. 1973. A Magnetometer Array Study in

Southern Africa. Geophysical Journal International, 34(4), 421–423.

Grant, K., Ingrin, J., Lorand, J.P., & Dumas, P. 2007. Water partitioning between mantle

minerals from peridotite xenoliths. Contributions to Mineralogy and Petrology, 154, 15–34.

Gripp, A. E., & Gordon, R. G. 1990. Current plate velocities relative to the hotspots

incorporating the NUVEL-1 global plate motion model. Geophysical Research Letters,

17(8), 1109–1112.

Gripp, A. E., & Gordon, R. G. 2002. Young tracks of hotspots and current plate velocities.

Geophysical Journal International, 150(2), 321–361.

Groom, R W, & Bahr, K. 1992. Corrections for near surface effects: Decomposition of

the magnetotelluric impedance tensor and scaling corrections for regional resistivities: A

tutorial. Surveys in Geophysics, 13(4-5), 341–379.



REFERENCES 177

Groom, R W, & Bailey, R C. 1989. Decomposition of Magnetotelluric Impedance Tensors

in the Presence of Local Three-Dimensional Galvanic Distortion. Journal of Geophysical

Research (Solid Earth), 94(B2), 1913–1925.

Groom, R W, Kurtz, R D, Jones, A G, & Boerner, D E. 1993. A quantitative methodology

for determining the dimensionality of conductive structure from magnetotelluric data.

Geophysical Journal International, 115, 1095–1118.

Hamilton, M, Jones, A G, Evans, R L, Evans, S, Fourie, C J S, Garcia, X, Mountford,

A, Spratt, J E, & Team, the SAMTEX. 2006. Electrical anisotropy of South African

lithosphere compared with seismic anisotropy from shear-wave splitting analysis. Physics

of the Earth and Planetary Interiors, 158, 226–239.

Heintz, M, & Kennett, B.L.N. 2006. The apparently isotropic Australian upper mantle.

Geophysical Research Letters, 33, L15319.

Heise, W., & Pous, J. 2001. Effects of anisotropy on the two-dimensional inversion procedure.

Geophysical Journal International, 147, 610–621.

Heise, W., Caldwell, T.G., & Bibby, H.M. 2006a. 3D modelling of magnetotelluric phase

tensor data from the Rotokawa geothermal field, Taupo Volcanic Zone, New Zealand. 18th

Electromagnetic Induction Workshop, Abstracts on CD ROM.

Heise, W., Caldwell, T.G., Bibby, H.M., & Brown, C. 2006b. Anisotropy and phase splits in

magnetotellurics. Physics of the Earth and Planetary Interiors, 158, 107–121.

Hess, H. H. 1964. Seismic anisotropy of the uppermost mantle under oceans. Nature (Lon-

don), 203, 629–631.

Hirth, G. 2006. Protons lead the charge. Nature, 443, 927–928.

Hirth, G., & Kohlstedt, D.L. 2003. Rheology of the upper mantle and the mantle wedge:

A view from the experimentalists. Pages 83–105 of: Eiler, J. (ed), Inside the Subduction

Factory. Geophysical Monograph Series, vol. 138. Washington, D.C.: AGU.

Hirth, G., Evans, R., & Chave, A. D. 2000. Comparison of continental and oceanic man-

tle electrical conductivity: Is the Archean lithosphere dry? Geochemistry Geophysics

Geosystems, 1, art. no.–0048.



REFERENCES 178

Hoal, B. G., Hoal, K. E. O., Boyd, F. R., & Pearson, D. G. 1995. Age constraints on crustal

and mantle lithosphere beneath the Gibeon kimberlite field, Namibia. South African

Journal of Geology, 98(2), 112–118.

Holtzman, B K, Kohlstedt, D L, Zimmerman, M E, Heidelbach, F, T., Hirage, & Hustoft,

J. 2003. Melt segregation and strain partitioning: Implications for seismic anisotropy and

mantle flow. Science, 301, 1227–1230.

Hrouda, F., Pros, Z., & Wohlgemuth, J. 1993. Development of magnetic and elastic

anisotropies in slates during progressive deformation. Physics of the Earth and Plane-

tary Interiors, 77, 251–265.

James, D. E., & Fouch, M. J. 2002. Formation and evolution of Archean cratons: insights

from southern Africa. Pages 1–26 of: Fowler, C M R, Ebinger, C J, & Hawkesworth,

C J (eds), The Early Earth: Physical, Chemical and Biological Development, vol. 199.

Geological Society, London. Special Publication.

James, D. E., Fouch, M. J., VanDecar, J. C., van der Lee, S., & Group, Kaapvaal Seis-

mic. 2001. Tectospheric structure beneath southern Africa. Geophysical Research Letters,

28(13), 2485–2488.

James, D. E., Niu, F., & Rokosky, J. 2003. Crustal structure of the Kaapvaal craton and its

significance for early crustal evolution. Lithos, 71(2-4), 413–429.

Jelsma, H. A., de Wit, M. J., Thiart, C., Dirks, P. H. G. M., Viola, F., Basson, I. J., &

Anckar, E. 2004. Preferential distribution along transcontinental corridors of kimberlites

and related rocks of Southern Africa. South African Journal of Geology, 107, 301–324.

Ji, S. C., Rondenay, S., Mareschal, M., & Senechal, G. 1996. Obliquity between seismic and

electrical anisotropies as a potential indicator of movement sense for ductile shear zones

in the upper mantle. Geology, 24(11), 1033–1036.

Jiracek, G. R. 1990. Near-surface and topographic distortions in electromagnetic induction.

Surveys in Geophysics, 11, 163–203.

Johnson, S. D., Poujol, M., & Kisters, A.F.M. 2006. Constraining the timing and migration

of collisional tectonics in the Damara Belt, Namibia: U-Pb zircon ages for the syntectonic

Salem-type Stinkbank granite. South African Journal of Geology, 109, 611–624.

Jones, A G. 1980. Geomagnetic induction studies in Scandinavia. Jounal of Geophysics, 48,

181–194.



REFERENCES 179

Jones, A G. 1983a. On the equivalence of the Niblett and Bostick transformations in the

magnetotelluric method. Journal of Geophysics, 53, 72–73.

Jones, A G. 1983b. The problem of current channelling: a critical review. Geophysical

Surveys, 6, 79–122.

Jones, A. G. 1986. Parkinson’s pointers’ potential perfidy! Geophysical Journal of the Royal

Astronomical Society, 87, 1215–1224.

Jones, A G. 1988. Static shift of magnetotelluric data and its removal in a sedimentary basin

environment. Geophysics, 53, 967–978.

Jones, A. G. 1999. Imaging the continental upper mantle using electromagnetic methods.

Lithos, 48(1-4), 57–80.

Jones, A G. 2006. Electromagnetic interrogation of the anisotropic Earth: Looking into

the Earth with polarized spectacles. Physics of the Earth and Planetary Interiors, 158,

281–291.

Jones, A G, & Groom, R W. 1993. Strike angle determination from the magnetotelluric

impedance tensor in the presence of noise and local distortion: rotate at your peril! Geo-

physical Journal International, 113, 524–534.

Jones, A G, & Spratt, J E. 2002. A simple method for deriving the uniform field MT

responses in auroral zones. Earth Planets and Space, 54, 443–450.

Jones, A. G., Lezaeta, P., Ferguson, I. J., Chave, A. D., Evans, R. L., Garcia, X., & Spratt,

J. 2003. The electrical structure of the Slave craton. Lithos, 71(2-4), 505–527.

Jones, A.G. 1992. Electrical conductivity of the continental lower crust. Pages 81 – 143 of:

Fountain, D.M., Arculus, R.J., & Kay, R.W. (eds), Continental Lower Crust. Elsevier.

Jones, A.G., & Ferguson, I.J. 2001. The electric Moho. Nature, 409, 331 – 333.

Jones, A.G., Chave, A.D., Auld, D., Bahr, K., & Egbert, G. 1989. A Comparison of tech-

niques for magnetotelluric response function estimation. Journal of Geophysical Research,

94(14), 14201–14213.

Jones, A.G., Ferguson, I.J., Chave, A.D., Evans, R.L., & McNeice, G.W. 2001. Electric

lithosphere of the Slave craton. Geology, 29(5), 423 – 426.



REFERENCES 180

Jones, A.G., Evans, R.L., & Eaton, D.W. 2007. Velocity-conductivity relationships for

mantle mineral assemblages in Archean cratonic lithosphere based on extremal bounds.

submitted to Lithos.

Jones, F.W., & Price, A T. 1970. The Perturbations of Alternating Geomagnetic Fields by

Conductivity Anomalies. Geophysical Journal of the Royal Astronomical Society, 20, 317

– 334.

Jordan, T. H. 1975. The continental tectosphere. Reviews of Geophysics, 13, 1–12.

Jordan, T.H. 1978. Composition and structure of the continental tectosphere. Nature, 544–

548.

Jung, H., & Karato, S. 2001. Water-induced fabric transitions in olivine. Science, 293(5534),

1460–1463.

Kaikkonen, P., Pernu, T., Tiikainen, J., Nozdrina, A.A., Palshin, N.A., Vanyan, L.L., &

Yegorov, I.V. 1996. Deep DC soundings in southwestern Finland using the Fenno-Skan

HVDC Link as a source. Physics of the Earth and Planetary Interiors, 94, 275–290.

Kaminski, E., & Ribe, N. M. 2001. A kinematic model for recrystallization and texture

development in olivine polycrystals. Earth and Planetary Science Letters, 189(3-4), 253–

267.

Kaminski, E., & Ribe, N. M. 2002. Timescales for the evolution of seismic anisotropy in

mantle flow. Geochemistry Geophysics Geosystems, 3(8), art. no.–1051.

Kaminski, E, Ribe, N. M., & Browaeys, J. T. 2004. D-Rex, a program for calculation

of seismic anisotropy due to crystal lattice preffered orientation in the convective upper

mantle. Geophysical Journal International, 158, 744–752.

Kaneshima, S., Ando, M., & Kimura, S. 1988. Evidence from shear-wave splitting for the

restriction of seismic anisotropy to the upper crust. Nature (London), 335(6191), 627–629.

Kao, D., & Orr, D. 1982. Magnetotelluric response of a uniformly stratified earth containing

a magnetised layer. Geophysical Journal of the Royal Astronomical Society, 70, 339–347.

Karato, S. 1990. The role of hydrogen in the electrical conductivity of the upper mantle.

Nature, 347, 272–273.

Karato, S, & Wu, P. 1993. Rheology of the upper mantel: a synthesis. Science, 260, 771–778.



REFERENCES 181

Kennett, B. L. N., & Engdahl, E. R. 1991. Traveltimes for global earthquake locations and

phase identification. Geophysical Journal International, 105, 429–465.

Key, R. M., & Ayres, N. 2000. The 1998 edition of the National Geological Map of Botswana.

Journal of African Earth Sciences, 30(3), 427–451.

Kind, R., Kosarev, G. L., Makeyeva, L. I., & Vinnik, L. P. 1985. Observations of laterally

inhomogeneous anisotropy in the continental lithosphere. Nature, 318(6044), 358–361.

Kneller, E.A., van Keken, P.E., Karato, S.-I., & Park, J. 2005. B-type olivine fabric in

the mantle wedge: Insights from high-resolution non-Newtonian subduction zone models.

Earth and Planetary Science Letters, 237, 781–797.

Kwadiba, M. T. O. G., Wright, C., Kgaswane, E. M., Simon, R. E., & Nguuri, T. K. 2003.

Pn arrivals and lateral variations of Moho geometry beneath the Kaapvaal craton. Lithos,

71(2-4), 393–411.

Lahti, I, Korja, T, Kaikkonen, P, & Vaittinen, K. 2005. Decomposition analysis of the BEAR

magnetotelluric data: implications for the upper mantle conductivity in the Fennoscandian

Shield. Geophysical Journal International, 163, 900–914.

Larsen, J C. 1977. Removal of local surface conductivity effects from low frequency mantle

response curves. Acta Geodaet. Geophysics et Montanist. Acad. Sci. Hung., 12, 183–186.

LaTorraca, G A, Madden, T R, & Korringa, J. 1986. An analysis of the magnetotelluric

impedance for three-dimensional conductivity structures. Geophysics, 51, 1819–1829.

Lienert, B.R. 1979. Crustal electrical conductivities along the eastern flank of the Sierra

Nevadas. Geophysics, 44, 1830–1845.

Long, C., & Christensen, N. I. 2000. Seismic anisotropy of South African upper mantle

xenoliths. Earth and Planetary Science Letters, 179(3-4), 551–565.

Mackie, R L, Madden, T R, & Wannamaker, P E. 1993. Three-dimensional magnetotelluric

modeling using finite difference equations - Theory and comparisons to integral equations

solutions. Geophysics, 58, 215–226.

Mackwell, S J, & Kohlstedt, D L. 1990. Diffusion of Hydrogen in Olivine: Implications for

Water in the Mantle. Journal of Geophysical Research (Solid Earth), 95(B4), 5079–5088.



REFERENCES 182

MacQueen, J.B. 1967. Some Methods for classification and Analysis of Multivariate Obser-

vations. Pages 281–297 of: LeCam, L.M., & Neyman, N. (eds), Proceedings of the fifth

Berkeley symposium on mathematical statistics and probability, vol. 1. Berkeley, California:

University of California Press.

Madden, T., & Nelson, P. 1986. A defense of Cagniard’s magnetotelluric method. In: Vozoff,

K (ed), Magnetotelluric Methods, vol. Reprint Series. Tulsa, OK: Society of Exploration

Geophysics.

Mainprice, D., & Silver, P. G. 1993. Interpretation of SKS-waves using samples from the

subcontinental lithosphere. Physics of the Earth and Planetary Interiors, 78(3-4), 257–

280.

Mainprice, D, Barruol, G, & Ismal, W B. 2000. The Seismic Anisotropy of the Earth’s

Mantle: From Single Crystal to Polycrystal. Pages 237–264 of: Karato, S, Forte, A M,

Liebermann, R C, Masters, G, & Stixrude, L (eds), Earth’s Deep Interior, Mineral Physics

and Tomography from the atomic to the global scale. Geophysical Monograph Series, vol.

117. AGU, Washington, DC, United States.

Mareschal, M., Kellett, R. L., Kurtz, R. D., Ludden, J. N., Ji, S., & Bailey, R. C.

1995. Archean cratonic roots, mantle shear zones and deep electrical anisotropy. Na-

ture, 375(6527), 134–137.

Marson-Pidgeon, K, & Savage, M.K. 1997. Frequency-dependent anisotropy in the Welling-

ton region, New Zealand. Geophysical Research Letters, 24(24), 3297–3300.

Marti, A. 2006. A Magnetotelluric Investigation of Geoelectrical Dimensionality and Study

of the Central Betic Crustal Structure. Ph.D. thesis, Universitat de Barcelona. 307 pp.

Maxwell, J.C. 1873a. A Treatise on Electricity and Magnetism. Vol. 1. Oxford at the

Clarendon Press.

Maxwell, J.C. 1873b. A Treatise on Electricity and Magnetism. Vol. 2. Oxford at the

Clarendon Press.

McCourt, S., & Vearncombe, J. R. 1992. Shear zones of the Limpopo Belt and adjacent

granitoid-greenstone terranes: implications for late Archaean collision tectonics in south-

ern Africa. Precambrian Research, 55, 553–570.



REFERENCES 183

McCourt, S., Kampunzu, A. B., Bagai, Z., & Armstrong, R. A. 2004. The crustal architec-

ture of Archaean terranes in northeastern Botswana. South African Journal of Geology,

107(Number 1/2), 147–158.

McNeice, G.W., & Jones, A G. 2001. Multisite, multifrequency tensor decomposition of

magnetotelluric data. Geophysics, 66, 158–173.

Mizukami, T, Wallis, S R, & Yamamoto, J. 2004. Natural examples of olivine lattice preferred

orientaion patterns with a flow-normal a-axis maximum. Nature, 427, 432–436.

Montagner, J. P., & Kennett, B. L. N. 1996. How to reconcile body-wave and normal-mode

reference earth models. Geophysical Journal International, 125(1), 229–248.

Nguuri, T. K., Gore, J., James, D. E., Webb, S. J., Wright, C., Zengeni, T. G., Gwavava,

O., Snoke, J. A., & Group, Kaapvaal Seismic. 2001. Crustal structure beneath southern

Africa and its implications for the formation and evolution of the Kaapvaal and Zimbabwe

cratons. Geophysical Research Letters, 28(13), 2501–2504.

Niblett, E R, & Sayn-Wittgenstein, C. 1960. Variation of electrical conductivity with depth

by the magneto-telluric method. Geophysics, 5, 998–1008.
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APPENDIX 1: Penetration estimates

Included in this appendix are graphs of the calculated periods corresponding to Niblett-

Bostick (NB) penetration estimates for 35 and 45 km depth, for the profiles of the SAMTEX

experiment.

Each plot shows the corresponding periods for 35 and 45 km, as + and -, respectively.

The upper two lines on the plot indicate the decade of data selected for the crustal MT

analysis. The lower two lines indicate the decade of data selected for the lithospheric mantle

MT analysis. The NB depth estimates were calculated using the geometric mean of the

apparent resistivity for the TE and TM modes.
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APPENDIX 2: Asthenospheric MT analysis

In this appendix is a table describing the MT stations and periods used for the astheno-

spheric MT multi-site analysis.

Lat and Long are the central latitude and longitude positions of the stations used. Angle

is the resulting conductive direction clockwise from north. Length is the phase difference,

normalised to 30°. Min T and Max T are the minimum and maximum periods used in the

multi-site GB analysis.
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203

Lat Long Angle Length Min T Max T Stations utilised

-25.29 20.20 28.91 0.44 1700 s 2200 s kim413, kim419, kim420,

kim421, kim422, kim423,

kim425

-24.21 23.44 179.94 0.19 900 s 1500 s bot222, bot223, bot224,

bot225, bot226, bot227,

bot228, bot229, bot230,

bot231

-23.39 19.08 144.25 0.51 3500 s 5200 s dmb026, dmb030, dmb033

-22.27 21.70 17.62 0.38 950 s 1500 s k2g002, k2g003, k2g004,

k2g005, k2g006, k2g007

-23.30 22.43 32.55 0.75 2000 s 3000 s k2g009, k2g010, k2g012,

k2g013, k2g014

-27.09 25.39 41.81 0.58 200 s 400 s kap037, kap038, kap039,

kap044

-20.26 24.18 170.74 0.84 4000 s 5500 s mof104, mof105, mof106

-24.46 22.47 29.56 0.24 3200 s 6500 s rtz404, rtz407

-22.35 26.80 14.94 0.59 5500 s 9000 s sso106, sso107, sso108,

sso113

-22.14 20.82 22.23 0.78 2000 s 3000 s win016, win017, win018,

win020

-20.99 27.25 47.23 0.31 1700 s 3000 s zim108, zim109, zim110,

zim112



APPENDIX 3: SASE events

Here follows a list of seismic events that were used in the shear wave splitting analysis

conducted on the SASE data at selcted stations.

Date Time Latitude Longitude Depth Magnitude Delta

1997-05-01 11:37:36 18.99 -107.35 33 6.9 Mw 134.25

1997-05-03 16:46:02 -31.79 -179.38 108.3 6.9 Me 116.46

1997-05-09 9:06:37 13.20 144.70 29 6 Mw 123.63

1997-05-11 22:16:14 -36.38 -97.70 10 6.5 Mw 95.14

1997-05-13 5:38:30 31.82 130.28 33 6.1 Mw 117.71

1997-05-15 18:01:33 -21.63 169.88 33 6 Mw 120.80

1997-05-21 14:10:26 -20.44 169.29 57 6.8 Me 121.46

1997-05-21 16:26:25 -18.90 175.95 33 6 Mw 126.16

1997-05-22 7:50:54 18.68 -101.60 70 6.5 Me 129.06

1997-05-22 13:21:36 18.92 121.34 33.9 6.1 Me 105.50

1997-05-25 23:22:33 -32.12 179.79 332.7 7.1 Mw 115.89

1997-05-27 8:00:29 -15.21 -173.33 14 6.4 Me 133.91

1997-05-27 6:10:32 -54.93 -136.17 10 6.1 Mw 95.30

1997-05-29 17:02:39 -35.96 -102.51 10 6.5 Mw 98.30

1997-06-09 7:24:12 -21.33 171.54 33 6 Mw 121.91

1997-06-10 21:53:55 -35.82 -108.14 10 6.5 Mw 101.59

1997-06-12 12:07:34 -5.95 147.03 33 6.1 Me 115.98

1997-06-24 23:04:53 -1.92 127.90 33 6.4 Me 101.85

1997-06-26 19:21:09 -49.69 -114.57 10 6.3 Mw 93.86

1997-07-06 20:13:37 16.16 -87.92 33 6.1 Mw 116.03

1997-07-09 19:24:13 10.60 -63.49 19.9 7 Me 92.23

1997-07-11 9:55:13 -5.70 110.80 574.4 6 Mw 85.04

1997-07-14 16:09:36 43.25 146.38 33 6.1 Me 132.16

1997-07-19 14:22:09 16.33 -98.22 33 6.9 Me 125.18

1997-07-31 21:54:21 -6.64 130.92 58.6 6 Me 102.12

1997-08-04 19:21:32 -15.21 -175.43 33 6 Mw 133.16

1997-08-04 18:53:59 -15.16 -175.27 33 6.1 Mw 133.27

1997-08-08 22:27:20 -15.48 -179.14 10 6.6 Mw 131.41
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Date Time Latitude Longitude Depth Magnitude Delta

1997-08-10 9:20:31 -16.01 124.33 10 6.3 Mw 91.82

1997-08-13 4:45:05 25.03 125.77 55.3 6.2 Me 111.70

1997-08-15 7:37:49 -4.37 -105.70 10 6.3 Me 121.32

1997-08-17 20:11:11 -13.59 167.39 25.9 6 Mw 125.78

1997-08-29 6:54:00 -15.24 -175.58 33 6.5 Mw 133.08

1997-08-29 8:14:10 -3.56 144.36 22.8 6.6 Mw 115.12

1997-09-02 12:13:23 3.85 -75.75 198.7 6.8 Me 99.88

1997-09-03 6:22:44 -55.19 -128.99 10 6.1 Mw 93.57

1997-09-04 4:23:37 -26.57 178.34 624.7 6.8 Me 120.42

1997-09-10 12:57:07 -21.35 -174.39 10 6.1 Mw 127.81

1997-09-15 13:05:43 8.10 126.64 50.7 6.2 Me 105.45

1997-09-17 14:50:35 2.11 126.60 33 6 Me 102.64

1997-09-20 16:11:32 -28.68 -177.62 30 7 Mw 119.91

1997-09-26 15:48:34 -5.39 128.99 253.8 6 Mw 101.10

1997-09-30 6:27:25 31.96 141.88 10 6.2 Mw 127.25

1997-10-06 12:30:06 9.79 125.78 105.6 6.5 Me 105.44

1997-10-06 20:52:45 -9.30 158.69 33 6.1 Mw 122.95

1997-10-10 18:45:52 -9.32 158.73 33 6 Mw 122.97

1997-10-14 9:53:18 -22.10 -176.77 167.3 7.8 Me 126.31

1997-10-17 15:02:00 -20.89 -178.84 578.9 6 Me 126.66

1997-10-28 6:15:17 -4.37 -76.68 112 7.2 Me 96.81

1997-11-03 19:17:59 -6.74 129.02 215.6 6.1 Mw 100.45

1997-11-08 10:02:53 35.07 87.33 33 7.5 Me 87.21

1997-11-09 22:56:43 13.85 -88.81 176.4 6.5 Me 115.87

1997-11-10 23:06:44 31.19 140.49 86 6.2 Me 125.92

1997-11-15 7:05:17 43.81 145.02 161 6.1 Me 131.19

1997-11-15 18:59:24 -15.15 167.38 123.1 7 Me 124.57

1997-11-25 12:14:34 1.24 122.54 24 7 Me 98.65

1997-11-28 22:53:42 -13.74 -68.79 586 6.7 Me 85.50

1997-12-04 14:56:42 13.64 -90.66 80.5 6 Mw 117.42

1997-12-11 7:56:29 3.93 -75.79 177.5 6.4 Me 99.95

1997-12-16 11:48:30 16.11 -98.85 10 6 Mw 125.66

1997-12-18 15:02:00 13.84 -88.74 182.1 6.1 Me 115.81

1997-12-22 2:05:50 -5.50 147.87 179.3 7.2 Me 116.93

1997-12-22 10:03:45 13.74 -90.32 59.3 6.1 Mw 117.16

1998-01-01 6:11:23 23.91 141.91 95.6 6.4 Mb 125.12

1998-01-04 6:11:59 -22.30 170.91 100.6 7.5 Me 120.78

1998-01-10 4:54:25 -12.03 -72.07 33 6.4 Me 89.13

1998-01-10 8:20:06 14.37 -91.47 33 6.6 Mw 118.44

1998-01-12 16:36:20 -15.85 -179.38 23.4 6.7 Mw 130.98

1998-01-14 17:24:10 -15.73 -179.33 33 6.6 Mw 131.10
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1998-01-27 2:14:13 -20.77 -179.18 642.8 6 Mw 126.63

1998-01-27 19:55:01 -22.54 179.05 611 6.3 Mw 124.32

1998-01-27 21:05:44 -22.41 179.04 610.1 6.5 Me 124.43

1998-01-31 23:30:42 -35.76 -97.06 10 6 Mw 95.14

1998-02-03 3:02:00 15.88 -96.30 33 6.4 Mw 123.31

1998-02-07 1:19:00 24.82 141.75 525.3 6.4 Me 125.27

1998-02-16 23:53:20 52.72 -33.68 10 6.8 Mw 94.69

1998-02-19 14:14:51 -4.48 129.08 33 6.5 Mw 101.63

1998-03-03 2:24:44 14.38 -91.47 62.8 6.2 Mw 118.44

1998-03-20 21:08:09 -50.01 163.11 10 6.7 Mw 94.26

1998-03-21 16:33:11 79.89 1.86 10 6.2 Mw 108.47

1998-03-29 19:48:16 -17.55 -179.09 537.2 7.2 Mw 129.57

1998-04-03 22:01:48 -8.15 -74.24 164.6 6.6 Me 92.86

1998-04-11 0:44:36 -23.64 -176.11 33 6.2 Me 125.11

1998-04-14 3:41:22 -23.82 -179.87 498.6 6.1 Me 123.60

1998-04-20 22:59:15 18.53 -101.20 67.3 6 Me 128.65

1998-04-27 18:40:39 -3.00 136.28 53 6.2 Me 108.58

1998-05-03 23:30:22 22.31 125.31 33 7.5 Mw 110.27

1998-05-10 6:05:59 13.68 -90.75 33 6.3 Me 117.51

1998-05-13 23:02:06 -5.15 151.71 61.4 6.6 Me 120.23

1998-05-14 18:56:23 40.25 143.25 33 6 Me 129.67

1998-05-15 5:58:06 14.18 144.88 154.1 6 Mw 124.20

1998-05-16 2:22:03 -22.23 -179.52 586.1 6.9 Me 125.18

1998-05-21 5:34:26 0.21 119.58 33 6.7 Mw 95.56

1998-05-23 17:44:48 8.14 123.73 657.8 6 Me 102.89

1998-05-27 15:27:16 -5.85 149.70 33 6 Me 118.21

1998-05-30 18:18:16 39.03 143.44 33 6.2 Me 129.68

1998-06-07 23:20:14 15.96 -93.78 86.6 6.3 Me 121.12

1998-06-16 9:35:12 -52.99 159.84 10 6.2 Mw 90.65

1998-06-20 20:24:45 -30.11 -177.93 57.4 6 Me 118.49

1998-07-09 14:45:40 -30.49 -178.99 129.5 6.9 Me 117.80

1998-07-16 11:56:36 -11.04 166.16 110.2 7 Me 126.92

1998-07-17 8:49:13 -2.96 141.93 10 7 Me 113.40

1998-07-18 16:41:19 -18.37 168.17 33 6.1 Me 122.50

1998-07-19 15:58:39 -21.84 -175.79 72.1 6 Mw 126.89

1998-07-24 18:44:04 21.25 122.02 33 6.1 Mw 107.05

1998-07-25 2:39:23 -13.61 166.87 43.5 6.3 Me 125.44

1998-07-29 18:00:30 -2.69 138.90 33 6.7 Me 110.97

1998-07-31 12:41:00 -21.61 169.82 33 6.1 Mw 120.78

1998-07-31 12:48:04 -21.64 169.92 33 6 Mw 120.81

1998-08-04 18:59:20 -0.59 -80.39 33 7.2 Me 101.88
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1998-08-05 12:54:26 -54.67 -135.52 10 6.2 Mw 95.42

1998-08-20 6:40:56 28.93 139.33 440.5 7.1 Me 124.38

1998-08-23 5:36:13 14.70 120.05 70.1 6.1 Me 102.58

1998-08-23 13:57:15 11.66 -88.04 54.6 6.7 Me 114.26

1998-08-28 12:40:59 -0.15 125.02 66.2 6.1 Me 100.18

1998-08-30 1:48:09 17.09 148.13 33 6.3 Me 128.23

1998-09-02 8:37:30 5.41 126.76 50 6.8 Me 104.33

1998-09-07 0:39:30 -36.24 -97.71 10 6.1 Mw 95.24

1998-09-14 4:43:29 -34.75 -107.98 10 6.1 Mw 102.29

1998-09-15 8:35:52 -5.62 151.64 83 6.3 Me 119.89

1998-09-21 6:52:41 0.26 122.47 147.4 6 Mw 98.13

1998-09-21 12:09:40 -13.57 166.79 33 6.4 Me 125.41

1998-09-22 1:16:55 11.82 143.15 9.2 6 Me 121.68

1998-09-28 13:34:30 -8.19 112.41 151.6 6.6 Mw 85.31

1998-09-28 19:23:23 3.84 126.41 30.1 6.2 Mw 103.28

1998-10-03 11:15:43 28.51 127.62 226.6 6.2 Me 114.47

1998-10-08 4:51:43 -16.12 -71.40 136.2 6.1 Mb 86.62

1998-10-09 11:54:36 11.32 -86.45 68.7 6 Me 112.71

1998-10-10 16:32:19 -0.40 119.84 33 6 Me 95.50

1998-10-11 23:36:22 -56.91 -142.62 10 6.3 Mw 94.34

1998-10-28 16:25:04 0.84 125.97 33 6.6 Mw 101.48

1998-11-08 7:25:49 -9.14 121.42 33 6.4 Me 92.71

1998-11-09 5:38:44 -6.92 128.95 33 7 Me 100.29

1998-11-09 5:30:14 -6.95 129.02 33 6.7 Me 100.34

1998-11-14 15:03:12 -14.95 167.37 115.1 6 Me 124.72

1998-11-15 2:44:12 -21.59 -176.50 149.1 6.3 Me 126.88

1998-11-18 15:48:41 -3.32 130.77 33 6 Mw 103.66

1998-11-19 15:39:19 22.61 125.78 10 6.3 Mw 110.79

1998-11-24 23:54:46 -16.52 -174.75 223.2 6.1 Mw 132.20

1998-11-25 18:05:26 -7.86 158.62 47.9 6.2 Me 123.86

1998-11-29 14:10:32 -2.07 124.89 33 7.7 Mw 99.15

1998-12-06 0:47:13 1.25 126.20 33 6.6 Me 101.88

1998-12-14 19:35:27 -15.06 167.31 139.9 6 Mw 124.60

1998-12-16 0:18:45 31.29 131.29 41.6 6 Mw 118.37

1998-12-16 17:45:05 1.12 126.18 33 6.2 Mw 101.80

1998-12-26 15:39:08 -1.36 123.64 33 6.1 Mw 98.39

1998-12-27 0:38:27 -21.63 -176.38 144.3 6.9 Me 126.88

1999-01-05 8:32:47 -18.50 -174.07 33 6 Mw 130.59

1999-01-12 8:49:21 -5.42 151.68 42.6 6 Me 120.04

1999-01-19 3:35:34 -4.60 153.24 114.1 7 Me 121.78

1999-01-24 0:37:05 30.62 131.09 33 6.4 Me 118.01
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1999-01-24 7:01:58 -21.13 -174.66 33 6.1 Me 127.93

1999-01-25 18:19:17 4.46 -75.72 17 6.4 Me 100.14

1999-01-28 18:24:25 -4.58 153.66 101 6.4 Me 122.12

1999-02-03 1:13:58 -20.31 -174.37 33 6.3 Me 128.80

1999-02-06 21:47:59 -12.85 166.70 90.1 7.3 Me 125.90

1999-02-06 17:45:24 19.20 121.27 33 6 Mw 105.56

1999-02-13 14:45:13 -3.56 144.83 10 6.2 Mw 115.52

1999-02-14 21:12:25 -15.51 168.00 10 6 Me 124.66

1999-02-22 1:00:33 -21.45 169.68 33 6.4 Me 120.84

1999-02-23 7:27:56 0.20 119.54 33 6.2 Me 95.52

1999-02-25 18:58:29 51.60 104.86 10 6 Me 106.60

1999-03-04 8:52:02 5.40 121.94 33 7.1 Me 100.06

1999-03-07 20:35:44 -15.77 -179.53 33 6.1 Mw 130.98

1999-03-21 16:16:02 55.90 110.21 10 6 Mw 111.12

1999-03-31 5:54:42 5.83 -82.62 10 7 Me 106.86

1999-04-01 21:36:21 -4.36 152.71 33 6.2 Mw 121.50

1999-04-02 17:05:47 -19.90 168.19 10 6.2 Mw 121.29

1999-04-03 6:17:18 -16.66 -72.66 87.2 6.8 Me 87.43

1999-04-03 10:10:31 13.17 -87.63 38.4 6 Mw 114.55

1999-04-05 11:08:04 -5.59 149.57 150 7.4 Me 118.25

1999-04-06 8:22:14 -6.53 147.01 33 6.4 Mw 115.63

1999-04-08 13:10:34 43.61 130.35 565.7 7.1 Me 120.63

1999-04-09 12:16:02 -26.35 178.22 621.2 6.2 Me 120.57

1999-04-11 16:50:39 -6.00 148.50 58.3 6 Me 117.14

1999-04-13 10:38:48 -21.42 -176.46 164.2 6.8 Me 127.05

1999-04-20 19:04:08 -31.89 -179.04 95.7 6.5 Mw 116.48

1999-04-26 18:17:26 -1.65 -77.78 172.6 6 Me 99.08

1999-05-05 22:41:30 14.36 -94.67 33 6.3 Me 121.26

1999-05-08 22:12:46 14.21 -91.95 39.2 6.1 Mw 118.79

1999-05-10 20:33:02 -5.16 150.88 138 7.1 Me 119.56

1999-05-11 1:00:41 -36.10 -110.64 10 6 Mw 102.72

1999-05-12 17:59:22 43.03 143.84 102.7 6.2 Mw 130.30

1999-05-16 0:51:20 -4.75 152.49 73.7 7.1 Me 121.09

1999-05-16 15:25:54 -2.64 138.22 59.2 6.4 Me 110.42

1999-05-17 10:07:56 -5.17 152.88 27 6.6 Me 121.15

1999-05-18 4:19:53 -5.65 148.53 127.3 6.1 Mw 117.38

1999-05-22 10:08:54 -20.73 169.88 33 6.1 Mw 121.54

1999-06-06 7:08:06 13.90 -90.77 33 6.3 Mw 117.62

1999-06-15 20:42:06 18.39 -97.44 70 7 Me 125.27

1999-06-18 10:55:26 5.51 126.64 33 6.4 Me 104.27

1999-06-21 17:43:05 18.32 -101.54 68.7 6.3 Mw 128.87
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1999-06-26 22:05:29 -17.96 -178.19 590.4 6 Mw 129.58



Appendix 4: Permanent station events

Here follows a list of seismic events that were used in the shear wave splitting analysis

conducted on the permanent stations in the region (BOSA, SUR, LBTB).

Date Time Latitude Longitude Depth Magnitude Delta Backazimuth

1991-03-01 17:30:26 10.94 -84.64 196.5 6.1 Mb 110.95 270.41

1991-08-14 12:53:26 54.39 -169.30 274.8 6.1 un 151.97 18.25

1992-07-12 11:08:55 41.46 142.03 63.8 6 Mb 128.86 57.91

1992-10-22 9:04:23 -30.23 -177.21 26.3 6.6 Ms 118.60 158.17

1993-05-06 13:03:18 -8.47 -71.49 572.8 6.1 un 90.31 259.33

1993-05-25 23:16:43 55.02 -160.51 36.8 6.2 Mb 152.76 7.36

1993-10-11 13:07:30 -17.85 -178.73 554.5 6 un 129.46 150.55

1993-11-19 1:43:24 54.29 -164.16 30.3 6.4 Ms 153.07 12.33

1993-12-14 6:31:19 -20.70 -173.45 30.6 6.1 Ms 128.71 157.78

1994-01-10 15:53:50 -13.34 -69.45 596 6.9 un 86.25 256.05

1994-04-10 17:36:57 14.72 -92.00 100.1 6 un 119.05 270.73

1994-06-16 18:41:28 -15.25 -70.29 199.5 6 un 86.08 253.99

1994-08-02 14:17:52 52.43 158.04 144.7 6 Mb 138.57 41.97

1994-08-08 21:08:32 24.72 95.20 121.7 6.1 un 86.86 58.82

1994-10-16 5:10:01 45.75 149.17 116.6 6.8 un 134.10 52.62

1995-02-05 22:51:05 -37.76 178.75 21.1 7.5 Ms 110.37 158.07

1995-05-06 1:59:07 24.99 95.29 117.5 6.4 Mb 87.08 58.64

1995-06-29 7:45:10 48.79 154.45 64.1 6 un 137.27 47.92

1995-08-19 21:43:32 5.14 -75.58 119.6 6.6 Mw 100.33 269.35

1995-09-16 1:03:37 -6.32 155.21 151 6.1 Me 122.26 117.83

1995-10-01 17:06:03 29.31 139.04 430.8 6.1 Mw 124.24 71.86

1995-10-20 19:21:29 18.71 145.54 224.8 6.1 Mw 126.55 86.30

1996-01-17 10:06:47 -4.40 140.07 109.1 6.1 Me 111.07 106.48

1996-02-28 9:44:11 1.76 126.05 115.5 6.4 Me 101.99 93.65

1996-05-03 3:32:47 40.77 109.66 26 6 Mw 105.20 51.08

1996-08-02 12:55:29 -10.77 161.45 33 6.9 Mw 123.91 126.52

1996-09-14 13:10:54 -10.88 165.99 72.7 6.4 Me 126.93 130.44

1996-09-28 14:10:42 10.04 125.37 234.8 6.3 Me 105.19 85.85
210
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1996-12-22 14:53:28 43.21 138.92 226.5 6.5 Me 126.74 55.37

1997-03-26 2:08:57 51.28 179.53 33 6.7 Mw 150.56 33.19

1997-04-12 9:21:56 -28.17 -178.37 183.6 6 Mw 120.14 156.20

1997-09-02 12:13:23 3.85 -75.75 198.7 6.8 Me 99.88 268.11

1997-11-09 22:56:43 13.85 -88.81 176.4 6.5 Me 115.87 271.33

1997-11-28 22:53:42 -13.74 -68.79 586 6.7 Me 85.50 256.01

1997-12-22 2:05:50 -5.50 147.87 179.3 7.2 Me 116.93 112.13

1998-01-10 8:20:06 14.37 -91.47 33 6.6 Mw 118.44 270.61

1998-05-27 20:41:38 52.24 159.53 60.1 6 Mw 139.49 41.86

1998-07-16 11:56:36 -11.04 166.16 110.2 7 Me 126.92 130.72

1998-09-14 23:16:47 51.62 -173.15 33 6.1 Mw 153.26 25.77

1998-10-03 11:15:43 28.51 127.62 226.6 6.2 Me 114.47 69.03

1998-10-08 4:51:43 -16.12 -71.40 136.2 6.1 Mb 86.62 252.71

1998-11-14 15:03:12 -14.95 167.37 115.1 6 Me 124.72 134.91

1998-11-25 18:05:26 -7.86 158.62 47.9 6.2 Me 123.86 121.75

1998-12-14 19:35:27 -15.06 167.31 139.9 6 Mw 124.60 134.95

1998-12-27 0:38:27 -21.63 -176.38 144.3 6.9 Me 126.88 155.07

1999-01-28 8:10:05 52.89 -169.12 67.2 6.6 Me 153.37 19.62

1999-03-08 12:25:49 52.06 159.52 56.6 7 Me 139.55 42.13

1999-04-20 19:04:08 -31.89 -179.04 95.7 6.5 Mw 116.48 157.28

1999-05-10 20:33:02 -5.16 150.88 138 7.1 Me 119.56 113.78

1999-05-18 4:19:53 -5.65 148.53 127.3 6.1 Mw 117.38 112.69

1999-08-28 12:40:06 -1.29 -77.55 196.4 6.3 Me 99.05 262.64

1999-12-07 21:29:49 -15.91 -173.98 137.7 6.4 Me 133.04 154.86

2000-02-26 8:11:48 13.80 144.78 132.2 6.2 Me 123.95 91.34

2000-03-03 22:09:14 -7.32 128.49 141.9 6.4 Me 99.70 102.87

2000-06-07 21:46:56 26.86 97.24 33 6.3 Mw 89.55 58.06

2000-06-14 23:01:15 -17.90 176.21 33 6 Mw 127.15 145.33

2000-08-15 4:30:09 -31.51 179.73 357.7 6.6 Me 116.43 156.05

2000-10-04 14:37:44 11.12 -62.56 110.3 6.2 Me 91.68 280.81

2000-11-13 15:57:22 42.49 144.77 33 6 Me 130.96 56.85

2000-12-20 16:49:43 -9.23 154.35 33 6.6 Mw 119.77 119.80

2000-12-21 2:41:23 -5.35 154.13 386.7 6 Mw 122.03 116.18

2001-01-19 1:12:52 15.40 -92.72 93.2 6 Mw 119.96 271.11

2001-02-26 5:58:22 46.82 144.53 392 6.1 Mw 130.85 51.20

2001-04-28 4:49:53 -18.06 -176.94 351.8 6.9 Mw 129.97 152.62

2001-06-03 2:41:57 -29.67 -178.63 178.1 7.2 Mw 118.67 156.65

2001-08-21 6:52:06 -36.81 -179.58 33 7.1 Mw 111.75 158.95

2001-12-09 18:15:03 0.00 122.87 156.3 6.1 Mw 98.36 93.66

2002-01-16 23:09:52 15.50 -93.13 80.2 6.4 Mw 120.37 271.03

2002-03-19 22:14:15 -6.49 129.90 148.1 6.1 Mw 101.33 102.86
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2002-05-25 5:36:32 53.82 -161.12 33 6.4 Mw 153.90 8.72

2002-08-02 23:11:39 29.28 138.97 426.1 6.3 Mw 124.17 71.87

2002-08-12 2:59:24 -19.51 169.04 112.2 6 Mw 122.08 139.72

2002-09-07 8:14:20 -20.28 -176.04 209.9 6 Mw 128.26 154.76

2002-10-12 20:09:11 -8.30 -71.74 534.3 6.9 Mw 90.61 259.36

2002-10-14 14:12:44 41.17 142.25 61.4 6.1 Mw 128.99 58.30

2002-10-16 10:12:21 51.95 157.32 102.4 6.2 Mw 138.30 42.83

2003-03-11 7:27:33 -4.69 153.24 40.2 6.8 Mw 121.72 114.95

2003-04-27 22:57:45 -8.20 -71.59 559.9 6 Mw 90.53 259.52

2003-06-16 22:08:02 55.49 160.00 174.8 6.9 Mw 138.56 37.08

2003-07-21 13:53:58 -5.48 148.85 189.6 6.4 Mw 117.74 112.74

2003-07-27 6:25:32 47.15 139.25 470.3 6.8 Mw 127.26 50.55

2003-08-21 12:12:50 -45.10 167.14 28 7.2 Mw 99.85 153.86

2003-09-26 20:38:22 41.99 144.58 33 6 Mw 130.79 57.49

2003-09-29 2:36:53 42.45 144.38 25 6.5 Mw 130.67 56.88

2003-10-15 2:19:44 -17.82 -178.70 582.6 6 Mw 129.49 150.57

2003-12-25 14:21:15 -34.95 -178.25 34.6 6 Mw 113.87 159.25

2003-12-29 1:30:55 42.42 144.61 33 6.1 Mw 130.84 56.93

2004-04-14 1:54:09 55.23 162.66 51.3 6.2 Mw 140.04 36.58

2004-07-08 10:30:49 47.20 151.30 128.5 6.4 Mw 135.44 50.51

2004-10-08 8:27:54 -10.95 162.16 36 6.8 Mw 124.28 127.25

2004-11-07 2:02:26 47.95 144.48 474 6.2 Mw 130.79 49.72

2004-11-11 10:02:47 42.14 144.34 32.8 6.1 Mw 130.63 57.27

2004-12-13 15:23:41 13.39 -89.37 62.3 6 Mw 116.17 270.59

2005-02-14 23:38:09 41.73 79.44 22 6.1 Mw 86.76 37.33

2005-03-17 13:37:37 15.14 -91.38 197.4 6.1 Mw 118.67 271.46

2005-09-21 2:25:08 43.89 146.15 103 6.1 Mw 132.00 55.10

2005-12-23 21:47:28 -1.39 -77.52 192.9 6.1 Mw 98.97 262.57

2006-03-05 8:07:57 -20.12 -175.66 205.8 6.1 Mw 128.54 155.09

2006-04-30 8:17:35 -15.10 167.44 127.7 6.1 Mw 124.64 135.09

2006-05-22 13:08:03 54.27 158.45 197 6.2 Mw 138.19 39.24

2006-06-11 20:01:26 33.13 131.15 140 6.3 Mw 118.78 65.33

2006-07-08 20:40:01 51.21 -179.31 22 6.6 Mw 151.12 32.34

2006-09-29 13:08:26 10.88 -61.76 53 6.1 Mw 90.87 280.97

2006-12-12 15:48:03 3.73 124.68 213.5 6.3 Mw 101.71 91.23
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Abstract

Electrical anisotropy in southern Africa, inferred from the analysis of magnetotelluric (MT) data
recorded as part of the Southern African MT Experiment (SAMTEX), is compared with seismic
anisotropy inferred from an SKS shear-wave splitting study in the same region. Given the vastly
varying penetration depths in the survey area, electrical anisotropy is derived in terms of approx-
imate depth, rather than frequency. Electrical anisotropy directions for crustal depths (<35 km)
show more distinct variability than those for upper mantle depths, and, not surprisingly, appear to
be strongly related to large-scale geological structures. Our results for upper lithospheric mantle
depths (>45 km) are not consistent with the fast-axis directions inferred from the SKS analyses.
Upper mantle electrical results appear to be mostly a consequence of the geometry of large-scale
geological structures and provide evidence that some crustal structures are distinct at depth, while
others seem to be confined to the crust. Our results indicate that the causative region for the seis-
mic anisotropy in the lithospheric mantle has either a correspondingly weak electrical anisotropic
signature, or is more prominent at greater lithospheric depths than those we investigate here.

Keywords: Anisotropy; Magnetotellurics; Geoelectric strike; Shear-wave splitting; Southern Africa

Introduction

The Kaapvaal craton in southern Africa is one of the most extensively studied Archean cratons
in the world, largely due to the vast economic resources of the region (principally diamonds and
gold), yet the formation mechanism, structure, and evolution of the craton and its surrounding ter-
ranes have still not been conclusively resolved; basic, fundamental questions remain unanswered.
The Southern African Seismic Experiment (SASE), part of the Kaapvaal Craton Project (Carlson
et al., 1996, 2000), was conducted in southern Africa from 1997 to 1999 (Fig. -1), with the aim
of investigating the seismic structure of the region. Broadband seismic stations were deployed on
the Kaapvaal craton, part of the Zimbabwe craton, and on the surrounding mobile belts, and the
results have been widely reported (Carlson et al., 2000; James et al., 2001; James & Fouch, 2002;
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Figure -1: Southern Africa with the Southern African Seismic Experiment (SASE) station
locations represented by stars and the Southern African Magnetotelluric Experiment (SAM-
TEX) station locations from phases I and II represented as circles. Open circles denote
the SAMTEX profile discussed in this paper. BOT: Botswana. MOZ: Mozambique. NAM:
Namibia. RSA: Republic of South Africa. ZIM: Zimbabwe.

Silver et al., 2001, 2004).

Initiated in 2003, the Southern African Magnetotelluric (MT) Experiment (SAMTEX) is being
conducted by a consortium comprising academic, industry and government partners representing
five countries from around the world (South Africa, Botswana, Namibia, Ireland and the USA).
When completed, it will be the most extensive land-based MT study yet performed, and to date
includes the collection of MT sounding data with broadband (≈0.002 s to ≈6000 s) magnetotelluric
(BBMT) instruments at more than 330 sites (Fig. -1), and long period (20 s to ≈10,000 s) mag-
netotelluric (LMT) instruments at approximately one-third of the BBMT sites to enhance depth
penetration. The total length of the profiles is well over 5000 km, with BBMT stations spaced at
nominally 20 km separation, and LMT stations spaced at 60 km (every third BBMT site), over a
wide variety of geological terranes (Fig. -2).

The survey is being conducted in order to gain insight into the electrical structure of the crust
and lithospheric mantle beneath the cratons of southern Africa, and their surrounding terranes,
and, from that knowledge, to infer Archean and Proterozoic processes of formation and deforma-
tion. Unfortunately, due to logistical and security concerns we have been unable to extend the MT



216

data acquisition into Zimbabwe, as originally planned, for complete comparison with the SASE
results, and have instead expanded the experiment northwest into Namibia and Botswana and to
the southeast of the main acquisition corridor (Fig. -1). As is the experience from other cratonic
studies (e.g., the Slave craton in northern Canada, (Davis et al., 2003), where electromagnetic,
geochemical, and seismic results combined to give new insight into the understanding of the up-
per mantle of the region), it is expected that the combined results of SASE and SAMTEX, taken
together with the superb geochemical and geological information, will complement each other and
add considerably to our inferences of the tectonic history of southern Africa, and thereby to our
understanding of Archean tectonic processes.

Figure -2: Results from the shear-wave splitting measurements (fast polarisation directions)
made by Silver et al. (2001), overlying a tectonic outline. High quality data are plotted in
red, low quality in green, and stations with undetectable splitting in blue. Thabazimbi-
Murchison Lineament (TML), as plotted by Silver et al. (2001), is represented as purple
lines. Blue line: the NS trending ColesburgMagnetic Lineament (CML).

One important component of the SASE data analyses was the shear-wave splitting study con-
ducted by Silver et al. (2001), further discussed by Silver et al. (2004). Derived SKS seismic
anisotropy shows clear differences in splitting parameters over the various cratons and terranes,
and was inferred to result from fossil anisotropy in the lithospheric mantle. In this paper we
present electrical anisotropy results determined for the same region, compare them with the seis-
mic anisotropy results of Silver et al. (2001) and Silver et al. (2004), and consider what further
insights may be obtained using this facet of the MT method.
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Geological setting

The Archean Kaapvaal craton as a whole is composed of various granite-greenstone terrains, and
is bounded to the south and west by Proterozoic mobile belts (Namaqua-Natal mobile belt and
the Kheis belt), to the east by the Lebombo monocline (Jurassic in age), and to the north by the
Neoarchean Limpopo mobile belt (de Wit et al., 1992). At its surface, the Kaapvaal craton can
be divided into Archean subdomains (de Wit et al., 1992), and it has been suggested that some
of these subdomains are also distinct at upper mantle depths within the deep lithospheric keel,
or tectosphere (Jordan, 1975), typically found beneath Archean cratons. In the SASE data the
Kaapvaal cratonic keel is in the form of a high velocity mantle zone observed by James et al. (2001)
through tomographic analyses of P-wave and S-wave delay times. The eastern part of the craton is
host to the oldest known sections (≈3.5 Gyr), some of which may represent the remnants of ancient
oceanic lithosphere, whereas the more western sections of the craton are generally younger in age
(de Wit et al., 1992). In contrast to the general ENE-WSW trend in the east of the craton, the
western section of the Kaapvaal craton, to the west of the Colesburg Magnetic lineament (CML,
Fig. -2) shows a distinctively NS trend both geologically and geophysically, e.g., the Amalia and
Kraaipan greenstone belts as well as the CML itself (Corner et al., 1990; de Wit et al., 1992).

The Limpopo belt (late Archean in age), separates the Kaapvaal and Zimbabwe cratons (Fig.
-2), and can be divided into three different zones; the northern marginal zone, central zone, and
southern marginal zone (de Wit et al., 1992). There is a large system of roughly ENE-WSW
trending ductile shear zones that accommodated crustal shortening during the Limpopo Orogeny
(McCourt & Vearncombe, 1992). The Thabazimbi-Murchison Lineament (TML, Figs. -2, -6 and
-7), a deformation belt with a long-lived tectonic history, is one such feature roughly 25 km wide
that stretches for approximately 500 km across the Kaapvaal craton (Good & DeWit, 1997). The
TML appears to be an important controlling structure for the SKS shear-wave splitting results and,
to a lesser degree, for the MT results.

Seismic anisotropy (shear-wave splitting)

The following is intended as a brief description of shear-wave splitting; for more complete reviews of
the methodology see Silver (1996) and Savage (1999). A seismic shear wave that passes through a
seismically anisotropic medium is split into different polarization directions that have differing prop-
agation velocities. The so-called SKS shear-wave splitting studies utilise nearvertical wave paths
of seismic energy from teleseismic events that pass through the core, and they provide us with a
means of indirectly measuring the deformation in the crust and mantle. The method has been used
in many studies worldwide, particularly since the early 1990s (see review by Savage (1999)). In
shear-wave splitting studies the measured splitting parameters are the fast polarisation direction
(φS) indicating the orientation of deformation, and the delay time (δt) between the perpendicularly
polarised fast and slow arrivals, indicating the magnitude of deformation in the horizontal plane
(Silver, 1996). This method provides good lateral resolution, but has no intrinsic vertical resolution
– the anisotropy could reside anywhere on the path from the core-mantle boundary to the surface.

Seismic anisotropy in the upper mantle is predominantly interpreted to arise from the preferred
orientationof anisotropic crystals as result of mantle deformation caused by past and present ge-
ological processes (Silver, 1996). Olivine, being the most abundant phase in the upper mantle, is
an anisotropic crystal whose orientation is strain dependent, known as lattice preferred orientation
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(LPO), and is expected therefore to reflect these deformational processes. Vinnik et al. (1992) cor-
relate absolute plate velocity directions with the fast direction of seismic anisotropy in the upper
mantle, and suggest that the dominant cause of the observed SKS anisotropy is due to recent and
present-day flow in the mantle, though this hypothesis does not always appear to be consistent
with observations (e.g., Silver et al., 2001). The diametrically opposed counter-hypothesis is that
of Silver & Chan (1988) and Silver & Chan (1991), who suggest that SKS anisotropy is dominantly
a response to fossil, or frozen in, crystal alignment created at the time of primary lithospheric
formation. There are further complexities to these arguments that have been explored in more
recent work (e.g., Jung & Karato, 2001; Holtzman et al., 2003) and suggest that the alignment
depends significantly on the region being studied. Jung & Karato (2001) show that the addition
of large amounts of water to olivine (e.g. in subduction zones) can change the relation between
flow geometry and seismic anisotropy. Additionally, Holtzman et al. (2003) demonstrate that the
presence of melt weakens the alignment of the olivine fast axis (also know as the a axis, or [1 0
0] axis), and where the melt segregates to form networks of shear zones it may even cause the
alignment to be at 90° to the shear direction. Neither of these mechanisms, however, is expected
to be operative in Archean or Proterozoic aged lithosphere.

Silver et al. (2001) inferred single-layer seismic anisotropy from shear-wave splitting at 79 sites
in southern Africa of the SASE deployment. They divided the results from the analyses into three
categories: well constrained stations that showed resolvable splitting, stations that did not exhibit
detectable splitting, and stations that were poorly constrained (Fig. -2). Overall, where splitting
was observed, delay-times are small (typically 0.6 s) compared to world averages (1-2 s). Silver et
al. (2001, 2004) showed that the absolute plate motion (APM) of southern Africa does not explain
the polarization directions (φ) that are derived, contrary to the Vinnik et al. (1992) hypothesis,
but rather that the orientation direction of the anisotropy (fast polarisation direction) is more
closely aligned with the strike of known Archean aged deformational structures of the Kaapvaal
craton. The depth of the anisotropic region was concluded to be confined to the lithospheric man-
tle, with (a) the lack of correlation of the anisotropy directions with APM models resulting in the
asthenosphere being excluded as a causative region and with (b) conversions at the crust-mantle
boundary being exploited to exclude crustal effects. There appears to be strong differences in both
the splitting parameters between early and late Archean regions of the craton, as well as between
on and off craton regions. These results provide support for the hypothesis that mantle deformation
is preserved from events as far back as the age of the Earth’s earliest continental cratonic fragments.

Electrical anisotropy

Gaining an understanding of the geoelectric dimensionality and directionality in a dataset is the
first step in the analysis of MT data, and enhances our understanding of the electrical anisotropy,
in the broadest sense of the term including micro and macro anisotropy as well as lateral hetero-
geneity, of the survey region. In a similar manner to the SKS approach, electrical anisotropy is
represented by the direction of maximum conductivity (φE), which is either parallel or perpendic-
ular to the regional strike direction (see below for discussion). The processed MT responses are in
the form of a frequency-dependent 2×2 complex impedance tensor, the elements of which can be
transformed into magnitudes, scaled as apparent resistivities, and phases. In most situations, the
most important tensor elements are the off-diagonal ones which relate the horizontal magnetic field
components to their perpendicular electric field components. For a one-dimensional (1-D) Earth,
the diagonal terms are zero and the off-diagonal terms are equal to each other (except for a sign
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difference). For a two-dimensional (2-D) Earth, in strike coordinates the diagonal terms are zero
and the off-diagonal terms are different from each other. When the impedance tensor cannot be
validly described by either of these, then the Earth is three-dimensional (3-D), or is 1-D or 2-D
but with galvanic distortion effects (see below). In addition to a magnitude relationship, akin to
apparent resistivity in DC methods, we derive the phase of an impedance tensor element, which is
the phase lead of the electric field over the magnetic field. In 2-D when in strike coordinates, where
the phase difference (δθ) between the two off-diagonal elements of the impedance tensor is small
it implies there is little lateral heterogeneity in the subsurface, i.e., almost 1-D, compared with a
larger phase difference, which is indicative of 2-D or 3-D regional structures.

In MT soundings local, small-scale conductivity heterogeneities cause distortions of primarily
the electric field, and deform the response produced by the underlying, regional geoelectric struc-
tures. In the ideal, distortion-free 2-D case the diagonal elements of the impedance tensor would
be zero when rotated to the appropriate strike direction; though with experimental data, this is
rarely, if ever, the case. The distortions can be practically (though not entirely separately) viewed
as inductive and galvanic effects. The inductive effect is a result of the time-varying magnetic field
that induces currents, which, if flowing in closed loops, will in turn result in a secondary magnetic
field that adds to the primary magnetic field (Jones, 1988; Jiracek, 1990). Where there are local
conductivity heterogeneities in the subsurface, flux through the boundaries of these heterogeneities
by the regional current results in the build-up of charge at these boundaries (Price, 1973; Jones,
1983a) as a consequence of Ohm’s Law. These charges create a secondary electric field that distorts
the regional current flow in that area. Where the distorting inhomogeneity is small relative to the
scale size of the experiment, this effect is known as galvanic distortion. Such distortion may also be
caused by topography near the measurement location (Jiracek, 1990). Galvanic distortion effects
persist to the longest periods, whereas the effect of near-surface inductive distortions decreases in
proportion to the regional inductive response with increasing period (Jones & Groom, 1993; Chave
& Smith, 1994; Chave & Jones, 1997; Smith, 1997; Agarwal & Weaver, 2000). At sufficiently long
periods, where “sufficient” is defined by the inductive scale length of the distorting structures, ex-
cept for unusual cases of intense distortion to the regional current density, the horizontal magnetic
field components are largely unaffected (Groom & Bailey, 1989; Chave & Jones, 1997; Caldwell
et al., 2004), and the distortion effect is almost entirely limited to the electric field.

There are a number of methods that are used for galvanic distortion analysis of MT data; ac-
cordingly there are also a number of reviews on the subject of how to address the problem (e.g.,
Jiracek, 1990; Groom & Bahr, 1992; Groom et al., 1993; McNeice & Jones, 2001). Two of the
more commonly used methods are Bahr (1988), and Groom & Bailey (1989), both of which are 2-D
extensions of the 1-D approach of Larsen (1977). Richards et al. (1982) were the first to propose
this approach for handling galvanic distortions of the electric field from 2-D regional structures.
Unfortunately, their paper is rather inaccessible, with the result that those authors have not re-
ceived the recognition due for their insight.

Both the Bahr and Groom-Bailey (GB) methods recover parameters from the magnetotelluric
impedance tensor, and assume that the regional conductivity structure that we are attempting to
resolve is either 1-D or 2-D, but not 3-D. Utada & Munekane (2000) and Garcia & Jones (2001)
considered 3-D galvanic distortion of EM fields from 3-D regional structures, and proposed meth-
ods for its examination, but application of these approaches is not yet routine. The parameters
that are obtained from the GB approach (the so-called twist, shear, and anisotropy tensors) are a
consequence of a matrix factorisation of the distortion tensor and partially describe the effects of
distortion. The GB approach has the distinct advantage over Bahr’s parameterisation, and that of
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Smith (1995), Smith (1997), and earlier factorizations (Eggers, 1982; Spitz, 1985; LaTorraca et al.,
1986), in that the parameterisation is in terms of determinable and indeterminable parts, rather
than a complex (and, for some factorisations, unknown) mix of the two. In our analysis we use the
extended GB approach of McNeice & Jones (2001), where a minimum is sought in order to find
the appropriate regional geoelectric strike direction and telluric distortion parameters for a range
of frequencies at each site.

Phase tensor analysis is another, more recently developed, method of determining the dimen-
sionality of the subsurface conductivity distribution (Caldwell et al., 2004). The phase relationships
that are contained in the impedance tensor are shown by Caldwell et al. (2004) to be a second-rank
tensor. This second-rank phase tensor, contained within the impedance tensor, is nonsymmetric in
the 3-D case and has a third coordinate invariant, which is a distortion-free measure of asymmetry
found in the regional magnetotelluric response. We have used this method in order to compare
with the results obtained through the GB approach.

There are a number of suggested causes for electrical anisotropy that gives rise to the regionally
observed effect; however, as yet there is little consensus on the causative phenomenon. Hydrogen
diffusion has been proposed as a mechanism for reducing electrical resistivity of mantle materials
(Karato, 1990; Hirth et al., 2000), and recent laboratory studies are showing that minor (a few
hundred ppm) amounts ofwater are sufficient to raise the electrical conductivity of olivine by sev-
eral orders of magnitude (Poe et al., 2005). Anisotropic hydrogen diffusivity in olivine crystals (the
most abundant mineral in the upper mantle) has been suggested as an explanation for electrical
anisotropy, with the [100] axis of the olivine crystal having the highest rate of diffusion, therefore
being the more conductive (Schock et al., 1989; Mackwell & Kohlstedt, 1990); however, this effect
is thought to account for only about a third of the average measured values at most (Simpson &
Tommasi, 2005). This indicates that there must be other factors, larger in magnitude of effect
compared with the olivine crystal scale, which contribute to the overall electrical conductivity that
we are observing. One such possibility would be interconnectivity of a conductive mineral phase
(e.g., graphite) along grain boundaries, and therefore along foliations and lineations, referred to as
shape-preferred orientation (Mareschal et al., 1995); see Jones (1992), for a more complete discus-
sion in this regard]. Saline fluid-filled cracks are another possibility that has been suggested and is
one that would likely affect both seismic and electrical anisotropy; however, this would most likely
be a mechanism valid only in the crust.

It must be noted that from MT data alone it is virtually impossible to discriminate between
the response to a 2-D structure (heterogeneity), such as a fault in the lower crust, and the response
due to 2-D anisotropy that is of a scale not resolvable by the technique. The difference between the
two can however be observed in the response of the vertical magnetic field (Cull, 1985; Mareschal
et al., 1995; Jones, 1999). More detailed discussions on the topic of heterogeneity versus anisotropy
and some of the problems that anisotropy poses are described by Heise & Pous (2001) and in the
recent review by Wannamaker (2005).

The symbiotic relationship

One of the most problematic areas for seismic SKS analysis is vertical resolution, caused by the
use of seismic waves with near-vertical ray paths and long wavelengths for analysis. The advan-
tage of using such ray paths is that, depending on the quantity and quality of the data that are
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collected, horizontal resolution within the lithosphere can be exceptionally good (<50 km, (Savage,
1999)). However, without additional information vertical resolution is extremely poor. Conversely,
the magnetotelluric (MT) method has intrinsic vertical dependency due to the skin depth phe-
nomenon, which assures penetration at any depth depending on the period and resistivity (ρ) of
the subsurface. In theory, to penetrate deeper into the Earth, all one needs to do is to measure
at sufficiently longer periods, although at great depths source field geometry needs to be taken
into account (e.g., Jones & Spratt, 2002), and the exponential sensitivity of impedance skin depth
results in a decrease in resolution with depth, thereby also causing a loss of vertical resolution with
depth.

Although these two methods, SKS shear-wave splitting and MT, do not measure the same phys-
ical properties, in certain cases it may be the case that they are essentially measuring a different
response of the same causative effect. As an example of this, Ji et al. (1996) noted a directional
obliquity between MT and seismic anisotropy results, and suggested that the cause for this was
the differing directions of lattice-preferred (LPO) and shape-preferred (SPO) orientations of mantle
minerals. They used this obliquity result to suggest that a combination of both MT and SKS results
could be employed to determine the sense of movement of transcurrent ductile shear zones in the
upper mantle. They concluded that although the direct cause of the anisotropy was different for
the two methods, they were a result of the same tectonic feature. Following up on this hypothesis,
Eaton et al. (2004) conducted an experiment across a highly sheared region, the Great Slave Lake
shear zone of northern Canada. They correlated MT anisotropy with seismic (SKS and SKKS)
anisotropy to constrain the depth location of the seismic anisotropy using approximately collocated
teleseismic and magnetotelluric observations. They noted that in their study region there was no
systematic obliquity observed between the MT and seismic results, but suggested that this may be
because of the intense deformation of the Great Slave Lake shear zone resulting in parallel axes for
the C (shear band) and S (foliation fabric) strain ellipses.

Another recent MT/SKS comparison study by Padilha et al. (2006) has shown that in parts
of the survey area (central south-eastern Brazil) where there is significant electrical anisotropy, a
close correlation of shear-wave splitting results and MT strike results can be made, also without
any systematic obliquity. They deduce from their study that lithospheric and sublithospheric defor-
mation is vertically coherent with the surface tectonic trends in this region, which requires strong
crust-mantle coupling across the Moho and is indicative of the lack of a lower crustal rheologically
weak layer. From these studies it is clear that MT is indeed an exquisitely complementary method
to seismic methods for mantle imaging (Jones, 1999); however, the use of both methods together
for combined interpretations is still in its infancy, and certainly the implications of the correlations
are immature.

There are a number of suggested causes for electrical and seismic anisotropy, some of which have
been discussed earlier. The explanation most readily used for upper mantle seismic anisotropy is
strain-induced LPO of olivine crystals (see reviews by Silver (1996), and Savage (1999), and ref-
erences therein). In the lower crust, aligned saline fluid-filled cracks may account for anisotropy,
and would affect both seismic and electrical results, but this does not readily explain observations
of lithospheric mantle anisotropy. There does not appear to be a general consensus on the causes
of electrical anisotropy, largely because there are insufficient observations, and those made to date
are highly area dependent implying a combination of causes. For example, in a highly ordered
upper mantle it is possible that anisotropic hydrogen diffusivity is a contributing factor, but this is
unlikely to be either the dominant factor or the sole cause. Even when present it likely will result
in an electrical anisotropy factor no greater than about 3–4. Thus, to aid us in the meaningful
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interpretation of seismic and MT observations of anisotropy we must rely heavily on geological
knowledge, such as geochemical and petrological results.

MT data analysis

Data from the main SAMTEX Kaapvaal craton profile, from Southerland in the southwest of South
Africa to Messina at the South Africa-Zimbabwe border (Fig. -1), have been analysed for anisotropy
using the McNeice & Jones (2001) distortion decomposition code, and the results compared with
applying phase tensor analysis (Caldwell et al., 2004). This survey line, the first to be undertaken
in the SAMTEX program, is almost 1500 km in length and extends over important and diverse
geological terranes, including the Kaapvaal craton (mainly the western section), the Limpopo belt,
and the Namaqua-Natal mobile belt. As could be expected due to the length of the survey, data
quality is variable, with the southwest of the line producing the highest quality responses, while
sites near Kimberley were the lowest quality, being seriously affected by DC train noise.

Due to the large scale of the survey it is necessary to consider that penetration over the var-
ious regions will differ significantly; for example depth penetration at long periods on the Karoo
Basin and on the Bushveld Complex is highly attenuated due to their high upper crustal conduc-
tivity compared with other regions. In order to gain a quantitative understanding of this issue,
we estimated the frequency for penetration to given depths using Niblett-Bostick (Niblett & Sayn-
Wittgenstein, 1960; Bostick, 1977; Jones, 1983b) depth estimates (Fig. -3) and inductive response
functions, also known as C response functions (Schmucker, 1970; Jones, 1980). The real part of
the C response function, related to MT impedance by a factor of 1/ωµ, was shown to be the depth
of maximum eddy current flow by Weidelt (1972), and is a measure of the depth of investigation.
Three-dimensional structures that may influence the C responses are assumed to be sufficiently
long at the depth of investigation such that they may be interpreted as being 2-D; additionally the
decomposition analysis determines whether a 2-D assumption is valid. The penetration informa-
tion in Fig. -3 was calculated using Niblett-Bostick estimates (which are almost identical to the
C response function estimates) on distortion-removed data in order to minimize the influence of
distortion on the calculations. Static shift effects are not corrected by distortion analysis and can
influence depth estimates by the square root of their value (e.g., Jones, 1988), definitely not as
severe as on apparent resistivity data. Notwithstanding the possible presence of static shift effects,
there are clearly regional trends visible in the data. Note the significance of this figure (Fig. -3);
electromagnetic waves penetrating to 35 km in the crust are at periods of 1000 s or greater at the
southern (stations 1–30 on the Karoo Basin) and north-central (stations 46–56 on the conductive
Bushveld Igneous Complex) sites, at periods of 2 s or less in the centre (stations 30–45 in the centre
of the Kaapvaal craton) of the profile, and at periods of 30 s or less at the northern end of the
profile (stations 57–75, NE Kaapvaal craton and Limpopo mobile belt). Clearly, a map of geoelec-
tric strikes from these stations at one particular period would be meaningless, as depth penetration
varies significantly along the profile. The effect is a direct consequence of the large variation of
the parameter that EM studies are sensing, namely electrical resistivity, which ranges over many
orders of magnitude (see, e.g. Jones, 1992), and contrasts sharply with the small (less than 10%)
variations in seismic parameters. From these results it is clear that either the line must be split
into sections and analysed separately, or the data must be analysed for given depths, as opposed
to given frequencies, in order to make interpretation of any resulting strike map meaningful. Jones
(2006) raises this caution and shows examples from three other regions of the world where one must
give consideration to penetration depth.
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Figure -3: The corresponding period (averaged between the two modes) for depths of 35
km and 45 km determined using Niblett-Bostick depth estimation on distortion-removed
data. This gives an indication of the variation in penetration depth along the profile. Note
the sudden drop in penetration around station 48 as we move onto the very conductive
Bushveld Igneous Complex (BIC). The period decade between the two solid lines indicates
the frequencies used to estimate the strike directions for crustal depths, while the period
decade between the two dashed lines indicates the frequencies used to estimate the strike
directions for upper mantle depths.

Crustal thickness, as defined by the seismic results (Nguuri et al., 2001; Stankiewicz et al., 2002;
James et al., 2003), varies from ≈35–40 km below the craton, to ≈45–50 km below the Proterozoic
regions where the Moho is also more complex. In order to gain strike directions representative of
the crust and upper mantle, while avoiding complex structures at the crust-mantle boundary, we
selected a one-decade wide period band for the crust (between the two solid lines on Fig. -3) and
the upper mantle (between the two dashed lines on Fig. -3). One decade wide bands were selected
so as not to bias any one site with more or less data than another. These sites were then each
analysed twice (separately for each frequency band) using the single site GB approach (Groom &
Bailey, 1989) for a range of frequencies, as implemented by McNeice & Jones (2001), in order to
determine two regional geoelectric strike estimates for each site, one representative of the crust and
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Figure -4: Histograms displaying results from Groom-Bailey (GB) decomposition analyses.
Displayed are: (a, b) the average RMS values, (c, d) the average (positive or negative) twist
(in degrees), and (e, f) the average (positive or negative) shear (in degrees), for all the sites.
Histograms for the crustal band are on the left (a, c, e), and for the upper mantle band on
the right (b, d, f).
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one representative of the upper mantle. Data were analysed with an assumed error floor of 2° for
the phase and equivalent 7% for apparent resistivity. The average calculated RMS values from the
unconstrained, one-decade wide GB decomposition for most sites were in the range between one
and three for both the crustal and upper mantle analyses. The average twist values were mostly
within the range ±30°, and the shear values were generally slightly higher falling within the range
±40°. Both the twist and shear values were slightly higher at the longer periods (upper mantle
band), where the signal to noise ratios are worse. The average RMS, twist, and shear results for all
the sites, are displayed in Fig. -4 (crustal results on the left and mantle results on the right), which
shows that the majority of the data have reasonably low distortion values compared to what can
often be observed on shield regions e.g., Fennoscandian Shield (Lahti et al., 2005). For these data,
the direction chosen to display as geoelectric ”strike” was taken as the more conductive direction of
the two. This direction was reasonably consistent with that found using the phase tensor approach
(Caldwell et al., 2004), as is to be expected for high-quality, low noise, lowdistortion data. The GB
approach proves itself superior in the presence of higher noise and/or higher distortion (e.g., Jones
& Groom, 1993; McNeice & Jones, 2001).

However, the more conductive direction is not necessarily the strike direction of 2-D struc-
tures. Consider the TE and TM apparent resistivity curves for a simple two quarter-space fault
model (e.g., d’Erceville & Kunetz, 1962; Weaver, 1963; Price, 1973), schematically drawn in Fig.
-5. On the resistive side of the fault the TE mode apparent resistivity is the more conductive
(lower resistivity), so its direction is taken, which is correctly the strike direction of the fault as
the TE electric field is parallel to strike. Conversely, on the conductive side of the fault (shaded
side in Fig. -5), the TM mode apparent resistivity is the more conductive, so its direction is
taken, which is perpendicular to strike. Herein we are concerned only with the more conductive
direction and its correlation with the faster shear velocity direction. It is important to appreciate
that we are not using these conducting directions to define geological strike for a 2-D interpretation.

The geoelectric strike directions for the crust (<35 km) and upper lithospheric mantle (>45
km) are shown as red lines in Figs. -6 and -7, respectively, together with the terrane subdivision of
southern Africa from potential field data. The lines are scaled by the maximum phase difference in
the frequency band analysed, as a proxy for the amplitude of anisotropy. Some sites were omitted
from the plot if either there were no data at sufficiently long periods, or if the data at the periods
analysed were very poor (high noise content or large error bars). The geoelectric upper mantle
strike results (Fig. -7) fall within the probable causative region of the seismic anisotropy, which
was confined through inferences of the seismic results. On Fig. -7 are also plotted the seismic
anisotropy results of Silver et al. (2001) for comparison.

Discussion

Bearing in mind the physics of the model described in Fig. -5, the crustal MT results (Fig. -6)
display some interesting and satisfying, though obviously complex, features. The more conductive
directions at the southwestern craton boundary are parallel to the boundary on the Namaqua-Natal
mobile belt (NN), but upon moving onto the craton the directions change abruptly to be nearly
perpendicular to the NN. This behaviour is consistent with Fig. -5, implying that the Kaapvaal
craton crust is more conducting than the Namaqua-Natal crust, and is what we would expect if
large-scale 2-D geologic features were responsible for the electrical structure. Similar orthogonal
relationship patterns can be observed at the Colesburg Magnetic Lineament (CML, blue line on Fig.
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Figure -5: Schematic diagram portraying the MT response at one frequency to the two
quarter-space fault model with the more conductive side shaded grey. The variations of the
TE and TM modes across the fault for a given frequency are shown. On the more conductive
side of the fault, the TM mode apparent resistivity is the more conductive, whereas on the
resistive side of the fault the TE mode apparent resistivity is the more conductive. This
results in the more conductive directions being parallel to the geological strike on one side
of the fault (the resistive side), and perpendicular on the other (the conductive side).

-6), the Thabazimbi-Murchison Lineament (TML, purple line on Fig. -6), as well as at the Kaapvaal
craton-Limpopo belt boundary. The results to the immediate SW of the TML are complex, and
are probably a result of the influence of the conductive Bushveld Igneous Complex (BIC). At first
glance, the result from the site on the end of the profile in the SW seems anomalous; however, it
may be that this site is being affected by a response from the Cape Fold belt (CFB), although no
data were collected further towards and onto the CFB to confirm this.

The upper mantle MT results (Fig. -7, red lines) do not correlate well with those from shear-
wave splitting (Fig. -7, green lines). The close azimuthal correlations between geoelectric strike
and seismic fast-axis directions noted by other authors (e.g., Eaton et al., 2004; Padilha et al.,
2006) are not observed in our data, nor do we see a constant obliquity between the two results,
as observed by Ji et al. (1996). A few sites, particularly those around the TML and to the SW of
the profile, do show distinctly similar directions to the seismic results; however, overall the results
are far too inconsistent to draw any reliable conclusions about their correlation. The same effect of
Fig. -5, although not as clear as in the crustal results, can be observed at the craton boundaries,
indicating that these features are distinct at upper mantle depths and that there is probably strong
coupling between the crust and upper mantle. Results near the TML do not show the same effect,
suggesting that this feature is confined to the crust. A similar argument could be applied for the
CML, although the results in this region are confusing and seem to lack any discernible order. Un-
fortunately the site furthest to the SW that seemed to respond to the CFB in the crustal analysis
did not have data at sufficiently long periods to probe upper mantle depths and consequently we
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Figure -6: Electrically more conductive directions (in red), scaled by maximum phase
difference, for the crust. ZC: Zimbabwe craton. KC: Kaapvaal craton. LB: Limpopo belt.
NN: Namaqua-Natal mobile belt. CFB: Cape Fold belt. KB: Kheis and Proterozoic fold and
thrust belt. Purple lines: the E-W trending Thabazimbi-Murchison Lineament (TML), as
plotted by Silver et al. (2001). Blue line: the N-S trending Colesburg Magnetic Lineament
(CML).

can make no further judgement on this. A noteworthy feature is the N-S geoelectric directions for
the northeast-most stations. There is no correlation between these sites and the surface geological
trends of the Limpopo belt, nor the surrounding seismic fast-axis directions. However, to the north
the seismic fast-axis directions do follow the same N-S trend. This effect was attributed by Silver
et al. (2001) to the Great Dyke of Zimbabwe, which has a general N-S trend across the country.
Is it possible the electrical response to this massive feature is sensed at further distances than the
seismic response? An answer to this question can only come through future MT measurements in
Zimbabwe.

Our crustal geoelectric strike results are clearly a result of large-scale geological structures.
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Figure -7: Electrical more conductive directions (in red), scaled by maximum phase dif-
ference, for the lithospheric upper mantle, and the shear-wave splitting results (both high
and low quality results plotted in green, but sites with no detectable splitting omitted). ZC:
Zimbabwe craton. KC: Kaapvaal craton. LB: Limpopo belt. NN: Namaqua-Natal mobile
belt. CFB: Cape Fold belt. KB: Kheis and Proterozoic fold and thrust belt. Blue line:
the N-S trending ColesburgMagnetic Lineament (CML). Purple lines: the E-W trending
Thabazimbi-Murchison Lineament (TML), as plotted by Silver et al. (2001).

The upper mantle MT anisotropy direction results show little correlation with the seismic SKS
anisotropy results. We observe rather large phase differences, of the order of 20° or more, that are
difficult to achieve with the low order of anisotropy expected from hydrogen diffusion in aligned
olivine grains.Were these large phase differences caused by the response to an interconnecting con-
ductive mineral phase along lineation or foliation planes, we would expect the results to correlate
better with the seismic results, if not exactly, then with a constant obliquity such as observed by Ji
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et al. (1996). Following this reasoning, there are a fewpossible explanations for the upper mantle
MT results we observe: either the effect of the large-scale 2-D geological structure is ”hiding” the
lesser magnitude effect due to preferentially aligned crystals or an interconnecting mineral phase;
perhaps there is no corresponding electrical response to the cause of the seismic shear-wave splitting
results; or the causative layer of the seismic response could reside deeper in the lithosphere, beyond
the depths that we are sensing.

Our MT profile is located mainly across the younger western section of the Kaapvaal craton,
and thus at this stage we are unable to draw any conclusions as to whether we see similar variations
in on-craton geological regions to those observed by the shear-wave splitting results. The phase
differences do not appear to show any correlation between the different geological regions, though
trends are expected to appear when the newer SAMTEX data, continuing into other regions of the
craton and into more of the surrounding geological provinces, have been analysed. Analyses of data
from the surrounding areas are bound to yield some interesting outcomes that will be integrated
with the Kaapvaal Craton Project.

Conclusions

Our crustal electrical anisotropy results are quite instructive, and rather satisfying. They appear
to be strongly related to large-scale geological structures both at craton and surrounding terrane
boundaries as well as within the craton itself. Some of these features such as the TML are confined
to the crust, while others such as the craton boundaries are distinct at upper mantle depths.

The electrical results for the upper lithospheric mantle do not appear to correlate well with
the shear-wave splitting results for the same region. Thus, if aligned olivine is the cause of the
observed seismic anisotropy, it is not the cause of the observed electrical anisotropy. We conclude
that the cause of the electrical response at these depths is dominantly as a result of large-scale
geological structures, although there may be contributions smaller in magnitude from preferential
crystal alignment or interconnecting mineral phases.
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