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Summary
This thesis falls into two separate parts that, although mathematially related, dealwith very di�erent problems in geophysial surveys. The �rst part is onernedwith improving the quality of magnetotelluri sounding urves that are a�etedby high-amplitude, non-stationary noise from eletri ow-fenes. We present anumber of di�erent methods that have been proposed in the literature and thatwe have developed and the ability of both to deal with this di�ult task. We�nd that LMS-adaptive �lters have a low omputational omplexity and produeresults that, at least for one polarization, have the properties of a regular soundingurve. For the other polarization, however, we do not ahieve any improvementwith any of the methods.In the seond, and main, part of the thesis we present a joint inversion algo-rithm for long-period magnetotelluri and reeiver funtion data. Our inversionapproah is based on a geneti algorithm for two reasons: The stohasti nature ofthe geneti algorithm avoids premature onvergene to a loal minimum, and fromthe inversion we obtain the trade-o� urve that displays the extent to whih theobjetive funtions ompete with eah other. Our tests with syntheti datasetsshow that the struture of the trade-o� urve an be used to assess the ompat-ibility of the seismi and eletri parts of the joint model. We explore di�erenttypes of regularization and outline strategies to �nd a representative model of thesubsurfae. Finally, we apply our joint inversion algorithm to data from the Slaveraton, where previous studies have postulated a orrelation between seismi on-versions and the loation of a ondutor in the upper mantle. Our joint inversionresults indiate that we an model this upper-mantle struture as a orrelatedseismi and eletri feature and that we obtain improved results for other moreminor strutures.
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The equation an+bn = cn has solutions in positive integers a,b,cand n only when n = 2 (and then there are in�nitely many triplets
a,b,c whih satisfy the equation); but there are no solutions for
n > 2. I have disovered a truly marvelous proof of this statement,whih, unfortunately, this margin is too small to ontain.P. de Fermat

1Introdution
Even with the great improvement of data quality and inversion methods in the last20 years, the resolution of geophysial data due to noise and �nite sampling limitsthe level of detail at whih we an image the subsurfae of the Earth. Currentlythere are two popular approahes to improve our understanding of the Earth'srust and mantle. The �rst possibility is to inrease the amount of measured dataof a ertain type, both in terms of overed area and site spaing, and model thesedata with three-dimensional odes. With this approah we an make sure that weget the maximum amount of information from the data, and avoid artifats fromspatial aliasing or simplifying assumptions. However, this does not irumventthe fundamental resolution of the hosen method. The alternative approah isto ombine di�erent datasets in the inversion proess and reate a joint model.With a well-hosen ombination of datasets we an hope to bene�t from di�erentsensitivities of eah set to improve the resulting model beyond a simple superpo-sition of the individual models [Vozo� and Jupp, 1975℄. One example of suh anapproah is the joint inversion of surfae waves and reeiver funtions [Julia et al.,2000℄. Surfae waves are sensitive to bulk seismi veloity, but do not have goodsensitivity to the position of interfaes. Reeiver funtions, in ontrast, primar-ily sense seismi interfaes, but only sense veloities to a smaller degree. In thisexample both datasets were sensitive to the same parameters, but we an evengo a step further and ombine datasets that are sensitive to di�erent parameters[Meju et al., 2003, Linde et al., 2006, Dal Moro and Pipan, 2007℄, and this is whatwe are attempting by ombining magnetotelluri (MT) and reeiver funtion (RF)data. 1



1 IntrodutionAt �rst the bene�t of suh an approah might not be lear. Magnetotelluridata senses the distribution of eletrial ondutivity, while reeiver funtion datasenses abrupt hanges in seismi veloity. In the Earth's rust and mantle hangesin these two parameters do not neessarily have to be spatially orrelated. In fata lot of the ondutive anomalies, the main targets of MT surveys, are attributedto minor onstituents of the rok matrix suh as graphite, sul�de, or �uids, whihwe annot expet to detet with seismi methods [Jones, 1992, Ji et al., 1996,Bahr et al., 2002℄. On the other hand there are a number of physial parametersthat a�et both eletrial ondutivity and seismi veloity, suh as tempera-ture and rok omposition. Furthermore we an expet that at major lithologialboundaries both parameters hange, and even where we have an eletrial anomalythat is aused by graphite, for example, we would think that the extent of thisgraphiti body is determined by tetoni proesses that, in turn, also govern theseismi struture of that area. Finally there have been observations of oinidenthanges in seismi veloity and eletrial ondutivity in the mantle below theSlave raton [Snyder et al., 2004℄ and this will also be the area where we applyour joint inversion approah. Furthermore the absene of orrelation an alsoprovide valuable information [Cook and Jones, 1995, Jones, 1998℄.For these reasons we an expet some strutural relationship between the seis-mi and eletri parts of our joint model, but we have to allow for strutures thatare only present in one model. We will pursue this issue further when we disussthe oupling of the individual models. Also we have to be prepared to �nd twofundamentally di�erent strutures for the seismi and eletrial models, in aseour parametrisation does not permit su�ient �exibility to jointly model bothdatasets. This is one of the motivations for our geneti algorithm approah andwe will disuss this issue in detail in our syntheti test examples. One we haveidenti�ed ommon interfaes and interfaes where the models do not allow oini-dent hanges, we an use this additional information to haraterise the strutureof the Earth and obtain insight into the geologial proesses that formed thesestrutures. Here our fous is on the methodology, though, and we will not disussthe impliations of our results.Although the fous of this thesis is on �Joint inversion of magnetotelluri andreeiver funtion data�, a onsiderable fration of the presentation and the workwe performed during the last three years is devoted to noise removal and signalproessing of magnetotelluri time-series. The reason for this dihotomy lies inthe poor quality of the data that we reorded at the beginning of this projet inIreland. The original idea of the magnetotelluri omponent of the Irish Litho-spheri Experiment (ISLE) [Landes et al., 2004℄, from here on alled ISLE-MT,was to augment eah ISLE seismi station with an MT site, and therefore re-2



1 Introdutionate ideal onditions for the joint inversion experiment. It quikly beame learthat at virtually all sites the high frequeny part of the magnetotelluri data isontaminated by high amplitude interferenes from eletri ow-fenes. At a fewsites even the long-period data are disturbed by ultural noise. This motivatesour attempts to remove these high amplitude disturbanes that resist all modernproessing algorithms.We have two hoies for the presentation of our results: From a mathematialpoint of view the two topis of adaptive time-series �ltering and inversion are sub-disiplines of the broader �eld of optimisation. In both ases we seek to minimisethe di�erene between a quantity alulated from the data and by some othermeans, e.g. a model, another time series or some other segment of the same timeseries. Therefore �ltering and inversion should be presented together in orderto understand the similarities and di�erenes between the two. From a pratialpoint of view �ltering aims at providing reliable estimates of the impedane tensor,while inversion produes models from this impedane tensor, but without askingwhere the estimates ome from. Usually signal proessing is the �rst step afterdata aquisition, while modelling and model appraisal are the very last steps anda number of other steps lie in between. A presentation that follows the time-line ofthe researher, from data aquisition to �nal model, better displays the motivationfor dealing with these issues and gives answers to questions when they arise.As a solution to this dilemma we will present the results in the order that theyappear in pratie. To satisfy partially those readers who seek to �nd the math-ematial onnetions, we will try to draw as many parallels as possible between�ltering and inversion, even if this means referring to a topi that will only bedisussed later. We will therefore start with a disussion of the basi priniples ofeletromagneti indution and its appliation to magnetotelluri soundings. Thisleads diretly to the question of how we alulate the impedane tensor elementsand the problemati nature of the ISLE-MT reordings. After haraterising theproblems we will present our attempts to solve the interferene issues with anumber of di�erent signal proessing tehniques. The �rst two hapters are self-ontained, and most of the issues disussed there will not reappear when we presentour joint inversion approah. Hene we will give a summary and disussion of thesignal proessing results at the end of Chapter 3.Before we disuss our joint inversion method, we present the basi theory forthe reeiver funtion data. Apart from the methodologial similarities betweeninversion and adaptive signal proessing, this, and the following hapters, formanother self-ontained unit. The disussion of the reeiver funtion method isfollowed by the presentation of the joint inversion algorithm. We will ontrasttraditional linearised methods with our geneti algorithm based approah and3



1 Introdutiondemonstrate the advantages of geneti algorithms for joint inversion. Through theexamination of some syntheti test problems we will highlight the apabilities andlimitations of joint inversion for MT and reeiver funtion data. The appliation ofthe algorithm to measured data from the Slave raton together with a disussionof the results and reommendations for further work onludes this part of thethesis.
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This harateristi of modern experiments - that they onsist prin-ipally of measurements - is so prominent, that the opinion seemsto have got abroad that in a few years all the great physial on-stants will have been approximately estimated, and the only o-upation whih will then be left to men of siene will be to arryon these measurements to another plae of deimals.James C. Maxwell
2The basi priniples ofmagnetotelluri indution

In this hapter we will desribe the steps required from reording the time-seriesin the �eld to obtaining the MT transfer funtion or impedane tensor that issubsequently used in analysis and modelling. We will start with a theoretial in-trodution that motivates the alulation of the MT impedanes and shows howthey are related to the properties of the Earth. This theoretial desription willbe limited to the one-dimensional ase for two reasons: First, the basi oneptsare more learly understood without the ompliated burden of a 2D or 3D treat-ment, and seond, for most of this thesis we will only be onerned with theassumption of one-dimensional struture within the Earth. This is, of ourse, agross oversimpli�ation and we will refer to urrent state of the art methods wereneessary.In order to lay the foundation for the analysis of measured data in Chapter 7, wewill �nish this hapter with a disussion of di�erent measures of eletromagnetidimensionality. These quantities an be alulated from the impedane tensor inorder to assess whether a 1D, 2D, or even 3D desription is most likely to beneeded in order to explain the observations.5



2 The basi priniples of magnetotelluri indution2.1 From Maxwell's equation to EM indutionThe behaviour of any eletromagneti �eld is desribed by Maxwell's equations,viz.,
∇× E = −

∂B

∂t
, (2.1)

∇× H = j +
∂D

∂t
, (2.2)

∇ · B = 0, (2.3)
∇ · D = q. (2.4)Here E is the eletri �eld in V/m, B the magneti indution in T , H is themagneti �eld strength in A/m, j is eletri urrent density in A/m2, D is theeletri displaement in C/m2 and q is the harge density in C/m3.To derive and solve the indution equation that forms the theoretial basis ofmagnetotelluris, we have to make a number of assumptions:1. All eletromagneti soures are outside the Earth and produe uniform plane-polarized eletromagneti waves. For a one-dimensional ondutivity dis-tribution inside the Earth Dmitriev and Berdihevsky [1979℄ showed that alinearly varying �eld also ful�ls the neessary onditions. These waves arriveat the Earth's surfae at a near vertial angle. This assumption is a arguablythe most important for magnetotelluris and ertainly its most problemati.Sine its publiation by Cagniard [1953℄ and Tikhonov [1950℄ its validity hasbeen disussed [Prie, 1962, Madden and Nelson, 1963℄. We will address thisproblem in more detail below.2. The Earth ats as an ohmi ondutor so that urrent density j and eletri�eld E are linearly related , through Ohm's Law, by the salar eletrialondutivity σ,

j = σE. (2.5)3. For Earth materials we an assume the onventional linear relationships be-tween D and E and B and H and for magnetotelluris we neglet hangesin eletrial permitivities ε and magneti permeabilities µ so that
B = µ0H and D = ε0E. (2.6)4. Displaement urrents ∂D/∂t are assumed to be negligible. Most magne-totelluri surveys use frequenies between 100,000 - 0.0001 Hz. Given typi-al resistivities of the Earth of 106 − 10−2 Ωm we an ompare the terms in6



2 The basi priniples of magnetotelluri indutionequation 2.2,
∂D/∂t

j
=

iωε0

σ
≈ 0.1 − 10−19. (2.7)For the highest frequenies in extremely resistive areas displaement urrentsare an order of magnitude smaller than the urrent density and we wouldstart to see some e�ets from these urrents. Typially both the measure-ment frequenies and the resistivities will be muh smaller and we will notsee any e�et.Under these assumptions the resulting equations are:

∇× E = −
∂B

∂t
, (2.8)

∇× B = µ0σE, (2.9)
∇ · B = 0, (2.10)
∇ · E =

q

ε0

. (2.11)We an transform these equations from the time domain into the frequeny do-main, and simplify the solution by replaing time derivatives with simple multi-pliations, i.e.,
−

∂B(t)

∂t

F
−→ −ıωB(ω), (2.12)for a �eld at frequeny ω.We an use the fat that ∇ · (∇× A) = 0 for any vetor �eld A. Applying thedivergene to equation 2.9 yields

µ0∇ · (σE) = µ0 (σ∇ · E + E∇σ) = 0. (2.13)From equation 2.11 then follows that
q

ε0

= −E
∇σ

σ
⇒

q

ε0

= −E∇ lnσ. (2.14)This results in modi�ed Maxwell's equations:
∇×E = −ıωB, (2.15)
∇×B = µ0σE, (2.16)
∇ · B = 0, (2.17)
∇ ·E = −E∇ lnσ. (2.18)7



2 The basi priniples of magnetotelluri indutionThese four equations an be ombined into two equations by taking the url of2.15 and 2.16
∇×∇× B = ∇(∇ · B) − ∇2B = µ0(σ∇× E − E ×∇σ), (2.19)
⇒ ∇2B = ıωµ0σB + µ0E ×∇σ, (2.20)

∇×∇×E = ∇(∇ · E) − ∇2E = −ıω∇×B, (2.21)
⇒ ∇2E = ıωµ0σE − ∇(E∇ lnσ). (2.22)Equations 2.20 and 2.22 desribe the magneti and eletri �elds under the as-sumptions above in their most general form. To explain the basi onepts ofmagnetotelluri we have to simplify the situation further by �rst assuming a ho-mogeneous halfspae.2.2 The homogeneous halfspaeFor a homogeneous halfspae the ondutivity is onstant σ0 inside the Earth andonsequently ∇ · σ = 0. Equations 2.20 and 2.22 then simplify to two unoupleddi�usion equations of the form,

∇2F = µ0σıωF with F = E,B, (2.23)with solutions,
F = F1 exp(ıωt − qz) + F2 exp(ıωt + qz) and q2 = µ0σıω. (2.24)As we assume that all soures are outside the Earth F2 = 0 for both the eletriand magneti �eld. For a uniform halfspae the eletromagneti �eld inside theEarth is desribed by

E = E0 exp(ıωt −
√

µ0σıωz), (2.25)
B = B0 exp(ıωt −

√
µ0σıωz). (2.26)Inserting the two solutions into equation 2.15 yields

∇×E =
∂Ex

∂z
= −

√
µ0σıωEx, (2.27)

= −ıωBy. (2.28)From this we an �nally derive the basi equation for MT in a uniform halfspae
C =

1

q
=

1√
µ0σıω

=
Ex

ıωBy

= −
Ey

ıωBx

. (2.29)8



2 The basi priniples of magnetotelluri indutionThe quantity C is know as the Shmuker-Weidelt transfer funtion [Weidelt,1972, Shmuker, 1973℄. It's diret onnetion to the di�erential equations makesit a usefull quantity in the theoretial examination of magnetotelluri problems.Equation 2.29 reveals that in this ase the resistivity of the halfspae an bealulated from the ratio of the orthogonal omponents of the eletri and magneti�elds at a given period. The realisation of this fat was the motivation for earlymagnetotelluri surveys,
ρ =

1

σ
= µ0ω|C|2. (2.30)In pratie instead of C the magnetotelluri impedane Z is used

Z =
Ex

Hy

=
µ0Ex

By

= ıωµ0C [Ω]. (2.31)or alternatively as
Z =

Ex

By

= ıωC [m/s]. (2.32)The two de�nitions are known as ��eld-units� and �SI-units� onventions, respe-tively. Before we turn to slightly more realisti Earth models and the behaviourof the magnetotelluri impedane in those ases, we return to the solutions of thedi�usion equations to look at the depth to whih the �elds penetrate. From 2.25and 2.26 we see that the real part of the solution deays exponentially with depth.The depth where the �eld strength is redued to 1/e is alled the skin-depth, p,given by
p =

√

2

µ0σω
[m]. (2.33)Although this equation is only exat for a homogeneous half-spae, it is oftenused to get a �rst idea of the penetration at a given frequeny even in moreomplex environments. However, depending on the geometry of the strutures,these estimates an be highly devious [Jones, 1983℄2.3 Layered half-spaeObviously the real Earth is far from being a homogeneous half-spae. A �rst steptoward a more realisti model is to allow for a number of layers of di�erent thik-nesses ti and ondutivities σi. To derive the expression for the magnetotelluritransfer funtion in this ase we loosely follow Simpson and Bahr [2005℄. Assum-ing N layers indexed n = 1 . . .N the solution of the di�usion equation 2.23 in eahlayer is still of the form 2.24, but now both terms do not vanish. For the eletri�eld we have both upward and downward travelling waves, viz.,

En
x = En

1 exp(ıωt − qnz) + En
2 exp(ıωt + qnz), qn =

√
µ0σnıω, (2.34)9



2 The basi priniples of magnetotelluri indutionexept in the lowermost half-spae, where the wave only travels downward.We an ombine the time varying exponential with the oe�ients En
1 and En

2 ,respetively, to a new set of oe�ients an and bn,
En

x = an exp(−qnz) + bn exp(+qnz). (2.35)From equation 2.15 follows for the magneti �eld
Bn

y =
qn

ıω
(an exp(−qnz) − bn exp(+qnz)) , (2.36)thus the transfer funtion Cn inside layer n is given by

Cn(z) =
En

x

ıωBn
y

=
an exp(−qnz) + bn exp(+qnz)

qn (an exp(−qnz) − bn exp(+qnz))
. (2.37)At the top of the layer z = zn−1 we have

Cn(zn−1) =
En

x

ıωBn
y

=
an exp(−qnzn−1) + bn exp(+qnzn−1)

qn (an exp(−qnzn−1) − bn exp(+qnzn−1))
, (2.38)and similar at the bottom z = zn

Cn(zn) =
En

x

ıωBn
y

=
an exp(−qnzn) + bn exp(+qnzn)

qn (an exp(−qnzn) − bn exp(+qnzn))
. (2.39)We an rewrite 2.39 as

an = bn

1 + qnCn(zn)

qnCn(zn) − 1
exp(2qnzn), (2.40)and insert the result into 2.38 to eliminate an and bn,

Cn(zn−1) =

1 + qnCn(zn)

qnCn(zn) − 1
exp(2qnzn) exp(−qnzn−1) + exp(qnzn−1)

qn

(

1 + qnCn(zn)

qnCn(zn) − 1
exp(2qnzn) exp(−qnzn−1) − exp(qnzn−1)

) ,

=

1 + qnCn(zn)

qnCn(zn) − 1
exp(qn(zn − zn−1)) + exp(−qn(zn − zn−1))

qn

(

1 + qnCn(zn)

qnCn(zn) − 1
exp(qn(zn − zn−1)) − exp(−qn(zn − zn−1))

) ,

=
(1 + qnCn) exp(qn(zn − zn−1)) + (qnCn − 1) exp(−qn(zn − zn−1))

qn ((1 + qnCn) exp(qn(zn − zn−1)) − (qnCn − 1) exp(−qn(zn − zn−1)))
,

=
1

qn

sinh (qn(zn − zn−1)) + qnCn osh (qn(zn − zn−1))osh (qn(zn − zn−1)) + qnCn sinh (qn(zn − zn−1))
,

=
1

qn

qnCn(zn) + tanh (qn(zn − zn−1))

1 + qnCn(zn) tanh (qn(zn − zn−1))
. (2.41)10



2 The basi priniples of magnetotelluri indutionBoth horizontal eletri and magneti �eld are ontinuous aross the layer bound-ary, hene their ratio has to be ontinuous as well and onsequently
Cn(zn) = Cn+1(zn). (2.42)Using the ontinuity requirement in 2.41 �nally results in the Wait reursionformula [Wait, 1954℄

Cn(zn−1) =
1

qn

qnCn+1(zn) + tanh (qn(zn − zn−1))

1 + qnCn+1(zn) tanh (qn(zn − zn−1))
. (2.43)This reursion formula an be used to alulate the transfer funtion at the topof a N-layer model. The lowermost layer is a half-spae with CN(zN) = 1/qN.This solution is then propagated through the remaining layers from bottom to topusing the reursion formula.For a layered half-spae no diret transformation between the transfer funtionor impedane and layer thikness and resistivities exists; this issue will be disussedin detail later. Equation 2.30, whih is exat in the ase of a homogeneous half-spae, is now replaed by an apparent resistivity, the resistivity of an equivalenthalf-spae, viz.,

ρa =
1

µ0ω
|Z(ω)|2 for Z in S.I. units. (2.44)In addition the impedane phase is another useful quantity

φ = tan−1

(

ℑ Z

ℜZ

)

. (2.45)In terms of the eletromagneti �elds it represents the phase-di�erene betweenthe magneti and eletri �eld. For a homogeneous half-spae
Z = (1 + ı)

√

ωµ0

2σ
⇒ φ = tan−1 1 =

π

4
. (2.46)Apparent resistivity and phase are an equivalent representation of the magnetotel-luri impedane and are usually used to display and interpret magnetotelluri databeause of their more intuitive physial relationship to the properties of the Earth.In a layered Earth and for the TM-mode in a two-dimensional environment, thesetwo quantities are interrelated through a Hilbert transformation [Weidelt, 1972,Weidelt and Kaikkonen, 1994, Berdihevsky, 1999℄ and hene do not provide inde-pendent information about Earth struture. [Cavaliere and Jones, 1984℄ showedthough that for real data the di�erent sensitivities of apparent resistivity andphase help to onstrain the ondutivity in the subsurfae.11



2 The basi priniples of magnetotelluri indution2.4 Two-dimensional struturesIf the ondutivity varies in the vertial and one horizontal diretion a singleimpedane that desribes the relationship of the eletri and magneti �eld nolonger exists. Instead two separate modes of the �elds have to be onsidered.From equations 2.15 and 2.16 we an see that for strutures aligned with the
x-diretion we get two unoupled sets of di�erential equations

∂Ex

∂y
= ıωBz, (2.47)

∂Ex

∂z
= ıωBy, and (2.48)

∂Bz

∂y
−

∂By

∂z
= µ0σEx, (2.49)is alled the transverse eletri (TE) mode or E-polarisation and ouples Ex with

Bz and By. Conversely,
∂Bx

∂y
= µ0σEy, (2.50)

−
∂Bx

∂z
= µ0σEy, and (2.51)

∂Ez

∂y
−

∂Ey

∂z
= ıωBx, (2.52)is alled the transverse magneti (TM) mode or B-polarisation and ouples Eyand Ez with Bx. Analyti solutions for the TM-mode for 2D strutures existonly in a few speial ases suh as two quarter-spaes or a dike. Hobbs [1975℄gives an overview of analytial solutions for eletromagneti indution [see alsoWeaver et al., 1985℄. For the TE-mode quasi-analytial solutions exist for somegeometries [Weaver et al., 1986℄. Despite the more ompliated nature of the prob-lem, the impedane in this ase is de�ned as a straightforward extension of theone-dimensional ase. We now have two impedane values,

Zxy =
µ0Ex

By

and Zyx =
µ0Ey

Bx

, (2.53)with orresponding apparent resistivities and phases.2.5 The 3D aseIn the most general ase, the eletri and magneti �elds are desribed by equations2.20 and 2.22. Partiularly, the orresponding eletri and magneti �elds are no12



2 The basi priniples of magnetotelluri indutionlonger orthogonal two eah other. Thus the onept of impedane is extended tothe magnetotelluri impedane tensor, that desribes the relation between the�elds
(

Ex

Ey

)

=

(

Zxx Zxy

Zyx Zyy

)(

Hx

Hy

)

. (2.54)Both the one-dimensional and two-dimensional ases an be regarded as speialases of the impedane tensor.
Zxx = Zyy = 0 Zxy = −Zyx in 1D (2.55)
Zxx = Zyy = 0 in 2D (2.56)when the x-axis is direted along the strike of the 2D struture. For this reasonall modern proessing algorithms estimate the full impedane tensor. Only in thesubsequent analysis di�erent riteria are used to lassify the eletrial strutureas 1D, 2D or 3D.2.6 Dimensionality and invariantsWe will now disuss some of the riteria used to lassify the dimensionality ofMT data. To date, most data from magnetotelluri surveys are interpreted interms of two-dimensional pro�les, assuming in�nite uniformity in the diretionperpendiular to the pro�le. In pratie, the length sale of strutures is oftenlarger in one diretion than the length sale of indution, but it is essential toquantify at whih frequenies and sites this assumption holds, and where it isviolated. Only then an we assess the reliability of models onstruted this way. Tothis end a large number of lassi�ation shemes have been onstruted to quantifythe dimensionality, and extrat the parts of the data appropriate for a hosenapproximation [e.g. Groom and Bailey, 1989, Bahr, 1991, Groom and Bahr, 1992,Weaver et al., 2000, Caldwell et al., 2004, Martí et al., 2005℄. We will onentratehere on indiators for one dimensional strutures that we will need later when wemodel real data.The most straightforward indiation for 1D Earth strutures near a measuredsite is diretly given by Equation 2.55. If this equation holds within data error, alayered Earth model an be assumed to be appropriate. One thing to bear in mindwith all lassi�ation shemes is that they all de�ne neessary, but not su�ient,onditions. Therefore, the violation of a lassi�ation ondition indiates thatthe hosen model is not appropriate, but the opposite does not prove its validity.This is a serious problem when modelling MT data, as one an never be ompletelysure whether the hosen approximation is orret. Without further informationhowever, we do not have any better riterion to guide our deision to model the13



2 The basi priniples of magnetotelluri indutiondata in a ertain way. The generally aepted paradigm is to use the simplestmodel appropriate. This is also known as Oam's razor.Even when the regional Earth struture an be adequately desribed by a planelayered model, we often observe violations of Equation 2.55. This violation isaused by galvani distortion due to small inhomogeneities in the viinity of themeasurement site [Groom and Bailey, 1989, Bahr, 1991, Singer, 1992℄. The e�etof these inhomogeneities an be desribed by multipliation of the impedanetensor with a frequeny independent, real-valued matrix
Zdist =

(

a11 a12

a21 a22

)

Z. (2.57)The ompliations that arise from this e�et, and the fat that the entries of thedistortion matrix a annot be uniquely determined [Bibby et al., 2005℄ are a longstanding problem for MT modelling and interpretation.Fortunately the multipliation with a real valued matrix does not hange thephase of the o�-diagonal elements, if the impedane tensor is in the form of Equa-tion 2.55. This enables us to use the information ontained in the phase in situ-ations where the magnitude of the impedane is a�eted by galvani distortion.We de�ne two measures of one-dimensionality:
Σ =

D2
1 + S2

2

|D2|
with D1 = Zxx − Zyy, D2 = Zxy − Zyx and S2 = Zxy + Zyx (2.58)is small when a layered Earth model without distortion is appropriate [Swift, 1967℄.In the presene of galvani distortion Σ an assume large values, as it is based onthe magnitude of the impedane elements. When Σ > 0.1, we use a rotationallyinvariant measure of the phase di�erene,

µ =

√

|[D1, S2]| + |[S1, D2]|

|D2|
(2.59)[Bahr, 1991℄. Here S2 = Zxy + Zyx, D1 = Zxx − Zyy and [·, ·] denotes the ommu-tator. If both κ and µ are signi�antly di�erent from zero, the data requires a 2Dor 3D model approah to be explained fully. Caldwell et al. [2004℄ point out thatwhen the enumerator of Equation 2.59 does not vanish, this dimensionality mea-sure is also a�eted by galvani distortion, as |D2| depends on the amplitude of theimpedane tensor elements. When we determine the dimensionality of measureddata, we therefore use a ombination of indiators as suggested by Martí et al.[2005℄.Even when the data requires a more omplex model, it an be instrutive toonstrut 1D models to get a �rst idea of the ondutivity distribution. The Wait14



2 The basi priniples of magnetotelluri indutionalgorithm only yields a single impedane value, as expeted for a 1D Earth, so wehave to ondense the four elements of the observed impedane tensor into a singlevalue that provides an appropriate approximation. Rotational invariants providea onvenient way to summarize the information in the impedane tensor withoutregard for the oordinate system of measurement. Two invariants are ommonlyused in modelling MT data: The arithmeti mean of the o�-diagonal elements
ZB =

Zxy − Zyx

2
, (2.60)also known as the Berdihevkiy invariant [Berdihevskiy and Dmitriev℄, and thedeterminant

ZD = ZxxZyy − ZxyZyx. (2.61)The determinant has the advantage that it ombines information from all 4 ele-ments of the impedane tensor, although modelling studies show that the di�er-ene between the two for pratial purposes is not signi�ant in one-dimensionalinversion [Park and Livelybrooks, 1989℄. Pedersen and Engels [2005℄ advoate theuse the determinant in two-dimensional inversion to inorporate information fromthe diagonal elements. In any ase are has to be taken in the interpretation ofresults from modelling these quantities. Near 3D inhomogeneities, where the 1Dapproximation breaks down, models of these invariants an ontain arti�ial re-sistors or ondutors [Park and Livelybrooks, 1989℄. Therefore a areful analysisof the data is needed before modelling it.
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�. . . You know, that might be the answer�to at boastfully aboutsomething we ought to be ashamed of. That's a trik that neverseems to fail.��Do you think it will work?��I'm sure it will. And let's promote him to aptain, too, just tomake ertain.� Joseph Heller, Cath 22
3From magnetotelluri time seriesto transfer funtion

3.1 Proessing magnetotelluri data, a shortoverviewAs outlined in Setion 2.1, in theory the transfer funtion between the horizontaleletri and magneti �elds depends only on the ondutivity distribution of theEarth. In an ideal situation the alulation of the transfer funtion from simulta-neous reordings of the eletri and magneti �eld is simple and straightforward.1. Frationalize the reording in segments of equal length, the length of thesegments depends on the longest period needed.2. Multiply eah segment with a suitable window funtion, e.g., the Hammingwindow, to avoid spetral leakage.3. Fourier transform eah segment.4. Calulate the auto- and ross spetra for eah segment.5. Calulate the mean and the error from the various spetral estimates.6. Calulate the resulting transfer funtion and its error.To illustrate the basi priniples, we will desribe the most basi approah toimpedane tensor estimation in some detail, before we disuss more advanedmethods. 16



3 From magnetotelluri time series to transfer funtion3.1.1 The anatomy of modern proessing algorithmsAs the impedane tensor is de�ned in the frequeny domain, the �rst step is toobtain spetra for the reorded �elds. A number of methods exist to estimate thespetrum of a time series. The most basi spetral estimate is the periodogram,the mean of the Fourier transform of di�erent segments of the time-series,
S(ωi) =

N/L−1∑

j=0

(j+1)·L−1∑

l=j·L

xl exp(−ıωil) i = 1 . . . L − 1. (3.1)It is easy to implement and omputationally fast, but su�ers from spetral biasproblems beause the segmentation of the time series is equivalent to multiplia-tion with a boxar funtion. The result in the frequeny domain is onvolutionwith a sin funtion, and has numerous side-lobes that ause spetral leakage.This situation an be improved by applying a window funtion before alulatingthe Fourier transform,
S(ωi) =

N/L−1∑

j=0

(j+1)·L−1∑

l=j·L

xlw(l) exp(−ıωil) i = 1 . . . L − 1. (3.2)The indutive nature of magnetotelluri soundings makes spetral resolution oftena minor issue and the hoie of spetral window is usually not ritial. Popu-lar hoies are the Hann window and the Hamming window. When the time-series is ontaminated with noise that is onentrated in spetral lines, the hoieof spetral estimation method an make a notieable di�erene. In these asesmultitaper spetral analysis [Thomson, 1982℄ an produe more aurate results.The simple windowing funtions are replaed by speially designed orthogonaltaper funtions that optimize spetral leakage and variane. Multitaper analy-sis is used in the bounded-in�uene remote referene (birrp) proessing ode byChave and Thomson [2004℄.In order to estimate the impedane tensor omponents we have to solve two bi-linear regression problems. Eah row of the impedane tensor relates two magneti�eld omponents Bx and By to one eletri �eld omponent through two unknownlinear oe�ients,
Ex = ZxxHx + ZxyHy, and (3.3)
Ey = ZyxHx + ZyyHy. (3.4)This seemingly straightforward problem has a lot of di�ult and subtle problemsto it, and the results depend on the hosen solution of these aspets. Obviouslyevery physial measurement is a�eted by some sort of noise, so we have to estimate17



3 From magnetotelluri time series to transfer funtionerrors for Zxx and Zxy and the plane desribed by them will not go exatly throughall measured points. The �rst proedures to estimate the impedane were basedon the idea of minimizing the distane of all points to the plane in the least-squaressense [Sims et al., 1971℄. More modern algorithms based on robustmethods will bedesribed below. While least-squares estimation is mathematially unompliated,another problemati point remains. It is not possible to inorporate independenterror estimates for the eletri and magneti �eld omponents, but only a singleerror estimate an be used. In most ases the magneti �eld is assumed to benoise free and all disturbanes onentrated in the eletri �eld. This assumptionis justi�ed by the observation that in general eletrial �eld reordings are muhmore noisy than magneti �elds.Under these assumptions the impedane tensor estimates an be alulated fromthe mean ross and auto spetra of the eletromagneti �elds. For Zxy one possi-bility is
Zxy =

HxH⋆
x ExH⋆

y − HxH⋆
y ExH⋆

x

HxH⋆
x HyH⋆

y − HxH⋆
y HyH⋆

x

, (3.5)others are given by Sims et al. [1971℄. The expressions for the other elements aresimilar. This partiular form is hosen beause it is not biased by random noiseon the eletri hannels, but only by random noise on the magneti hannels. Asmentioned earlier, the magneti hannels are usually less a�eted by noise and theestimates from this formula are onsidered more reliable. When magneti noise ispresent the estimator in equation 3.5 will result in a downward biased impedane.Other forms represent mixed bias or upward bias [Jones, 1980℄.In pratie a number of issues make this simple approah unsuitable for reliableestimation. A number of possible problems during the reording an strongly biasthe output of suh a simple proessing sheme. These inlude� Non-uniform natural �elds that violate the plane-wave assumption, theseour mostly in high latitudes or during strong solar ativity [Mareshal,1986, Osipova et al., 1989, Jones and Spratt, 2002℄,� Cultural noise from various eletromagneti soures suh as pipelines, eletritrains, power lines et.,� Temporary sensor problems or saturation of the AD-onverter input, and� Disturbanes by humans or animals moving in the viinity of the instrument.The simplest way to remove the in�uene of problemati segments of the reordingis manual editing of the time series. Segments that are onsidered unsuitable areexluded from further proessing by visual inspetion. However this approah is18



3 From magnetotelluri time series to transfer funtiontime onsuming and problemati segments an be impossible to identify. Further-more preoneived ideas about the expeted transfer funtion an in�uene thedeision to inlude ertain segments or not. A number of measures within theproessing sequene itself aim at avoiding the arbitrariness of manual seletion,while at the same time identifying problemati setions.Coherene thresholding/ weighting: Under ideal irumstanes the oherenebetween the magneti and eletri �elds should be ≈ 1. A low ohereneindiates problems in one of the hannels and the orresponding segment iseither ompletely exluded or its in�uene is redued in the �nal alulationof the mean [Jones and Jödike, 1984℄.Remote referene: When several instruments are reording at the same time, thereorded magneti �eld at another site an be used to improve the transferfuntion estimates. Under the plane wave assumption the magneti �eldshould be equal at any reording site in a purely layered Earth and varyoherently in the more general ase. In pratie the horizontal wavelengthof the soure is muh larger than the indution sale length. For long-perioddata stations up to several hundred kilometres away are usually suitable as aremote referene site. If the noise in the magneti �eld at the remote site isorthogonal to the noise at the loal site, unbiased estimates an be obtained[Gamble et al., 1979a,b℄, in ontrast to the downward biased estimates forsingle site proessing.Robust estimates: The mean as a statistial measure an be strongly in�uenedby a small number of events that fall far from the mean of all other esti-mates and thus violate the assumption of a Gaussian distribution of theresiduals. These events, also known as outliers, then bias the �nal re-sult. By down-weighting or exluding suh outliers the estimation proe-dure an be made more robust, i.e. less in�uened by spurious estimates[e.g. Egbert and Booker, 1986, Chave and Thomson, 1989℄.Leverage points: Simple least-squares estimation methods an be strongly in�u-ened by a single data-point with an amplitude that is muh larger than theaverage. These leverage points an pose problems even for robust methodsif they do not fall su�iently far from the mean, but still bias the result.New bounded-in�uene methods try to identify and redue the in�uene ofsuh leverage points [Chave and Thomson, 2003℄.Some or all of these methods are inluded in modern MT proessing odes andthey an greatly improve transfer funtion estimates ompared to the simple pro-essing sheme presented earlier. Still, some situations exist where even these19



3 From magnetotelluri time series to transfer funtion
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HyFigure 3.1: Reording of eletri and magneti hannels from a undisturbed site(ISLE101) and a ontaminated site (ISLE007). The high amplitude spikes in theeletri �eld at site ISLE007 are aused by eletri ow fenes.sophistiated methods fail to yield estimates of transfer funtions representativeof the ondutivity distribution in the Earth. Coherene between the eletri andmagneti �elds is not always a reliable measure of data quality. Partiularly ul-tural noise soures, suh as DC railways or ow-fenes, an produe signals thatshow high ohereny, but violate the assumptions made in MT proessing [Szarka,1988, Qian and Pedersen, 1991, Padua et al., 2002℄. In some ases these signals areso strong that they a�et neighbouring sites making them unsuitable as remotereferene sites. Also, when ultural noise is not just a temporary phenomenonbut persists throughout the entire reording, robust methods break down. Thesemethods rely on the fat that the majority of estimates is not strongly biased. Ifthe majority of the estimates should be termed outliers, robust methods will usethese as the �data� and disard the rarer reliable estimates.3.1.2 The limit of urrent proessing algorithmsThe problems of available proessing odes are dramatially illustrated by some ofthe high frequeny data olleted during the �rst phase of the ISLE-MT projet.At most sites the high-frequeny hannels are strongly a�eted by noise fromow fenes on the farms surrounding the reording site. The eletromagnetisignal generated by the ow fenes poses a partiularly di�ult problem for anyproessing algorithm. First, the noise usually ontinues throughout the wholetime-series, making it di�ult to distinguish "good" from "bad" segments. Thenoise is quasi-periodi, but both the shape of the signal as well as the frequeny20



3 From magnetotelluri time series to transfer funtion
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Figure 3.2: Spetra of Ex (top) and Hy (bottom) hannels from sites ISLE007(blak) and ISLE101 (red). Site ISLE007 is severely ontaminated by ow fenenoise whereas ISLE101 is the least disturbed site in the survey area. The dis-turbed sites does not only show a high amplitude base frequeny at 1.5 Hz andits harmonis, but is generally higher in amplitude.hanges with time. In some ases the power of the noise is also muh higher thanthe power of the signal.Figure 3.1 shows a omparison of a reasonably good site with suh a problematisite. Both eletrial omponents in the right hand panel show strong spiky signals.While there seems to be a ertain repeatability, it an be learly seen that thesignal is far from being periodi. The magneti hannels seem to be una�etedby the ow fene noise, but lose inspetion shows that they also ontain, to amuh lesser degree, traes of the ow fene signal. In omparison the lean signalin the left hand panel does not ontain suh high amplitude spikes in the eletrihannels. In addition the magneti signal seems muh smoother, with a learsinusoidal omponent that is typial for natural signals.The impression from the time-series is emphasized by the orresponding spetrain Figure 3.2. The spetrum of the north-south eletri hannel at site ISLE007 ismore than three orders of magnitude higher than at site ISLE101. It is theoretiallypossible that this di�erene is due to a muh higher subsurfae resistivity. Giventhat this would require a fator of 106 higher resistivities, makes this possibilityhighly unlikely though. The strong amplitude osillations at 1.5 Hz and its har-monis reveal, that this e�et is aused by the spikes observed in the time-series.Also the natural Shumann resonanes [Shumann, 1954℄ at 7.8 Hz and 13.9 Hzan be learly seen in the eletri spetrum of site ISLE101, but are ompletelyabsent at site ISLE007. 21



3 From magnetotelluri time series to transfer funtion
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Figure 3.3: Transfer funtion estimates for site ISLE007 alulated with sev-eral popular proessing odes. From left to right: Robust remote referene byJones and Jödike [1984℄, same ode but with manually seleted spetra, bounded-in�uene ode by Chave and Thomson [2004℄.The magneti spetra are relatively similar at both sites. Close omparisonshows though that there is an osillatory omponent similar to the eletri spe-trum in the magneti spetrum of site ISLE007. This indiates that the magnetihannels are a�eted by the ow-fene spikes as well.Figure 3.3 ompares the estimated o�-diagonal impedane tensor elements forthe ontaminated site ISLE007 using three di�erent popular approahes. The twoleft hand panels were both obtained using the same robust remote referene ode[Jones and Jödike, 1984, Jones et al., 1989, method 6℄. The di�erene betweenthe two plots is that for the middle panel individual impedane estimates wereplotted as a funtion of time and estimates that were onsidered better were se-leted manually. The �gure on the right was produed using birrp whih inludesprotetion against leverage points [Chave and Thomson, 2004℄. The �rst thing tonote is that all three methods produe di�erent results at high frequenies. Al-though the general shape of the urves, partiularly apparent resistivity, is similar,the absolute values at high frequenies di�er up to an order of magnitude and muhmore than the error estimates suggest. The high apparent resistivities that sharplyrise and then fall o� abruptly, together with low phases in the left hand panel areindiative of a grounded dipole in the viinity of the station [Qian and Pedersen,1991℄. There is also large satter of values for adjaent frequenies. For an indu-tive method like MT, both apparent resistivity and phase should vary smoothly22



3 From magnetotelluri time series to transfer funtionwith frequeny. Also the theoretial relationships between apparent resistivity andphase an be used to hek the data for internal onsisteny [Sutarno and Vozo�,1991, Parker and Booker, 1996℄.The smoothness of the apparent resistivity values as an indiator of data qualitywas used as a guideline in the manual seletion proess that produed the middlepanel in Figure 3.3. Individual estimates have been seleted to produe a smoothapparent resistivity urve. While the apparent resistivities onsequently appearto be of better quality, the satter between adjaent phase values reveals that thispart of the sounding urve is still problemati. Finally for the birrp proesseddata, the apparent resistivities are muh lower than for both other proessingmethods and appear to be generally more smooth than in the left hand panel.The phase estimates on the other hand satter wildly between 0 and 90° and havelarge errors assoiated with them. While this visually appears to be the worstsounding urve, the large error bars at high frequenies at least signal that thispart is problemati. To the untrained eye, a sounding urve like in the middlepanel might seem of su�ient quality, but in essene the high frequeny part ofany of them annot be used for interpretation or modelling. Only at periods
>50 s, where the urves of all di�erent proessing shemes agree, the data appearto be reliable. These limitations of all proessing odes available to date motivatethe attempt to pre-proess the data in the time domain before feeding it into theusual proessing odes. We will present a number of signal proessing methodsand their appliation to the data in the following setions.3.1.3 The ISLE-MT reordingsBefore we an disuss signal proessing methods and their appliation to MT datawe have to look at some of the details of how the data were reorded during theISLE-MT projet. At eah site we installed two di�erent instruments that sharedthe eletrodes to measure the eletri �elds, but used di�erent magneti sensors.LIMS instruments, borrowed from the Geologial Survey of Canada, reorded witha sampling rate of 5 s and used a three-omponent ring-ore �uxgate magnetome-ter to reord the time varying magneti �eld [Narod and Bennest, 1990℄. Theseinstruments reorded for 2 weeks to 2 months, depending on loation, to obtainreliable estimates of the long period transfer funtions. Due to their low samplingrate these reordings seem to be una�eted by the ow fenes and data quality isgenerally high.To obtain information about the shallow struture, Phoenix MTU-5A broad-band instruments were also installed at eah site for 2-3 days. They use magnetioils to reord the time derivative of the magneti �eld and ompute the highfrequeny transfer funtions. Nearly all broad-band reordings are a�eted by ow23



3 From magnetotelluri time series to transfer funtionfene noise to some degree, and only at two sites ould we obtain high-frequenyimpedane-tensor estimates that we regard as reliable. In ontrast to the LIMSinstruments, the broad-band instruments do not reord with a single samplingrate, but in three di�erent bands with di�erent reording lengths for eah band.The parameters for eah band are shown in Table 3.1Band Sample rate [Hz℄ Segment length [s℄ Gap [s℄ Total length [hrs℄3 2400 2 158 104 150 16 144 105 15 ontinuous 48-72Table 3.1: Reording parameters for the di�erent bands of the Phoenix MTU-5Abroad-band MT reording unit.These bands are then proessed separately, and the results are ombined into asingle sounding urve. For the standard Phoenix proessing software SSMT2000the relationship between reording bands and frequeny range of the impedanetensor are shown in Table 3.2.Band Frequeny range [Hz℄3 352�354 35�55 5�0.009Table 3.2: Standard proessing frequenies for eah band of the Phoenix MTU-5Abroad-band MT reording unit.In the following setion we will mainly apply the methods to the time-seriesreorded in band 4, as the impedane estimates from this band seem to be mostproblemati. If we an suessfully use the method in this band we will ontinueto apply it to the other band to test whether we an produe a reliable soundingurve for the whole frequeny range.3.2 Filter TheoryThe term �lter by itself is not well-de�ned. It is used in signal proessing todenote a proess that modi�es some input signal and yields an output signal. Inmost ases, �lters are assoiated with mathematial onvolution as most �lters24



3 From magnetotelluri time series to transfer funtion
x(t) f(t) y(t)Figure 3.4: Blok diagram of a general �lter.used in pratial appliations an be desribed as a onvolution between the �lterimpulse response f(t) and the input x(t),
y(t) =

∫∞

−∞
f(τ)x(t − τ)dτ = f(t) ∗ x(t), (3.6)or, for disrete and �nite length data,

y(ti) =

N∑

j=0

f(tj)x(ti−j). (3.7)It is often onvenient and more intuitive to desribe the �lter in the frequenydomain by its transfer funtion. This is beause onvolution in the time domainis replaed by element-wise multipliation in the frequeny domain,
x(t) ∗ y(t)

F←→ x(ω) · y(ω). (3.8)The impedane tensor an be thought of as a �lter that ats on the magneti �eldto produe the eletri �eld and that is why the term magnetotelluri transferfuntion is often used equivalently.In signal proessing appliations a �lter is often used to give the input signalertain properties, for example anti-alias �lters that any digital reording instru-ment has to apply before digitizing to avoid artifats from frequenies higher thanthe Nyquist frequeny, given by
fN =

1

2∆t
, (3.9)where ∆t is the sampling rate. Anti-alias �lters are analogue low-pass �lters, buta similar step an our digitally to down-sample the AD-onverter output to thedesired sampling rate. Filters an also be used to shape the input signal in thesense that the �lter output should resemble some desired referene signal. We willdisuss this later when we desribe adaptive �lters.From Equation 3.8 it is lear that the appliation of any �lter to a hannel of anMT reording will hange the spetrum of that hannel. We have to distinguishtwo di�erent ases of spetral distortion: 1) Removing the ow fene spike willobviously alter the spetrum and this hange is desired, 2) In addition the �lter25



3 From magnetotelluri time series to transfer funtionMethod Channels Time dependene LinearityDelay Single statiTemplate Substration Single adaptiveLMS Multi adaptive linearRLS Multi adaptive linearNeural Network Multi adaptive non-linearTable 3.3: Filters disussed in the following setions and their propertiesresults in some overall distortion of the spetrum that has nothing to do with theow fene spikes but is an inherent property of the �lter. Returning to equation3.5 we see that the impedane tensor elements are alulated from ratios of auto-and ross-spetra. The overall spetral distortion therefore anels out as long asit is idential for all hannels of the time-series. For stati �lters, like the delay-�lter that we will disuss below, this is easy to ahieve. In ontrast, for the morepowerfull adaptive �lters the �lter transfer funtion depends on the data and thise�et an beome problemati.The �lters we will use to remove the ow fene noise an be lassi�ed in anumber of ways. The simplest �lters work on a single reorded hannel at atime without using any information from other, simultaneously reorded, hannels.In ontrast multi-hannel �lters utilize expeted relationships between di�erentreording hannels to distinguish noise from signal. The �lters an also be stati,i.e., their �lter funtion remains onstant for the whole time series, or adaptive,i.e., adjust to hanging signal harateristis. Finally multi-hannel �lters an beategorized as linear or non-linear. Linear, multi-hannel �lters assume that the�lter output is a linear ombination of the input; we will disuss linear adaptive�lters in partiular. Non-linear �lters, neural networks for example, an modelmore ompliated relationships. Table 3.3 gives an overview over the �lters wewill disuss and their properties3.3 Single hannel methodsThe simplest example of single-hannel stati �lters are high-pass, low-pass orband-pass �lters. High-pass and low-pass �lters are unsuitable for noise an-ellation in MT time series. They simply redue the amplitude of all spetralestimates above or below a spei�ed frequeny, whih is equivalent to disardingthe impedane tensor estimates at those frequenies. This is sometimes neessaryif all attempts to anel the noise are unsuessful but an be more easily and26



3 From magnetotelluri time series to transfer funtionmore e�iently ahieved by seleting estimates that are onsidered reliable afterproessing.On the other hand, band-pass �ltering an be useful under ertain irum-stanes. If the noise is onentrated in a reasonably narrow frequeny band, aband-pass �lter an down-weight the spetra in that band and avoid leakage ofthe spetral estimates into neighbouring frequenies. Due to the indutive natureof magnetotelluri soundings, adjaent ross- and auto-spetra are not indepen-dent. Most proessing odes use this to inrease the number of estimates for agiven output frequeny by averaging over a window of frequenies around the en-tral output frequeny. If any of these frequenies are a�eted by noise, the �naloutput will be so as well. Band-pass �ltering an irumvent this problem, and isroutinely undertaken to remove the in�uene of the 50 Hz eletromagneti signalassoiated with household eletriity or the 16.3 Hz signal of AC powered railways.This is possible beause, in most ountries, the frequeny is stable over long timeand distane and the shape of the signal is sinusoidal, resulting in ontaminationat a very narrow range of frequenies. In ontrast, the aforementioned ow-fenespikes ontaminate the MT reording over a muh broader range of frequeniesand also at higher harmonis of the base frequeny, as we already observed inFigure 3.2.3.3.1 Delay FilterOne type of �lter that anels signals at a base frequeny and its harmonis isthe Delay-Filter [Shnegg and Fisher, 1980, Junge, 1996℄. Its implementation isvery simple: A opy of the time-series is time shifted and subtrated from theoriginal. To preserve power we multiply the result with a normalizing fator,
y(t) =

1√
2

(x(t) − x(t − t0)) . (3.10)In the frequeny domain the result is
F {y(t)} =

1√
2
F {x(t) − x(t + t0)}, (3.11)

=
1√
2

(F {x(t)} − exp (ıωt0)F {x(t)}) , (3.12)
=

1√
2

(1 − exp(ıωt0))F {x(t)}. (3.13)Hene the transfer funtion of the �lter is
f(ω) =

1√
2

(1 − exp(ıωt0)) , (3.14)27
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Figure 3.6: O� diagonal elements of the impedane tensor for site ISLE007. Blaksymbols show original estimates, red-symbols show estimates after applying adelay �lter.minima in the original spetrum, and some strong spikes in the spetrum areleft undisturbed or are even ampli�ed. Likely explanations are that the signalis not exatly repetitive and that the higher frequeny signature is not an exatinteger multiple of the base frequeny. This an be due to the o-ation of severalfenes with slightly di�erent frequenies, or simply a variations in the mehanialmehanism that produes the spikes. Several attempts with di�erent shifts t0 forthe �lter, and a asaded appliation with di�erent shifts at eah step did notresult in any signi�ant improvement.Figure 3.6 shows, that the delay �lter does not signi�antly improve the im-pedane estimates. Around the base frequeny of 1 Hz the satter in the xy-omponent apparent resistivities is slightly redued, but for the most part theestimates remain the same as before. For the yx-omponent the estimates havehanged as well, but they satter in a similar manner as before, and it is notpossible to deide whih of the results ould be termed better. The phases ofboth omponents have not hanged signi�antly, apart from an outlier in the xy-omponent. This suggests that a delay �lter is unsuitable to remove the ow-fene29
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Figure 3.7: Histogram of normalized ross-orrelation between a template spikeand the time series (left) and the orresponding spike form (right) for a spike thatis not representative of the ow fene spikes. The inset graph in the left hand�gure shows a magni�ation of the 0.8 . . . 1 range.noise from the data.3.3.2 Diret Template SubstrationApart from simple �ltering operations with well ontrolled behaviour in the timeand frequeny domain, we will also try a rather ad-ho method to substrat theundesired signal from the time series. The �rst method that might ome into mindis to identify a �typial spike signature� by visual inspetion or some automatedmethod, identify setions of the time-series where this template spike mathes andsubstrat it. If the shape of the spike remains approximately similar throughoutthe time series, perhaps with some amplitude variations, whih are easy to orretfor, this appears to be a reasonable approah. We will show the suesses andproblems of this approah in the ase of ow fene noise in this setion.To identify segments of the time-series xi that math our template spike si weuse the normalized ross-orrelation ci given by
ci =

∑
j sjxj+i

√∑
j x

2
j

∑
j s

2
j

, (3.16)between the two.The possible values of ci are in the range ±1. An absolute value lose to unityindiates a highly similar segment of the time-series, while values around 0 indiatedissimilar shapes in the time-series and the template spike. The histogram of ross-orrelation values shown in Figure 3.7 illustrates the problem of this approah30
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3 From magnetotelluri time series to transfer funtionParameter name explanation
diffthreshold Minimum �rst di�erene above whiha point is onsidered a spike
trailpoints Number of points before the identi�ed spikeinluded in the template
decaypoints Number of points after the identi�ed spikeinluded in the template
minspikeavg Minimum number of spikes needed for average so thatthe average is used for substration
corrthreshold Minimum orrelation between template and other spikesfor averaging and substration
iterations Number of iterations of the algorithm,at eah iteration a new spike is seletedTable 3.4: Desription of user-de�ned parameters for the diret template substra-tion algorithmtogram that large positive orrelation values appear muh more often than in thease displayed in Figure 3.7. Partiularly the omparison with negative orre-lation values, where the distribution still falls o� to zero quikly, on�rms thatthere is a large number of similar waveforms within the time-series. On the basisof this observation we onstrut a simple algorithm to remove spikes from a timeseries shown in Algorithm 1. There are a number of user-de�ned parameters thatdetermine whih kind of shapes are onsidered spikes and how they are removed;these are summarized in Table 3.4. The same algorithm is applied with identi-al parameters to both omponents of the eletri �eld for simpliity, although itwould also be possible to use di�erent parameters for eah omponent. Applyingthe algorithm to the magneti �eld omponents introdues strong artifats intothe time-series. As we an see from Figure 3.1 the harateristis of the ow-fenenoise are very di�erent for the magneti hannels. Partiularly there are now highamplitude spikes that an be used to identify the disturbanes and the signatureis generally muh weaker. We therefore leave these hannels unhanged to avoidthe introdution of artifats.As mentioned above, this algorithm is purely based on a phenomenologial de-sription of what is thought to be a ow fene spike, and the algorithm is thebare minimum neessary to identify spikes and similar shapes in the time series.Espeially the minimum orrelation threshold corrthreshold has to be set highenough to avoid averaging and subtrating spike shapes that have little similarity.This is also one of the di�erenes to the similar iterative deonvolution algorithm32



3 From magnetotelluri time series to transfer funtionAlgorithm 1 Algorithm to remove spikes from one omponent1: Read parameters2: for iterations do3: repeat4: + + i5: until x(i) − x(i − 1) > diffthreshold6: Copy x(i − trailpoints) . . . x(i + decaypoints) into s7: Calulate ross-orrelation c of s and x8: for all i do9: if c(i) > corrthreshold then10: Stak x(i − trailpoints) . . . x(i + decaypoints) with s11: end if12: end for13: if Stak onsists of more than minspikeavg spikes then14: Normalize c, that maximum value is 115: Calulate ross-orrelation c of staked s and x16: for all i do17: if c(i) > corrthreshold then18: Sale s to maximum amplitude of urrent window19: Substrat s from x(i − trailpoints) . . . x(i + decaypoints)20: end if21: end for22: end if23: end for[Ligorria and Ammon, 1999℄ that we will introdue in Chapter 4 to alulate re-eiver funtions in the presene of noise. The other main di�erenes are that wedo not use the full time-series of another hannel, but an averaged extrat fromthe same hannel, and that we are not interested in the transfer funtion, but inthe modi�ed time-series.The performane of the algorithm on typial data from Ireland is shown inFigure 3.9. The �gure shows that a number of spikes is signi�antly redued,while some others remain unhanged. The reason for this is the high variability inspike shape. The orrelation threshold in this ase was set to 0.9; a lower thresholdwill remove more spikes from the time-series, but will introdue artifats beauseof mismathes between the spike shape and the time-series.The introdution of arti�ial features into the time-series is a risk that is ommonto all signal proessing tehniques, and is extremely di�ult to assess beause thenoise-free time-series is unknown. We will examine the impat of the minimum33
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Figure 3.9: Comparison of original time series with time series after appliationof the template substration algorithm. The orrelation threshold was set to 0.9in this ase.orrelation parameter corrthreshold by systematially varying it and omparingthe resulting time-series and spetra. The parameters for the various runs an befound in Table 3.5 and the resulting time-series in Figure 3.10.1 2 3Spike height 10,000 10,000 10,000Trail points 5 5 5Deay points 20 20 20Minimum orrelation 0.95 0.9 0.8Minimum samples 10 10 10Iterations 50 50 50Table 3.5: Parameters used to examine the performane of the template substra-tion algorithmIt is immediately obvious that the orrelation threshold of 0.8 in the lowermostplot of Figure 3.10 is too low. A number of high amplitude spikes and downwardshifts have been added to the time-series. Some other spikes have been redued inamplitude and the remaining signal resembles natural variations, but the strongartifats make it unusable for any further proessing. Both other time-series,with orrelation thresholds >0.9, do not show any obvious artifats. As observedbefore, some spikes remain unhanged while others seem to be removed. Carefull34
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3 From magnetotelluri time series to transfer funtionBand 3 Band 4 Band 5Spike height 100,000 10,000 5,000Trail points 20 5 5Deay points 200 20 5Minimum orrelation 0.9 0.9 0.9Minimum samples 10 10 10Iterations 50 50 50Table 3.6: Parameters of the template substration algorithm for the di�erentreording bandsompare the results from all noise removal methods to get an idea of the qualityof these estimates.3.4 Linear adaptive �ltersIn ontrast to stati �lters, adaptive �lters an hange their transfer funtion dur-ing the �ltering proess. Usually the adaption is performed in order to minimizea ertain pre-de�ned riterion, for example the di�erene between the �lter out-put and a referene signal. Adaptive �lters are now an integral part of moderneletroni devies, suh as wireless network ards, mobile phones hearing aids andmuh more [Widrow et al., 1975, Widrow and Stearns, 1985℄. A wide variety ofadaptive �ltering algorithms exists eah of whih has ertain advantages and dis-advantages depending on the requirements [Haykin, 2002℄. We will only deal withfairly simple adaptive �ltering algorithms whih nevertheless have been proven tobe most useful in pratie. Also these �lters are usually implemented digitally, sowe will only be onerned with disretely sampled data.3.4.1 The LMS adaptive �lterFor a linear adaptive ombiner the output of the �lter y at time ti is the sum ofthe input x weighted by the �lter weights w,
y(ti) = wT(ti)x(ti) or shorter yi = wT

i xi, (3.17)where w and x are both vetor quantities. This is in ontrast to non-linear �lters,like neural networks, that we will disuss below, where the �lter output is a non-linear funtion of this weighted sum. For x the vetor property an be interpretedin di�erent ways: Eah omponent of the vetor represents one sample at a giventime from a di�erent hannel, eah omponent represents a sample at di�erent37
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Figure 3.12: O� diagonal elements of the impedane tensor for site ISLE007. Blaksymbols show estimates without pre-proessing, red-symbols show estimates afterpre-proessing with the template substration algorithm.times from the same hannel, or a ombination of both. A shemati overview ofa general adaptive �lter an be found in Figure 3.13. For the MT ase we willombine a number of samples from two remote magneti hannels to predit oneof the loal eletri or magneti hannels,
xi = {Hx(ti), . . . , Hx(ti−L), Hy(ti), . . . , Hy(ti−L)} . (3.18)This approah was �rst proposed by Hattingh [1989℄ and proved to be the most su-essfull in the absene of diret information about the noise. Lezaeta et al. [2005℄also used an LMS-adaptive �lter to remove noise from sea-bottom magnetotellurireordings. In their ase though the noise soure, the tilt of the instruments fromwave motion, had been measured and ould be used for removal.In order to make the �lter adaptive we have to de�ne an error riterion ǫ(ti)that we want to minimize. This is usually the di�erene between the �lter outputand a given referene signal d(ti),

ǫ(ti) = d(ti) − y(ti) = di − wT
i xi, (3.19)38
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Figure 3.13: Shemati overview of a linear adaptive �lter.whih in our ase is a sample from the loal hannel that we want to math.We want to minimize this error in the least-mean-square sense. If we assume,for now, that ǫi, di and xi are all stationary, the expetation of the squared errorover time is given by
E[ǫ2

i] = E[d2
i ] + wT

i E[xix
T
i ]w − 2E[dix

T
i ]wi. (3.20)The square matrix E[xix

T
i ] is the orrelation matrix R of the input vetor, and wean de�ne the vetor P as

P = E[dix
T
i ] = {dixi, dixi−1, . . . , dixi−L}

T
, (3.21)i.e., the ross-orrelation between the referene and the input signal. With thesede�nitions we an rewrite the mean-square-error ξ in 3.20,

ξ = E[ǫ2
i ] = E[d2

i ] + wT
i Rwi − 2Pwi, (3.22)and we an see that for a stationary signal the mean-square-error is a quadratifuntion in w so it has a unique optimum solution w⋆, the so alled Wienersolution. We an �nd this solution by alulating the gradient of equation 3.22with respet to w,

∂ξ

∂w
= 2Rw − 2P. (3.23)At the optimum value w⋆ the gradient is zero,

2Rw⋆ − 2P = 0⇒ w⋆ = R−1P. (3.24)39



3 From magnetotelluri time series to transfer funtionThis equation is the Wiener-Hopf equation. Notie that we assume here that theinverse of the auto-orrelation matrix R−1 exists. This is not the ase in generaland even when it exists, the diret inverse an be numerially unstable.All adaptive �lters we will be onerned with try to minimize the mean-square-error; the di�erene lies in the way how the minimization is ahieved. This isa diret analogy to the inversion algorithms we will disuss in Chapter 5 and,to some degree, the same algorithms are used. There are a number of impor-tant di�erenes though, that in�uene the implementation details and hoie ofminimization method.First, while in inversion we seek a model that explains the whole dataset, theanalogue to the input vetor, in adaptive �ltering we operate only on a limitedsetion of the data and the model (the weights of the �lter) an vary with time.The �ltering proess thus onsists of two stages: 1) Convergene from the start-ing weights to the optimum weights w⋆, and 2) traking of the optimum weightsthrough time. Seond, most �ltering algorithms are intended for real time appli-ations, whih means that omputational ost is a major onern and therefore�ltering routines tend to use more simple minimization methods than ommonlyused in inversion.The simplest possible adaptive �lter is the least mean square or LMS-adaptive�lter. It is similar to the method of steepest deent, but with some speial adap-tions for signal proessing appliations. For a steepest deent type iteration wefollow the negative diretion of gradient saled by some stepsize µ,
wi+1 = wi + µ(−∇ξ). (3.25)A straightforward implementation of this algorithm would use �nite di�erenesof short term averages of ǫ2

i , an estimate for the expetation value, to obtain anestimate of the gradient. For the LMS algorithm we use ǫ2
i itself as an estimate ofthe expetation value ξi. Our estimated gradient is then

∇ξ =

{
∂ǫ2

i

∂w1

, . . . ,
∂ǫ2

i

∂wL

}
, (3.26)

= 2ǫi

{
∂ǫi

∂w1

, . . . ,
∂ǫi

∂wL

}
, (3.27)

= −2ǫixi. (3.28)Equation 3.28 is equivalent to equation 3.23 as we an see from
2Rw − 2P = 2

(

xxTw − dx
)

= 2x
(

xTw − d
)

= −2xǫ. (3.29)Hene the �lter weights are updated by
wi+1 = wi + 2µǫixi. (3.30)40
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Figure 3.14: Simple performane test for the LMS adaptive �lter. The left panelshows �lter output (blak), �lter input (red) and the noise free signal (green).On the right the di�erene to the noise free signal is plotted for the �lter output(blak) and the original time-series (red). The �lter length was N = 5 with astepsize µ = 0.005.Usually all weights are initially set to zero. It would be possible to initialize themwith values based on an a-priori estimate of the relationship between input andreferene hannels, but we will not onsider these ases, but rely on the algorithmto �nd the appropriate weights. The stepsize µ has to be hosen by the user and isritial for the algorithm's performane. We will disuss the problem of hoosing
µ and a modi�ed algorithm below.We test the algorithm and its basi abilities with two simple harmoni signalsfor input and referene:

xi = sin(2πi/N), di = 2 os(2πi/N) + rand(−0.5, 0.5). (3.31)Here rand(−0.5, 0.5) denotes a random number in the interval [−0.5, 0.5]. The re-sults an be seen in Figure 3.14. The left hand panel shows that the original noiseontaminated referene time series (red) deviates from the noise free signal morethan the �lter output. This impression is on�rmed by plotting the di�erenebetween the noise free signal and the referene time-series and �lter output, re-spetively. After an initial adaptation stage, the di�erene falls below the originalnoise level and the �lter output is a loser approximation to the noise free signal.This is, of ourse, beause noise and signal are unorrelated and a stable transferfuntion between input and noise free referene signal exists. As the adaptationproess ontinues the �lter weights approah the transfer funtion and we reoverthe noise free signal nearly perfetly. 41



3 From magnetotelluri time series to transfer funtionAlgorithm 2 The normalized LMS algorithm1: w0 = 02: for all time samples i do3: yi = wT
i xi4: ǫi = di − yi5: µi = ~µ

δ+‖xi‖26: wi+1 = wi + 2µǫixi7: end forWhen using the LMS adaptive �lter, two hoies have to be made that a�et theperformane of the �lter. The number of �lter weights, N, determines to whihlevel of detail the �lter an model the transfer funtion, or if thought of in thefrequeny domain, the spetral resolution of the �lter. This parameter has to behosen by trial and error and we will use long �lters with N > 100 to deal withthe spetral spikes in the ontaminated eletri �eld.The seond ritial parameter is the hoie of the stepsize, µ. If the step sizeis too small, the �lter will not adapt fast enough and the �lter output will notrepresent the desired signal. On the other hand, if the step size is too large theproess will beome unstable. In this ase the orretions applied in eah step ofthe algorithm are too large and subsequent attempts to orret this error resultin even larger maladjustment. The optimum stepsize is di�ult to hose a priori;it depends on the �lter length, the input power and the error signal power. Onesolution to, at least, narrow the range of aeptable values for µ is to use theNormalized LMS Algorithm [Haykin, 2002℄. The step size µ is replaed by theadaptation onstant ~µ that relates to the step size through,
µ =

~µ
δ + ‖xi‖2

. (3.32)The small onstant δ avoids numerial problems with the divisor when ‖xi‖2 ≪ 1.In ontrast to the step size, whih has dimensions of inverse power, the adaptationonstant is dimensionless, removing at least the need to estimate the signal power.Note also that now the step size hanges during the adaptation proess. Duringsegments of high input power, a small step size is used to avoid divergene, whereasduring segments of low input power the step size beomes larger to failitate rapidonvergene. The omputational steps for the LMS adaptive �lter are summarizedin Algorithm 2 42



3 From magnetotelluri time series to transfer funtion3.4.2 Applying a LMS �lter to MT dataBefore we an apply the LMS-adaptive �lter to the MT time-series we have to per-form one step of additional preproessing. As Figure 3.2 shows, the spetrum ofthe magneti hannel, in partiular, has a onsiderable overall slope. This is prob-lemati beause for a spetrum like this, the adaptation proess will largely fouson reproduing this slope and not the variations we are interested in. The proessof �attening the spetrum is known as whitening. In our ase this an be ahievedfairly easily by taking the �rst di�erene of the data. This an approximation forthe �rst derivative and we an see from
F {x ′(t)} = ıωF {x(t)} (3.33)that this e�etively ats as a high-pass �lter subtrating a linear trend from thespetrum. At the same time it solves the problem that the individual reordingsegments in reording Bands 3 and 4 have a varying non-zero mean. When thispre-proessing has been performed on all hannels we an apply the adaptive �lterto the data.As mentioned above we �lter a segment of the remote magneti �eld to produean improved version of one of the loal hannels, whih we use as a referene.We shift the referene hannel so that the urrent sample of the referene hannelorresponds to a sample in the entre of the input segments. This allows the�lter transfer funtion to model both positive and negative phase relationshipsbetween the input and referene hannels. Finally, we will perform two �lteringruns for eah omponent. During the �rst run the �lter an onverge to theoptimum value, a proess that an take a onsiderable fration of the reordinglength. After reahing the end of the reording we start again from the beginningwith the �lter weights from the previous run. We therefore avoid problems inthe subsequent impedane estimation stage, where we would have to disard thesegment of the time-series where the algorithm has not onverged yet. With oursetup we an utilize the omplete time-series as the algorithm only has to trakthe minimum during the seond iteration.Figure 3.15 ompares a segment from the ontaminated Ex omponent beforeand after �ltering. We an see that most of the high energy variations have beenremoved. During times that appear to be ontaminated by ow fene noise the�lter output is an order of magnitude lower than the original signal, but approahesthe reorded time series during quieter segments that seem to be undisturbed.The orresponding power-spetra in Figure 3.16 show that, in general, the adap-tive �lter redues signal-power signi�antly. This an be expeted though beause,regardless of the estimation method used, the high power ow-fene signal will pro-due spetral leakage, and even the estimates that appear to be between the spikes43
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3 From magnetotelluri time series to transfer funtionAnother issue that appears in analogy to inversion methods is regularization.We defer an extended disussion to Chapter 5 and only state here that we modifythe minimization riterion to inlude the norm of the weight vetor. The LMSerror funtion only depends on the mis�t at the urrent iteration. In ontrast theRLS error funtion utilizes information from the previous iterations and inludesa regularization term. The new error funtion E at time step i is then
Ei =

i∑

n=1

λi−n |ǫ2
n| + δ λi‖wi‖. (3.34)We an see that the error at the urrent iteration is the sum of errors fromprevious iterations weighted by the fator λi−n plus a weighted regularizationterm. λ lies in the interval 0 < λ ≤ 1 and ontrols how fast previous values of

ǫ are forgotten and for how long the regularization term is applied. For λ = 0the formula simpli�es to the error funtion for the LMS �lter and for λ = 1 theerrors from all iterations ontribute equally. In pratie λ is usually hosen slightlyless than unity, to utilize the information from previous times on the one hand,but emphasize the urrent �lter error on the other hand. In term of the adaptivebehaviour of the algorithm the forgetting fator λ plays a similar role to the step-size µ of the LMS-algorithm. δ, the other user de�ned parameter in the algorithm,is equivalent to the Lagrangian Multiplier in regularized inversion and is usuallysmall for �ltering. Note also that the regularization term dereases with eahtime-step i. The regularization is only applied during the initial phase, where itis most ritial.Algorithm 3 The reursive-least-squares (RLS) algorithm1: w0 = 02: P0 = δ−1I3: for all time samples i do4: πi = Pi−1xi5: ki = πi

λ+xT
i

πi6: ǫi = di − wT
i−1 xi7: wi = wi−1 + kiǫi8: Pi = λ−1 Pi−1 − λ−1 ki x

T
i Pi−19: end forA detailed derivation of the RLS-algorithm is given in Haykin [2002℄. We willfous here on the pratial aspets; the neessary omputations are summarizedin Algorithm 3.Before we disuss more pratial issues it is instrutive to make the link toNewton-style optimization algorithms more expliit. Combining lines 4, 5 and 750
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Figure 3.21: Analogue illustration to Figure 3.14 for the RLS-�lter. We only plotthe di�erene to the noise free signal (right hand panel in Figure 3.14) as it showsthe di�erene to the LMS-�lter more learly.of the algorithm we obtain
wi = wi−1 + kiξi = wi−1 +

1

λ + xT
i πi

Pi−1xiǫi. (3.35)The term xiǫi is a saled version of the gradient (see equation 3.23), so we anidentify the matrix Pi−1 with the inverse of the Hessian in a Newton-type opti-mization algorithm (see equation 5.15). Thus, we an expet similar advantagesin onversion rate over a steepest desent type algorithm, like the LMS algorithmdesribed above. This improved performane omes at the ost of muh higheromputational omplexity. Whereas for the LMS algorithm we only had to up-date a vetor of length n at eah step, where n is the �lter length, for the RLSalgorithm we now need to update an n × n matrix. The omputational omplex-ity is therefore O(n2) for the RLS algorithm ompared with O(n) for the LMSalgorithm. For example, for a �lter length n = 50 applying an LMS-�lter to atypial ISLE-MT reording of 500,000 samples takes about 2 minutes, omparedwith more than two hours for an RLS-�lter.We perform the same basi funtionality test with the RLS algorithm as for theLMS algorithm, and apply it to a simple sinusoidal signal with added noise. Theresult an be seen in Figure 3.21. The di�erene between the �lter output and thenoise free signal approahes zero in only a few iterations. The predition error ofthe LMS algorithm only reahes the noise level at about 700 iteration (see Figure51
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3 From magnetotelluri time series to transfer funtionFor a �lterlength of n = 500 the high omputational ost only allowed us toproess the Band 4 time-series. A single step of the algorithm takes 0.2 s on a1.6 Ghz Pentium4M using the highly optimized ATLAS linear algebra pakage[Whaley et al., 2001℄. For the 500,000 samples of the Band 4 reordings the re-sulting run time is 1.2 days per omponent. We tried to run the omputationsfor the other two bands on the DIAS owned LEDA luster and a luster of theSHARCNET onsortium [SHARCNET℄. In both ases interruptions in the opera-tion of the luster prevented ompletion of the �ltering proess a number of timesand after one month we gave up.In omparison to the LMS algorithm, the variation with �lterlength is quitedi�erent. While the spetra of the �ltered time-series showed substantial variationwith power for the LMS-algorithm, the RLS-�ltered results show very similarsignal power, partiularly at high frequenies. All spetral plots for the RLS-�lterresemble the spetrum after �ltering with an LMS-�lter with n = 10 and we donot reah the spetral power of site ISLE101 as we did for the longer LMS-�lters.There are several possible explanations for this phenomenon: The agreement ofpower-spetra for the RLS-�lters with di�erent lengths might indiate that thisis the true power spetrum at site ISLE007 with the ow-fene noise removed.Alternatively the short LMS-�lter and the RLS-�lter might fail to ompletelyremove the ow-fene noise, or the LMS �lter results a higher overall redution inpower for all hannels.Figure 3.23 shows a omparison between the original and �ltered Ex-omponentfor a LMS-�lter with n = 500 and a RLS-�lter with n = 50. We also plot themagneti input hannels that were used to generate the �ltered versions of theeletri hannel. The �rst thing to note is the strongly dereased amplitude forthe eletri omponent that we observed before and also saw in the orrespondingspetra. Even though the original eletri �eld is plotted with a sale of twiethe range of the �ltered ounterparts, the time-series lips the plotting area for asubstantial part of the plotted time. The overall appearane of the two �lteredtime-series is very similar, but, as also previously observed, the amplitude of theRLS-�ltered time-series is generally higher than the LMS-�ltered omponent. Wean now also identify segments in the remote magneti hannels that have similarshape to the �ltered eletri hannels. This an of ourse be expeted, beausethe �ltered eletri hannels were produed from the magneti hannels.As before with the LMS-�lters, we will now proeed and look at the results ofproessing the �ltered time-series. Figure 3.24 shows the omparison of proessedresults between the original data and data after �ltering with the RLS algorithm.In essene the results are very similar to the results with the LMS-adaptive �lter.We obtain lower apparent resistivity values for both omponents and for the Zxy53
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Figure 3.24: O� diagonal elements of the impedane tensor for site ISLE007. Blaksymbols show original estimates, red-symbols show estimates after appliation ofa RLS-�lter with n = 50.RLS-type �lters to the data. Figure 3.25 shows a omparison between the pro-essed and original estimates as before. The impedane estimate after �ltering areomparable with the estimates after applying a LMS-�lter of the same length. Forboth polarizations the phase appears to be marginally more smooth, but the ap-parent resistivities, on this plotting sale, seem to be idential. Due to the limitedrange of estimates from the proessed time-series, it is di�ult to judge whetherthis method provides any improvement over the LMS-�lters.3.5 Neural networks for �lteringLinear adaptive �lters assume that the �lter output is a linear ombination of theinput values. As explained above this assumption is reasonable for magnetotel-luri data where the �lter weights then model the transfer funtions between thedi�erent hannels. Still, the question remains whether this kind of model and theorresponding algorithms provide optimum performane in the presene of high55



3 From magnetotelluri time series to transfer funtion

0.01 0.1 1 10
Period [s]

0

15

30

45

60

75

90

 P
ha

se
 

0.01 0.1 1 10
100

1000

10000

ρ a 
 [

Ω
m

]

Original
Filtered

Zxy apparent resistivity and phase

0.01 0.1 1 10
Period [s]

0

15

30

45

60

75

90

0.01 0.1 1 10

100

1000

Original
Filtered

Zyx apparent resistivity and phase
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neti =

N∑

j=1

wijxi + bi (3.36)is used as input into the salar ativation funtion. A number of hoies existfor this funtion, the typial sigmoidal neuron uses the logisti funtion as anativation funtion
ϕ(neti) =

1

1 + exp(−neti)
. (3.37)This funtion only assumes positive values, for all input values and is thereforealled unipolar. We need a bipolar ativation funtion, that an also yield negativevalues and hoose

ϕ(neti) = tanh(1

2
neti

) (3.38)for the �ltering.The individual neurons an now be ombined into networks of di�erent topology,depending on the appliation. We will use a setup known as foused time-laggedfeedforward network, a speial ase of a multilayer pereptron, shown in Figure3.27. The term feedforward refers to the fat that the signal only propagates inthe forward diretion, from left to right in Figure 3.27, without any feedbak. It isalled fous time-lagged beause time is aounted for in the tapped delay line on57
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Figure 3.27: Setup of a foused time-lagged feedforward network with two hiddenlayers for prediting the loal eletri �eld from the magneti �eld of a remotesite. Eah irle orresponds to a neuron as shown in Figure 3.26.the input side [Haykin, 2002℄. Other possibilities to inlude time in the learningproess exist, but we will not onsider them here.The alulation of the output signal and adaptation of weights is very similarto the LMS-adaptive �lter on whih the neurons are based, only that we have toaount for the non-linear ativation funtion and the propagation through thehidden layers. For a network with M layers, the output of neuron i in layer l isgiven by
xl

i = ϕ

(

N∑

p=1

wl
ipxl−1

p + bl
i

) with l = 1, . . . , M, (3.39)where N is the number of neurons in the previous layer that this neuron is on-neted to.Again we alulate the error signal, the di�erene between the network outputand the referene signal, but we an now have a number of referene hannels
ei(n) = di(n) − yi(n). (3.40)We use this error to adjust the weights and bias in a steepest desend fashion,now starting at the output layer and propagating the orretions bakwards. This58
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Figure 3.28: Simple performane test for a neural network with one hidden layer.adaption algorithm is therefore known as the bakpropagation algorithm,
wl

ij(n + 1) = wl
ij(n) + µxj(n)δl

i(n), (3.41)
bl

i(n + 1) = bl
i(n) + µδl

i(n), (3.42)and
δl

i(n) =






ϕ ′
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netl
i

)

[di(n) − yi(n)] l = M

ϕ ′
(

netl
i

) ∑
k wkiδ

l+1
k (n) 1 ≤ l < M

. (3.43)For the bipolar ativation funtion that we use for our �ltering
ϕ ′
(

netl
i

)

=
1

2 osh (netl
i

)2
. (3.44)These equations fully speify the evolution of weights and output and we an nowperform our standard performane test that we used to test all adaptive algorithms.We have to make one modi�ation though, as the output of the neural networklies in the range (−1, 1). We therefore sale the problem and modify the referenesignal to

di = 0.5 os(2πi/N) + rand(−0.2, 0.2). (3.45)The results an be found in Figure 3.28.We an see that it takes a little more than 1,000 samples before the �lter out-put reahes the noise-level of the ontaminated time-series, omparable with theadaptation time of the LMS-�lter, as both are based on steepest desent type al-gorithms. The shape of the envelope of the �lter error is very di�erent though.The LMS-�lter ahieves the best improvement in the �rst few iterations (see Fig-ure 3.14), while the maximum error for the neural network stays roughly onstant59
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Figure 3.33: Comparison of the estimated apparent resistivities and phases for the
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3 From magnetotelluri time series to transfer funtion�lter does not reate estimates that have apparent resistivities and phases thatobey a Hilbert transform relationship. Together with the high satter betweenadjaent values, and the out of quadrant phase, this demonstrates that in theform we applied the neural network it is not suitable to remove the noise. Weonly tested a small fration of the possibilities of neural networks and it is highlylikely that better on�gurations exist that ahieve the same results as the othermethods, or even better. Within our limited experimentation we were not able to�nd suh a on�guration.The output from the template substration algorithm also does not ful�l theHilbert transform relation. At short periods the estimated apparent resistivitiesare higher than expeted from the Sutarno predition. The general shape, however,is similar. Both the LMS-�lter and the RLS-�lter produe onsistent results. Fromthe plot of the RLS results, where we have a mix of original and �ltered data, wean see that in this ase the Sutarno preditions bridge the gap between the reliableoriginal results and the �ltered results by following the overall shape of the phase.For the LMS-�lter we see onsistent results with only minor satter for periods
<5 s.From this perspetive the LMS and RLS results seem to be of similar quality.The di�erene between the apparent resistivity and phase estimates from the twomethods is onsistently larger than their estimated error. We remarked before thatthe error in both ases seem to be greatly underestimated. Using the di�erenebetween the two �ltered results as a guideline a representative error is ±5° inphase and ±300 Ωm, or 20%, in apparent resistivity. These numbers are alsoonsistent with the error estimates of the unproessed impedanes.As we do not know the true impedane values for the ontaminated site it is im-possible to de�nitively say whether the �ltered estimates are more representative ofthe subsurfae. The quality indiators used, the smoothness of adjaent estimatesand ompliane with a Hilbert transform, indiate that for the Zxy omponentthey at least have the harateristis of regular MT data. For this omponentthe LMS and RLS adaptive �lters perform best and both equally well, so thatthe additional omputational omplexity of the RLS algorithm seems unjusti�ed.The lak of improvement for the Zyx omponent demonstrates that LMS-adaptive�lters are not a panaea, and that the output has to be examined ritially beforeusing it to make inferenes about the ondutivity of the Earth.
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The �rst priniple is that you must not fool yourself and you arethe easiest person to fool Rihard P. Feynman
4Reeiver funtions

4.1 Wave propagation in a one dimensional EarthFor the same reasons as before with the theory of magnetotelluris we will onlydisuss one-dimensional wave-propagation and reeiver funtion analysis. First,the underlying priniples are more easily understood, and seond, the inversionapproah we will desribe later is based on a one-dimensional approximation ofEarth struture. Furthermore we will not derive all equations from �rst priniples,as we did for the one-dimensional impedane for MT, but only brie�y sketh themost important steps. More details an be found in any textbook on seismology[e.g., Lay and Wallae, 1995℄.The basi soure of energy for all teleseismi methods, suh as reeiver funtions,are earthquakes that regularly our in tetonially ative regions around theworld. Stress aumulates in ollision zones between di�erent plates, or in someases even within one plate, and when this stress exeeds the strength of thematerial, a rupture initiates and propagates along the earthquake fault. The shokwave reated by the rupture travels through the Earth and along the surfae andthe aeleration reated by this wave is measured by seismometers around theworld. In the proess of travelling through materials with di�erent propagationveloities and densities, the initial waveform is sattered and distorted, and theinformation ontained in these distortions is then used to obtain information aboutthe Earth's struture. 66



4 Reeiver funtionsThe general equation for a wave travelling through the Earth is
∇
[

(λ + 2µ)∇2φ − ρ
∂2φ

∂t2

]

+ ∇×
[

µ∇2Ψ − ρ
∂2Ψ

∂t2

]

= 0 (4.1)Where φ is a url-free salar potential, Ψ a divergene-free vetor potential, µis the shear modulus, λ Lamé's seond onstant and ρ density. Unfortunatelytwo material parameters that we will be onerned with, eletrial resistivity anddensity, are ommonly represented by ρ in mathematial equations. Instead ofintroduing an arbitrary new variable for one of the parameters, we will simplyuse ρ for either of them where the ontext is lear and ρel for eletrial resistivitywhere there is potential for onfusion.A possible solution to equation 4.1 is to set eah term to zero independently,and we an simplify the expressions further by setting
α =

√

λ + 2µ

ρ
, (4.2)

β =

√

µ

ρ
. (4.3)With this we an write

∇2φ −
1

α2

∂2φ

∂t
= 0, (4.4)

∇2Ψ −
1

β2

∂2Ψ

∂t
= 0. (4.5)Equation 4.4 desribes the propagation of ompressional waves through the Earth,while Equation 4.5 desribes the propagation of shear waves. α and β are thepropagation veloities for the two wave types, respetively. Comparing Equations4.2 and 4.3 we an see that ompressional waves always travel faster than shearwaves. For this reason, the ommon nomenlature is primary or P-waves forompressional waves and seondary or S-waves for shear waves.A possible set of solutions to the above equations within a homogeneous regionaway from the soure is given by

φ(x, t) = A exp (ıωt − kαx) , (4.6)
Ψ(x, t) = B exp (ıωt − kβx) . (4.7)These equations desribe harmoni waves that travel in the diretion of the wave-vetors kα and kβ, respetively, with |kα| = ω/α and |kβ| = ω/β. Note thestrutural similarity to the solutions for the eletri and magneti �elds for mag-netotelluris in Equations 2.25 and 2.26, respetively, but the di�erent oe�ientsfor the spae variable in the exponential.67



4 Reeiver funtionsWe an now onsider the transmission of energy through an interfae in a one-dimensional layered Earth. We will not derive the full expressions for the re�etionand refration oe�ients, as the algebra is very tedious and not partiularly in-strutive, but only demonstrate why for an inident P-wave, re�eted and refratedSV-waves are generated at an interfae. For a one-dimensional Earth we an set
x = {x1, x2, x3} = {x1, 0, x3}. Consider a ompressional wave travelling from belowto an interfae at x3 = 0 where both β and α hange. If we only onsider P-waveswe will have the inident and re�eted wave solution φ1 in the lower layer and therefrated P-Wave potential φ2 in the upper layer,

φ1(x, t) = A1 exp (ıω (px1 + η1x3 − t)) + A2 exp (ıω (px1 − η1x3 − t)),(4.8)
φ2(x, t) = A3 exp (ıω (px1 + η2x3 − t)) , (4.9)where the horizontal slowness or ray parameter p and vertial slowness η aregiven by

p =
sin i

α
, (4.10)

η =

√

1

α2
− p2 =

os i

α
, (4.11)and i is the angle of inidene of the wave.Aross the boundary we have to satisfy two onditions: 1) ontinuity of dis-plaement and 2) ontinuity of stress. For our purposes it is su�ient to examinethe ontinuity of displaement

(u1 = ∇φ1 = u2 = ∇φ2)|x=0 . (4.12)If we evaluate this ondition, we get two equations for the amplitudes A1, A2 and
A3

∂φ1

∂x1
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∂φ2

∂x1

∣

∣

∣

∣

x1=0

⇒ A1 − A2 = A3, (4.13)
∂φ1

∂x3

=
∂φ2

∂x3

∣

∣

∣

∣

x3=0

⇒ η1 (A1 − A2) = η2A3. (4.14)But this would required that η1 = η2, unless all amplitudes are zero, whih, as wean see from Equation 4.11, is impossible for a veloity ontrast between the layers.If we inlude the S-wave potentials in the alulations, we an �nd a solution forthis ondition, and inluding ontinuity of stress we an determine the re�etionand refration oe�ients. A shemati version of the re�etions and refrationsfor an inident P-wave is shown in Figure 4.1.68



4 Reeiver funtions
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Figure 4.1: Re�etions and refrations for an inidental P-Wave on a 1D veloityand density ontrast.The angles of re�etion and refration an be alulated from the ray parameterby Snell's Law sin i

v
= p. (4.15)Here i is the angle between the ray and the normal to the interfae and v is theveloity for the wave type in the respetive layer. The transmission oe�ientsan be alulated from the boundary onditions and depend on the material prop-erties, the angle of inidene and the type of inoming wave. Equations for theseoe�ients an be found in Lay and Wallae [1995℄, for example.In a homogeneous halfspae without attenuation and a delta funtion souretime funtion, we would expet to reord only two delta funtion shaped spikesfor the P-wave and S-wave arrival. The setion between the two arrivals would beessentially �at, as shown in the left panel of Figure 4.2. What we observe instead,typially looks like the right panel in Figure 4.2. After the initial P-wave arrival,we observe a time segment with amplitudes only slightly lower than the initialamplitude before the high amplitude S-arrival. These are sattered and onvertedphases aused by hanges of seismi properties within the Earth. We an evenobserve distint arrivals of energy like, for example, just after the line labelled�pP� in the real seismogram in Figure 4.2.Eah arrival in a seismogram an be systematially labelled by the onversionsand re�etions it has undergone along the path between the soure and the re-eiver. �pP�, in the example above, denotes a phase that was re�eted from thesurfae above the soure and then ontinued as a P-wave for the rest of the path.69



4 Reeiver funtions

Figure 4.2: Comparison between a syntheti seismogram for a homogeneous half-spae (left) and a reorded seismogram (right) for the P-wave and S-wave arrivals.Note the muh higher amplitudes between the two main arrivals. The nearly �atline before the P-wave arrival demonstrates that this is not random noise, butsattered energy from strutures inside the Earth.This nomenlature for teleseismi waves is somewhat di�erent from the nomen-lature used to desribe near-soure re�etion and refrations in reeiver funtionstudies. An overview of the labelling for loal phases gives Table 4.1.Position Label ExplanationFirst P/S initial wave at the soureany p/s up-going wave after refrationP/S downgoing wave after re�etionTable 4.1: Labelling of seismi phases for loal re�etions and refrations.All these re�etions and refrations add up, and form the ompliated waveformwe observe in real seismograms. The total reorded time-series an be representedby a onvolution of three di�erent signals and a noise term n(t), viz.,
u(t) = s(t) ∗ g(t) ∗ i(t) + n(t). (4.16)

s(t) is alled the soure-time funtion and desribes the movement of the rup-ture at the earthquake soure with time, i(t) is a desription of the response of theinstrument to an inoming wave, usually this desription is given as a frequenyresponse and, as mentioned in the previous hapter, we an represent the onvolu-tion equivalently in the frequeny domain, and g(t) is the Green's funtion of theEarth and solely depends on its struture. This is what we try to alulate and70



4 Reeiver funtions
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Figure 4.3: Shemati overview of a seismi wave oming into a seismi station andlabelling of the orresponding oordinate system.For simpliity we do not showthe urvature of the Earth.model when we perform reeiver funtion analyses. Before we an desribe thesteps neessary to isolate g we have to disuss the typial setup of a seismograph.4.2 Reording seismi wavesThe typial situation for teleseismi stations is shown in Figure 4.3. For larity wedo not display the urvature of the Earth in the illustration. Seismi energy travelsfrom the soure to the reeiver along a urved path. This is due to the generalinrease of seismi veloity with depth. The point above the soure loation onthe Earth's surfae is alled the epientre. Usually seismi stations reord threeomponent of displaement, veloity or aeleration oriented in north-south, east-west and vertial diretion. The angle b between the north-south omponentand the epienter is alled the bakazimuth and the angle i between the vertialomponent and the inoming ray is the inidene angle. If we rotate the reordedomponents around the vertial axis, so that one omponent points towards theepienter, parallel to the inoming wave, and one is orientated perpendiular toit, we an simplify the analysis of the inoming seismi energy. These two rotatedomponents are alled the radial and transverse omponents, respetively.For one-dimensional plane layered strutures, there will not be any P-wave en-ergy on the transverse omponent, only shear wave energy polarized in the planeparallel to horizontal, the so-alled SV-wave, will be reorded. The P-wave andSH-wave energy on the other hand will be ompletely reorded by the radial andvertial omponent. In pratie, real seismograms often show some energy on the71



4 Reeiver funtions
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4 Reeiver funtions580 s marks the arrival of another seismi phase, in this ase PP, a P-wave thathas been re�eted from the outer ore.4.3 Calulating reeiver funtionsWe an now disuss how to extrat information about Earth struture from thereorded P-wave and its onversions. As we saw in equation 4.16 the total mea-sured seismi trae an be represented as a onvolution of three ontributors.The instrument response i(t) is known for every omponent and an be easilyorreted for. The problem remains to separate the soure time funtion ontri-bution and distinguish e�ets from di�erent strutures along the wave path. Thisan be ahieved by deonvolving the vertial omponent from the radial om-ponent [Vinnik, 1977, Berteussen, 1977, Langston, 1979, Kind and Vinnik, 1988℄,i.e., in the frequeny domain
Rf(ω) =

R(ω)Z⋆(ω)

Z(ω)Z⋆(ω)
. (4.17)This operation removes the e�et of the soure time funtion, whih is equalfor both omponents. Transformation bak into the time domain yields the atualreeiver funtion. The representation in the time domain has the advantage thatthe features of the reeiver funtion have a straightforward and diret onnetionto Earth struture. The time axis represent distane from the reeiver and, beauseof the steep inidene of teleseismi waves, is a good proxy for depth. A signi�antnon-zero amplitude marks the arrival of a P-to-S onverted wave. As desribedabove, the onversions take plae at veloity and density ontrasts and thus thesignal of the reeiver funtion an be interpreted in terms of veloity and densityhanges below the station. A positive amplitude marks a transition from higherto lower veloity, with respet to the diretion of wave-propagation, while for anegative amplitude the situation is reversed. This diret interpretation of thereeiver funtion is ompliated though by the appearane of multiple re�etionsin the later setions of the reeiver funtion. A syntheti reeiver funtion and apart of the ray geometry are shown in Figure 4.5.For the RTZ-oordinate system the highest amplitude of the reeiver funtionis observed at time 0, orresponding to 0 lag between the two omponents, and isrelated to the initial P-wave arrival. We an identify a lear arrival at 4.5 s that isrelated to the P-to-S onverted wave from the layer interfae. The �rst multiplere�etion from the surfae has a omparable amplitude and idential polarity,while the polarity of the seond multiple is reversed and its amplitude is slightlysmaller. For a simple two-layer model the arrival times of the refrated wave and73



4 Reeiver funtions
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, (4.19)
tPpSs = 2h

√

v−2
s − p2. (4.20)The ray parameter p depends on the distane from the earthquake and an betaken from an earthquake atalogue. Hene with these three equations we anuniquely determine the three parameters vs, vp and h.Pratial proedureIn pratie Equation 4.17 does not work well to alulate reeiver funtion diretlyfrom reorded seismograms. We have to perform some additional proessing stepsand modify the idealized equation to obtain usable results. The �rst step, is toapply a bandpass �lter to the seismogram. The high frequeny energy above 1 Hzis often related to sattering from small inhomogeneities, and does not �t into thetheoretial formulation of a refrated wave that we assume for reeiver funtions.Below 0.05 Hz ambient noise from wind, tides and ultural soures an overwhelmthe body wave signal whih has dominant periods between 1-0.1 Hz. Therefore asimple band-pass �lter an improve the quality of the reeiver funtions.This step alone though does not alleviate another more fundamental problemwith Equation 4.17. The division by the auto-spetrum of the vertial omponentbeomes numerially unstable, if the spetrum has a high dynami range. Real74



4 Reeiver funtionsseismograms often show pronouned minima in their power spetra, and the re-eiver funtion alulated from suh a seismogram would be dominated by thesespetral holes, whih do not arry muh information about earth struture. Inmagnetotelluri proessing we solve the problem of unstable division by stakingseveral spetra and this an be done for reeiver funtions as well [Gurrola et al.,1995℄. This approah however an be problemati, beause as we see from Equa-tion 4.18, the time of the onversions in the reeiver funtion depends on theray parameter, whih varies from earthquake to earthquake. Careful seletion ofearthquakes with similar ray parameter or moveout orretion (see below) ansolve this problem, but in a lot of ases di�erent solutions are preferred.The easiest way to irumvent division by small numerial values, is to add asmall but signi�ant number to the denominator of equation 4.17 [Langston, 1979℄.In addition a Gaussian �lter is applied to the reeiver funtion
Rf(ω) =

R(ω)Z⋆(ω)max (Z(ω)Z⋆(ω), l)
exp (−ω2/4σ2

)

. (4.21)Usually the water-level parameter l is hosen with respet to the maximum am-plitude of the vertial omponent
l = wmax (Z(ω)Z⋆(ω)) , (4.22)and typial values for w range between 0.01 and 10−5. The optimum value dependson the signal to noise ratio, but the �nal result is not overly sensitive to the hosenwater-level. The advantage of this method is that it is easy to implement, and fastto alulate. One problem is though that beause of the non-loalized nature of theFourier transform and the division operation, noise from all parts of the seletedtime-window in�uenes the reeiver funtion. This an often be observed for eventswith magnitudes less than 6. Despite an apparently high-quality seismogram, theresulting reeiver funtion is often strongly distorted.Some of the noise problems of the water-level deonvolution an be irumventedby using an iterative time-domain deonvolution method [Ligorria and Ammon,1999℄. At eah iteration we alulate the ross-orrelation between the vertialand radial omponent. We determine the reeiver funtion value at the timeorresponding to the maximum absolute orrelation value by dividing the ross-orrelation by the zero lag autoorrelation of the vertial omponent. After sub-trating the predited wave-form from the radial omponent the next iterationstarts. The proedure stops when either the improvement between iterations be-omes too small, or a hosen perentage of the radial omponent an be preditedfrom onvolving the reeiver funtion with the vertial omponent. The ompleteproedure is summarized in Algorithm 4.75



4 Reeiver funtionsAlgorithm 4 Iterative deonvolution algorithm1: Calulate zero lag auto-orrelation of vertial aZ2: Ri(t) = R(t)3: repeat4: Calulate ross-orrelation c(τ) of urrent radial Ri(t) and vertial Z(t)5: Find maximum of c(τ) and orresponding lag τmax6: Rf(τmax) = c(τmax)/aZ7: Ri+1(t) = R(t) − Rf(t) ∗ Z(t)8: until |Ri+1 − Ri| < δmin or |Ri+1 − R| < emin or i = imaxCompared to the water-level deonvolution we often get better results withrespet to the following riteria to assess the quality of the reeiver funtion:1. The zero lag amplitude should be the highest throughout the reeiver fun-tion.2. Even though the Moho depth is often not know a priori, a high amplitudeonversion from the Moho an be expeted at times between 3 and 5 seondsfor Moho depths of 25 � 40 km.3. The Moho multiples should be visible at times given by equations 4.18 �4.20.4. In general the amplitude of onversions an be expeted to derease withtime, strong osillations throughout the reeiver funtion indiate problemswith noise.5. The base-line should be �at, long-period bakground variations indiate noiseontributions that often an be removed by high-pass �ltering.We will disuss these issues further when we look at reeiver funtions from theSlave raton in Chapter 7.Figure 4.6 shows a omparison between a reeiver funtion alulated with thewaterlevel tehnique (top) and the iterative deonvolution tehnique (bottom) forthe same event, station and �lter parameters. The reeiver funtion alulatedwith the waterlevel tehnique shows many high amplitude variations for the �rst30 seonds. The Moho onversion at a lag time of about 5 seonds shows thehighest amplitude after the zero lag pulse, but a high number of segments withsimilar amplitude make it di�ult to identify the onversion reliably. This applieseven more to the multiples and all other onversions. The iterative deonvolutiontehnique, in ontrast, yields a reeiver funtion that is muh easier to interpret.76



4 Reeiver funtions
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Figure 4.6: Comparison between reeiver funtions alulated with the waterleveltehnique (top) and the iterative deonvolution tehnique (bottom).The Moho onversions and its multiples are easy to identify. A number of smalleramplitude maxima and minima exist and a good orrespondene with features ofthe waterlevel reeiver funtion suggests that these are atual onversions withinthe Earth and not noise. Remarkably, onvolving the vertial omponent with thisreeiver funtion retrieves 98.5% of the radial omponent's energy, illustrating thelarge in�uene of a reasonably low amount of noise on the waterlevel result.4.4 Staking reeiver funtionsEven after �ltering and with the iterative deonvolution method, reeiver fun-tions an still be a�eted by noise whih, if not identi�ed orretly, an ausespurious strutures in the subsequent inversion. The in�uene of random noisean be further redued by staking a number of high-quality reeiver funtions.A few things have to be onsidered before we an apply the staking proedure.Equation 4.18 shows that the delay time of any onversion depends on the ray pa-rameter, whih in turn depends on the distane between the seismi station andthe earthquake. If we stak reeiver funtions from di�erent distanes, we will notonly suppress noise, but also smear out the signal we are interested in. Figure 4.777



4 Reeiver funtions

5 10 15 20 25 30
Time [s]

-0.2

-0.1

0

0.1

0.2
A

m
pl

itu
de

Receiver function moveout
Distance Range 30 - 90
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4 Reeiver funtionsthe moveout. We an use equation 4.18 to onvert the time of eah sample tothe orresponding time at a given referene distane. This, of ourse, requiresassumptions about the seismi veloities, and usually a standard referene modelsuh as PREM [Dziewonski and Anderson, 1981℄, IASP91 [Kennett and Engdahl,1991℄ or AK135 [Kennett et al., 1995℄ is used for the orretion. Another e�et ofthe moveout orretion is that all multiples are suppressed. Due to their invertedmoveout harateristis with respet to the primary onversions, they are spreadout even more after the orretion and their amplitude is redued in the followingstaking proess. This is an advantage when reeiver funtions are used as animaging tehnique, and an bring out smaller onversions that are hidden by themultiples. When modelling reeiver funtions the advantage is not that learthough, as the multiples also ontain information about Earth struture.Another ompliation for staking reeiver funtions an arise when the stru-tures are not purely one-dimensional. As mentioned above, we will then observeenergy on the reeiver funtion for the transverse omponent, but also the radialreeiver funtion then depends on the bak-azimuth, the diretion of the inomingwave. The only solution then is to restrit the staking to a range of bakazimuthswhere no variations are observed.4.5 Modelling reeiver funtionIn ontrast to the 1D magnetotelluri ase, there is no diret way to alulatethe reeiver funtion from a model. Instead, we alulate syntheti radial andvertial seismograms, and obtain the reeiver funtions with the same proedureas for observed data. A number of di�erent methods exist to alulate synthetiseismograms. Ray-theoretial methods [Helmberger, 1974℄ are omputationallyfast, but require to speify the various rays that we want to model. This an beproblemati, beause the importane of the various onversions is not obvious apriori and the inlusion of a large number of re�eted and refrated rays inreasesomputation time and hene removes the speed advantage. Spetral methods[Fuhs and Muller, 1971℄ are exat in the 1D ase, but are omputationally expen-sive. Their main advantage is for modelling regional and loal wave propagation,as they an inlude near-soure e�ets.For teleseismi events, matrix propagation methods [Haskell, 1962℄ provide agood ompromise between preision and speed. Assuming a plane wave propa-gating into the region of interest, the e�et of re�etions and refrations at eahinterfae an be alulated by a number of matrix operations. We use the program
respktn desribed in Randall [1989℄.
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The ruler of the Universe thought for a long while whilst Zarni-woop quivered with anger.`You're very sure of your fats,' he said at last, `I ouldn't trustthe thinking of a man who takes the Universe � if there is one �for granted.'Zarniwoop still quivered, but was silent.`I only deide about my Universe,' ontinued the man quietly.`My Universe is my eyes and my ears. Anything else is hearsay.'Douglas Adams, The Restaurant at the End of the Universe 5Optimization in the ontext of�ltering and inversion
The mathematial �elds of optimization and inverse theory, play an importantrole in geophysis. For all but the simplemost problems, the relationship betweenthe observations and the properties of the Earth one is looking for is non-linear.In addition we usually only have observations at the Earth's surfae and at a fewloations, and there is no analytial formula to extrat the information from thedata. Usually we are faed with a situation, were we an only solve the forwardproblem

dpred = f(m), (5.1)i.e., we an predit the expeted data d for a given model m of the Earth. Theentries of the vetor m desribe the distribution of one or more physial properties,in our ase eletrial resistivity or seismi veloities, and the funtion f apturesthe physis of the problem. What we need is the solution of the inverse problem,whih formally an be written as
m = f−1(dobs), (5.2)but, as mentioned, the inverse of f is usually not aessible. What we have to doinstead is to minimize the di�erene between the predited and the observed datawith respet to a ertain norm,

‖dobs − dpred‖→ min, (5.3)and for this we have to use optimization methods.80



5 Optimization in the ontext of �ltering and inversionMinimization or maximization problems are enountered in various �elds, andthus a large number of di�erent methods exist, eah geared towards speial ap-pliations, and with ertain advantages and disadvantages. We will disuss thosemethods that are relevant for geophysial appliations, and in partiular for jointinversion. We an separate optimization methods in two broad lasses:1. Diret searh methods use a starting point in model spae, i.e., a modelof the Earth that the user regards as representative before the inversion,and look for diretions that redue the norm in equation 5.3. For non-linear problems this is an iterative proess, and the minimization diretionhanges at eah step. Often gradient and urvature information is exploitedto improve the speed of onvergene to the minimum. The main advantageof these methods is their rapid onvergene, whih makes them suitable forlarge sale problems. The major drawbak is the risk of being trapped in aloal minimum.2. Stohasti searh methods randomly sample model spae, and preserve mod-els that perform better with respet to the minimization riterion. As onewould expet, the random nature of the proess makes it neessary to on-sider a large number of models, whih is the main disadvantage of thesemethods. Several variants try to inrease the hane of �nding suitablemodels, by introduing systemati elements into the random searh, butstill they are usually orders of magnitude slower than diret searh meth-ods. The great advantage of random methods, that justi�es their usage, isthe redued in�uene of the starting point and the ability to esape loalminima.In the following setions we will �rst disuss some popular linearized methodsand also desribe various aspets of inverse theory that are usually applied in theontext of these methods. We will then turn to geneti algorithms, a stohastioptimization method based on biologial evolution, and desribe their suitabilityfor our joint inversion problem.5.1 Linearized methodsAlthough we use a geneti algorithm for our optimization problem, it is instrutiveto disuss diret searh and, partiularly, linearized methods. A lot of the toolsthat we will use later to quantify the quality of our models were developed in theontext of these methods, so we need to understand their mehanis. Also thisdisussion will enable us to understand some of the advantages and disadvantagesof geneti algorithms. 81



5 Optimization in the ontext of �ltering and inversionMost linearized methods minimize equation 5.3 in the least-squares sense, i.e.,with respet to the L2 norm
E(m) = ‖dobs − dpred‖2 =

∑

i

(

dobs
i − d

pred
i

)2

→ min . (5.4)This hoie of norm has the advantage that the predition error e is ontinuouslydi�erentiable, a property that is used by all linearized algorithms. Also the least-squares riterion provides an optimal solution in the presene of Gaussian errors.It is however possible to use other norms than the l2 norm through an iterativereweighting sheme in linearized inversions [Farquharson and Oldenburg, 1998℄.For geneti algorithm inversions we are not bound by the requirement of di�eren-tiability and we an hoose arbitrary lp norms a well as other measures of mis�tsuh as orrelation. These will, of ourse, in�uene the type of models we obtain.For observed data that is a�eted by measurement errors we make a furthermodi�ation to equation 5.4 to weight the ontribution of eah datum with respetto its error σi and a spei�ed relative error �oor ǫ
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∑
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)

)2

= eTe. (5.5)The division by the maximum of the data error and the absolute error �oor foreah datum avoids problems with unrealistially small error estimates for the dataand at the same time balanes numerial di�erenes. Data points with high valuesor unrealistially small errors would otherwise dominate the mis�t funtion, andall other data would be mostly ignored.The gradient of E with respet to the model-parameters m an be alulatedusing the hain rule
γ = ∇E(m) = GT · dobs
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imax (σi, ǫdobs

i

) = GTe, (5.6)where we assumed a linearized relationship between model and data
d = Gm. (5.7)The n × m matrix
G =

∂f

∂m
(5.8)is alled the sensitivity matrix, where n is the number of datapoints, and mis the number of model parameters. For a lot of problems the sensitivity matrixannot be alulated analytially, but has to be approximated by a �nite di�erenemethod

Gij ≈
fj(mi + ∆i) − fj(mi)

∆i

. (5.9)82



5 Optimization in the ontext of �ltering and inversionor automati di�erentiation [Sambridge et al., 2007℄.As we an see, �nite di�erene estimation requires m + 1 evaluations of theforward modelling funtion f , whih is the limiting fator in terms of omputa-tional time for large-sale problems. For ertain types of problems, the alula-tion of the gradient an be ahieved omputationally faster using adjoint methods[Avdeeva and Avdeev, 2006, Plessix, 2006℄ whih we will not disuss here.The gradient points in the diretion of steepest asent, so we an onstrut a�rst simple optimization algorithm by performing a step in the opposite diretion
mn+1 = mn − µ∇e. (5.10)This equation is exatly the same as Equation 3.25 for the LMS-adaptive �lter, butnow viewed in the more general ontext of minimization of an non-linear funtion,instead of adaptive signal proessing.The steepest desent algorithm is very simple, but not ideal with respet toonvergene to the minimum, as we already saw in Chapter 3. For many problemsthe diretion of steepest desent is not the shortest way towards the minimum.In situations where one forward model evaluation is omputationally expensive,the simpliity of the optimization algorithm is outweighed by the fat that manyiterations are needed to �nd the minimum.The most ommonly used method to improve the speed of onvergene of lin-earized optimization algorithms is to inorporate urvature information by eitheralulating or approximating the Hessian matrix of seond derivatives,

H =
∂f

∂mi∂mj

. (5.11)For geophysial problems the Hessian matrix is rarely available analytially andomputation by �nite di�erenes similar to the gradient is omputationally pro-hibitive, even for rather simple problems suh as one-dimensional magnetotelluriinversion. For large sale problems with a lot of model parameters, even the stor-age of the m × m matrix H an be problemati. For this reason, a number ofdi�erent algorithms exist that approximate the Hessian matrix either diretly orby its ation on a vetor [e.g. Noedal, 1992, Tarantola, 2004℄. We will disuss herethe variable metri method, whih uses information from gradients from previousiterations to build up an approximation of the Hessian matrix, as an example fora widely used state of the art method.At the minimum m⋆ the gradient vanishes
f ′(m⋆) = 0. (5.12)From a Taylor expansion of f ′ around the urrent model m we get

f ′(m + h) = f ′(m) + f ′′(m)h + O(h2). (5.13)83



5 Optimization in the ontext of �ltering and inversionAssuming |h| is small we an disard seond order terms, and we an �nd the nextstep h by solving
f ′′(m)h = Hh = −f ′(m). (5.14)Analytially the solution is, of ourse,

h = −H−1 f ′(m) = −Ff ′(m). (5.15)For this reason, some of the pratial numerial algorithms do not approximate theHessian, but its inverse. A detailed derivation of the approximations is beyond oursope here, and not of partiular interest for the disussion, one important aspetof it is though, that for h being a desent diretion a neessary requirement is that
H is positive de�nite, i.e., for all vetors u

uTHu > 0. (5.16)The omputational steps are summarized in Algorithm 5.Algorithm 5 The variable metri optimization algorithm1: Initialize F0 = I2: Choose starting model m03: while not onverged do4: γi = GTe5: Φi = Fiγi6: mi+1 = mi + µΦi7: Fi+1 = Fi + δFi8: end whileThree important steps have been omitted in Algorithm 5, the adjustment of thestepsize parameter µ, the update δFi of the inverse of the hessian matrix, and thede�nition of the onvergene riterion.In ontrast to the algorithms we disussed in the ontext of �ltering, the stepsize
µ is usually not �xed, but adjusted through a line-searh algorithm. The reasonfor this di�erene lies in the slightly di�erent omputational omplexity riteria.For an optimization algorithm used for inversion of data, we want to ahievethe minimization with the least amount of forward modellings. Even thoughthe line-searh algorithm also requires a few forward modelling alulations, theoverall number within the whole optimization proess is still lower than for a�xed stepsize. For �ltering appliations, the number of forward alulations is thenumber of samples in the time-series and onsequently �xed. Adding a line searhwould inrease this number even further and thus the stepsize is either kept �xedor estimated by a simple formula (see equation 3.32).84



5 Optimization in the ontext of �ltering and inversionFor the update of Fi a number of di�erent possibilities exist, the most widelyused is the BFGS formula [Flether, 1980℄
Fi+1 =

(

I −
δm δγT

δγT δm

)

Fi

(

I −
δm δγT

δγT δm

)

+
δm δmT

δγT δm
, (5.17)whih preserves the positive de�niteness of F in most situations.The onvergene riterion for all gradient-based optimization tehniques is givenby omparing the length of the gradient with the mahine preision ǫ

‖γ‖ ≤ ǫ. (5.18)This termination riterion, and the way the minimum is approahed, has im-portant impliations for the performane of the algorithm ompared with globaloptimizationmethods. Any point on the error surfae, where the gradient beomessmall enough, will be regarded as a valid optimum point, even though it mightonly be a loal minimum, and not the global minimumwe are seeking. As gradientbased optimization algorithms only use loal information from the urrent and, insome ases previous, iterations, the algorithm has no way to identify a minimumas loal and will terminate as soon as the riterion in equation 5.18 is satis�ed.5.2 Geneti algorithmsGeneti algorithms (GA's) are one lass of global searh algorithms that avoidthe loalized searh strategy of linearized methods. Using strategies mimikingbiologial evolution they provide a good ompromise between omputationallymore expensive Monte-Carlo methods and linearized methods and o�er partiularadvantages for multi-objetive inversion. As the optimization method used inour joint inversion approah is based on a modern geneti algorithm, we willdisuss them in some detail in the following setions. A good overview over thehistorial development and the basi properties of geneti algorithms an be foundin Goldberg [1989℄. Sine the introdution of GA's in the �eld of optimizationby Holland [1975℄, a large variety of geneti algorithms have been developed,and, beause of the non-linear nature of geophysial inverse problems, appliedto various types of datasets [e.g., Everett and Shultz, 1993, Jervis et al., 1993,Pérez-Flores and Shultz, 2002℄. We will fous on the ore properties ommon toall GA's and more spei�ally on the modern NSGA-II [Deb et al., 2002℄ whihforms the ore of our inversion algorithm. The general program �ow for a genetialgorithm is shown in Figure 5.1. Eah individual step an be performed in avariety of ways, depending on the problem at hand and the type of solution weare looking for. 85



5 Optimization in the ontext of �ltering and inversionThe �rst design hoie that in�uenes most of the other steps of the genetialgorithm is the way in whih the model parameters are represented within theGA. The earliest GA's expliitly enoded the parameters as a onatenated binarystring, but in the meantime real valued geneti algorithms have gained popularity[Goldberg, 1989℄. The binary representation is motivated by the analogy betweenDNA in an evolutionary proess and the models in geneti algorithm optimizationand makes the two modi�ation operators rossover and mutation independentfrom model parameter storage.
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Figure 5.1: Program �ow of a ge-neti algorithm

Given the model vetor m, as desribed inthe previous setion, we reate the genetistring by translating eah individual ompo-nent mi into a binary form and onatenatingthem into a single string. For this the user hasto hose three transription parameters for eahmodel parameter mi: The minimum possibleparameter value mmin
i , the disretization step

δi and the number of bits used to enode theparameter value ni. The relationship betweenthe atual model parameters for the inversionproblem and the representation within the ge-neti algorithm is then given by
mi = mmin

i + δi

ni∑

j=1

2j−1sj, (5.19)where sj represents the part of the geneti stringthat orresponds to that model parameter. Asimple example an illustrate the relationshipbetween the model parameters and the genetistring.Given a problem that depends on two param-eters m1 and m2 where m1 is expeted to be inthe range −1 . . . 1 and m2 between 0 and 3.1, we an adjust the enoding lengthof eah parameter, so that the variations in the minimization funtion f(m1, m2)are represented without aliasing. The Table 5.1 lists examples for transriptionparameter values, orresponding example strings and model parameters values.We an immediately see two major di�erenes to the linearized algorithms dis-ussed in the previous setion. First of all the parameter values are onstrainedby the minimum value mmin
i , and the maximum that results from the other twoparameters. The linearized algorithms we disussed do not have suh limitations,86



5 Optimization in the ontext of �ltering and inversioni mmin
i δi ni1 -1 2/63 62 0 0.1 5 −→ 101011︸ ︷︷ ︸

m1

01011︸ ︷︷ ︸
m2

−→ m1 = 0.6825 m2 = 2.6i mmin
i δi ni1 -1 2/7 32 0 0.05 6 −→ 011︸︷︷︸

m1

101101︸ ︷︷ ︸
m2

−→ m1 = 0.7143 m2 = 2.25Table 5.1: Example for transription parameters of a geneti algorithm for a prob-lem with two parametersbut modi�ations an be made to inorporate onstraints into linearized methodsif needed [e.g. Byrd et al., 1995℄. The impliit onstraints on the model parame-ters by the geneti algorithm are both and advantage and a disadvantage. Mostgeophysial problems have well known limits on �reasonable� values for physialparameters of the Earth. Therefore the limitedness of the inversion parametersan even be an advantage ompared to linearized methods, where e�orts have tobe made to enfore the onstraints. When the possible range of parameter valuesis large though, the user has to hoose between a large number of bits for therespetive model parameters and a large disretization step.This leads diretly to the next signi�ant di�erene between linearized methodsand geneti algorithms. The mathematial foundation of linearized methods as-sumes ontinuous model parameters, and the methods are ontinuous in as muh asa omputer an represent real numbers. For geneti algorithms, the disretizationlength is typially orders of magnitude above numerial preision, and thereforetreat the model spae as disrete. Again for geophysial problems this is usuallynot of onern, as we anyway assume that our objetive funtion varies smoothlywith the model parameters and typial variations are well known. Still the hoiesof the transription parameters in�uene the outome of the inversion and anyuser of geneti algorithms has to be aware of it.With the information on the transription parameters, the algorithm an thengenerate a number of random model strings, the so-alled population. Eahmem-ber of the population represents one individual model and the size Np of the pop-ulation is usually spei�ed by the user. A larger Np will result in more randomstarting models and thus sample a larger portion of model spae. Of ourse, thisomes at the ost of more forward modelling alls and a longer run-time of thealgorithm.One the random starting population has been generated, eah population mem-ber is transribed bak to the real-valued inversion parameters and its �tness is87



5 Optimization in the ontext of �ltering and inversionalulated. For inversion appliations this usually means alulating the mis�tbetween the predited data from the model parameters and the observed data ina manner similar to equation 5.5. However, beause geneti algorithms do notrequire the mis�t funtion to be di�erentiable, we an modify the way the mis�tis alulated in a number of ways. We will return to this issue when we disussmulti-objetive optimization and NSGA-II. The mis�t determines the probabilitythat a given member will be seleted for the next generation. It is this probabilis-ti approah, that enables the geneti algorithm to esape loal minima. Some ofthe models in the �rst generations might not have a good �t ompared with thebest model in that generation. Still, there is a possibility that these models arekept in further generations and through modi�ation or exhange of informationreate a better model.One the models for the next generation have been seleted, we have to makesome modi�ations, otherwise there will be no new information and we ould juststop after the �rst iteration. Two proesses provide innovation to the originalmodels. Crossover provides a mehanism to exhange information between dif-ferent members of the population. With a probability pc two random populationmembers exhange part of their geneti string after a randomly hosen point. Theonept behind this is that some of the models might perform well due to a ertainsegment within the geneti string, while the good performane of another modelis aused by another part of the geneti string. Exhanging parts of these stringsan then reate an even better model, but in any ase helps to distribute wellperforming parts through the population. Typially we hoose 0.2 ≤ pc ≤ 0.7, sothat a fair proportion of the population performs rossover.The seond mehanism to reate new models is mutation. With a probability
pm a bit of the geneti string of a given member hanges its value. This mehanismis undireted and reates ompletely new models. Espeially in the later stages ofthe algorithm, when a small number of similar models dominate the population,this mehanism ensures that the algorithm does not onverge prematurely. Afterthe seletion, rossover and mutation proesses, the mis�t for the new populationis alulated and these steps are repeated for a �xed number of iterations. Dueto the stohasti nature of the proess and the lak of information about anygradients, there is no simple termination riterion. What we usually observe, isthat the mis�t of the best model and the average mis�t derease quikly in the�rst iterations until they reah a stable level. After this initial phase, the bestmis�t stays onstant for a number of generations and then dereases again. Withontinuing evolution the stable phases beome longer and longer, but there isalways the possibility of another derease.88



5 Optimization in the ontext of �ltering and inversion5.3 NSGA-IIWe will now turn our attention to the spei� implementation of the genetialgorithm we use for our joint inversion approah, NSGA-II [Deb et al., 2002℄. Inthis ontext we will also disuss some spei� problems of multi-objetive inversionand ontrast the approah taken by NSGA-II with linearized methods and othergeneti algorithms.To represent the models we use the standard binary strings desribed aboveand onsequently the initialization stage, as well as rossover and mutation workexatly as desribed for the general ase. The seletion proess, and the way the�tness of eah individual member is determined, is spei�ally geared towardsmulti-objetive optimization. We will therefore look at this problem setting now.In ontrast to single-objetive optimization that we disussed at the beginning ofthe hapter, the optimization funtional has now several omponents,
E(m) =







e1(m)...
en(m)






, (5.20)where eah omponent ei(m) is de�ned similar to equation 5.5. In linearizedapproahes and some geneti algorithms this problem would be transformed intoa single-objetive problem by minimizing a weighted sum of the omponents

Eso(m) =
∑

i

λiei(m). (5.21)The most prominent example for suh an approah in geophysis is regularizedinversion, whih we will disuss in more detail later, where λ is alled the Lagrangemultiplier [Tikhonov and Arsenin, 1977℄, but it has also been applied to jointinversion problems [Julia et al., 2000, Gallardo and Meju, 2003℄. The problemwith this is that the optimum weighting fators λi are not know a priori, but haveeither to be guessed or systematially varied to see the in�uene on the resultingmodels [Hansen, 1992℄. NSGA-II does not follow this approah but preservesthe information from the various minimization funtions by ranking the modelsaording to dominane.A model a is said to dominate another model b, a ≺ b, if and only if all objetivefuntion values are less or equal and at least one objetive funtion value is lessin a than in b,
a ≺ b⇔ ∀i : ei(a) ≤ ei(b) ∧ ∃i : ei(a) < ei(b). (5.22)We an see that with this de�nition, we only ompare orresponding objetivefuntion values and avoid the mixing of Equation 5.21. Even though the de�ni-tion is simple, it is quite di�ult to envisage its impliations and whih models89



5 Optimization in the ontext of �ltering and inversion
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Figure 5.2: Graphial representation of the priniple of dominane. The bluetriangles are onsidered to be of equal quality with respet to the riterion ofequation 5.22 and assigned rank 1. Every model plotted with a red square isdominated by one of the rank 1 models.dominate others, a graphial representation in Figure 5.2 illustrates the situation.For this example we assume a two omponent objetive funtion E(m) =

(e1(m), e2(m)). Eah model then an be plotted as a point in a two-dimensionalplane, for more omponents the same priniples apply, but visualization beomesmore di�ult. The shaded regions in Figure 5.2 show the areas in objetivefuntion spae that dominate the two models marked A and B. Basially thedominane riterion divides the objetive funtion spae into four quadrants withrespet to the hosen model. Models loated in the �rst quadrant are dominatedby the hosen model, while it is dominated by models loated in the third quad-rant. Models in the seond and fourth quadrants are neither dominated, nor dothey dominate, the hosen model, and are onsidered to be of equal quality. This90



5 Optimization in the ontext of �ltering and inversionis fundamentally di�erent from the weighted sum in Equation 5.21 that desribesellipses around the origin where the ratio of the semi-major and semi-minor axesis given by the ratio of the weights λi.Using the riterion of dominane, we an now rank the population. Members ofthe population that are not dominated by any other members are alled Paretooptimal and assigned rank 1. One all non-dominated members have been found,they are removed from the ranking sheme, and the proess is repeated. Membersof the population that are now non-dominated are assigned rank 2, and we ontinueuntil the omplete population has been ranked.Deb et al. [2002℄ desribe a more ompliated algorithm to redue the ompu-tational omplexity of the ranking operation at the ost of additional storage.In our ase, this part of the inversion sheme only takes a small fration of theoverall omputations, even for large populations, so there is no need for the moresophistiated implementation.Another, seondary, riterion Deb et al. [2002℄ use to judge the quality of amodel is the proximity to other models in objetive funtion spae. What we wantto aomplish, by using the Pareto-optimality riterion, is to get an idea aboutthe inherent trade-o� between ahieving the various minimization goals. To thisend we want to obtain not only models that math both riteria reasonably well,but also �nd extremal ases where one of the goals is met, but the other one isnot. To prevent the algorithm from onverging only to the middling models, wehave to implement speial measures [Goldberg, 1989℄. The approah taken byDeb et al. [2002℄ uses the rowding distane riterion without the need for anyuser spei�ed parameters.For eah rank I we sort the members of the population in that rank sues-sively by eah objetive funtion value, alulate the distane to the neighbouringmembers in objetive funtion value spae and normalize by the maximum dis-tane within that rank. The average of those distanes over all objetive funtionomponents is the rowding distane. Models at the edge of eah front that haveonly one neighbour are assigned a rowding distane of in�nity. Again a graphialrepresentation makes the onept muh learer (see Figure 5.3).One the rank and the rowding distane CD have been alulated, we an orderthe models with the rowded-omparison operator, ≺n

a ≺n b⇔ Rank(a) < Rank(b) ∨ (Rank(a) = Rank(b) ∧ CD(a) > CD(b)) .(5.23)This rowded-omparison operator is used in a binary-tournament seletion shemeto reate andidates for the new population. In binary tournament seletion twomembers of the population are hosen randomly and ompared using the rowded-omparison operator. The smaller one of the two, with respet to the operator91



5 Optimization in the ontext of �ltering and inversion
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Figure 5.3: Graphial representation of rowding distane alulations. Withineah rank the distane to the neighbouring models in objetive funtion spaeis alulated and the average distane is the rowding distane of the respetivemodels.
≺n, is seleted for the next generation. This approah has two advantages overa �tness saling [Goldberg, 1989℄ or annealing [Sambridge and Mosegaard, 2002℄approah. First, it does not need a user seleted parameter to determine the dis-tribution of models with �tness, and seond, it is robust in the sense that a singlemodel with �tness muh higher than average will not be repliated exessively insubsequent generations.One drawbak of binary tournament seletion is that there is no guarantee thatthe best model will be present in the next generation. Even though it alwayswins the omparison stage, it might not be seleted in the random drawing pro-ess. To avoid disarding good models, NSGA-II uses an elitist seletion proess.At eah iteration, the new generation is ombined with the last generation, andthe ombined population of size 2N is ranked. The best N members from thisintermediate population form the �nal next generation.These steps together with the diagram in Figure 5.1 ompletely desribe NSGA-II. As in our ase one alulation of the objetive funtion value takes a muh longertime than all other operations within the geneti algorithm, we implement an ad-92



5 Optimization in the ontext of �ltering and inversionditional feature. For eah model we alulate a hash value, and this value and theorresponding objetive funtion value are stored in an arhive during one run ofthe algorithm. Before the objetive funtion is evaluated, the algorithm hekswhether this model has been alulated before. If this is the ase, the objetivefuntion values are taken from the arhive and not realulated. Espeially in thelater stages of the inversion, where most new models are generated through mu-tation and omprise only a small fration of the population, the speedup ahievedby arhiving is a fator of 2 or higher. Even in the earlier stages, the gain byavoiding realulation of a few models is larger than the omputational ost ofhashing and retrieving the stored values.5.4 Simple performane tests for multi-objetiveproblemsBefore we disuss inversion of magnetotelluri and reeiver funtion data, we willdemonstrate some of the abilities of the geneti algorithm on a simple, but wellontrolled, arti�ial minimization problem. This will highlight the bene�ts ofusing a geneti algorithm for multi-objetive inversion.
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Figure 5.5: Equally weighted sum of funtions f1 and f3 as an example for amulti-objetive test problem where the individual minima oinide.One problem in multi-objetive optimization, and partiularly in the joint inver-sion of di�erent geophysial datasets, is the possibility of di�erent minima in eahobjetive funtion. In terms of Earth struture and our inversion problem, thismeans that magnetotelluris and seismis sense di�erent strutural features withinthe subsurfae. We will disuss the arguments for and against similarity betweenthe two datasets in Chapter 7, for now we only note that this problem exists,and that ideally a joint inversion sheme not only produes a model that �ts thedata, but also gives some indiation whether the ommon model approah has anymeaning for the given data.From the three test funtions we onstrut two multi-objetive optimizationproblems,
O1(m) =
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) and O2(m) =

(

f1(m)

f3(m)

)

. (5.27)
f1 and f2 have di�erent minima, so O1 simulates a ase where the MT and seismimodels are inompatible with eah other, whereas the minima for f1 and f3 areidential, and thus O2 simulates ompatible models. Before we analyse the per-formane of the geneti algorithm on these two problems, we will show why thelinearized approah is problemati even in this very simple ase.As mentioned above, we have to onstrut a salar objetive funtion from Equa-tions 5.27 by multipliation with a weight vetor λ. For the minimization problemwith idential minima, we see an example with idential weights in Figure 5.5.In this ase the ombination of the two objetive funtion has made the mini-mization problem easier. The ombined error surfae does not show the elongatedvalley struture of the two original surfaes, but is more symmetri and loser to aquadrati funtion. We an expet any linearized method to perform well in thisase. In addition, for any given relative weighting the absolute minimum remains94
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Figure 5.6: Weighted sums of the two inompatible test funtions f1 and f2 fordi�erent relative weights λ. In eah plot the minima of the individual test funtionsis marked by a white irle.the same.The situation hanges when we examine weighted sums of O1. Figure 5.6 showsthe weighted sums of O1 for 4 di�erent relative weighting fators λ. The whitedots mark the minima of the individual objetive funtions. We an see that noneof the minima of the summed objetive funtions oinide with any of the minimaof the individual objetive funtions for any weighting fator λ. As with theother test problem, the error surfae for the summed objetive funtions is loserto a quadrati funtion, but in this ase a linearized method would onverge to aminimum that has no relation to the minima of the individual objetive funtions.The only way to realize this with a linearized method is to systematially vary theweighting fators and the starting models, and examine the impat on the results.We now turn to the results from the geneti algorithm on these two test prob-lems. To demonstrate the maximum potential of the method we use a large pop-ulation size Np = 500 and number of iterations Ni = 50 orresponding to 25,00095
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5 Optimization in the ontext of �ltering and inversionfor the large population. However, we still get and indiation of the ompatibility,partiularly when we ompare the results from several runs.Another thing to bear in mind is that with the small population we used thestatistial properties of the geneti algorithms are worse than for a large popula-tion, even if the searh spae for the large population is muh bigger. The smallnumber of iterations severely limits the interation between the models, whih inother ases would, to some degree, balane the �utuations in starting population.One lesson to be learned from this experiment is that as large a population size asomputationally feasible should be used and several runs of the algorithms shouldbe performed to obtain reliable results. We will return to this issue when we testsyntheti models of reeiver funtion and magnetotelluri data.5.5 Regularization and non-uniquenessSo far we have only disussed the minimization algorithm and how we measure thequality of our model in terms of data mis�t, but negleted the issue of regulariza-tion [Tikhonov and Arsenin, 1977℄, whih plays an important role in geophysialinversion. The objetive funtions we examined so far had one uniquely de�nedminimum, even though in the inompatible test ase these minima were di�erentfor eah funtion. When looking at the error surfae of geophysial inverse prob-lems, partiularly if we onsider measurement noise, we see that the minimumis not very well de�ned, but onsiderable trade-o�s exist (.f. Figure 6.1). Allmodels that �t the measured data to the same level, an be onsidered to be ofequal quality, so we have to use another riterion to selet amongst these models.The ommonly used approah to overome this problem, is based on a paradigmknown as Oam's razor, whih states that we should use the simplest possiblemodel to explain the data [Constable et al., 1987℄. Obviously the notion of sim-pliity is somewhat vague, but a few standard measures have been established andare used in most inversion odes. The hoie of measure, however, depends on ourpreoneption on the struture of the Earth and will in�uene what type of modelwe �nd.The simplest possible type of regularization, even though it is often not regardedas regularization, is to limit the range of the parameter values and the number ofmodel layers to spei�ed values that are onsidered reasonable [Constable et al.,1987℄. This type of regularization is an intrinsi part of our geneti algorithm, aswe have to speify the parameter enoding before the inversion. The restritionsthat result from the hosen enoding will keep the output models simple, as longas we keep the parameter range and number of layers small. This method is notwithout problem, beause at the same time we want to allow the algorithm to have99



5 Optimization in the ontext of �ltering and inversionenough �exibility to model the struture of the subsurfae. By varying the numberof layers and the model ranges, we an often identify appropriate hoies in 1Dinversion problems, for 2D or even 3D problems, this approah is not feasible, andwe have to inlude a measure of model struture into the inversion. Even in 1D aproperly hosen regularization funtional an improve the inversion.The most widespread measures to quantify the omplexity of a model in 1D are
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dz. (5.30)The optional referene model mref an be used to tie the inversion models to aknown referene model suh as PREM [Dziewonski and Anderson, 1981℄ for seis-mi data. If no sensible referene model exist, the orresponding vetor an beset to zero. Note the similar struture of all these measures to the mis�t funtionin Equation 5.4. In fat they are inorporated into the inversion as just anotherobjetive funtion.
R1 limits the absolute value of the model parameters. If no referene model isused, it will hose the model with the lowest average parameter values, for examplethe least resistive model in the ase of magnetotelluris. When a referene modelis used, it limits the variation of the inversion model from that referene model.
R2 redues the variability of the gradient. Without a referene model, it limitsthe hange of parameter values between adjaent layers. This represents the om-mon notion of a smooth model. When we use a referene model with this measure,it results in small values when the hanges in the inversion model are the same asin the referene model. The absolute values an di�er by an arbitrary onstant.The use of the seond derivatives in R3, orresponds to minimizing the urvatureof the models. Without a referene model this allows for inversion models with auniform gradient, but suppresses strong osillations. With a referene model theminimum value is given for models that have the same urvature as the referenemodel.These three measures are not the only possible regularization funtionals, buta large number of di�erent funtionals exists [e.g. Farquharson and Oldenburg,1998, Zhdanov and Tolstaya, 2004℄. For our purposes, and for 1D, the measurespresented above are su�ient. It is important to note that in virtually all situa-tions the regularized inversion problem provides an inompatible problem. For allbut uniform models, the model with minimum data mis�t will not be the modelwith lowest omplexity. This trade-o�, and the resulting di�ulty in hoosing100



5 Optimization in the ontext of �ltering and inversionthe orret weighting parameters, is well known in all inversion problems, and theplot of the trade-o� between mis�t and roughness is termed the L-urve [e.g.Hansen, 1992, Farquharson and Oldenburg, 1998, Farquharson and Oldenburg,2004, Pedersen, 2004℄. As we disussed above, NSGA-II provides an alternativeway to inorporate this ompeting objetive funtion into the minimization algo-rithm, and the �rst appliation of this algorithm in geophysial inversion was toautomate the onstrution of the L-urve [Shwarzbah et al., 2005℄.Apart from guiding the inversion proess to a ertain type of model, regular-ization has another role in linearized inversion methods. The equations 5.28 �5.29 are all stritly quadrati. Adding suh a quadrati funtional to the possi-bly non-quadrati error funtional, gives the objetive funtion an approximatelyquadrati shape. This geometry makes it easier for the linearized algorithm to ap-proah the minimum and redues the in�uene of noise. For our geneti algorithmapproah, this does not make any di�erene, as we do not use gradient informa-tion. We an inorporate a regularization funtional as an additional objetivefuntion, however, this makes the trade-o� plots as shown in Figures 5.9 and 5.7three-dimensional.5.6 Resolution and model ovarianeOne of the reasons we disussed linearized inversion in suh detail, apart fromontrasting it to GA based inversion, is that a lot of methods to appraise theinversion results have been developed in this ontext and we will need the oneptsintrodued above to understand them. Two harateristis of any model of theEarth are partiularly useful to understand the quality of the model: resolutionand model ovariane. These two quantities were introdued into geophysialinversion by Bakus and Gilbert [1968℄ and have sine then been used to assesswhih parts of the model an be deemed reliable and where the data does notontain su�ient information on the strutures in the subsurfae.Both of them are onneted to the sensitivity matrix G and hene are onlyexat for linear inverse problems. Using them for non-linear problems will providea �rst order approximation, whih is useful to get an idea of the problem, butnot always appropriate [Ledo et al., 2004℄. The model ovariane matrix simplyexpresses how errors in the data map into errors of the model [Menke, 1989℄
cov(m) = G−gcov(d)G−gT

. (5.31)Here the supersript −g denotes the generalized inverse of the sensitivity matrix.In general the sensitivity matrix is not square, so we annot use the ordinary ma-trix inverse. Even when it is square, the inverse might not exist, if the sensitivity101



5 Optimization in the ontext of �ltering and inversionmatrix is singular. Instead, we perform a singular value deomposition of the
n × m matrix G, i.e. we fatorize it into three matries

G = UΛVT. (5.32)The n × n matrix U spans the data spae, while the m × m matrix V spans themodel spae. The n×m matrix Λ ontains the non-negative singular values on itsdiagonal. If n < m, i.e. we have more model parameters than data and are solvingan underdetermined problem, we will have n − m singular values that are exatly0. But even when n ≥ m, the magnitude of the eigenvalues an span severalorders of magnitude and we an onsider values below a ertain threshold p aszero for numerial purposes. Setting these eigenvalues to zero gives the trunatedsingular value deomposition
Gp = Up ΛpVT

p (5.33)and the orresponding generalized inverse
G−g

p = VpΛ−1
p UT

p. (5.34)Comparing equations 5.31 and 5.34, we see that with inreasing threshold, i.e.,using only the eigenvetors assoiated with large eigenvalues, the model ovarianebeomes smaller and smaller. This derease in ovariane omes at a prie though.Realling from equation 5.7 that
dobs = Gmtrue (5.35)and realizing that our estimated model mest is given by

mest = G−gdobs, (5.36)we see that in the trunated ase
mest = G−gdobs = Gp

−gGp mtrue = Rmtrue. (5.37)The matrix R is alled the resolution matrix. If we do not have any vanishingsingular values and do not trunate, we theoretially an reover the true model.This model will be strongly in�uened by noise in the data though. Removingsmall singular values stabilizes the model, but R will no longer be the identitymatrix and we reover a �ltered version of the true model
R = Gp

−gGp = VpV
T
p. (5.38)102



5 Optimization in the ontext of �ltering and inversionThus with inreasing trunation level we redue the model ovariane, but theorresponding model beomes a strongly �ltered version of the true model [e.g.Kalsheuer and Pedersen, 2007℄. Conversely the null-spae projetion matrix
P = I − R (5.39)indiates possible hanges in the model that have no or only minor impat on thepredited data.Muñoz and Rath [2006℄ use this fat to onstrut a model perturbation algo-rithm that illustrates the range of possible models that an explain the data

mc = m0 + P∆m. (5.40)A random model perturbation is projeted into the null-spae and added to theinversion model to onstrut an equivalent model in terms of data mis�t. We haveto bear in mind though that this approah is based on a linear approximationaround the inversion model and monitor the hange in data mis�t to avoid vio-lating the approximation. Alternatively Kalsheuer and Pedersen [2007℄ employ anon-linear analysis whih is omputationally muh more demanding, but improvesthe auray of the results.We will use the simple perturbation algorithm desribed by Equation 5.40 toexamine in how far we an modify our resulting models to violate the joint interfaeassumption of the joint inversion approah.
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If my answers frighten you Vinent, then you should ease askingsary questions. Jules Winn�eld
6Is it real? Testing the algorithmand appraising the inversionresults

Now that we have a good understanding of the inner workings of the inversionmethod, we an start to examine the datasets and their behaviour in an inversionproedure. First, we will de�ne the exat objetive funtions we use for eah of thedatasets, and explain the motivation behind these hoies. Then we will look atthe dependene of the individual objetive funtions on the model parameters, toidentify a suitable set of parameters for the inversion proedure. Finally, we lookat the inversion results from syntheti data reated from realisti Earth models,to see in how far the geneti algorithm an distinguish between ompatible andinompatible datasets in the ase of MT and reeiver funtion inversion. In theproess we introdue some additional tools to quantify the ompatibility of thedatasets.6.1 De�ning the individual objetive funtionsAlthough Equation 5.4 fully desribes the mis�t riterion of the inversion proe-dure, we have to make a number of hoies for eah dataset that will in�uene theresults of the inversion. The two main deisions we have to make are, (1) whihdata to use and (2) how to speify the orresponding error. The �rst deision ismainly of onern for magnetotelluri data, while the seond onerns mostly the104



6 Is it real? Testing the algorithm and appraising the inversion resultsreeiver funtion data.The best, and most aurate, way to model our data would be to reate a fullthree-dimensional model of the region of interest and model all aspets of bothdatasets. Even though 3D forward modelling odes for both MT and teleseismidata exist [Siripunvaraporn et al., 2002, Avdeev, 2005℄, and individual 3D inver-sion is slowly oming within reah [Weiland et al., 1995, Siripunvaraporn et al.,2005, Avdeeva and Avdeev, 2006℄, the forward modelling odes are omputation-ally too demanding for our geneti algorithm approah. The more e�ient lin-earized methods might be omputationally feasible, but the issue of possible mis-mathes between seismi and eletri struture would be ompletely ignored insuh an approah as demonstrated with the simple example in Chapter 5. With-out independent information, an indiator of the ompatibility of the datasets isequally as important as the best �tting model. For this reason we have to onstrainourselves to a omputationally feasible 1D approah.For the MT data, we hoose to model the real and imaginary parts of theBerdihevskiy invariant [Berdihevskiy and Dmitriev℄ of the observed and pre-dited data to alulate the mis�t in Equation 5.5. For the syntheti input modelsthat we examine here the hoie of the invariant does not have any impat, as forthe syntheti 1D data we invert the invariant is equal to the o� diagonal elements.For reorded data, the invariant has two important e�ets: For purely one dimen-sional data that are a�eted by random noise, the averaging proess redues theimpat of the noise. For data that are not stritly one dimensional, and where thethe two polarizations di�er, the Berdihevskiy invariant makes the inversion dataindependent of the oordinate system by ombining the information from bothpolarizations to reate an average one dimensional approximation.For the reeiver funtions, we have to make a modi�ation to Equation 5.5.We do not have individual error estimates for eah datapoint, but only an overallrelative error for the entire reeiver funtion. Also, a number of datapoints will belose or equal to zero. For these datapoints the division by a relative error will benumerial unstable. For this reason we ompute the squared di�erene betweenobserved and modelled data, and divide the sum by a onstant relative errorestimate. Unfortunately this also removes the equalizing property from Equation5.5, and therefore we have to exlude the initial orrelation peak that is numeriallymuh larger than the part of the reeiver funtion we are interested in.6.2 Choosing the inversion parametersFor the following syntheti tests and the inversions of real data we use a rossoverprobability pc = 0.6 and a mutation probability of pm = 0.2. Experiments with105



6 Is it real? Testing the algorithm and appraising the inversion resultsdi�erent values have shown that these two values provide a good ompromisebetween su�ient innovation and preservation of well performing models. Thepopulation size is usually set to Np = 1000 and we perform 100 iterations. Whenthese numbers di�er we will indiate it in the text.The model parameters we use in the inversion are the logarithm of eletrialresistivity log(ρi
el), the thikness of eah layer ti, and the S-wave veloity vi

s. Intheory the shape of the reeiver funtion also depends on P-wave veloity vi
p anddensity ρi. Tests with di�erent P-wave veloities and densities revealed, that thisdependeny is poorly resolved. We therefore predit these values from the S-waveveloities through the relations [Owens et al., 1984℄

vp =
√

3vs, and (6.1)
ρ = 0.77 + 0.554vs. (6.2)These relationships help to redue the number of parameters and onentrate thesearh on the resolvable parts of the model, while at the same time keeping theunresolved parameters at realisti values.One well known property of reeiver funtions is that they have a substantialtrade-o� between the thikness and the veloity of the surfae layer [Ammon et al.,1990, Sambridge et al., 2006℄. The harateristis of this trade-o� are shown inFigure 6.1. We ompute the mis�t between a syntheti two-layer test model with

2% added noise and a number of test models with varying layer thikness andveloity in the top layer. We an see an elongated valley of low mis�t values;within this valley the mis�t hanges only gradually. The position and shape ofthis valley an be easily understood by looking at Equation 4.18. An inrease in
vs an be ompensated for by a dereased layer thikness h, and result in the samelag time for the onversion. The transmission oe�ient for the P-to-S onversionalso depends on vs and h, and onsequently the amplitude of the onversion willbe di�erent for di�erent parameter ombinations. However this dependeny isonly weak, so within the valley we only have poor sensitivity to di�erenes instrutures. As mentioned in the disussion about regularization, this problem iswidespread in geophysial inverse problems and not restrited to reeiver funtioninversion. The issue of non-uniqueness will be of major onern when we examineour results.It is also interesting to observe that there are a number of seondary loalminima far away from the global minimum. Partiularly at low veloities, weobserve a number of ridge strutures in the error surfae. These ridges provideobstales for linearized inversion shemes if the starting model is hosen in anarea between two of them. This provides another ompelling reason to use a non-linearized inversion instead of a linearized approah to invert reeiver funtion106



6 Is it real? Testing the algorithm and appraising the inversion results
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Figure 6.1: Reeiver funtion mis�t as a funtion of layer thikness and S-waveveloity of the surfae layer. The true model parameters are marked by a whitedot. The olour illustrates the length and diretion of the gradient vetor.data [Shibutani et al., 1993℄. Even when using a GA the struture of the errorsurfae demonstrates the need to set the surfae veloity to a �xed value. For thesyntheti tests we present here, we set the veloity to the true value of the inputmodels. For the real data inversion that we desribe in Chapter 7, we will takevalues from regional and global rustal veloity models [Dziewonski and Anderson,1981, Perry et al., 2002, Chen et al., 2007℄.6.3 Conneting seismi veloities and eletrialondutivitiesArguably the most important hoie we have to make when we set up the inversionis how we link the magnetotelluri and seismi models to onstrut a joint model.107



6 Is it real? Testing the algorithm and appraising the inversion resultsIn our approah, the oupling between the seismi and magnetotelluri models ispurely based on oinident layer boundaries. The model vetor only ontains oneset of layer thikness values that is used for both types of forward models. Theresistivities and veloities within eah layer an vary independently, and there isno restrition on the gradient or seond derivatives between the layers. This typeof oupling provides only a loose onnetion between the models, and is the one-dimensional analogue to the ross-gradient approah [Gallardo and Meju, 2003℄.The ross-gradient between two models is de�ned as
t(x) = ∇m1(x) ×∇m2(x). (6.3)It allows hanges in the parameters of both models in the same diretion, or ahange in only one of the models while the other model stays onstant. In 1D theross-gradient is always zero, but our oinident layer approah provides a suitableapproximation.This is, of ourse, not the only possible approah. Saunders et al. [2005℄ use reg-ularization based on the seond derivative to ouple eletrial and seismi struturein a sedimentary environment. In their ase the seismi model is �xed and onlyused to guide the eletrial inversion. Another problem with their approah, aswell as the similar one used by Haber and Oldenburg [1997℄, is that eah time oneparameter hanges, the other has to hange too.Even more restritive would be a funtional oupling between the two parame-ters, where one parameter value is alulated from the other by some user spei�edfuntion. For now, while we do not have a good understanding of the expetedrelationship between eletrial ondutivities and seismi veloities, we will useonly the loose onstraints of oinident layer boundaries. We will return to thisdisussion when we look at the inversion of real data.6.4 Testing the inversion proedure with synthetidata: A simple problemWe test our joint inversion algorithm with syntheti input data that we alulatedfrom a known model. We will start with noise free data from simple models, andgradually make the task more di�ult by adding noise and making the modelsmore omplex. This will help to larify a number of questions that we mentionedbefore:� Can we retrieve the input models ?� Can we distinguish ompatible from inompatible models ?108
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6 Is it real? Testing the algorithm and appraising the inversion resultssevere. The explanation for this observation is simple. The amplitude hangesin reeiver funtions are reated by veloity ontrasts at layer boundaries. As weremarked before, the appearane of the noise resembles the data. Therefore itis easy for the inversion algorithm to reprodue some of the noise by introduingadditional layer boundaries with veloity ontrasts. The noise for MT, on the otherhand, is usually a high frequeny phenomenon. Unless the data are systematiallybiased, only a small number of frequenies is shifted in one diretion. The di�usivenature of the indution proess distributes the e�et of hanging the ondutivityor position of a layer over several neighbouring frequenies. If we only use a smallnumber of layers, this e�et prevents the introdution of strong artifats due tonoise.Looking at the resulting models for the unorrelated test ase displayed in Figure6.8 mostly on�rms the impression we already gained with the ompatible testproblem. The shallow and deep struture of the MT model are well represented.Somewhat surprisingly we do not observe the high resistivity layer at intermediatedepths. Ironially, this is most likely due to the noise in the reeiver funtiondata. As we saw with the orrelated ase, the reeiver funtion models ontain aonsiderable amount of arti�ial struture that results from �tting noise. This doesnot leave su�ient freedom for the algorithm to introdue unresolved struture inthe MT models, but requires a onentration on the essential features. Although inthis ase the artifats in the seismi model are ertainly undesirable, this stabilizinge�et is one of the objetives we want to ahieve when we perform joint inversion.A possible solution to suppress the in�uene of noise, is to use a more robustmeasure of mis�t. Using the l1-norm, instead of the ommonly used l2-norm, re-dues the in�uene of high amplitude data and makes the inversion less prone tooutliers [Farquharson and Oldenburg, 1998℄. Our geneti algorithm allows om-plete �exibility in the kind of norm we employ, and we show the results using an
l1-norm measure of mis�t for the reeiver funtion data in Figure 6.8b. Otherwiseall inversion parameters are kept the same. There are some disernable di�ereneswhen omparing the distribution of models to the l2-norm results, but overallthe di�erene is only minor. We still observe artifat strutures, although moremodels now orretly reprodue the veloity hange at 35 km.Finally we examine the e�et of inreasing the number of layers to 6. Theoverall e�et is only minor, as we an see in Figure 6.8. The trade-o� urves (notshown) have a similar appearane to the ones shown in Figure 6.6 for 4 inversionlayers. As an be expeted, there is a larger amount of arti�ial struture in thereeiver funtion models, as the algorithm now has more freedom to model noiseontributions. In ontrast, the MT model is not greatly a�eted by the hange ofinversion layers, its overall appearane is omparable to the 4 layer ase.116
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6 Is it real? Testing the algorithm and appraising the inversion resultssummarize all models regardless of regularization level.Comparing these histograms with the histograms in Figure 6.10, displaying theresults for referene model regularization, we see a number of di�erenes. The MTmodels appear to re�et the subsurfae struture better than with the gradientbased regularization. It is important to note though that these models have onlybeen regularized indiretly. The di�erene to the referene model is only alulatedbased on layer thikness and seismi veloities, the eletrial ondutivities play norole in the regularization. The onstraints on thiknesses on the other hand, limitpossible model geometries and therefore, indiretly, limit the range of possibleondutivity values.The reeiver funtion models also appear to resemble the input model more thanwith the previous approah. When omparing these models with the referenemodel used for regularization, we disover that the results are mostly in�uenedby this referene model. The fat that the seismi veloities only vary by a fewperent and that depth to the Moho only varies by ±15 km in most ontinentalareas, makes it appear on this sale that we reovered the input model. Againthese plots only summarize all models the inversion algorithm retrieved, but donot take into aount the mis�t and other harateristis of any of those models.We have to analyze the trade-o� between the di�erent riteria to identify theoptimum model.As mentioned above the trade-o� is now represented by a ompliated-shapedsurfae that an only be faithfully represented in three-dimensional plots. Exper-iments with di�erent viewing angles and plotting styles showed that, while wellvisible on the omputer sreen, the printed versions do not provide muh insightinto the shape of the surfae, as the sense for the third dimension gets lost. Wetherefore deided to represent the model roughness by olour, interpolated be-tween the models and with added ontours. While this plotting style has thedisadvantage of suggesting values where we do not have any data (best seen in theupper right plot of Figure 6.11), it gives the best sense of the trade-o� harater-istis of the di�erent riteria. To show in whih region the olour is appropriatewe also plot the position of the models as blak irles.Figure 6.11 shows plots for the four setups we onsidered so far. For the orre-lated ase with regularization based on the gradient, we observe a loud of modelswith varying mis�t values for MT and reeiver funtions, roughly distributedwithin a retangular area. The oloured ontours reveal that the roughness valuesassoiated with eah model group in bands more or less parallel to the absissa.We �nd the highest roughness values with the lowest MT and RF mis�t valuesand vie versa, just as we would expet. Within eah range of roughness values,i.e., eah regularization level, we an �nd a small luster of models with low mis�t119
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the reeiver funtion models show a high degree of artifats in the upper part ofthe model. At depths between 100 and 170 km the majority of the models arereasonably aurate. It is puzzling though that the veloity of the lowermost layeris severely biased downwards for the ompatible models. Even when onsideringthe mis�t of the reeiver funtion data and seleting the best model (not shown),we observe the same harateristis as in the summary histogram. It is thereforeimportant to make sure that we use high-quality reeiver funtion data when weapply the inversion algorithm to real data. Also a good regional seismi modelan be used as a referene model to suppress some of the artifats as we showedfor the two layer ase before. We will now see in how far regularization helps inthis ase. 128
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7Appliation to data from the Slaveraton

The syntheti test ases in the previous hapter outlined the strengths and limi-tations of our approah. We an use the insight we gained from those experimentsto assess the quality of the results we obtain from measured data in this hap-ter. The Slave raton in north-western Canada is a well studied Arhean ratonand the observed oinidene of seismi interfaes with hanges in ondutivity[Snyder et al., 2004℄ was one of the motivating fators for this work. We an rea-sonably expet at least partial ompatibility of the two datasets, and thereforeapply our joint inversion method to two sites from this area.7.1 An overview of the data and seleting suitablesitesDue to its diamoniferous kimberlites and thanks to the LITHOPROBE programthe Slave raton has been studied extensively with di�erent kinds of geophysialand geohemial methods [e.g., Gri�n et al., 1999, Jones et al., 2003, Snyder et al.,2004, Clowes et al., 2005℄. Figure 7.1 shows a seleted number of sites loated onthe entral Slave raton around the Ekati diamond mine. These were part ofthe studies by Jones et al. [2003℄ and Snyder et al. [2004℄, and therefore are goodpotential andidates for our joint inversion approah.Here we apply the joint inversion algorithm to a small seletion of stations,to demonstrate its potential, but do not attempt to onstrut a omprehensive134
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7 Appliation to data from the Slave ratonlearest and most onsistent onversions at both sites are the primary Moho on-version and its multiples, although the primary onversion seems to be of higheramplitude at site EKTN. In addition we observe two more negative amplitudeonversions labelled F1 and F2. F1 extends over several events at site EKTN, butwe annot identify it learly at site BOXN. The negative amplitude suggests aonversion from high to low veloity and the rule of thumb onversion to depth,multiplying the lag time by 8, suggests a depth of ≈ 100 km. This agrees withresults from Snyder et al. [2004℄, who make similar observations at the same siteand identify a low veloity zone at a depth of 110 − 120 km.The expression of feature F2 is more subtle than F1 at site EKTN, and there isalso some indiation of it at site BOXN. It marks a negative amplitude onversionjust after the seond Moho multiple. Again using the rule of thumb depth onver-sion, we alulate a depth of 190 km. At this depth Snyder et al. [2004℄ identifya similar feature in the transverse reeiver funtion. In a purely one dimensionalenvironment, the transverse reeiver funtion would only show noise. They there-fore interpret it as a sign of anisotropi shear wave veloity, whih is supported byother studies [Snyder and Bruneton, 2007℄, and anisotropi strutures also havebeen identi�ed in other depth intervals in the south-western Slave raton [Bostok,1997℄. Our observation on the radial reeiver funtion suggests that there mightbe another low-veloity zone at this depth.We do not model anisotropy of seismi veloity or eletrial ondutivity withthe urrent inversion algorithm, as neither forward ode has the ability to do so.As disussed above there is no sign of strong eletrial anisotropy in the data,as this would require phase split and imply an elevated µ value, but the seismiomponent of our results will depend on the bakazimuth of the events we hosefor reeiver funtion omputation. Depending on whether the inoming wave istravelling along a fast diretion of propagation, or slow axis of propagation, theretrieved veloities will be higher or lower, respetively. At this point we aremore interested in the geometry of strutures than the absolute veloities. Also,our syntheti tests showed that reeiver funtions do not have good resolution toabsolute veloities anyway. Even in the presene of anisotropy we should be ableto reover the loation of veloity ontrasts, as a hange in veloity will produea P-to-S onversion regardless whether the struture is anisotropi or not.We have several possibilities to deal with the issue of seismi anisotropy: We anselet a reeiver funtion from a single event that we regard as representative. Ob-viously, we do not have any quantitative measure of noise in this ase, but throughareful omparison with other events we an get at least a qualitative idea. Alter-natively we an selet reeiver funtions from a narrow range of bakazimuths thatshow interesting onversions, or we an average over all bakazimuths to average139
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7 Appliation to data from the Slave ratonbakazimuths and distanes (a histogram of the distribution an be found in FigureB.2), while the plots with label �300� are only over a bakazimuthal range between299°� 306°. This bakazimuthal range orresponds to the region in Figure 7.4where we an observe features F1 and F2 most learly and a lot of the high qualityevents are loated in this bakazimuth range. The thiknesses of the individualreeiver funtion lines display the error based on the standard deviation. Thereare some signi�ant di�erenes between the two types of averages. In general theonstrained averages show more pronouned features. This is even true for theMoho multiples, but partiularly for both F1 and F2, as we expet. We do notemploy any moveout orretion, whih might aount for some of the amplituderedution. However, most of the events ome from a similar distane range, sothis e�et should not be very strong.This plot also reveals the di�erent expression of F1 and F2 at both sites. While
F1 is barely visible at site BOXN, it is, together with the Moho onversion, themost signi�ant feature at site EKTN. F2 is more subdued at both sites, butstill more pronouned at site EKTN. The single event reeiver funtion shows thesame features as the limited bakazimuth average with some additional onversionamplitudes. It is di�ult to quantify whih of these are noise, and whih areatual onversions. In general, this reeiver funtion seems to be of high qualityand we will also perform some inversions with just this one reeiver funtion. Forthese two sites, it appears that a simple staking of reeiver funtions from allbakazimuths strongly redues the amplitude of all onversions but the primaryMoho onversion. We will therefore not onsider it for joint inversion.7.2 Results from separate inversionsWe will invert the data with a number of di�erent parameter settings to investigatethe e�et of di�erent numbers of layers, regularization and di�erent types of data.First we will invert eah dataset separately to get an idea of features required bythe individual datasets. Then we will ombine the datasets to see in how far thisompares to the results of the individual inversions. From here on we will labelboth the MT and the RF data with the names of the seismi stations to make iteasier to relate the results.Inverting the MT dataFigure 7.6 shows the results when we invert the MT data for eah site separately.We use 20 layers to parametrize the model and regularize its smoothness in anOam-like approah [Constable et al., 1987℄. For site BOXN we observe the typ-141
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7 Appliation to data from the Slave ratonat a depth of 240 km. This oinides roughly with the reported depth of thelithosphere-asthenosphere boundary (LAB) in this region. Jones et al. [2003℄ re-port a depth of 260 km based on averaged MT data, and 200 km for their La deGras site in the viinity of our study area, while reeiver funtion results suggest190 km [Snyder et al., 2004℄, and surfae wave studies 210 ± 65 km [Chen et al.,2007℄. In our models this derease is a minor feature though and not well resolved,we will see whether joint inversion an improve this situation.The trade-o� urve for site EKTN has a slightly di�erent appearane than at siteBOXN. We still observe the overall L-shape, but we observe two regions of highurvature. We therefore plot two models, one from eah area. The two models aregenerally very similar and only di�er signi�antly at large depths. In omparisonwith the model for site BOXN, they both show larger resistivity variations, butthe main features remain the same. We observe a similar rustal ondutor, andalso the low resistivity zone at 100 km depth. Only now it appears to be widerand bounded by higher resistivity below. The resistivity of this resistor, however,is not well resolved, as we an see by omparison with Model 2. Again we see anexpression of the LAB in form of another resistivity derease. As before this isnot a well resolved feature and this also is the area where the two models beginto di�er signi�antly.Inverting the RF dataFor the reeiver funtion data we have to take a di�erent approah for the in-dividual inversion. The non-uniqueness of the models that we demonstrated inFigure 6.1 requires to hoose a veloity for the rust. Perry et al. [2002℄ suggest
vp = 5.9 ± 0.1 km/s for the south-western Slave raton, based on the wide-anglere�etion and refration study by Fernandez Viejo and Clowes [2003℄. Assuminga Poisson solid this translates into vs = 3.4± 0.06 km/s. Chen et al. [2007℄ obtain
vs = 3.546±0.037 km/s from Rayleigh wave inversion of array data from the Slaveraton. We will test both of these values and examine the impat on the inversionresults.To determine the basi rustal struture, we start with a simple two-layer inver-sion to determine the depth to the Moho. Figure 7.7 shows a omparison betweenobserved and predited data from the best �tting model for two di�erent kindsof input data and di�erent rustal veloities at site BOXN. As before the reeiverfuntion labelled �BAZ 300� has been alulated from averages restrited to a bak-azimuth around 300°, while �BAZ all� denotes an average over all bakazimuths.We also noted before that the multiples are less pronouned in the general average,partiularly in omparison to the predited data. For all models the amplitude ofthe multiple onversions is signi�antly smaller than predited by the syntheti143
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7 Appliation to data from the Slave ratonin the independent inversion of the MT data from this site, and this orrelationhas been observed before [Snyder et al., 2004℄. Below 150 km the models di�ersigni�antly, indiating poor resolution. However, two models show a dereasein veloity at a depth of 190 km, whih ould be interpreted as an expression ofthe LAB. Yuan et al. [2006℄ argue that in most ases for P-reeiver funtions theonversion from the LAB is buried in the onversions frommore shallow strutures,and advoate the use of S-reeiver funtions to identify the LAB. On the otherhand, Ryhert et al. [2005℄ interpret negative Ps onversions as an expression ofa sharp transition into the asthenosphere. From our limited results so far, thisinterpretation remains highly speulative for our data.The struture of the mantle at site BOXN is similar to site EKTN. We alsoobserve a low-veloity zone and obtain a similar depth for the Moho. In ontrastto the models for site EKTN, the low veloity zone appears to start at shallowerdepth. This agrees with the shallower position of the low-resistivity zone in theMT models. The similar behaviour makes it likely that the low veloity and lowresistivity have a ommon ause. We annot identify the LAB at site BOXN.Only the model that has been regularized with a referene model shows a veloityderease at 200 km depth. This is also a feature of the referene model andtherefore might be an artifat of regularization.7.3 Joint inversion without regularizationThe observed oinidene between the low-resistivity CSMC and the low-veloityzone in the independent inversion suggests that we an expet at least a partialompatibility of the two datasets in the joint inversion. Ideally the joint modelwill also larify the position of the LAB, whih is a poorly resolved feature in bothindependent inversions.For the individual inversions, we hose a large number of inversion layers thatexeeds the expeted number of layers and hose the appropriate model based onregularization. For the joint inversion we have to modify this approah. For avery large number of layers the seismi and eletri model e�etively deouple, asthe oupling is established through oinident layer interfaes. If the thikness oflayers is smaller than the resolution of the data, the eletrial ondutivity andresistivity hanges an our anywhere within a broad region and we will not beable to attribute the hanges to a ommon struture. If we go to the other extremeand use too small a number of layers, we enfore arti�ial orrelations and willnot be able to explain the data adequately. We therefore have to determine theoptimum number of layers.Figure 7.10 shows the dependene of the minimumRMS on the number of inver-147



7 Appliation to data from the Slave raton

8 10 12 14 16 18 20
Number of Layers

1.2

1.25

1.3

1.35

1.4

1.45
M

in
im

um
 R

M
S

Optimum number of layers

Figure 7.10: Minimum RMS as a funtion of number of layers for the MT dataat site EKTN. For more than 12 layers the mis�t does not derease signi�antlywith inreasing number of layers.sion layers for the MT data from site EKTN. Between 8 and 12 layers we observea signi�ant derease in mis�t, while for more than 12 layers the improvement isless with inreasing number of layers. From this we onlude that 12 layers aresu�ient to model the MT data at this site.For site BOXN the piture is similar, although 10 layers appear to be su�ientfor that site. As the di�erene between 10 layers and 12 layers is not very largein both ases, we use 11 layers for both sites as a ompromise. For the reeiverfuntion data the situation is more ompliated due to the need to �x ertainstrutures, but an inspetion of Figure 7.9 shows that 12 layers are loated in thedepth interval of interest between 0 and 250 km depth, and 10 of these in the wellresolved region above 150 km depth, suggesting that 11 layers are also appropriatefor the seismi data.Table 7.1 summarizes the parameter searh ranges we use for eah layer in thefollowing joint inversion runs. Apart from the �xed rustal veloities, all otherparameter ranges should be large enough not to have an e�et on the inversionproedure. We show the resulting trade-o� urve and some representative modelsfor both sites in Figure 7.11.For site EKTN we obtain a trade-o� urve in the form of a strongly bent L, andthe di�erene in mis�t between the worst and best �tting model is only about 15%148



7 Appliation to data from the Slave ratonLayer no . 1 2 3 4 5 6 7 8 9 10 11Min. Thik. tmin [km℄ 1 20 10 10 10 10 10 10 10 10 ∞
∆t 1 1 1 1 1 1 1 1 1 1 0Max. Thik. tmax 16 35 25 25 25 25 41 41 41 41 ∞Min. Res. ρmin [Ωm] 10 10 10 10 10 10 10 10 10 10 10log(∆ρ) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1Max. Res. ρmax 19 · 106 15 · 103Min. vs [km/s℄ 2.5 3.4 3.4 3.7 3.7 3.7 3.7 4.0 4.0 4.0 4.0
∆vs 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1Max. vs 4.0 3.4 4.5 5.2 5.2 5.2 5.2 5.5 5.5 5.5 5.5Table 7.1: Parameter searh range for the unregularized joint inversion runs.for both datasets. This resembles the results for the ompatible test problem withadded noise, where we also obtained a luster of models, but with low varianein mis�t. For site BOXN we plot two trade-o� urves, one with the setup asgiven in Table 7.1, labelled �ondutor in the rust�, and one where we enfore aveloity hange at the seond interfae, e�etively allowing only for two rustallayers, labelled �ondutor in the mantle�. We an see how this hange in setupdrastially a�ets the trade-o� urve. While the �ondutor in the rust� trade-o�urve resembles the trade-o� urve for site EKTN, and plots as a luster of pointson the sale of this plot, the �ondutor in the mantle� urve learly resembles thetrade-o� for an inompatible problem. There is not any model with both a low MTand RF mis�t when we use this type of setup. The reason for this experiment isthe observation of a lower resistivity just below the Moho at site EKTN. This is anunusual result, but a similar observation has been made in the south-western Slaveraton [Jones and Ferguson, 1997℄, and therefore is possibly a real feature. As wedisussed before though, the high-frequeny MT data at this site is problematiand we an therefore only inlude periods >0.8 s. As a onsequene, this gives usonly limited resolution in this depth range. At site BOXN we an learly exlude amantle origin of the ondutor, as we an only explain both datasets when its topresides in the rust. Regardless of the position of the �rst ondutor, we obtainessentially idential results for the mantle strutures.For site EKTN we examine the nature of the trade-o� urve by omparing twomodels within that urve. Model A is loated at the position of highest urvatureand has both a low reeiver funtion and MT mis�t. In omparison, Model Bhas a signi�antly higher MT mis�t, but only marginally smaller reeiver funtionmis�t. As we saw in the syntheti examples, this might be an indiator of a partialinompatibility between the datasets. Comparing the two models we see a number149
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Figure 7.11: Trade-o� urves (left) and some representative models from an un-regularized run of the joint inversion algorithm. For site EKTN we examine thenature of the trade-o� by omparing two models within the trade-o� urve. Forsite BOXN we examine the impat of the position of the �rst ondutor on thetrade-o� urve. The seismi model for site BOXN also shows the results obtainedby Chen et al. [2007℄.of di�erenes, although some of them are mostly an indiator of poor resolution.For example the greatly inreased resistivity below the �rst ondutor in Model Ban ertainly not be resolved by the data. The most signi�ant di�erene betweenModel A and Model B is the di�erent position of the lowermost ondutive low-veloity zone. The reeiver funtion data seem to favour a veloity derease at190 km, while the MT data favour 220 km for the top of the ondutor. Figure7.12 shows a omparison between the measured data and the predited data fromModel A. We also indiate the feature that orresponds to the low veloity zonein Model B by an arrow. Certainly the feature modelled by Model A is morepronouned, and this is what we labelled F2 in our disussion of the reeiverfuntion data. Considering the di�erenes in mis�t and our assessment of thequality of the features, we regard Model A as the representative model. It appears150
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7 Appliation to data from the Slave ratonin the ondutivity quadrant orresponds to the resistive layer between 50 and
70 km depth. Here we also �nd signi�ant o�-diagonal elements that display theinteration between the inversion parameters.For the reeiver funtion model parameters we only observe high values of thenullspae matrix assoiated with the thikness parameters, partiularly for thelower layers. In addition, there is a larger number of signi�ant o�-diagonalelements, suggesting onsiderable interation between the layer thikness val-ues. This on�rms the observation from our experiments and is due to the non-uniqueness problem of reeiver funtions we disussed before. In this ase the lowvalues for the veloities give a more optimisti view on the situation, as the ap-pliation of this matrix in the model perturbation algorithm demonstrates. Fromthe matrix we would expet to see only small veloity variations, but they are onthe same relative order as the thikness variations, as the o�-diagonal elementsprojet these variations on the veloities of the model.These observations provide us with another indiation of the ompatibility ofthe datasets, as they demonstrate how far we an perturb eah model and stillmaintain a similar mis�t. For example, the small variation in the top of the CSMCmakes a ommon interfae plausible, while the larger variations of its bottom inthe MT data do not exlude a ommon interfae, but neither prove its existene.Using averaged reeiver funtionsAs disussed before the use of a reeiver funtion alulated from a single eventbears the risk of inverting noise ontributions for struture and reating artifatsin the models. We will now examine the results when we use the averaged reeiverfuntions.Figure 7.15 shows the results for the averaged reeiver funtion from a bak-azimuth of 300° for site BOXN with otherwise idential settings to the previousinversions. We ahieve a similar MT RMS, but the reeiver funtion RMS is nearlyhalved and now even reahes value below unity. As the omparison between thedata and the syntheti RF reveals though, this is not so muh due to a greatlyimproved �t, but more to the overall lesser amplitude of the reeiver funtion. Wedo ahieve a good �t to the Moho onversion and its multiples and some additionalfeatures, but there are a number of unexplained amplitudes, partiularly in thetime window between 5 and 15 s.The two models we show for omparison do not di�er signi�antly for boththe MT and the reeiver funtion parts. Both MT models are similar to themodel we presented before, whih is not surprising as they are derived from thesame data. The reeiver funtion models, in turn, are muh simpler than before.Espeially Model B shows only the low veloity zone assoiated with the CSMC,154
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Figure 7.19: Regularized inversion results for site EKTN. We plot the trade-o�urves between MT mis�t and roughness (upper left) and RF mis�t and roughness(upper right) together with the eletrial (middle) and seismi (right) parametersfor two di�erent seletion orders.
It is interesting that the MT omponent of Model A does not show a resistivityderease in this depth region, but only at about 250 km depth. There are twopossible explanations for this observation: Either the LAB is sensed di�erentlyby eletrial and seismi data, whih would not be very surprising given the am-biguous de�nition of the LAB itself, or the higher number of layers ompared tothe single event inversion deouples the two models and poor resolution allows fordi�erent positions. We annot give a de�nitive answer to this questions, but in thelight of the analysis from the single event reeiver funtion we favour a ommonorigin for the LAB, as identi�ed from the joint model with fewer number of layers.159



7 Appliation to data from the Slave ratonMT RMS RF RMS MT Rough. RF Rough.EKTN MT �rst 1.69 1.56 0.86 11.05EKTN RF �rst 1.66 1.69 4.64 4.73EKTN RF ind. 0 1.55 0 17.89EKTN MT ind. 1.62 0 2.86 0BOXN MT �rst 1.78 1.60 1.56 6.74BOXN RF �rst 2.33 1.55 2.04 3.77BOXN RF ind. 0 1.11 0 11.659BOXN MT ind. 1.45 0 2.43 0Table 7.2: Mis�t and roughness values for the two Slave raton sites dependingon the order of trade-o� seletion. We also show the mis�t and roughness valuesfor the individual inversions for eah site.7.4 Regularized joint inversionAs the last examples showed, inreasing the number of layers deouples the twodatasets and redues the stabilizing e�et of the joint inversion proedure. Thesyntheti tests demonstrated that regularization is one way to inrease the stabilityof the results, partiularly if we have a suitable referene model. We will applydi�erent strategies to identify the best models and see how the results di�er.We already remarked during the disussion of the syntheti tests that a smooth-ness-based regularization is not appropriate for the reeiver funtion data, whereasa referene model approah is problemati for MT. We therefore try a ombina-tion of both approahes by inreasing the number of objetive funtions in theinversion to four. The two data mis�t funtionals remain idential to the oneswe used before, as well as the di�erene to the referene model for the seismiparameters. We now add a smoothness-based funtional de�ned purely on theeletrial parameters. The resulting four-dimensional hypersurfaes annot be di-retly displayed in any form, but we an look at projetions onto di�erent planesto visualize the di�erent trade-o�s. In the following examples we use the modelby Chen et al. [2007℄ from inversion of surfae wave data as a referene model.The �rst strategy we use is to plot the trade-o� between MT mis�t and rough-ness for the MT parameters for all models, as shown in Figure 7.19 (upper left).From this luster of points we an identify the optimum trade-o� for the MT partof the inversion by seleting models from the left border of the loud that ful�l themaximum urvature riterion. Due to the projetion from four to two dimensionswe usually annot identify a single model, but a number of models with similarmis�t and roughness. With these models that are all optimal for the MT, we an160
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Figure 7.20: Regularized inversion results for site BOXN. We plot the trade-o�urves between MT mis�t and roughness (upper left) and RF mis�t and roughness(upper right) together with the eletrial (middle) and seismi (right) parametersfor two di�erent seletion orders.repeat the proedure for the seismi part of the model. Obviously the order ofthis seletion proess an be reversed and we an �rst plot the reeiver funtionroughness trade-o� (also plotted in Figure 7.19, lower left) and then selet MTmodels from the resulting subset.Surprisingly, the models obtained with these two methods have similar mis�tvalues for both MT and reeiver funtions. When we base the seletion on theMT trade-o� �rst, we even only obtain a single model with a RF mis�t of 1.56,omparable to the best reeiver funtion we obtain in the run. When we reversethe order, we obtain a number of models with similar RF mis�t, but varying MTmis�t. From this group we pik the model with lowest MT mis�t, in this ase
1.66. A omparison of all the mis�t parameters for the two seletion orders andboth sites is shown in Table 7.2The two models we obtain in this way for site EKTN have the same overallappearane, but we an learly see the in�uene of the seletion order on the161



7 Appliation to data from the Slave ratonharateristis of the model. When we selet a model based on optimum trade-o� between reeiver funtion mis�t and seismi parameter roughness �rst, we donot onsider the smoothness of the eletrial parameters. Model A in Figure 7.19shows two distintive ondutive zones at depths of 80 km and 120 km with aresistive zone in between, whereas Model B shows a broad ondutor whih startsat the same depth and enompasses both ondutors of Model A. In the shallowerpart the eletrial parameters are virtually idential, while in the deeper part weagain observe the elusive LAB in one of the models, but not in the other. Theresults are similar for the seismi parameters. Where Model A appears morefoused, with smaller variations and only a small low-veloity zone at 120 kmdepth, Model B shows a muh broader low veloity zone that orrelates with thelow-resistivities of the MT. At depth both models onverge, partially beause wedo not have su�ient resolution and the regularization dominates this part, butwe observe di�erenes in the depth range of the LAB. Unfortunately, as in theexample before, we do not have a lear oinident veloity and resistivity dereasethat would learly mark the position of the LAB.We repeat the same analysis with both seletion orders for site BOXN and showthe results in Figure 7.20. The main di�erene to the previous results is that theMT mis�t is onsiderably higher, if we selet the optimum reeiver funtion model�rst. Furthermore this model does not show any low veloity zone that ould beinterpreted as an expression of the CSMC. Similarly to site EKTN, when we seletthe optimum MT model �rst we see smoother variations in resistivity and, at thissite, a small low veloity zone between 120 and 140 km depth. This results agreeswith the 20 layer, unregularized model, but not with the 11 layer model whihsuggests that the low veloity zone is more shallow.
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Hofstadter's Law: It always takes longer than you expet, evenwhen you take into aount Hofstadter's Law.Douglas Hofstadter, Gödel, Esher, Bah
8Disussion

Are seismi and MT data an �essential ombination� [Jones, 1987℄ or are orrela-tions between seismi veloity hanges and eletrial ondutivities just �A aseof Holmes's urious dog� [Cook and Jones, 1995℄? Joint inversion methods annotgive an answer to this question, but they an provide indiations in how far ertainstrutures have ompatible expressions in both datasets. We saw in the synthetitest ases that we an distinguish the situation of oinident interfaes from dif-fering interfaes through the shape of the mis�t trade-o� urve, as long as thedata quality and resolution are high enough. To a ertain degree the question ofompatibility is a matter of parametrization. For very large numbers of layers wee�etively deouple the seismi and eletri datasets and an always �nd a modelthat explains both datasets. Therefore one of the hallenges of joint inversion is to�nd parametrizations that provide enough freedom to model all essential features,but still ouples both parts of the model.One way to ahieve this is to regularize the inversion by hoosing the minimumnumber of layers appropriate for the problem. This requires trial and error in-version runs with di�erent numbers of layers, but seems to provide the strongestoupling and stabilization. We also demonstrated how we an use di�erent typesof regularization with a large number of layers to obtain a similar e�et. Thisremoves the neessity to test di�erent parametrization, but adds the ompliationof �nding appropriate levels of regularization, and, for the seismi part, �ndinga suitable referene model. One we have found a suitable parametrization weahieve mis�t levels for the joint models that are omparable to the mis�t of in-dividual inversions, at least for the two sites on the Slave raton. This suggests163



8 Disussionthat we an reonile these two di�erent datasets in terms of a joint model. Fromthis point of view our joint inversion approah with a geneti algorithm is a greatsuess. We an assess the degree of ompatibility between the two datasets ifthey are ompatible, we an reonile the two models and �nd a joint model thatexplains the data equally well.Unfortunately, the non-unique nature of seismi reeiver funtions requires on-siderable e�orts to extrat stable and meaningfull models, be it in individual orjoint inversion. Even then we observe onsiderable variations in seismi veloitiesand position of interfaes in our models. In omparison, the eletri part of themodel is muh more stable and requires less e�ort in the hoie of parameters.For this reason the stabilization e�et is less than we hoped for and it is stilldi�ult to answer relatively simple questions suh as: Is the CSMC shallower atsite BOXN than at site EKTN? At what depth is the LAB below the two sites?Partiularly at site BOXN the expression of those two features is only minor in thereeiver funtion data. This auses shifts in the depth to the CSMC and varyingexpressions of the LAB in the models.For site EKTN it seems that at least the CSMC is a onsistent feature, both inthe reeiver funtion and in the MT data and its position does not vary greatlywith di�ering inversion settings. All joint models show a signi�ant redution inseismi veloities and resistivities at a depth of 113 ± 3 km. Figure 8.1 shows aomparison of the individual and joint inversion results for site EKTN. We ansee that in the individual inversions the derease in veloity does not oinideexatly with any resistivity interfae, but the two di�er by 10 km. In the jointmodel these two separate interfaes have been joined together whih suggests thatthere is a ommon ause for the derease in veloity and resistivity. Obviously, thejoint inversion result annot prove that this is the ase, and it is still possible thatthis apparent oinidene is aused by di�erent proesses [Cook and Jones, 1995℄,without indiation for the ontrary, Oam's razor justi�es an interpretation of aommon soure.So far we have not disussed what suh a proess ould be that auses a simulta-neous derease in both veloity and resistivity. The reason is that a full disussionof this topi would require an extended review of ondutivity mehanisms andthe relation between veloities, ondutivities and geologial struture. This iseasily a topi for a separate thesis and therefore we will not even attempt to doso.The results presented here provide the basis for a wide range of improved jointinversion methods. One of the advantages of the geneti algorithm inversion is thatit an easily be extended to inlude further datasets or di�erent types of regulariza-tion. The �rst logial extension is to inlude seismi surfae wave dispersion data164



8 Disussion
10 100 1000

ρ [Ωm]

0

50

100

150

200

250

300

D
ep

th
 [k

m
]

Resistivity

3 3.5 4 4.5 5
vS [km/s]

0

100

200

300

Velocity

10 100 1000
ρ [Ωm]

0

100

200

300

D
ep

th
 [k

m
]

Resistivity

3 3.5 4 4.5 5
vS [km/s]

0

50

100

150

200

250

300

Velocity

10 100 1000
ρ [Ωm]

0

100

200

300

D
ep

th
 [k

m
]

Resistivity

3 3.5 4 4.5 5
vS [km/s]

0

50

100

150

200

250

300

Velocity

10 100 1000
ρ [Ωm]

0

100

200

300

D
ep

th
 [k

m
]

Resistivity

3 3.5 4 4.5 5
vS [km/s]

0

50

100

150

200

250

300

Velocity

Figure 8.1: Eletrial and seismi parameters of the optimum models plotted to-gether for di�erent inversion settings: Individual inversion (top left), regularizedinversion with seletion of optimum RF model �rst (top right), regularized in-version with seletion of optimum MT model �rst (lower left), and unregularizedinversion with a minimum number of layers (lower right).in the inversion. We disussed the de�ienies of reeiver funtions to resolve seis-mi veloities and we mentioned the joint inversion method by Julia et al. [2000℄that ombines surfae waves and reeiver funtions to irumvent this problem.This an easily be added to our approah as well, all that is needed is a forwardmodelling ode for surfae waves, whih is part of the Computer programs in seis-mology pakage (see Appendix), for example, and another mis�t funtional. Witha more stable seismi omponent in the joint model we might be able to obtaininformation about the LAB in the examples presented above.165



8 DisussionWe did not explore the possibilities of di�erent types of oupling between seis-mi veloities and resistivities, mainly beause we did not want to restrit thealgorithm too muh. Now that we have some �rst results, we an start to experi-ment with di�erent types of oupling, either by putting more restritions on theinterfaes, e.g. requiring both parameters to hange, to hange in the same dire-tion, to have the same urvature, or by inverting for a set of meta-parameters andalulate veloities and resistivities from these parameters. The simplest way toahieve this is to use a simple linear or logarithmi funtion to alulate the modelparameters, but this is most likely not appropriate. More interesting and poten-tially more rewarding is the approah to use mineral omposition and alulateveloities and resistivities from it, as has been reently done for eletromagnetidata [Kopylova et al., 2004, Khan et al., 2006, Bagdassarov et al., 2007℄.The third obvious extension is to inrease the model dimensions. The one-dimensional approah we presented here is limited by the fat that most datarequires more omplete models. During the inspetion of the Slave raton datawe had to disard the majority of sites beause they showed lear signs of two-dimensional strutures in the magnetotelluri data. Even the two sites we pre-sented, ontained segments were a one-dimension model was not fully appropri-ate. This extension is the most di�ult of the three. Not only does the time toalulate a single forward model inrease substantially when going from one totwo dimensions, but additional issues suh as model gridding and geometry forboth datasets have to be onsidered. With inreasing omputational power andlarge parallel lusters the inrease in omplexity will likely be a nuisane ratherthan a serious problem, and two-dimensional inversion of MT data with a genetialgorithm has already been performed [Everett and Shultz, 1993℄. Finding ap-propriate grids and providing appropriate regularization and oupling between themodels is muh more hallenging. A �rst step in this diretion that irumvents atleast the gridding problem would be to inlude anisotropy in the one-dimensionalmodels. We already disussed the issue of seismi anisotropy for the reeiver fun-tion data, and eletrial anisotropy is also a well know, albeit ontroversial, issue[Wannamaker, 2005℄. This would require good azimuthal overage for the reeiverfuntion data and would raise the question in how far an interpretation of singlestation MT data in terms of anisotropy is appropriate.
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BEvent parameters
No. Date Time Lat Long Depth [km℄ Mw1 2002/06/22 02:58:21.30 35.6260 49.0470 10.00 6.502 2002/08/02 23:11:39.13 29.2800 138.9700 426.10 6.303 2002/10/12 20:09:11.46 -8.2950 -71.7380 534.30 6.904 2002/11/17 04:53:53.54 47.8240 146.2090 459.10 7.305 2003/01/21 02:46:47.74 13.6260 -90.7740 24.00 6.506 2003/01/22 02:06:34.61 18.7700 -104.1040 24.00 7.607 2003/03/17 16:36:17.31 51.2720 177.9780 33.00 7.108 2003/04/17 00:48:38.58 37.5290 96.4760 14.00 6.409 2003/04/27 22:57:44.84 -8.1950 -71.5920 559.90 6.0010 2003/05/14 06:03:35.86 18.2660 -58.6330 41.50 6.7011 2003/05/19 16:27:10.20 17.5460 -105.4730 10.00 6.1012 2003/05/21 18:44:20.10 36.9640 3.6340 12.00 6.8013 2003/05/26 09:24:33.40 38.8490 141.5680 68.00 7.0014 2003/06/20 06:19:38.91 -7.6060 -71.7220 558.10 7.1015 2003/06/23 12:12:34.47 51.4390 176.7830 20.00 6.9016 2003/07/25 22:13:29.97 38.4150 140.9960 6.00 6.1017 2003/07/27 06:25:31.95 47.1510 139.2480 470.30 6.8018 2003/08/25 23:24:59.13 18.5410 -106.6950 10.00 5.8019 2003/09/25 19:50:06.36 41.8150 143.9100 27.00 8.3020 2003/09/29 02:36:53.14 42.4500 144.3800 25.00 6.5021 2003/10/31 01:06:28.28 37.8120 142.6190 10.00 7.00Continued on next page184



B Event parametersContinued from previous pageNo Date Time Lat Long Depth Mw22 2003/11/12 08:26:43.74 33.1710 137.0720 384.90 6.4023 2003/11/17 06:43:06.80 51.1460 178.6500 33.00 7.8024 2003/12/05 21:26:09.48 55.5380 165.7800 10.00 6.7025 2004/02/24 02:27:46.23 35.1420 -3.9970 0.00 6.4026 2004/03/12 22:45:19.00 36.3970 70.7740 218.00 5.8027 2004/03/27 18:47:29.20 33.9540 89.1790 8.00 6.0028 2004/04/14 23:07:39.94 71.0670 -7.7470 12.20 6.0029 2004/04/19 08:14:11.42 3.6140 -32.2340 10.00 5.6030 2004/05/10 23:27:25.49 37.4850 96.6040 10.00 5.6031 2004/05/29 20:56:09.60 34.2510 141.4060 16.00 6.5032 2004/06/10 15:19:57.75 55.6820 160.0030 188.60 6.9033 2004/06/14 22:54:21.32 16.3370 -97.8450 10.00 5.9034 2004/07/22 09:45:14.90 26.4890 128.8940 20.90 6.1035 2004/08/07 09:30:16.94 51.7530 -166.3130 8.00 6.0036 2004/08/10 01:47:32.81 36.4440 70.7960 207.00 6.0037 2004/08/11 15:48:26.82 38.3770 39.2610 7.40 5.7038 2004/09/05 10:07:07.82 33.0700 136.6180 14.00 7.2039 2004/09/05 14:57:18.61 33.1840 137.0710 10.00 7.4040 2004/09/06 23:29:35.09 33.2050 137.2270 10.00 6.6041 2004/10/09 21:26:53.69 11.4220 -86.6650 35.00 7.0042 2004/10/15 04:08:50.24 24.5300 122.6940 94.00 6.7043 2004/10/23 08:56:00.86 37.2260 138.7790 16.00 6.6044 2004/11/15 09:06:56.56 4.6950 -77.5080 15.00 7.2045 2004/11/28 18:32:14.13 43.0060 145.1190 39.00 7.0046 2005/02/05 03:34:25.73 16.0110 145.8670 142.70 6.6047 2005/06/13 22:44:33.90 -19.9870 -69.1970 115.60 7.8048 2005/06/14 17:10:12.28 51.2390 179.3140 17.00 6.8049 2005/07/25 16:02:07.57 71.1110 -7.4320 10.00 5.5050 2005/07/26 12:17:14.27 52.8710 160.1050 27.60 5.8051 2005/08/16 02:46:28.40 38.2760 142.0390 36.00 7.2052 2005/09/21 02:25:08.11 43.8920 146.1450 103.00 6.1053 2005/09/26 01:55:37.67 -5.6780 -76.3980 115.00 7.5054 2005/10/08 03:50:40.80 34.5390 73.5880 26.00 7.6055 2005/10/08 10:46:28.79 34.7330 73.1000 8.00 6.4056 2005/10/15 15:51:07.21 25.3210 123.3560 183.40 6.5057 2005/11/14 21:38:51.42 38.1070 144.8960 11.00 7.00Continued on next page
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B Event parametersContinued from previous pageNo Date Time Lat Long Depth Mw58 2005/12/02 13:13:09.52 38.0890 142.1220 29.00 6.5059 2005/12/12 21:47:46.07 36.3570 71.0930 224.60 6.50Table B.1: List of events used in the reeiver funtion analysis for sites BOXNand EKTN.
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