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Summary

This thesis falls into two separate parts that, although mathematically related, deal
with very different problems in geophysical surveys. The first part is concerned
with improving the quality of magnetotelluric sounding curves that are affected
by high-amplitude, non-stationary noise from electric cow-fences. We present a
number of different methods that have been proposed in the literature and that
we have developed and the ability of both to deal with this difficult task. We
find that LMS-adaptive filters have a low computational complexity and produce
results that, at least for one polarization, have the properties of a regular sounding
curve. For the other polarization, however, we do not achieve any improvement
with any of the methods.

In the second, and main, part of the thesis we present a joint inversion algo-
rithm for long-period magnetotelluric and receiver function data. Our inversion
approach is based on a genetic algorithm for two reasons: The stochastic nature of
the genetic algorithm avoids premature convergence to a local minimum, and from
the inversion we obtain the trade-off curve that displays the extent to which the
objective functions compete with each other. Our tests with synthetic datasets
show that the structure of the trade-off curve can be used to assess the compat-
ibility of the seismic and electric parts of the joint model. We explore different
types of regularization and outline strategies to find a representative model of the
subsurface. Finally, we apply our joint inversion algorithm to data from the Slave
craton, where previous studies have postulated a correlation between seismic con-
versions and the location of a conductor in the upper mantle. Our joint inversion
results indicate that we can model this upper-mantle structure as a correlated
seismic and electric feature and that we obtain improved results for other more
minor structures.



The equation a™+b™ = c" has solutions in positive integers a,b,c
and n only whenn = 2 (and then there are infinitely many triplets
a,b,c which satisfy the equation); but there are no solutions for
n > 2. I have discovered a truly marvelous proof of this statement,
which, unfortunately, this margin is too small to contain.

P. de Fermat

Introduction

Even with the great improvement of data quality and inversion methods in the last
20 years, the resolution of geophysical data due to noise and finite sampling limits
the level of detail at which we can image the subsurface of the Earth. Currently
there are two popular approaches to improve our understanding of the Earth's
crust and mantle. The first possibility is to increase the amount of measured data
of a certain type, both in terms of covered area and site spacing, and model these
data with three-dimensional codes. With this approach we can make sure that we
get the maximum amount of information from the data, and avoid artifacts from
spatial aliasing or simplifying assumptions. However, this does not circumvent
the fundamental resolution of the chosen method. The alternative approach is
to combine different datasets in the inversion process and create a joint model.
With a well-chosen combination of datasets we can hope to benefit from different
sensitivities of each set to improve the resulting model beyond a simple superpo-
sition of the individual models [h&mﬁ_and_.h]_p_ﬂ, h&’ﬂ] One example of such an
approach is the joint inversion of surface waves and receiver functions ,

|. Surface waves are sensitive to bulk seismic velocity, but do not have good
sensitivity to the position of interfaces. Receiver functions, in contrast, primar-
ily sense seismic interfaces, but only sense velocities to a smaller degree. In this
example both datasets were sensitive to the same parameters, but we can even
go a step further and combine datasets that are sensitive to different parameters
[Meju et all, 2003, Linde et all, 2006, Dal Moro and Pipar, 2007], and this is what
we are attempting by combining magnetotelluric (MT) and receiver function (RF)
data.
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At first the benefit of such an approach might not be clear. Magnetotelluric
data senses the distribution of electrical conductivity, while receiver function data
senses abrupt changes in seismic velocity. In the Earth’s crust and mantle changes
in these two parameters do not necessarily have to be spatially correlated. In fact
a lot of the conductive anomalies, the main targets of MT surveys, are attributed
to minor constituents of the rock matrix such as graphite, sulfide, or fluids, which
we cannot expect to detect with seismic methods ['JQD_Q‘J, , Llj_ei_a]_], hm,
|B.ahr_e.La.].], |21)Dj] On the other hand there are a number of physical parameters
that affect both electrical conductivity and seismic velocity, such as tempera-
ture and rock composition. Furthermore we can expect that at major lithological
boundaries both parameters change, and even where we have an electrical anomaly
that is caused by graphite, for example, we would think that the extent of this
graphitic body is determined by tectonic processes that, in turn, also govern the
seismic structure of that area. Finally there have been observations of coincident
changes in seismic velocity and electrical conductivity in the mantle below the
Slave craton ﬂ&n.;uieLe_La]J, |ZQQ_4|] and this will also be the area where we apply
our joint inversion approach. Furthermore the absence of correlation can also

provide valuable information ﬂQogLan_d_]_cme.s], |1_9_9ﬂ, llqne.d, |199_d]

For these reasons we can expect some structural relationship between the seis-
mic and electric parts of our joint model, but we have to allow for structures that
are only present in one model. We will pursue this issue further when we discuss
the coupling of the individual models. Also we have to be prepared to find two
fundamentally different structures for the seismic and electrical models, in case
our parametrisation does not permit sufficient flexibility to jointly model both
datasets. This is one of the motivations for our genetic algorithm approach and
we will discuss this issue in detail in our synthetic test examples. Once we have
identified common interfaces and interfaces where the models do not allow coinci-
dent changes, we can use this additional information to characterise the structure
of the Earth and obtain insight into the geological processes that formed these
structures. Here our focus is on the methodology, though, and we will not discuss
the implications of our results.

Although the focus of this thesis is on “Joint inversion of magnetotelluric and
receiver function data”, a considerable fraction of the presentation and the work
we performed during the last three years is devoted to noise removal and signal
processing of magnetotelluric time-series. The reason for this dichotomy lies in
the poor quality of the data that we recorded at the beginning of this project in
Ireland. The original idea of the magnetotelluric component of the Irish Litho-
spheric Experiment (ISLE) [Landes et all, 2004], from here on called ISLE-MT,
was to augment each ISLE seismic station with an MT site, and therefore cre-
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ate ideal conditions for the joint inversion experiment. It quickly became clear
that at virtually all sites the high frequency part of the magnetotelluric data is
contaminated by high amplitude interferences from electric cow-fences. At a few
sites even the long-period data are disturbed by cultural noise. This motivates
our attempts to remove these high amplitude disturbances that resist all modern
processing algorithms.

We have two choices for the presentation of our results: From a mathematical
point of view the two topics of adaptive time-series filtering and inversion are sub-
disciplines of the broader field of optimisation. In both cases we seek to minimise
the difference between a quantity calculated from the data and by some other
means, e.g. a model, another time series or some other segment of the same time
series. Therefore filtering and inversion should be presented together in order
to understand the similarities and differences between the two. From a practical
point of view filtering aims at providing reliable estimates of the impedance tensor,
while inversion produces models from this impedance tensor, but without asking
where the estimates come from. Usually signal processing is the first step after
data acquisition, while modelling and model appraisal are the very last steps and
a number of other steps lie in between. A presentation that follows the time-line of
the researcher, from data acquisition to final model, better displays the motivation
for dealing with these issues and gives answers to questions when they arise.

As a solution to this dilemma we will present the results in the order that they
appear in practice. To satisfy partially those readers who seek to find the math-
ematical connections, we will try to draw as many parallels as possible between
filtering and inversion, even if this means referring to a topic that will only be
discussed later. We will therefore start with a discussion of the basic principles of
electromagnetic induction and its application to magnetotelluric soundings. This
leads directly to the question of how we calculate the impedance tensor elements
and the problematic nature of the ISLE-MT recordings. After characterising the
problems we will present our attempts to solve the interference issues with a
number of different signal processing techniques. The first two chapters are self-
contained, and most of the issues discussed there will not reappear when we present
our joint inversion approach. Hence we will give a summary and discussion of the
signal processing results at the end of Chapter Bl

Before we discuss our joint inversion method, we present the basic theory for
the receiver function data. Apart from the methodological similarities between
inversion and adaptive signal processing, this, and the following chapters, form
another self-contained unit. The discussion of the receiver function method is
followed by the presentation of the joint inversion algorithm. We will contrast
traditional linearised methods with our genetic algorithm based approach and



1 Introduction

demonstrate the advantages of genetic algorithms for joint inversion. Through the
examination of some synthetic test problems we will highlight the capabilities and
limitations of joint inversion for MT and receiver function data. The application of
the algorithm to measured data from the Slave craton together with a discussion
of the results and recommendations for further work concludes this part of the
thesis.



This characteristic of modern experiments - that they consist prin-
cipally of measurements - is so prominent, that the opinion seems
to have got abroad that in a few years all the great physical con-
stants will have been approximately estimated, and the only oc-
cupation which will then be left to men of science will be to carry
on these measurements to another place of decimals.

James C. Maxwell

The basic principles of
magnetotelluric induction

In this chapter we will describe the steps required from recording the time-series
in the field to obtaining the MT transfer function or impedance tensor that is
subsequently used in analysis and modelling. We will start with a theoretical in-
troduction that motivates the calculation of the MT impedances and shows how
they are related to the properties of the Earth. This theoretical description will
be limited to the one-dimensional case for two reasons: First, the basic concepts
are more clearly understood without the complicated burden of a 2D or 3D treat-
ment, and second, for most of this thesis we will only be concerned with the
assumption of one-dimensional structure within the Earth. This is, of course, a
gross oversimplification and we will refer to current state of the art methods were
necessary.

In order to lay the foundation for the analysis of measured data in Chapter [, we
will finish this chapter with a discussion of different measures of electromagnetic
dimensionality. These quantities can be calculated from the impedance tensor in
order to assess whether a 1D, 2D, or even 3D description is most likely to be
needed in order to explain the observations.



2 The basic principles of magnetotelluric induction

2.1 From Maxwell’s equation to EM induction

The behaviour of any electromagnetic field is described by Maxwell’s equations,
viz.,

oB
E = —— 2.1
oD
H = j+— 2.2
V-B = 0,
vV-D = q.

Here E is the electric field in V/m, B the magnetic induction in T, H is the
magnetic field strength in A/m, j is electric current density in A/m?, D is the
electric displacement in C/m? and q is the charge density in C/m3.

To derive and solve the induction equation that forms the theoretical basis of
magnetotellurics, we have to make a number of assumptions:

1. All electromagnetic sources are outside the Earth and produce uniform plane-
polarized electromagnetic waves. For a one-dimensional conductivity dis-
tribution inside the Earth |Dm1_tuﬂLa.nd_Bﬂd_mhﬂsky| ﬂl&’Ld] showed that a
linearly varying field also fulfils the necessary conditions. These waves arrive
at the Earth’s surface at a near vertical angle. This assumption is a arguably
the most important for magnetotellurics and certainly its most problematic.

Since its publication by Cagniard [1953] and Tikhonov [|195d] its validity has
been discussed [|E1;j_c_el, hm, Madd_en_and_N_e]sQﬂ, h%d] We will address this

problem in more detail below.

2. The Earth acts as an ohmic conductor so that current density j and electric
field E are linearly related , through Ohm's Law, by the scalar electrical
conductivity o,

j=oE. (2.5)

3. For Earth materials we can assume the conventional linear relationships be-
tween D and E and B and H and for magnetotellurics we neglect changes
in electrical permitivities ¢ and magnetic permeabilities pu so that

B = poH and D = ¢oE. (2.6)

4, Displacement currents 0D /0t are assumed to be negligible. Most magne-
totelluric surveys use frequencies between 100,000 - 0.0001 Hz. Given typi-
cal resistivities of the Earth of 10° — 1072 QOm we can compare the terms in
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equation 2,

oD/ot  iweo

J 01107 (2.7)

For the highest frequencies in extremely resistive areas displacement currents
are an order of magnitude smaller than the current density and we would
start to see some effects from these currents. Typically both the measure-
ment frequencies and the resistivities will be much smaller and we will not
see any effect.

Under these assumptions the resulting equations are:

oB
VxB = HOO-E) (29)
V-B = 0, (2.10)
V.-E = 3, (2.11)
€o

We can transform these equations from the time domain into the frequency do-
main, and simplify the solution by replacing time derivatives with simple multi-
plications, i.e.,

0B(t) »
m — wwB(w), (2.12)

for a field at frequency w.
We can use the fact that V- (V x A) = 0 for any vector field A. Applying the
divergence to equation yields
wV - (0E) = uo(cV-E+ EVo) =0. (2.13)

From equation P11l then follows that

e& ——E—="1=_EVino. (2.14)
0

VxE = —wB, (2.15)
VxB = uooE, (2.16)
V-B = 0, (2.17)
V-E = —EVino. (2.18)
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These four equations can be combined into two equations by taking the curl of
and

VxVxB = V(V-B)—V?’B = po(cV x E—E x Vo), (2.19)
= VB = wwpeoB + wE x Vo, (2.20)
VxVxE = V(V-E)-V’E = wV x B, (2.21)
= V’E = wwpeoE — V(EVino). (2.22)

Equations and describe the magnetic and electric fields under the as-
sumptions above in their most general form. To explain the basic concepts of
magnetotelluric we have to simplify the situation further by first assuming a ho-
mogeneous halfspace.

2.2 The homogeneous halfspace

For a homogeneous halfspace the conductivity is constant o, inside the Earth and
consequently V- o = 0. Equations and then simplify to two uncoupled
diffusion equations of the form,

V?F = poowwF with F = E, B, (2.23)
with solutions,
F = F;exp(wwt — qz) + Frexp(iwt + qz) and g = poow. (2.24)

As we assume that all sources are outside the Earth F, = 0 for both the electric
and magnetic field. For a uniform halfspace the electromagnetic field inside the
Earth is described by

E = Eqexp(iwt — /uoowwz), (2.25)
B = Boexp(iwt — /pwoorwz). (2.26)

Inserting the two solutions into equation yields

0E,
VxE= = —/Hoowwk,, (2.27)

0z
= —wwB,,. (2.28)

From this we can finally derive the basic equation for MT in a uniform halfspace

c_1_ 1 E.  E,

q  Jhooww wB,  wB,’

(2.29)
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The quantity C is know as the Schmucker-Weidelt transfer function [M,
|19_Zﬂ, _S_Qh_m].mke_ﬂ, hﬂd] It's direct connection to the differential equations makes
it a usefull quantity in the theoretical examination of magnetotelluric problems.
Equation reveals that in this case the resistivity of the halfspace can be
calculated from the ratio of the orthogonal components of the electric and magnetic
fields at a given period. The realisation of this fact was the motivation for early
magnetotelluric surveys,

p= :; = pow|CJ. (2.30)
In practice instead of C the magnetotelluric impedance Z is used
Z= }E—’; - “lg? —wpeC Q. (2.31)
or alternatively as
= E—Z =wwC [m/s]. (2.32)

The two definitions are known as “field-units” and “SI-units” conventions, respec-
tively. Before we turn to slightly more realistic Earth models and the behaviour
of the magnetotelluric impedance in those cases, we return to the solutions of the
diffusion equations to look at the depth to which the fields penetrate. From
and .26 we see that the real part of the solution decays exponentially with depth.
The depth where the field strength is reduced to 1/e is called the skin-depth, p,
given by
2
HoOow

P= [m]. (2.33)

Although this equation is only exact for a homogeneous half-space, it is often
used to get a first idea of the penetration at a given frequency even in more
complex environments. However, depending on the geometry of the structures,
these estimates can be highly devious dﬁi I@]

2.3 Layered half-space

Obviously the real Earth is far from being a homogeneous half-space. A first step
toward a more realistic model is to allow for a number of layers of different thick-
nesses t; and conductivities o;. To derive the expression for the magnetotelluric
transfer function in this case we loosely follow Simpson and Bahr [|ZDDE|] Assum-
ing N layers indexed n = 1...N the solution of the diffusion equation 223 in each
layer is still of the form 224 but now both terms do not vanish. For the electric
field we have both upward and downward travelling waves, viz.,

Er = Elexp(iwt — gnz) + EY exp(rwt + qnz), dn = v/HoOnlw, (2.34)
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except in the lowermost half-space, where the wave only travels downward.
We can combine the time varying exponential with the coefficients E} and EY,
respectively, to a new set of coefficients a,, and b,

EY = anexp(—qnz) + b exp(+qnz). (2.35)
From equation follows for the magnetic field
B) = " (a, exp(—qnz) — bnexp(+dnz)) (2.36)

thus the transfer function C,, inside layer n is given by

E} an €Xp(—(nz) + by exp(+qnz)
Chlz) = —2-= . 2.37
(2) wBY  gn (anexp(—qnz) — brexp(+dnz)) (2.37)
At the top of the layer z = z,, 1 we have
EY an exp(_qnznfﬂ + bn eXp(‘f—ann,])
Culzn) = —2- = , 2.38
( 1) ‘LLUBL‘ qn(anexp(—qnznq) —bnexp(—kqnzn,])) ( )
and similar at the bottom z = z,,
ED an exp(—qnzn) + bn exp(+qnzn)
Chlzy) = —2%= = . 2.39
(2] wBy}  gn (anexp(—dnzn) — bnexp(+dnzn)) (2.89)
We can rewrite as
a, = b T InCnlz) o) (2.40)

nqncn(zn) - ]

and insert the result into .38 to eliminate a,, and b,
1+ q.C
14 AnCalzn) o (2anzn) exp(—nzn 1) + exp(dnzn 1)
an (Zn) - 1

Cn(zn—1) - ’

(% eXp(anZn) eXp(—ann_]) — e}(p(qnzn_1 ))

14+ qnCn(zn)

aColz) 1 exp(dn(zn — zn_1)) + €xp(—dn(zn — zn_1))
(:]—i—cq?—)(]) P(dn(zn —2zn-1)) —eXp(—qn(Zn_Zn1)))

(] + qn ) eXp( n( Zn—])) + (qncn - ” eXp(_qn(Zn - Zn—1))
qn((] +qn )eXp(qn( Zn—])) - (qncn_ 1)eXp(_qn(Zn_Zn—1))))
1 sinh (dn(zn—2zn-1)) + qnCncosh (qn(zn — zn_1))
qn cosh (qn(zn—2zn-1)) + qnCnsinh (qn(zn — zn_1))
1 gnCn(zn) + tanh (qn(zn — zn-1))
dn 1+ qnCnl(zn) tanh (qn(zn — zn_1))’

)

(2.41)

10
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Both horizontal electric and magnetic field are continuous across the layer bound-
ary, hence their ratio has to be continuous as well and consequently

Cn(zn) - Cn+1(zn)- (2'42)

Using the continuity requirement in finally results in the Wazit recursion
formula [@, |

l ann+1 (Zn) + tanh (qn(zn — Zn] ))
qn 1 + ann—H (Zn) tanh (qn(zn - Zn71)) '

Culzn) = (2.43)
This recursion formula can be used to calculate the transfer function at the top
of a N-layer model. The lowermost layer is a half-space with Cn(zn) = 1/gn-
This solution is then propagated through the remaining layers from bottom to top
using the recursion formula.

For a layered half-space no direct transformation between the transfer function
or impedance and layer thickness and resistivities exists; this issue will be discussed
in detail later. Equation .30, which is exact in the case of a homogeneous half-
space, is now replaced by an apparent resistivity, the resistivity of an equivalent
half-space, viz.,

1
pa = ——|Z(w)P for Z in S.I. units. (2.44)
How

In addition the impedance phase is another useful quantity

¢ =tan™! (%) . (2.45)

In terms of the electromagnetic fields it represents the phase-difference between
the magnetic and electric field. For a homogeneous half-space

w

2”0 = ¢p=tan '1=". (2.46)

Z=(1+1)

&1

Apparent resistivity and phase are an equivalent representation of the magnetotel-
luric impedance and are usually used to display and interpret magnetotelluric data
because of their more intuitive physical relationship to the properties of the Earth.
In a layered Earth and for the TM-mode in a two-dimensional environment, these
two quantities are interrelated through a Hilbert transformation [Mladf_]_ﬂ h&’d
Weidelt and Kaikkonen, 1994, Berdichevsky, 1999] and hence do not provide inde-
pendent information about Earth structure. ﬂQazalLeLe_and_hn_esj IL%AI] showed
though that for real data the different sensitivities of apparent resistivity and
phase help to constrain the conductivity in the subsurface.

11
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2.4 Two-dimensional structures

If the conductivity varies in the vertical and one horizontal direction a single
impedance that describes the relationship of the electric and magnetic field no
longer exists. Instead two separate modes of the fields have to be considered.
From equations and we can see that for structures aligned with the
x-direction we get two uncoupled sets of differential equations

OE,

3y = wwB,, (2.47)

0,
5, = wBy, and (2.48)

0B, 0B,
_ %Py _0E,, 2.49
dy Py HoO ( )

is called the transverse electric (TE) mode or E-polarisation and couples E, with
B, and B,. Conversely,

0B

N = ooy, (2.50)
0By
5, = nooky, and (2.51)
oE, OE,
_ %y wB,, 2.52
oy 0z v ( )

is called the transverse magnetic (TM) mode or B-polarisation and couples E,
and E, with B,. Analytic solutions for the TM-mode for 2D structures exist
only in a few special cases such as two quarter-spaces or a dike. IM [@]
gives an overview of analytical solutions for electromagnetic induction [see also
hALea:Ler_e.La.]_], |19_8_ﬂ]. For the TE-mode quasi-analytical solutions exist for some
geometries ﬂSALeamLeJ;_a]J, h%d] Despite the more complicated nature of the prob-
lem, the impedance in this case is defined as a straightforward extension of the
one-dimensional case. We now have two impedance values,

HOEy
B, ’

_ HOEX

Ly B
Y

(2.53)

and Z,, =

with corresponding apparent resistivities and phases.

2.5 The 3D case

In the most general case, the electric and magnetic fields are described by equations
and B222 Particularly, the corresponding electric and magnetic fields are no

12
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longer orthogonal two each other. Thus the concept of impedance is extended to
the magnetotelluric @mpedance tensor, that describes the relation between the

fields
F—x Zxx ny Hx
= . (2.54)

Both the one-dimensional and two-dimensional cases can be regarded as special
cases of the impedance tensor.

Zew=Zyy =0 Zy=-Zy inlD (2.55)
Zyx = Zyy =0 in 2D (2.56)

when the x-axis is directed along the strike of the 2D structure. For this reason
all modern processing algorithms estimate the full impedance tensor. Only in the
subsequent analysis different criteria are used to classify the electrical structure
as 1D, 2D or 3D.

2.6 Dimensionality and invariants

We will now discuss some of the criteria used to classify the dimensionality of
MT data. To date, most data from magnetotelluric surveys are interpreted in
terms of two-dimensional profiles, assuming infinite uniformity in the direction
perpendicular to the profile. In practice, the length scale of structures is often
larger in one direction than the length scale of induction, but it is essential to
quantify at which frequencies and sites this assumption holds, and where it is
violated. Only then can we assess the reliability of models constructed this way. To
this end a large number of classification schemes have been constructed to quantify
the dimensionality, and extract the parts of the data appropriate for a chosen

rox1mat1on! E \Groom and Ba11ev| |19_8_d |B_ah];| h&‘l]] Gmgm_and_B_ahﬂ hm
m Caldwell et all, |2QD_4| |Mar.tJ_e.Lal] |2.0_0_d] We will concentrate

here on indicators for one dimensional structures that we will need later when we
model real data.

The most straightforward indication for 1D Earth structures near a measured
site is directly given by Equation If this equation holds within data error, a
layered Earth model can be assumed to be appropriate. One thing to bear in mind
with all classification schemes is that they all define necessary, but not sufficient,
conditions. Therefore, the violation of a classification condition indicates that

the chosen model is not appropriate, but the opposite does not prove its validity.
This is a serious problem when modelling MT data, as one can never be completely
sure whether the chosen approximation is correct. Without further information
however, we do not have any better criterion to guide our decision to model the

13



2 The basic principles of magnetotelluric induction

data in a certain way. The generally accepted paradigm is to use the simplest
model appropriate. This is also known as Occam’s razor.

Even when the regional Earth structure can be adequately described by a plane
layered model, we often observe violations of Equation This violation is
caused by galvanic distortion due to small inhomogeneities in the vicinity of the
measurement site [Groom and Baileyl 1989, [Bahi, 1991, Singer, 1997]. The effect
of these inhomogeneities can be described by multiplication of the impedance
tensor with a frequency independent, real-valued matrix

Zaot = ( e ) Z. (2.57)

azy az

The complications that arise from this effect, and the fact that the entries of the
distortion matriz a cannot be uniquely determined ﬂBibbLeJ_al], |2£)Dﬂ] are a long
standing problem for MT modelling and interpretation.

Fortunately the multiplication with a real valued matrix does not change the
phase of the off-diagonal elements, if the impedance tensor is in the form of Equa-
tion This enables us to use the information contained in the phase in situ-
ations where the magnitude of the impedance is affected by galvanic distortion.
We define two measures of one-dimensionality:

=2 with Dy =Z—Zy,, D2 =2y —Zyxand Sy = Z,, + Z,x  (2.58)

is small when a layered Earth model without distortion is appropriate m, M]
In the presence of galvanic distortion X can assume large values, as it is based on
the magnitude of the impedance elements. When ¥ > 0.1, we use a rotationally
invariant measure of the phase difference,

V/I[D1, S2ll +1[S1, D2

= 2.59

ﬂm, @] Here S, = Z, + Zyx, D1 = Zyx — Zy and [+, -] denotes the commu-
tator. If both k and u are significantly different from zero, the data requires a 2D
or 3D model approach to be explained fully. |Qa]_dmel]_eﬁ_a.]_] [|ZDD_4|] point out that
when the enumerator of Equation does not vanish, this dimensionality mea-
sure is also affected by galvanic distortion, as |D;| depends on the amplitude of the
impedance tensor elements. When we determine the dimensionality of measured
cﬂ% we therefore use a combination of indicators as suggested by
.

Even when the data requires a more complex model, it can be instructive to

construct 1D models to get a first idea of the conductivity distribution. The Wait
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2 The basic principles of magnetotelluric induction

algorithm only yields a single impedance value, as expected for a 1D Earth, so we
have to condense the four elements of the observed impedance tensor into a single
value that provides an appropriate approximation. Rotational invariants provide
a convenient way to summarize the information in the impedance tensor without
regard for the coordinate system of measurement. Two invariants are commonly
used in modelling MT data: The arithmetic mean of the off-diagonal elements

Loy — Lyx
Zp = 2 (2.60)
2
also known as the Berdichevkiy invariant ﬂBﬂd}_ghﬂs_k_].Land_DmLm_ﬂl], and the
determinant
Lp = LwLyy — LiyZyx. (2.61)

The determinant has the advantage that it combines information from all 4 ele-
ments of the impedance tensor, although modelling studies show that the differ-
ence between the two for practical purposes is not significant in one-dimensional
inversion ﬂEark_and_LdALd;meksj, |19_8d] Pedersen and Engels [|2.0_0j']] advocate the
use the determinant in two-dimensional inversion to incorporate information from
the diagonal elements. In any case care has to be taken in the interpretation of
results from modelling these quantities. Near 3D inhomogeneities, where the 1D
approximation breaks down, models of these invariants can contain artificial re-

sistors or conductors ﬂRaLLand_LdALeJ.;me.Qkfj, |19_8£J] Therefore a careful analysis

of the data is needed before modelling it.
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“...You know, that might be the answer—to act boastfully about
something we ought to be ashamed of. That’s a trick that never
seems to fail.”

“Do you think it will work?”

“I’'m sure it will. And let’s promote him to captain, too, just to
make certain.”

Joseph Heller, Catch 22

From magnetotelluric time series
to transfer function

3.1 Processing magnetotelluric data, a short
overview

As outlined in Section B.T], in theory the transfer function between the horizontal
electric and magnetic fields depends only on the conductivity distribution of the
Earth. In an ideal situation the calculation of the transfer function from simulta-
neous recordings of the electric and magnetic field is simple and straightforward.

1. Fractionalize the recording in segments of equal length, the length of the
segments depends on the longest period needed.

2. Multiply each segment with a suitable window function, e.g., the Hamming
window, to avoid spectral leakage.

3. Fourier transform each segment.
4. Calculate the auto- and cross spectra for each segment.
5. Calculate the mean and the error from the various spectral estimates.

6. Calculate the resulting transfer function and its error.

To illustrate the basic principles, we will describe the most basic approach to
impedance tensor estimation in some detail, before we discuss more advanced
methods.
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3 From magnetotelluric time series to transfer function

3.1.1 The anatomy of modern processing algorithms

As the impedance tensor is defined in the frequency domain, the first step is to
obtain spectra for the recorded fields. A number of methods exist to estimate the
spectrum of a time series. The most basic spectral estimate is the periodogram,
the mean of the Fourier transform of different segments of the time-series,

N/L=1 (j4+1)-L—1

Z Z xiexp(—w;l) i=1...L—1. (3.1)

1=j-L

It is easy to implement and computationally fast, but suffers from spectral bias
problems because the segmentation of the time series is equivalent to multiplica-
tion with a boxcar function. The result in the frequency domain is convolution
with a sinc function, and has numerous side-lobes that cause spectral leakage.
This situation can be improved by applying a window function before calculating
the Fourier transform,

N/L=1 (j+1)-L—1

Z Z xw(l) exp(—w;l) i=1...L—1. (3.2)

The inductive nature of magnetotelluric soundings makes spectral resolution often
a minor issue and the choice of spectral window is usually not critical. Popu-
lar choices are the Hann window and the Hamming window. When the time-
series is contaminated with noise that is concentrated in spectral lines, the choice
of spectral estimation method can make a noticeable difference. In these cases
multitaper spectral analysis ﬂlbmsad, |l.9_8.j] can produce more accurate results.
The simple windowing functions are replaced by specially designed orthogonal
taper functions that optimize spectral leakage and variance. Multitaper analy-
sis is used in the bounded-influence remote reference (birrp) processing code by

IChave and Thomson [|2£)D_4|].

In order to estimate the impedance tensor components we have to solve two bi-

linear regression problems. Each row of the impedance tensor relates two magnetic
field components B, and B, to one electric field component through two unknown
linear coefficients,

Ex = ZuHi+ZyH,, and
Ey = ZyHe+ZyyH,y.

This seemingly straightforward problem has a lot of difficult and subtle problems
to it, and the results depend on the chosen solution of these aspects. Obviously
every physical measurement is affected by some sort of noise, so we have to estimate
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3 From magnetotelluric time series to transfer function

errors for Z,, and Z,,, and the plane described by them will not go exactly through
all measured points. The first procedures to estimate the impedance were based
on the idea of minimizing the distance of all points to the plane in the least-squares
sense ﬂSims_ei_a]J, |19_Z]]] More modern algorithms based on robust methods will be
described below. While least-squares estimation is mathematically uncomplicated,
another problematic point remains. It is not possible to incorporate independent
error estimates for the electric and magnetic field components, but only a single
error estimate can be used. In most cases the magnetic field is assumed to be
noise free and all disturbances concentrated in the electric field. This assumption
is justified by the observation that in general electrical field recordings are much
more noisy than magnetic fields.

Under these assumptions the impedance tensor estimates can be calculated from
the mean cross and auto spectra of the electromagnetic fields. For Z,,, one possi-
bility is

, _ FFCEH - G EHY
T H HE HyHy — HGHy HHE

others are given by Sims et all [|19_Z]]] The expressions for the other elements are
similar. This particular form is chosen because it is not biased by random noise
on the electric channels, but only by random noise on the magnetic channels. As
mentioned earlier, the magnetic channels are usually less affected by noise and the
estimates from this formula are considered more reliable. When magnetic noise is
present the estimator in equation will result in a downward biased impedance.
Other forms represent mixed bias or upward bias ﬂm, I@]

(3.5)

In practice a number of issues make this simple approach unsuitable for reliable
estimation. A number of possible problems during the recording can strongly bias
the output of such a simple processing scheme. These include

e Non-uniform natural fields that violate the plane-wave assumption, these
occur mostly in high latitudes or during strong solar activity m,

11986, Osipova et all, 1989, lJones and Spratt), |2£)£d],

e Cultural noise from various electromagnetic sources such as pipelines, electric
trains, power lines etc.,

e Temporary sensor problems or saturation of the AD-converter input, and
e Disturbances by humans or animals moving in the vicinity of the instrument.

The simplest way to remove the influence of problematic segments of the recording
is manual editing of the time series. Segments that are considered unsuitable are
excluded from further processing by visual inspection. However this approach is
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3 From magnetotelluric time series to transfer function

time consuming and problematic segments can be impossible to identify. Further-
more preconceived ideas about the expected transfer function can influence the
decision to include certain segments or not. A number of measures within the
processing sequence itself aim at avoiding the arbitrariness of manual selection,
while at the same time identifying problematic sections.

Coherence thresholding/ weighting: Under ideal circumstances the coherence
between the magnetic and electric fields should be ~ 1. A low coherence
indicates problems in one of the channels and the corresponding segment is
either completely excluded or its influence is reduced in the final calculation

of the mean [Jones and Jédicke, [1984].

Remote reference: When several instruments are recording at the same time, the
recorded magnetic field at another site can be used to improve the transfer
function estimates. Under the plane wave assumption the magnetic field

should be equal at any recording site in a purely layered Earth and vary
coherently in the more general case. In practice the horizontal wavelength
of the source is much larger than the induction scale length. For long-period
data stations up to several hundred kilometres away are usually suitable as a
remote reference site. If the noise in the magnetic field at the remote site is
orthogonal to the noise at the local site, unbiased estimates can be obtained

[|G_am_ble_e_t_a]_], hﬂ&dﬂ], in contrast to the downward biased estimates for

single site processing.

Robust estimates: The mean as a statistical measure can be strongly influenced
by a small number of events that fall far from the mean of all other esti-
mates and thus violate the assumption of a Gaussian distribution of the
residuals. These events, also known as owutliers, then bias the final re-
sult. By down-weighting or excluding such outliers the estimation proce-
dure can be made more robust, i.e. less influenced by spurious estimates

le.g. Eghert and Booker, 1986, [Chave and Thomsorl, 1989].

Leverage points: Simple least-squares estimation methods can be strongly influ-
enced by a single data-point with an amplitude that is much larger than the

average. These leverage points can pose problems even for robust methods
if they do not fall sufficiently far from the mean, but still bias the result.
New bounded-influence methods try to identify and reduce the influence of

such leverage points [Chave and Thomson, 2003].

Some or all of these methods are included in modern MT processing codes and

they can greatly improve transfer function estimates compared to the simple pro-
cessing scheme presented earlier. Still, some situations exist where even these
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3 From magnetotelluric time series to transfer function

Example of an uncontaminated site Example of cow fence contamination
Site ISLE101 Site ISLEOO7

m
3
m

Sample [150Hz] Sample [150 Hz]

Figure 3.1: Recording of electric and magnetic channels from a undisturbed site
(ISLE101) and a contaminated site (ISLE007). The high amplitude spikes in the
electric field at site ISLEQOQ7 are caused by electric cow fences.

sophisticated methods fail to yield estimates of transfer functions representative
of the conductivity distribution in the Earth. Coherence between the electric and
magnetic fields is not always a reliable measure of data quality. Particularly cul-
tural noise sources, such as DC railways or cow-fences, can produce signals that
show high coherency, but violate the assumptions made in MT processing

1988, Qian and Pedersen, 1991, Padua et all, |2_0_(ﬂ] In some cases these signals are
so strong that they affect neighbouring sites making them unsuitable as remote
reference sites. Also, when cultural noise is not just a temporary phenomenon
but persists throughout the entire recording, robust methods break down. These
methods rely on the fact that the majority of estimates is not strongly biased. If
the majority of the estimates should be termed outliers, robust methods will use
these as the “data” and discard the rarer reliable estimates.

3.1.2 The limit of current processing algorithms

The problems of available processing codes are dramatically illustrated by some of
the high frequency data collected during the first phase of the ISLE-MT project.
At most sites the high-frequency channels are strongly affected by noise from
cow fences on the farms surrounding the recording site. The electromagnetic
signal generated by the cow fences poses a particularly difficult problem for any
processing algorithm. First, the noise usually continues throughout the whole
time-series, making it difficult to distinguish "good" from "bad" segments. The
noise is quasi-periodic, but both the shape of the signal as well as the frequency
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3 From magnetotelluric time series to transfer function

Power spectrum for Ex and Hy
Site ISLE007
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Figure 3.2: Spectra of E, (top) and H, (bottom) channels from sites ISLE0Q7
(black) and ISLE101 (red). Site ISLEOOQ7 is severely contaminated by cow fence
noise whereas ISLE101 is the least disturbed site in the survey area. The dis-
turbed sites does not only show a high amplitude base frequency at 1.5 Hz and
its harmonics, but is generally higher in amplitude.

changes with time. In some cases the power of the noise is also much higher than
the power of the signal.

Figure Bl shows a comparison of a reasonably good site with such a problematic
site. Both electrical components in the right hand panel show strong spiky signals.
While there seems to be a certain repeatability, it can be clearly seen that the
signal is far from being periodic. The magnetic channels seem to be unaffected
by the cow fence noise, but close inspection shows that they also contain, to a
much lesser degree, traces of the cow fence signal. In comparison the clean signal
in the left hand panel does not contain such high amplitude spikes in the electric
channels. In addition the magnetic signal seems much smoother, with a clear
sinusoidal component that is typical for natural signals.

The impression from the time-series is emphasized by the corresponding spectra
in Figure B2 The spectrum of the north-south electric channel at site ISLE007 is
more than three orders of magnitude higher than at site ISLE101. It is theoretically
possible that this difference is due to a much higher subsurface resistivity. Given
that this would require a factor of 10° higher resistivities, makes this possibility
highly unlikely though. The strong amplitude oscillations at 1.5 Hz and its har-
monics reveal, that this effect is caused by the spikes observed in the time-series.
Also the natural Schumann resonances ﬂSghuma.nﬂ, |195_4|] at 7.8 Hz and 13.9 Hz
can be clearly seen in the electric spectrum of site ISLE101, but are completely
absent at site ISLE0O7.
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Robust remote-reference processing Hand-selected crosspowers Birrp processed data
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Figure 3.3: Transfer function estimates for site ISLE007 calculated with sev-
eral popular processing codes. From left to right: Robust remote reference by
0di IIL%AI], same code but with manually selected spectra, bounded-

influence code by (Chave and Thomsonl [2004].

The magnetic spectra are relatively similar at both sites. Close comparison
shows though that there is an oscillatory component similar to the electric spec-
trum in the magnetic spectrum of site ISLE007. This indicates that the magnetic
channels are affected by the cow-fence spikes as well.

Figure compares the estimated off-diagonal impedance tensor elements for
the contaminated site ISLEO07 using three different popular approaches. The two
left hand panels were both obtained using the same robust remote reference code
[|Jgn_e§_a.n_d_]jj_dj_gke|, |19_8_4|, L]gn_e;s_ej_a]_], h,%}i method 6]. The difference between
the two plots is that for the middle panel individual impedance estimates were
plotted as a function of time and estimates that were considered better were se-
lected manually. The figure on the right was produced using birrp which includes
protection against leverage points ﬂQhasLe;an.d_T_b.Qms.Qd, |21)D_4|] The first thing to
note is that all three methods produce different results at high frequencies. Al-
though the general shape of the curves, particularly apparent resistivity, is similar,
the absolute values at high frequencies differ up to an order of magnitude and much
more than the error estimates suggest. The high apparent resistivities that sharply
rise and then fall off abruptly, together with low phases in the left hand panel are
indicative of a grounded dipole in the vicinity of the station ﬂQian_and_Eed_ers_Qd,

]. There is also large scatter of values for adjacent frequencies. For an induc-
tive method like MT, both apparent resistivity and phase should vary smoothly
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3 From magnetotelluric time series to transfer function

with frequency. Also the theoretical relationships between apparent resistivity and
Eg;:je can be used to checlﬁéélg data for internal consistency ,
, Parker and Booker, 1996].

The smoothness of the apparent resistivity values as an indicator of data quality
was used as a guideline in the manual selection process that produced the middle
panel in Figure Individual estimates have been selected to produce a smooth
apparent resistivity curve. While the apparent resistivities consequently appear
to be of better quality, the scatter between adjacent phase values reveals that this
part of the sounding curve is still problematic. Finally for the birrp processed
data, the apparent resistivities are much lower than for both other processing
methods and appear to be generally more smooth than in the left hand panel.
The phase estimates on the other hand scatter wildly between 0 and 90° and have
large errors associated with them. While this visually appears to be the worst
sounding curve, the large error bars at high frequencies at least signal that this
part is problematic. To the untrained eye, a sounding curve like in the middle
panel might seem of sufficient quality, but in essence the high frequency part of
any of them cannot be used for interpretation or modelling. Only at periods
>50 s, where the curves of all different processing schemes agree, the data appear
to be reliable. These limitations of all processing codes available to date motivate
the attempt to pre-process the data in the time domain before feeding it into the
usual processing codes. We will present a number of signal processing methods
and their application to the data in the following sections.

3.1.3 The ISLE-MT recordings

Before we can discuss signal processing methods and their application to MT data
we have to look at some of the details of how the data were recorded during the
ISLE-MT project. At each site we installed two different instruments that shared
the electrodes to measure the electric fields, but used different magnetic sensors.
LIMS instruments, borrowed from the Geological Survey of Canada, recorded with
a sampling rate of 5 s and used a three-component ring-core fluxgate magnetome-
ter to record the time varying magnetic field , h&ﬁ] These
instruments recorded for 2 weeks to 2 months, depending on location, to obtain
reliable estimates of the long period transfer functions. Due to their low sampling
rate these recordings seem to be unaffected by the cow fences and data quality is
generally high.

To obtain information about the shallow structure, Phoenix MTU-5A broad-
band instruments were also installed at each site for 2-3 days. They use magnetic
coils to record the time derivative of the magnetic field and compute the high
frequency transfer functions. Nearly all broad-band recordings are affected by cow

23



3 From magnetotelluric time series to transfer function

fence noise to some degree, and only at two sites could we obtain high-frequency
impedance-tensor estimates that we regard as reliable. In contrast to the LIMS
instruments, the broad-band instruments do not record with a single sampling
rate, but in three different bands with different recording lengths for each band.
The parameters for each band are shown in Table Bl

Band | Sample rate [Hz| | Segment length [s] | Gap [s] | Total length [hrs]
3 2400 2 158 10

4 150 16 144 10

5 15 continuous 48-72

Table 3.1: Recording parameters for the different bands of the Phoenix MTU-5A
broad-band MT recording unit.

These bands are then processed separately, and the results are combined into a
single sounding curve. For the standard Phoenix processing software SSMT2000
the relationship between recording bands and frequency range of the impedance
tensor are shown in Table

Band | Frequency range [Hz]
3 352-35

4 35-5

5 5-0.009

Table 3.2: Standard processing frequencies for each band of the Phoenix MTU-5A
broad-band MT recording unit.

In the following section we will mainly apply the methods to the time-series
recorded in band 4, as the impedance estimates from this band seem to be most
problematic. If we can successfully use the method in this band we will continue
to apply it to the other band to test whether we can produce a reliable sounding
curve for the whole frequency range.

3.2 Filter Theory

The term filter by itself is not well-defined. It is used in signal processing to
denote a process that modifies some input signal and yields an output signal. In
most cases, filters are associated with mathematical convolution as most filters
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r(t)—= f@) |—= y()

Figure 3.4: Block diagram of a general filter.

used in practical applications can be described as a convolution between the filter
impulse response f(t) and the input x(t),

y(t) = Joo f(T)x(t —1)dt = f(t) * x(t), (3.6)

—00

or, for discrete and finite length data,
ylt) =) ft)x(tiy). (3.7)

It is often convenient and more intuitive to describe the filter in the frequency
domain by its transfer function. This is because convolution in the time domain
is replaced by element-wise multiplication in the frequency domain,

x(t) #y(t) &= x(w) - y(w). (3.8)

The impedance tensor can be thought of as a filter that acts on the magnetic field
to produce the electric field and that is why the term magnetotelluric transfer
function is often used equivalently.

In signal processing applications a filter is often used to give the input signal
certain properties, for example anti-alias filters that any digital recording instru-
ment has to apply before digitizing to avoid artifacts from frequencies higher than
the Nyquist frequency, given by

1
fN - Z—At) (39)

where At is the sampling rate. Anti-alias filters are analogue low-pass filters, but
a similar step can occur digitally to down-sample the AD-converter output to the
desired sampling rate. Filters can also be used to shape the input signal in the
sense that the filter output should resemble some desired reference signal. We will
discuss this later when we describe adaptive filters.

From Equation it is clear that the application of any filter to a channel of an
MT recording will change the spectrum of that channel. We have to distinguish
two different cases of spectral distortion: 1) Removing the cow fence spike will
obviously alter the spectrum and this change is desired, 2) In addition the filter
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Method Channels | Time dependence | Linearity
Delay Single static

Template Substraction | Single adaptive

LMS Multi adaptive linear
RLS Multi adaptive linear
Neural Network Multi adaptive non-linear

Table 3.3: Filters discussed in the following sections and their properties

results in some overall distortion of the spectrum that has nothing to do with the
cow fence spikes but is an inherent property of the filter. Returning to equation
we see that the impedance tensor elements are calculated from ratios of auto-
and cross-spectra. The overall spectral distortion therefore cancels out as long as
it is identical for all channels of the time-series. For static filters, like the delay-
filter that we will discuss below, this is easy to achieve. In contrast, for the more
powerfull adaptive filters the filter transfer function depends on the data and this
effect can become problematic.

The filters we will use to remove the cow fence noise can be classified in a
number of ways. The simplest filters work on a single recorded channel at a
time without using any information from other, simultaneously recorded, channels.
In contrast multi-channel filters utilize expected relationships between different
recording channels to distinguish noise from signal. The filters can also be static,
i.e., their filter function remains constant for the whole time series, or adaptive,
i.e., adjust to changing signal characteristics. Finally multi-channel filters can be
categorized as linear or non-linear. Linear, multi-channel filters assume that the
filter output is a linear combination of the input; we will discuss linear adaptive
filters in particular. Non-linear filters, neural networks for example, can model
more complicated relationships. Table gives an overview over the filters we
will discuss and their properties

3.3 Single channel methods

The simplest example of single-channel static filters are high-pass, low-pass or
band-pass filters. High-pass and low-pass filters are unsuitable for noise can-
cellation in MT time series. They simply reduce the amplitude of all spectral
estimates above or below a specified frequency, which is equivalent to discarding
the impedance tensor estimates at those frequencies. This is sometimes necessary
if all attempts to cancel the noise are unsuccessful but can be more easily and
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more efficiently achieved by selecting estimates that are considered reliable after
processing.

On the other hand, band-pass filtering can be useful under certain circum-
stances. If the noise is concentrated in a reasonably narrow frequency band, a
band-pass filter can down-weight the spectra in that band and avoid leakage of
the spectral estimates into neighbouring frequencies. Due to the inductive nature
of magnetotelluric soundings, adjacent cross- and auto-spectra are not indepen-
dent. Most processing codes use this to increase the number of estimates for a
given output frequency by averaging over a window of frequencies around the cen-
tral output frequency. If any of these frequencies are affected by noise, the final
output will be so as well. Band-pass filtering can circumvent this problem, and is
routinely undertaken to remove the influence of the 50 Hz electromagnetic signal
associated with household electricity or the 16.3 Hz signal of AC powered railways.
This is possible because, in most countries, the frequency is stable over long time
and distance and the shape of the signal is sinusoidal, resulting in contamination
at a very narrow range of frequencies. In contrast, the aforementioned cow-fence
spikes contaminate the MT recording over a much broader range of frequencies
and also at higher harmonics of the base frequency, as we already observed in
Figure B2

3.3.1 Delay Filter

One type of filter that cancels signals at a base frequency and its harmonics is

the Delay-Fhilter ﬂS&hn_egg_and_Ejjr_h_eﬂ, |19_8d, Lh.ln.gd, h&%] Its implementation is

very simple: A copy of the time-series is time shifted and subtracted from the
original. To preserve power we multiply the result with a normalizing factor,

y(t) = % (x(t) — x(t — to)) (3.10)
In the frequency domain the result is
Fly(t) = %f{x(t) Xt to)), (3.11)
- % (Fix(t)} — exp (1woto) Fix(V)), (3.12)
= % (1T —exp(wwty)) Fi{x(t)}. (3.13)
Hence the transfer function of the filter is
flw) = % (1 —explwwty)), (3.14)
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Figure 3.5: The effect of a delay filter on the spectrum of E, (left) and H,, (right).

and the resulting power spectrum is

Ply(t)} = Fly(t)jF{y(t)} = (1 — cos wto) P{x(t)}. (3.15)

This means that the power at the base frequency 1/to, and all its harmonics, will
be suppressed by the vanishing filter transfer function. Note that the spectrum is
also altered at all other frequencies, apart from n/(2ty) with n odd. As mentioned
before it is not a problem for processing if we apply the same filter to all compo-
nents of the time series as the resulting distortion of the spectra is identical for all
components. The effect of such a delay filter on the spectrum of an MT recording
is shown in figure BB The time shift was determined by inspecting the time-
series and measuring the prevalent distance between spikes. The corresponding
shift of n = 207 resulted in better suppression of the cow-fence noise than a shift
of n = 216 that was suggested by the lowest maximum in the electric spectrum.
For our experiment we considered only integer valued shifts. In theory it would
be possible to shift the time-series by a fraction of a sample by interpolation and
resampling. However changing the shift by +1 does not vary the output of the
filter significantly, so that this additional complexity seems unnecessary.

Figure shows how the first maximum in the power-spectrum at 0.8 Hz and
its harmonics are suppressed by the filter, but it also illustrates the problematic
nature of cow fence noise. While the first few frequencies reduced by the filter
are maxima in the original spectra, the high frequency filter minima coincide with
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Figure 3.6: Off diagonal elements of the impedance tensor for site ISLE007. Black
symbols show original estimates, red-symbols show estimates after applying a
delay filter.

minima in the original spectrum, and some strong spikes in the spectrum are
left undisturbed or are even amplified. Likely explanations are that the signal
is not exactly repetitive and that the higher frequency signature is not an exact
integer multiple of the base frequency. This can be due to the co-action of several
fences with slightly different frequencies, or simply a variations in the mechanical
mechanism that produces the spikes. Several attempts with different shifts t, for
the filter, and a cascaded application with different shifts at each step did not
result in any significant improvement.

Figure shows, that the delay filter does not significantly improve the im-
pedance estimates. Around the base frequency of 1 Hz the scatter in the xy-
component apparent resistivities is slightly reduced, but for the most part the
estimates remain the same as before. For the yx-component the estimates have
changed as well, but they scatter in a similar manner as before, and it is not
possible to decide which of the results could be termed better. The phases of
both components have not changed significantly, apart from an outlier in the xy-
component. This suggests that a delay filter is unsuitable to remove the cow-fence
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Figure 3.7: Histogram of normalized cross-correlation between a template spike
and the time series (left) and the corresponding spike form (right) for a spike that
is not representative of the cow fence spikes. The inset graph in the left hand
figure shows a magnification of the 0.8...1 range.

noise from the data.

3.3.2 Direct Template Substraction

Apart from simple filtering operations with well controlled behaviour in the time
and frequency domain, we will also try a rather ad-hoc method to substract the
undesired signal from the time series. The first method that might come into mind
is to identify a "typical spike signature” by visual inspection or some automated
method, identify sections of the time-series where this template spike matches and
substract it. If the shape of the spike remains approximately similar throughout
the time series, perhaps with some amplitude variations, which are easy to correct
for, this appears to be a reasonable approach. We will show the successes and
problems of this approach in the case of cow fence noise in this section.
To identify segments of the time-series x; that match our template spike s; we
use the normalized cross-correlation c; given by
ci= ﬂ (3.16)
PILEDWEH

between the two.

The possible values of c; are in the range +1. An absolute value close to unity
indicates a highly similar segment of the time-series, while values around 0 indicate
dissimilar shapes in the time-series and the template spike. The histogram of cross-
correlation values shown in Figure B.7] illustrates the problem of this approach
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Figure 3.8: Histogram of normalized cross-correlation between a template spike
and the time series (left) and the corresponding spike form (right) for a spike that
represents some of the cow-fence disturbances in the time series. The inset graph
in the left hand figure shows a magnification of the 0.8...1 range.

for a manually selected spike. As expected, the peak of the distribution is at
0 correlation, most of the time-series does not resemble the template spike at
all. But if the template spike was as representative of the numerous spikes in
the recording as we hope, there should be secondary peaks at +1 or at least a
significant number of points with a correlation > 0.9. What we observe instead is
an extremely low count of high correlation points; the distribution drops rapidly
off to zero at high correlation values. In the whole time series there are about
20 segments that have a correlation > 0.9 with the template spike. There are a
number of possible reasons for the low agreement: The chosen spike might not be
representative of the noise, but in fact just be a single disturbance, or the chosen
segment of points around the spike might be too long and contain natural source
data. If this is the case, the correlation will be lower than for an adequately chosen
time window.

To avoid tedious trial and error searches for the right template spike, we use a
simple automatic routine to identify possible cow fence spikes. The visual inspec-
tion of the time series shows that, at least in the electric fields, the spikes appear
nearly as delta functions with a high amplitude. At the onset of the spike the
first difference, the difference to the previous value, reaches values that are up to
several magnitudes higher than for the rest of the data. We define a threshold
value diffthreshold and if the first difference exceeds this value the segment is
considered part of a spike.

Figure shows the chosen spike and the corresponding histogram for a more
successfull case that was identified automatically. We can now see from the his-

31



3 From magnetotelluric time series to transfer function

Parameter name | explanation

diffthreshold Minimum first difference above which

a point is considered a spike

trailpoints Number of points before the identified spike

included in the template

decaypoints Number of points after the identified spike

included in the template

minspikeavg Minimum number of spikes needed for average so that
the average is used for substraction

corrthreshold | Minimum correlation between template and other spikes
for averaging and substraction

iterations Number of iterations of the algorithm,

at each iteration a new spike is selected

Table 3.4: Description of user-defined parameters for the direct template substrac-
tion algorithm

togram that large positive correlation values appear much more often than in the
case displayed in Figure B Particularly the comparison with negative corre-
lation values, where the distribution still falls off to zero quickly, confirms that
there is a large number of similar waveforms within the time-series. On the basis
of this observation we construct a simple algorithm to remove spikes from a time
series shown in Algorithm [0l There are a number of user-defined parameters that
determine which kind of shapes are considered spikes and how they are removed;
these are summarized in Table B4 The same algorithm is applied with identi-
cal parameters to both components of the electric field for simplicity, although it
would also be possible to use different parameters for each component. Applying
the algorithm to the magnetic field components introduces strong artifacts into
the time-series. As we can see from Figure Bl the characteristics of the cow-fence
noise are very different for the magnetic channels. Particularly there are now high
amplitude spikes that can be used to identify the disturbances and the signature
is generally much weaker. We therefore leave these channels unchanged to avoid
the introduction of artifacts.

As mentioned above, this algorithm is purely based on a phenomenological de-
scription of what is thought to be a cow fence spike, and the algorithm is the
bare minimum necessary to identify spikes and similar shapes in the time series.
Especially the minimum correlation threshold corrthreshold has to be set high
enough to avoid averaging and subtracting spike shapes that have little similarity.
This is also one of the differences to the similar iterative deconvolution algorithm
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Algorithm 1 Algorithm to remove spikes from one component

1: Read parameters
2: for iterations do
3: repeat
++1
until x(i) —x(i—1) > diffthreshold
Copy x(1 — trailpoints)...x(i + decaypoints) into s
Calculate cross-correlation ¢ of s and x
for all i do
if c(i) > corrthreshold then
10: Stack x(1i — trailpoints)...x(i + decaypoints) with s
11: end if
12: end for
13:  if Stack consists of more than minspikeavg spikes then

14: Normalize ¢, that maximum value is 1

15: Calculate cross-correlation c of stacked s and x

16: for all i do

17: if ¢(i) > corrthreshold then

18: Scale s to maximum amplitude of current window

10: Substract s from x(i — trailpoints)...x(i+ decaypoints)
20: end if

21: end for

22:  end if

23: end for

ﬂLdeIﬁ.a_alld_Ammﬂ, |l.9_9_d] that we will introduce in Chapter @ to calculate re-

ceiver functions in the presence of noise. The other main differences are that we
do not use the full time-series of another channel, but an averaged extract from
the same channel, and that we are not interested in the transfer function, but in
the modified time-series.

The performance of the algorithm on typical data from Ireland is shown in
Figure B9 The figure shows that a number of spikes is significantly reduced,
while some others remain unchanged. The reason for this is the high variability in
spike shape. The correlation threshold in this case was set to 0.9; a lower threshold
will remove more spikes from the time-series, but will introduce artifacts because
of mismatches between the spike shape and the time-series.

The introduction of artificial features into the time-series is a risk that is common
to all signal processing techniques, and is extremely difficult to assess because the
noise-free time-series is unknown. We will examine the impact of the minimum
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Figure 3.9: Comparison of original time series with time series after application
of the template substraction algorithm. The correlation threshold was set to 0.9
in this case.

correlation parameter corrthreshold by systematically varying it and comparing
the resulting time-series and spectra. The parameters for the various runs can be
found in Table and the resulting time-series in Figure E10

1 2 3
Spike height 10,000 | 10,000 | 10,000
Trail points 5 5 5
Decay points 20 20 20
Minimum correlation 0.95 0.9 0.8
Minimum samples 10 10 10
Iterations 50 50 50

Table 3.5: Parameters used to examine the performance of the template substrac-
tion algorithm

It is immediately obvious that the correlation threshold of 0.8 in the lowermost
plot of Figure is too low. A number of high amplitude spikes and downward
shifts have been added to the time-series. Some other spikes have been reduced in
amplitude and the remaining signal resembles natural variations, but the strong
artifacts make it unusable for any further processing. Both other time-series,
with correlation thresholds >0.9, do not show any obvious artifacts. As observed
before, some spikes remain unchanged while others seem to be removed. Carefull
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Figure 3.10: Comparison of original time series with time series after application
of the template substraction algorithm with different correlation thresholds. The
right graph is a magnified version of the upper three panels in the left graph to
show the differences after spike removal.

comparison of the two time-series, with correlation thresholds of 0.9 and 0.95
respectively, reveals some subtle differences where spikes have been removed. The
right panel of Figure shows these differences for a few spikes. From the time-
series plot alone it is impossible to decide which one is more representative of the
natural signal, but it appears that with a higher correlation threshold, the artifacts
are less severe.

The corresponding power-spectra provide an alternative view on the action of
the noise removal algorithm. Figure .11l shows the power-spectra that correspond
to the time-series in Figure B0 It is interesting to see that the maximum at
the base-frequency of 0.8 Hz remains virtually unchanged by all different runs,
only the high-frequency harmonics are reduced. The power spectra confirm the
conclusion that a correlation threshold of 0.8 is too low and introduces strong
artifacts. Throughout the whole frequency range the spectrum after spike removal
is 4 orders of magnitude higher than the original spectrum, and is essentially flat.
This indicates the presence of a number of high amplitude spikes whose frequency
response is a straight line. Again there are some subtle differences between the
other two spectra. In general the correlation threshold of 0.9 seems to remove
more power from the time series, but this is, by no means, an indicator that the
algorithm works better than with a higher correlation threshold.

Both the cleaned time-series and the corresponding spectra, for a correlation
threshold of 0.9, indicate that the algorithm works and does not introduce major
artifacts. We will therefore apply the algorithm to all frequency bands and process
the resulting time series to compare the impedance estimates with the original.
Due to the different sampling rates and the differing appearance of the cow-fence
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Figure 3.11: The spectra corresponding to the three processed time series in Figure
BI0 For comparison we plot the spectrum of the original time-series in red in
each plot as well.

spikes we have to adjust some of the parameters for the other bands. These
parameters are shown in Table

Finally we compare the impedance tensor estimates after applying the algorithm
with the parameters given in Table with the estimates from the unprocessed
time-series. The off-diagonal apparent resistivity and phase are plotted in Figure
BI2 It appears that the apparent resistivities are generally smoother for both
components, usually an indicator of better data quality, and in the critical band
of 0.1-1 s also lower. This is the effect of removing the high energy spikes from
the electric field recordings, which results in a smaller enumerator in equation
while the denominator remains constant. Still, there is considerable scatter in both
the apparent resistivity and phase estimates. Especially the Z,, estimates appear
to be too noisy to be used for any kind of interpretation. The Z,, estimates, on
the other hand, appear to be of reasonable quality, but it is difficult to assess
how much impact the cow-fence noise still has. At the end of this chapter we will
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Band 3 | Band 4 | Band 5
Spike height 100,000 | 10,000 5,000
Trail points 20 5 5
Decay points 200 20 5
Minimum correlation 0.9 0.9 0.9
Minimum samples 10 10 10
Iterations 50 50 50

Table 3.6: Parameters of the template substraction algorithm for the different
recording bands

compare the results from all noise removal methods to get an idea of the quality
of these estimates.

3.4 Linear adaptive filters

In contrast to static filters, adaptive filters can change their transfer function dur-
ing the filtering process. Usually the adaption is performed in order to minimize
a certain pre-defined criterion, for example the difference between the filter out-
put and a reference signal. Adaptive filters are now an integral part of modern
electronic devices, such as wireless network cards, mobile phones hearing aids and
much more [hdemﬂLeJ;_a]J, hﬂd, Mﬁdmu.n_d_smamﬂ, |19_85] A wide variety of
adaptive filtering algorithms exists each of which has certain advantages and dis-
advantages depending on the requirements , M] We will only deal with
fairly simple adaptive filtering algorithms which nevertheless have been proven to
be most useful in practice. Also these filters are usually implemented digitally, so
we will only be concerned with discretely sampled data.

3.4.1 The LMS adaptive filter

For a linear adaptive combiner the output of the filter y at time t; is the sum of
the input x weighted by the filter weights w,

y(ti) = WT(ti)X(ti) or shorter Yi = W;I—Xi, (317)

where w and x are both vector quantities. This is in contrast to non-linear filters,
like neural networks, that we will discuss below, where the filter output is a non-
linear function of this weighted sum. For x the vector property can be interpreted
in different ways: Each component of the vector represents one sample at a given
time from a different channel, each component represents a sample at different
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Figure 3.12: Off diagonal elements of the impedance tensor for site ISLE007. Black
symbols show estimates without pre-processing, red-symbols show estimates after
pre-processing with the template substraction algorithm.

times from the same channel, or a combination of both. A schematic overview of
a general adaptive filter can be found in Figure BI3 For the MT case we will
combine a number of samples from two remote magnetic channels to predict one
of the local electric or magnetic channels,

x; = {Hx(t1), ..., Hu(tion), Hy(ts), ..., Hy(tio) ). (3.18)

This approach was first proposed bylH_a_tJj_n.gH [|19_8_d] and proved to be the most suc-
cessfull in the absence of direct information about the noise. [|2_0_0ﬂ]
also used an LMS-adaptive filter to remove noise from sea-bottom magnetotelluric
recordings. In their case though the noise source, the tilt of the instruments from
wave motion, had been measured and could be used for removal.

In order to make the filter adaptive we have to define an error criterion e(t;)
that we want to minimize. This is usually the difference between the filter output
and a given reference signal d(t;),

e(t) = d(t) —y(t) = di — wix;, (3.19)
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Figure 3.13: Schematic overview of a linear adaptive filter.

which in our case is a sample from the local channel that we want to match.

We want to minimize this error in the least-mean-square sense. If we assume,
for now, that €;, d; and x; are all stationary, the expectation of the squared error
over time is given by

Ele?] = E[df] + w{ Elxix{lw — 2E[dix{ I w;. (3.20)

The square matrix E[x;x/] is the correlation matrix R of the input vector, and we
can define the vector P as

P = Eldi{] = {dixi, dixi1, - .., dixi 1}, (3.21)

i.e., the cross-correlation between the reference and the input signal. With these
definitions we can rewrite the mean-square-error ¢ in 320,

£ = Ele?] = E[d?] + w{Rw; — 2Pw;, (3.22)

and we can see that for a stationary signal the mean-square-error is a quadratic
function in w so it has a unique optimum solution w*, the so called Wziener
solution. We can find this solution by calculating the gradient of equation
with respect to w,

0§
— =2Rw —2P. 3.23
ow v ( )

At the optimum value w* the gradient is zero,

2Rw* —2P =0=w*=R'P. (3.24)
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This equation is the Wiener-Hopf equation. Notice that we assume here that the
inverse of the auto-correlation matrix R~ exists. This is not the case in general
and even when it exists, the direct inverse can be numerically unstable.

All adaptive filters we will be concerned with try to minimize the mean-square-
error; the difference lies in the way how the minimization is achieved. This is
a direct analogy to the inversion algorithms we will discuss in Chapter Bl and,
to some degree, the same algorithms are used. There are a number of impor-
tant differences though, that influence the implementation details and choice of
minimization method.

First, while in inversion we seek a model that explains the whole dataset, the
analogue to the input vector, in adaptive filtering we operate only on a limited
section of the data and the model (the weights of the filter) can vary with time.
The filtering process thus consists of two stages: 1) Convergence from the start-
ing weights to the optimum weights w*, and 2) tracking of the optimum weights
through time. Second, most filtering algorithms are intended for real time appli-
cations, which means that computational cost is a major concern and therefore
filtering routines tend to use more simple minimization methods than commonly
used in inversion.

The simplest possible adaptive filter is the least mean square or LMS-adaptive
filter. It is similar to the method of steepest decent, but with some special adap-
tions for signal processing applications. For a steepest decent type iteration we
follow the negative direction of gradient scaled by some stepsize ,

Wit] = Wi + LL(—VE,) (325)

A straightforward implementation of this algorithm would use finite differences
of short term averages of €7, an estimate for the expectation value, to obtain an
estimate of the gradient. For the LMS algorithm we use e? itself as an estimate of
the expectation value &;. Our estimated gradient is then

0e? 0e?
= Lo L 3.26
a€1'L a€i
= 2¢; , 3.27
€ {aW1 aWL} ( )
— e, (3.28)

Equation is equivalent to equation as we can see from
2Rw — 2P =2 (xx'w — dx) = 2x (x'w — d) = —2xe. (3.29)
Hence the filter weights are updated by

Wil = Wi + 2u€ixi. (330)

40



3 From magnetotelluric time series to transfer function

Comparison of time series Difference to noise-free signal
Simple test case LMS adaptive filter
T T T T T T 2 - . T T T
1
— Filter output I ‘ — Filter output |
— Original — Noise contaminated time series
— Noise free
8 3 . ‘ A ' |
El 5 ‘ MW‘ 1t e ‘J } |
= _ 2 of I ! IR E
| ! .H“H ‘ bkt b
< < H H
‘ ‘ L L1 ‘ : ‘ : ‘ :
1600 1620 1640 1660 1680 1700 1720 500 1000 1500 2000
Sample number Sample Number

Figure 3.14: Simple performance test for the LMS adaptive filter. The left panel
shows filter output (black), filter input (red) and the noise free signal (green).
On the right the difference to the noise free signal is plotted for the filter output
(black) and the original time-series (red). The filter length was N = 5 with a
stepsize = 0.005.

Usually all weights are initially set to zero. It would be possible to initialize them
with values based on an a-priori estimate of the relationship between input and
reference channels, but we will not consider these cases, but rely on the algorithm
to find the appropriate weights. The stepsize u has to be chosen by the user and is
critical for the algorithm’s performance. We will discuss the problem of choosing
u and a modified algorithm below.

We test the algorithm and its basic abilities with two simple harmonic signals
for input and reference:

xi = sin(27ti/N), di = 2cos(2mi/N) + rand(—0.5,0.5). (3.31)

Here rand(—0.5,0.5) denotes a random number in the interval [—0.5,0.5]. The re-
sults can be seen in Figure 314l The left hand panel shows that the original noise
contaminated reference time series (red) deviates from the noise free signal more
than the filter output. This impression is confirmed by plotting the difference
between the noise free signal and the reference time-series and filter output, re-
spectively. After an initial adaptation stage, the difference falls below the original
noise level and the filter output is a closer approximation to the noise free signal.
This is, of course, because noise and signal are uncorrelated and a stable transfer
function between input and noise free reference signal exists. As the adaptation
process continues the filter weights approach the transfer function and we recover
the noise free signal nearly perfectly.
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Algorithm 2 The normalized LMS algorithm

1: wo=20

2: for all time samples i do
3: Yi = Wg—Xi

4 ei=di —Yi

5 W= g

6:  Wip = Wi+ 2pHeixy

7. end for

When using the LMS adaptive filter, two choices have to be made that affect the
performance of