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Summary
This thesis falls into two separate parts that, although mathemati
ally related, dealwith very di�erent problems in geophysi
al surveys. The �rst part is 
on
ernedwith improving the quality of magnetotelluri
 sounding 
urves that are a�e
tedby high-amplitude, non-stationary noise from ele
tri
 
ow-fen
es. We present anumber of di�erent methods that have been proposed in the literature and thatwe have developed and the ability of both to deal with this di�
ult task. We�nd that LMS-adaptive �lters have a low 
omputational 
omplexity and produ
eresults that, at least for one polarization, have the properties of a regular sounding
urve. For the other polarization, however, we do not a
hieve any improvementwith any of the methods.In the se
ond, and main, part of the thesis we present a joint inversion algo-rithm for long-period magnetotelluri
 and re
eiver fun
tion data. Our inversionapproa
h is based on a geneti
 algorithm for two reasons: The sto
hasti
 nature ofthe geneti
 algorithm avoids premature 
onvergen
e to a lo
al minimum, and fromthe inversion we obtain the trade-o� 
urve that displays the extent to whi
h theobje
tive fun
tions 
ompete with ea
h other. Our tests with syntheti
 datasetsshow that the stru
ture of the trade-o� 
urve 
an be used to assess the 
ompat-ibility of the seismi
 and ele
tri
 parts of the joint model. We explore di�erenttypes of regularization and outline strategies to �nd a representative model of thesubsurfa
e. Finally, we apply our joint inversion algorithm to data from the Slave
raton, where previous studies have postulated a 
orrelation between seismi
 
on-versions and the lo
ation of a 
ondu
tor in the upper mantle. Our joint inversionresults indi
ate that we 
an model this upper-mantle stru
ture as a 
orrelatedseismi
 and ele
tri
 feature and that we obtain improved results for other moreminor stru
tures.
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The equation an+bn = cn has solutions in positive integers a,b,cand n only when n = 2 (and then there are in�nitely many triplets
a,b,c whi
h satisfy the equation); but there are no solutions for
n > 2. I have dis
overed a truly marvelous proof of this statement,whi
h, unfortunately, this margin is too small to 
ontain.P. de Fermat

1Introdu
tion
Even with the great improvement of data quality and inversion methods in the last20 years, the resolution of geophysi
al data due to noise and �nite sampling limitsthe level of detail at whi
h we 
an image the subsurfa
e of the Earth. Currentlythere are two popular approa
hes to improve our understanding of the Earth's
rust and mantle. The �rst possibility is to in
rease the amount of measured dataof a 
ertain type, both in terms of 
overed area and site spa
ing, and model thesedata with three-dimensional 
odes. With this approa
h we 
an make sure that weget the maximum amount of information from the data, and avoid artifa
ts fromspatial aliasing or simplifying assumptions. However, this does not 
ir
umventthe fundamental resolution of the 
hosen method. The alternative approa
h isto 
ombine di�erent datasets in the inversion pro
ess and 
reate a joint model.With a well-
hosen 
ombination of datasets we 
an hope to bene�t from di�erentsensitivities of ea
h set to improve the resulting model beyond a simple superpo-sition of the individual models [Vozo� and Jupp, 1975℄. One example of su
h anapproa
h is the joint inversion of surfa
e waves and re
eiver fun
tions [Julia et al.,2000℄. Surfa
e waves are sensitive to bulk seismi
 velo
ity, but do not have goodsensitivity to the position of interfa
es. Re
eiver fun
tions, in 
ontrast, primar-ily sense seismi
 interfa
es, but only sense velo
ities to a smaller degree. In thisexample both datasets were sensitive to the same parameters, but we 
an evengo a step further and 
ombine datasets that are sensitive to di�erent parameters[Meju et al., 2003, Linde et al., 2006, Dal Moro and Pipan, 2007℄, and this is whatwe are attempting by 
ombining magnetotelluri
 (MT) and re
eiver fun
tion (RF)data. 1



1 Introdu
tionAt �rst the bene�t of su
h an approa
h might not be 
lear. Magnetotelluri
data senses the distribution of ele
tri
al 
ondu
tivity, while re
eiver fun
tion datasenses abrupt 
hanges in seismi
 velo
ity. In the Earth's 
rust and mantle 
hangesin these two parameters do not ne
essarily have to be spatially 
orrelated. In fa
ta lot of the 
ondu
tive anomalies, the main targets of MT surveys, are attributedto minor 
onstituents of the ro
k matrix su
h as graphite, sul�de, or �uids, whi
hwe 
annot expe
t to dete
t with seismi
 methods [Jones, 1992, Ji et al., 1996,Bahr et al., 2002℄. On the other hand there are a number of physi
al parametersthat a�e
t both ele
tri
al 
ondu
tivity and seismi
 velo
ity, su
h as tempera-ture and ro
k 
omposition. Furthermore we 
an expe
t that at major lithologi
alboundaries both parameters 
hange, and even where we have an ele
tri
al anomalythat is 
aused by graphite, for example, we would think that the extent of thisgraphiti
 body is determined by te
toni
 pro
esses that, in turn, also govern theseismi
 stru
ture of that area. Finally there have been observations of 
oin
ident
hanges in seismi
 velo
ity and ele
tri
al 
ondu
tivity in the mantle below theSlave 
raton [Snyder et al., 2004℄ and this will also be the area where we applyour joint inversion approa
h. Furthermore the absen
e of 
orrelation 
an alsoprovide valuable information [Cook and Jones, 1995, Jones, 1998℄.For these reasons we 
an expe
t some stru
tural relationship between the seis-mi
 and ele
tri
 parts of our joint model, but we have to allow for stru
tures thatare only present in one model. We will pursue this issue further when we dis
ussthe 
oupling of the individual models. Also we have to be prepared to �nd twofundamentally di�erent stru
tures for the seismi
 and ele
tri
al models, in 
aseour parametrisation does not permit su�
ient �exibility to jointly model bothdatasets. This is one of the motivations for our geneti
 algorithm approa
h andwe will dis
uss this issue in detail in our syntheti
 test examples. On
e we haveidenti�ed 
ommon interfa
es and interfa
es where the models do not allow 
oin
i-dent 
hanges, we 
an use this additional information to 
hara
terise the stru
tureof the Earth and obtain insight into the geologi
al pro
esses that formed thesestru
tures. Here our fo
us is on the methodology, though, and we will not dis
ussthe impli
ations of our results.Although the fo
us of this thesis is on �Joint inversion of magnetotelluri
 andre
eiver fun
tion data�, a 
onsiderable fra
tion of the presentation and the workwe performed during the last three years is devoted to noise removal and signalpro
essing of magnetotelluri
 time-series. The reason for this di
hotomy lies inthe poor quality of the data that we re
orded at the beginning of this proje
t inIreland. The original idea of the magnetotelluri
 
omponent of the Irish Litho-spheri
 Experiment (ISLE) [Landes et al., 2004℄, from here on 
alled ISLE-MT,was to augment ea
h ISLE seismi
 station with an MT site, and therefore 
re-2



1 Introdu
tionate ideal 
onditions for the joint inversion experiment. It qui
kly be
ame 
learthat at virtually all sites the high frequen
y part of the magnetotelluri
 data is
ontaminated by high amplitude interferen
es from ele
tri
 
ow-fen
es. At a fewsites even the long-period data are disturbed by 
ultural noise. This motivatesour attempts to remove these high amplitude disturban
es that resist all modernpro
essing algorithms.We have two 
hoi
es for the presentation of our results: From a mathemati
alpoint of view the two topi
s of adaptive time-series �ltering and inversion are sub-dis
iplines of the broader �eld of optimisation. In both 
ases we seek to minimisethe di�eren
e between a quantity 
al
ulated from the data and by some othermeans, e.g. a model, another time series or some other segment of the same timeseries. Therefore �ltering and inversion should be presented together in orderto understand the similarities and di�eren
es between the two. From a pra
ti
alpoint of view �ltering aims at providing reliable estimates of the impedan
e tensor,while inversion produ
es models from this impedan
e tensor, but without askingwhere the estimates 
ome from. Usually signal pro
essing is the �rst step afterdata a
quisition, while modelling and model appraisal are the very last steps anda number of other steps lie in between. A presentation that follows the time-line ofthe resear
her, from data a
quisition to �nal model, better displays the motivationfor dealing with these issues and gives answers to questions when they arise.As a solution to this dilemma we will present the results in the order that theyappear in pra
ti
e. To satisfy partially those readers who seek to �nd the math-emati
al 
onne
tions, we will try to draw as many parallels as possible between�ltering and inversion, even if this means referring to a topi
 that will only bedis
ussed later. We will therefore start with a dis
ussion of the basi
 prin
iples ofele
tromagneti
 indu
tion and its appli
ation to magnetotelluri
 soundings. Thisleads dire
tly to the question of how we 
al
ulate the impedan
e tensor elementsand the problemati
 nature of the ISLE-MT re
ordings. After 
hara
terising theproblems we will present our attempts to solve the interferen
e issues with anumber of di�erent signal pro
essing te
hniques. The �rst two 
hapters are self-
ontained, and most of the issues dis
ussed there will not reappear when we presentour joint inversion approa
h. Hen
e we will give a summary and dis
ussion of thesignal pro
essing results at the end of Chapter 3.Before we dis
uss our joint inversion method, we present the basi
 theory forthe re
eiver fun
tion data. Apart from the methodologi
al similarities betweeninversion and adaptive signal pro
essing, this, and the following 
hapters, formanother self-
ontained unit. The dis
ussion of the re
eiver fun
tion method isfollowed by the presentation of the joint inversion algorithm. We will 
ontrasttraditional linearised methods with our geneti
 algorithm based approa
h and3



1 Introdu
tiondemonstrate the advantages of geneti
 algorithms for joint inversion. Through theexamination of some syntheti
 test problems we will highlight the 
apabilities andlimitations of joint inversion for MT and re
eiver fun
tion data. The appli
ation ofthe algorithm to measured data from the Slave 
raton together with a dis
ussionof the results and re
ommendations for further work 
on
ludes this part of thethesis.

4



This 
hara
teristi
 of modern experiments - that they 
onsist prin-
ipally of measurements - is so prominent, that the opinion seemsto have got abroad that in a few years all the great physi
al 
on-stants will have been approximately estimated, and the only o
-
upation whi
h will then be left to men of s
ien
e will be to 
arryon these measurements to another pla
e of de
imals.James C. Maxwell
2The basi
 prin
iples ofmagnetotelluri
 indu
tion

In this 
hapter we will des
ribe the steps required from re
ording the time-seriesin the �eld to obtaining the MT transfer fun
tion or impedan
e tensor that issubsequently used in analysis and modelling. We will start with a theoreti
al in-trodu
tion that motivates the 
al
ulation of the MT impedan
es and shows howthey are related to the properties of the Earth. This theoreti
al des
ription willbe limited to the one-dimensional 
ase for two reasons: First, the basi
 
on
eptsare more 
learly understood without the 
ompli
ated burden of a 2D or 3D treat-ment, and se
ond, for most of this thesis we will only be 
on
erned with theassumption of one-dimensional stru
ture within the Earth. This is, of 
ourse, agross oversimpli�
ation and we will refer to 
urrent state of the art methods werene
essary.In order to lay the foundation for the analysis of measured data in Chapter 7, wewill �nish this 
hapter with a dis
ussion of di�erent measures of ele
tromagneti
dimensionality. These quantities 
an be 
al
ulated from the impedan
e tensor inorder to assess whether a 1D, 2D, or even 3D des
ription is most likely to beneeded in order to explain the observations.5



2 The basi
 prin
iples of magnetotelluri
 indu
tion2.1 From Maxwell's equation to EM indu
tionThe behaviour of any ele
tromagneti
 �eld is des
ribed by Maxwell's equations,viz.,
∇× E = −

∂B

∂t
, (2.1)

∇× H = j +
∂D

∂t
, (2.2)

∇ · B = 0, (2.3)
∇ · D = q. (2.4)Here E is the ele
tri
 �eld in V/m, B the magneti
 indu
tion in T , H is themagneti
 �eld strength in A/m, j is ele
tri
 
urrent density in A/m2, D is theele
tri
 displa
ement in C/m2 and q is the 
harge density in C/m3.To derive and solve the indu
tion equation that forms the theoreti
al basis ofmagnetotelluri
s, we have to make a number of assumptions:1. All ele
tromagneti
 sour
es are outside the Earth and produ
e uniform plane-polarized ele
tromagneti
 waves. For a one-dimensional 
ondu
tivity dis-tribution inside the Earth Dmitriev and Berdi
hevsky [1979℄ showed that alinearly varying �eld also ful�ls the ne
essary 
onditions. These waves arriveat the Earth's surfa
e at a near verti
al angle. This assumption is a arguablythe most important for magnetotelluri
s and 
ertainly its most problemati
.Sin
e its publi
ation by Cagniard [1953℄ and Tikhonov [1950℄ its validity hasbeen dis
ussed [Pri
e, 1962, Madden and Nelson, 1963℄. We will address thisproblem in more detail below.2. The Earth a
ts as an ohmi
 
ondu
tor so that 
urrent density j and ele
tri
�eld E are linearly related , through Ohm's Law, by the s
alar ele
tri
al
ondu
tivity σ,

j = σE. (2.5)3. For Earth materials we 
an assume the 
onventional linear relationships be-tween D and E and B and H and for magnetotelluri
s we negle
t 
hangesin ele
tri
al permitivities ε and magneti
 permeabilities µ so that
B = µ0H and D = ε0E. (2.6)4. Displa
ement 
urrents ∂D/∂t are assumed to be negligible. Most magne-totelluri
 surveys use frequen
ies between 100,000 - 0.0001 Hz. Given typi-
al resistivities of the Earth of 106 − 10−2 Ωm we 
an 
ompare the terms in6



2 The basi
 prin
iples of magnetotelluri
 indu
tionequation 2.2,
∂D/∂t

j
=

iωε0

σ
≈ 0.1 − 10−19. (2.7)For the highest frequen
ies in extremely resistive areas displa
ement 
urrentsare an order of magnitude smaller than the 
urrent density and we wouldstart to see some e�e
ts from these 
urrents. Typi
ally both the measure-ment frequen
ies and the resistivities will be mu
h smaller and we will notsee any e�e
t.Under these assumptions the resulting equations are:

∇× E = −
∂B

∂t
, (2.8)

∇× B = µ0σE, (2.9)
∇ · B = 0, (2.10)
∇ · E =

q

ε0

. (2.11)We 
an transform these equations from the time domain into the frequen
y do-main, and simplify the solution by repla
ing time derivatives with simple multi-pli
ations, i.e.,
−

∂B(t)

∂t

F
−→ −ıωB(ω), (2.12)for a �eld at frequen
y ω.We 
an use the fa
t that ∇ · (∇× A) = 0 for any ve
tor �eld A. Applying thedivergen
e to equation 2.9 yields

µ0∇ · (σE) = µ0 (σ∇ · E + E∇σ) = 0. (2.13)From equation 2.11 then follows that
q

ε0

= −E
∇σ

σ
⇒

q

ε0

= −E∇ lnσ. (2.14)This results in modi�ed Maxwell's equations:
∇×E = −ıωB, (2.15)
∇×B = µ0σE, (2.16)
∇ · B = 0, (2.17)
∇ ·E = −E∇ lnσ. (2.18)7



2 The basi
 prin
iples of magnetotelluri
 indu
tionThese four equations 
an be 
ombined into two equations by taking the 
url of2.15 and 2.16
∇×∇× B = ∇(∇ · B) − ∇2B = µ0(σ∇× E − E ×∇σ), (2.19)
⇒ ∇2B = ıωµ0σB + µ0E ×∇σ, (2.20)

∇×∇×E = ∇(∇ · E) − ∇2E = −ıω∇×B, (2.21)
⇒ ∇2E = ıωµ0σE − ∇(E∇ lnσ). (2.22)Equations 2.20 and 2.22 des
ribe the magneti
 and ele
tri
 �elds under the as-sumptions above in their most general form. To explain the basi
 
on
epts ofmagnetotelluri
 we have to simplify the situation further by �rst assuming a ho-mogeneous halfspa
e.2.2 The homogeneous halfspa
eFor a homogeneous halfspa
e the 
ondu
tivity is 
onstant σ0 inside the Earth and
onsequently ∇ · σ = 0. Equations 2.20 and 2.22 then simplify to two un
oupleddi�usion equations of the form,

∇2F = µ0σıωF with F = E,B, (2.23)with solutions,
F = F1 exp(ıωt − qz) + F2 exp(ıωt + qz) and q2 = µ0σıω. (2.24)As we assume that all sour
es are outside the Earth F2 = 0 for both the ele
tri
and magneti
 �eld. For a uniform halfspa
e the ele
tromagneti
 �eld inside theEarth is des
ribed by

E = E0 exp(ıωt −
√

µ0σıωz), (2.25)
B = B0 exp(ıωt −

√
µ0σıωz). (2.26)Inserting the two solutions into equation 2.15 yields

∇×E =
∂Ex

∂z
= −

√
µ0σıωEx, (2.27)

= −ıωBy. (2.28)From this we 
an �nally derive the basi
 equation for MT in a uniform halfspa
e
C =

1

q
=

1√
µ0σıω

=
Ex

ıωBy

= −
Ey

ıωBx

. (2.29)8



2 The basi
 prin
iples of magnetotelluri
 indu
tionThe quantity C is know as the S
hmu
ker-Weidelt transfer fun
tion [Weidelt,1972, S
hmu
ker, 1973℄. It's dire
t 
onne
tion to the di�erential equations makesit a usefull quantity in the theoreti
al examination of magnetotelluri
 problems.Equation 2.29 reveals that in this 
ase the resistivity of the halfspa
e 
an be
al
ulated from the ratio of the orthogonal 
omponents of the ele
tri
 and magneti
�elds at a given period. The realisation of this fa
t was the motivation for earlymagnetotelluri
 surveys,
ρ =

1

σ
= µ0ω|C|2. (2.30)In pra
ti
e instead of C the magnetotelluri
 impedan
e Z is used

Z =
Ex

Hy

=
µ0Ex

By

= ıωµ0C [Ω]. (2.31)or alternatively as
Z =

Ex

By

= ıωC [m/s]. (2.32)The two de�nitions are known as ��eld-units� and �SI-units� 
onventions, respe
-tively. Before we turn to slightly more realisti
 Earth models and the behaviourof the magnetotelluri
 impedan
e in those 
ases, we return to the solutions of thedi�usion equations to look at the depth to whi
h the �elds penetrate. From 2.25and 2.26 we see that the real part of the solution de
ays exponentially with depth.The depth where the �eld strength is redu
ed to 1/e is 
alled the skin-depth, p,given by
p =

√

2

µ0σω
[m]. (2.33)Although this equation is only exa
t for a homogeneous half-spa
e, it is oftenused to get a �rst idea of the penetration at a given frequen
y even in more
omplex environments. However, depending on the geometry of the stru
tures,these estimates 
an be highly devious [Jones, 1983℄2.3 Layered half-spa
eObviously the real Earth is far from being a homogeneous half-spa
e. A �rst steptoward a more realisti
 model is to allow for a number of layers of di�erent thi
k-nesses ti and 
ondu
tivities σi. To derive the expression for the magnetotelluri
transfer fun
tion in this 
ase we loosely follow Simpson and Bahr [2005℄. Assum-ing N layers indexed n = 1 . . .N the solution of the di�usion equation 2.23 in ea
hlayer is still of the form 2.24, but now both terms do not vanish. For the ele
tri
�eld we have both upward and downward travelling waves, viz.,

En
x = En

1 exp(ıωt − qnz) + En
2 exp(ıωt + qnz), qn =

√
µ0σnıω, (2.34)9



2 The basi
 prin
iples of magnetotelluri
 indu
tionex
ept in the lowermost half-spa
e, where the wave only travels downward.We 
an 
ombine the time varying exponential with the 
oe�
ients En
1 and En

2 ,respe
tively, to a new set of 
oe�
ients an and bn,
En

x = an exp(−qnz) + bn exp(+qnz). (2.35)From equation 2.15 follows for the magneti
 �eld
Bn

y =
qn

ıω
(an exp(−qnz) − bn exp(+qnz)) , (2.36)thus the transfer fun
tion Cn inside layer n is given by

Cn(z) =
En

x

ıωBn
y

=
an exp(−qnz) + bn exp(+qnz)

qn (an exp(−qnz) − bn exp(+qnz))
. (2.37)At the top of the layer z = zn−1 we have

Cn(zn−1) =
En

x

ıωBn
y

=
an exp(−qnzn−1) + bn exp(+qnzn−1)

qn (an exp(−qnzn−1) − bn exp(+qnzn−1))
, (2.38)and similar at the bottom z = zn

Cn(zn) =
En

x

ıωBn
y

=
an exp(−qnzn) + bn exp(+qnzn)

qn (an exp(−qnzn) − bn exp(+qnzn))
. (2.39)We 
an rewrite 2.39 as

an = bn

1 + qnCn(zn)

qnCn(zn) − 1
exp(2qnzn), (2.40)and insert the result into 2.38 to eliminate an and bn,

Cn(zn−1) =

1 + qnCn(zn)

qnCn(zn) − 1
exp(2qnzn) exp(−qnzn−1) + exp(qnzn−1)

qn

(

1 + qnCn(zn)

qnCn(zn) − 1
exp(2qnzn) exp(−qnzn−1) − exp(qnzn−1)

) ,

=

1 + qnCn(zn)

qnCn(zn) − 1
exp(qn(zn − zn−1)) + exp(−qn(zn − zn−1))

qn

(

1 + qnCn(zn)

qnCn(zn) − 1
exp(qn(zn − zn−1)) − exp(−qn(zn − zn−1))

) ,

=
(1 + qnCn) exp(qn(zn − zn−1)) + (qnCn − 1) exp(−qn(zn − zn−1))

qn ((1 + qnCn) exp(qn(zn − zn−1)) − (qnCn − 1) exp(−qn(zn − zn−1)))
,

=
1

qn

sinh (qn(zn − zn−1)) + qnCn 
osh (qn(zn − zn−1))
osh (qn(zn − zn−1)) + qnCn sinh (qn(zn − zn−1))
,

=
1

qn

qnCn(zn) + tanh (qn(zn − zn−1))

1 + qnCn(zn) tanh (qn(zn − zn−1))
. (2.41)10



2 The basi
 prin
iples of magnetotelluri
 indu
tionBoth horizontal ele
tri
 and magneti
 �eld are 
ontinuous a
ross the layer bound-ary, hen
e their ratio has to be 
ontinuous as well and 
onsequently
Cn(zn) = Cn+1(zn). (2.42)Using the 
ontinuity requirement in 2.41 �nally results in the Wait re
ursionformula [Wait, 1954℄

Cn(zn−1) =
1

qn

qnCn+1(zn) + tanh (qn(zn − zn−1))

1 + qnCn+1(zn) tanh (qn(zn − zn−1))
. (2.43)This re
ursion formula 
an be used to 
al
ulate the transfer fun
tion at the topof a N-layer model. The lowermost layer is a half-spa
e with CN(zN) = 1/qN.This solution is then propagated through the remaining layers from bottom to topusing the re
ursion formula.For a layered half-spa
e no dire
t transformation between the transfer fun
tionor impedan
e and layer thi
kness and resistivities exists; this issue will be dis
ussedin detail later. Equation 2.30, whi
h is exa
t in the 
ase of a homogeneous half-spa
e, is now repla
ed by an apparent resistivity, the resistivity of an equivalenthalf-spa
e, viz.,

ρa =
1

µ0ω
|Z(ω)|2 for Z in S.I. units. (2.44)In addition the impedan
e phase is another useful quantity

φ = tan−1

(

ℑ Z

ℜZ

)

. (2.45)In terms of the ele
tromagneti
 �elds it represents the phase-di�eren
e betweenthe magneti
 and ele
tri
 �eld. For a homogeneous half-spa
e
Z = (1 + ı)

√

ωµ0

2σ
⇒ φ = tan−1 1 =

π

4
. (2.46)Apparent resistivity and phase are an equivalent representation of the magnetotel-luri
 impedan
e and are usually used to display and interpret magnetotelluri
 databe
ause of their more intuitive physi
al relationship to the properties of the Earth.In a layered Earth and for the TM-mode in a two-dimensional environment, thesetwo quantities are interrelated through a Hilbert transformation [Weidelt, 1972,Weidelt and Kaikkonen, 1994, Berdi
hevsky, 1999℄ and hen
e do not provide inde-pendent information about Earth stru
ture. [Cavaliere and Jones, 1984℄ showedthough that for real data the di�erent sensitivities of apparent resistivity andphase help to 
onstrain the 
ondu
tivity in the subsurfa
e.11



2 The basi
 prin
iples of magnetotelluri
 indu
tion2.4 Two-dimensional stru
turesIf the 
ondu
tivity varies in the verti
al and one horizontal dire
tion a singleimpedan
e that des
ribes the relationship of the ele
tri
 and magneti
 �eld nolonger exists. Instead two separate modes of the �elds have to be 
onsidered.From equations 2.15 and 2.16 we 
an see that for stru
tures aligned with the
x-dire
tion we get two un
oupled sets of di�erential equations

∂Ex

∂y
= ıωBz, (2.47)

∂Ex

∂z
= ıωBy, and (2.48)

∂Bz

∂y
−

∂By

∂z
= µ0σEx, (2.49)is 
alled the transverse ele
tri
 (TE) mode or E-polarisation and 
ouples Ex with

Bz and By. Conversely,
∂Bx

∂y
= µ0σEy, (2.50)

−
∂Bx

∂z
= µ0σEy, and (2.51)

∂Ez

∂y
−

∂Ey

∂z
= ıωBx, (2.52)is 
alled the transverse magneti
 (TM) mode or B-polarisation and 
ouples Eyand Ez with Bx. Analyti
 solutions for the TM-mode for 2D stru
tures existonly in a few spe
ial 
ases su
h as two quarter-spa
es or a dike. Hobbs [1975℄gives an overview of analyti
al solutions for ele
tromagneti
 indu
tion [see alsoWeaver et al., 1985℄. For the TE-mode quasi-analyti
al solutions exist for somegeometries [Weaver et al., 1986℄. Despite the more 
ompli
ated nature of the prob-lem, the impedan
e in this 
ase is de�ned as a straightforward extension of theone-dimensional 
ase. We now have two impedan
e values,

Zxy =
µ0Ex

By

and Zyx =
µ0Ey

Bx

, (2.53)with 
orresponding apparent resistivities and phases.2.5 The 3D 
aseIn the most general 
ase, the ele
tri
 and magneti
 �elds are des
ribed by equations2.20 and 2.22. Parti
ularly, the 
orresponding ele
tri
 and magneti
 �elds are no12



2 The basi
 prin
iples of magnetotelluri
 indu
tionlonger orthogonal two ea
h other. Thus the 
on
ept of impedan
e is extended tothe magnetotelluri
 impedan
e tensor, that des
ribes the relation between the�elds
(

Ex

Ey

)

=

(

Zxx Zxy

Zyx Zyy

)(

Hx

Hy

)

. (2.54)Both the one-dimensional and two-dimensional 
ases 
an be regarded as spe
ial
ases of the impedan
e tensor.
Zxx = Zyy = 0 Zxy = −Zyx in 1D (2.55)
Zxx = Zyy = 0 in 2D (2.56)when the x-axis is dire
ted along the strike of the 2D stru
ture. For this reasonall modern pro
essing algorithms estimate the full impedan
e tensor. Only in thesubsequent analysis di�erent 
riteria are used to 
lassify the ele
tri
al stru
tureas 1D, 2D or 3D.2.6 Dimensionality and invariantsWe will now dis
uss some of the 
riteria used to 
lassify the dimensionality ofMT data. To date, most data from magnetotelluri
 surveys are interpreted interms of two-dimensional pro�les, assuming in�nite uniformity in the dire
tionperpendi
ular to the pro�le. In pra
ti
e, the length s
ale of stru
tures is oftenlarger in one dire
tion than the length s
ale of indu
tion, but it is essential toquantify at whi
h frequen
ies and sites this assumption holds, and where it isviolated. Only then 
an we assess the reliability of models 
onstru
ted this way. Tothis end a large number of 
lassi�
ation s
hemes have been 
onstru
ted to quantifythe dimensionality, and extra
t the parts of the data appropriate for a 
hosenapproximation [e.g. Groom and Bailey, 1989, Bahr, 1991, Groom and Bahr, 1992,Weaver et al., 2000, Caldwell et al., 2004, Martí et al., 2005℄. We will 
on
entratehere on indi
ators for one dimensional stru
tures that we will need later when wemodel real data.The most straightforward indi
ation for 1D Earth stru
tures near a measuredsite is dire
tly given by Equation 2.55. If this equation holds within data error, alayered Earth model 
an be assumed to be appropriate. One thing to bear in mindwith all 
lassi�
ation s
hemes is that they all de�ne ne
essary, but not su�
ient,
onditions. Therefore, the violation of a 
lassi�
ation 
ondition indi
ates thatthe 
hosen model is not appropriate, but the opposite does not prove its validity.This is a serious problem when modelling MT data, as one 
an never be 
ompletelysure whether the 
hosen approximation is 
orre
t. Without further informationhowever, we do not have any better 
riterion to guide our de
ision to model the13



2 The basi
 prin
iples of magnetotelluri
 indu
tiondata in a 
ertain way. The generally a

epted paradigm is to use the simplestmodel appropriate. This is also known as O

am's razor.Even when the regional Earth stru
ture 
an be adequately des
ribed by a planelayered model, we often observe violations of Equation 2.55. This violation is
aused by galvani
 distortion due to small inhomogeneities in the vi
inity of themeasurement site [Groom and Bailey, 1989, Bahr, 1991, Singer, 1992℄. The e�e
tof these inhomogeneities 
an be des
ribed by multipli
ation of the impedan
etensor with a frequen
y independent, real-valued matrix
Zdist =

(

a11 a12

a21 a22

)

Z. (2.57)The 
ompli
ations that arise from this e�e
t, and the fa
t that the entries of thedistortion matrix a 
annot be uniquely determined [Bibby et al., 2005℄ are a longstanding problem for MT modelling and interpretation.Fortunately the multipli
ation with a real valued matrix does not 
hange thephase of the o�-diagonal elements, if the impedan
e tensor is in the form of Equa-tion 2.55. This enables us to use the information 
ontained in the phase in situ-ations where the magnitude of the impedan
e is a�e
ted by galvani
 distortion.We de�ne two measures of one-dimensionality:
Σ =

D2
1 + S2

2

|D2|
with D1 = Zxx − Zyy, D2 = Zxy − Zyx and S2 = Zxy + Zyx (2.58)is small when a layered Earth model without distortion is appropriate [Swift, 1967℄.In the presen
e of galvani
 distortion Σ 
an assume large values, as it is based onthe magnitude of the impedan
e elements. When Σ > 0.1, we use a rotationallyinvariant measure of the phase di�eren
e,

µ =

√

|[D1, S2]| + |[S1, D2]|

|D2|
(2.59)[Bahr, 1991℄. Here S2 = Zxy + Zyx, D1 = Zxx − Zyy and [·, ·] denotes the 
ommu-tator. If both κ and µ are signi�
antly di�erent from zero, the data requires a 2Dor 3D model approa
h to be explained fully. Caldwell et al. [2004℄ point out thatwhen the enumerator of Equation 2.59 does not vanish, this dimensionality mea-sure is also a�e
ted by galvani
 distortion, as |D2| depends on the amplitude of theimpedan
e tensor elements. When we determine the dimensionality of measureddata, we therefore use a 
ombination of indi
ators as suggested by Martí et al.[2005℄.Even when the data requires a more 
omplex model, it 
an be instru
tive to
onstru
t 1D models to get a �rst idea of the 
ondu
tivity distribution. The Wait14



2 The basi
 prin
iples of magnetotelluri
 indu
tionalgorithm only yields a single impedan
e value, as expe
ted for a 1D Earth, so wehave to 
ondense the four elements of the observed impedan
e tensor into a singlevalue that provides an appropriate approximation. Rotational invariants providea 
onvenient way to summarize the information in the impedan
e tensor withoutregard for the 
oordinate system of measurement. Two invariants are 
ommonlyused in modelling MT data: The arithmeti
 mean of the o�-diagonal elements
ZB =

Zxy − Zyx

2
, (2.60)also known as the Berdi
hevkiy invariant [Berdi
hevskiy and Dmitriev℄, and thedeterminant

ZD = ZxxZyy − ZxyZyx. (2.61)The determinant has the advantage that it 
ombines information from all 4 ele-ments of the impedan
e tensor, although modelling studies show that the di�er-en
e between the two for pra
ti
al purposes is not signi�
ant in one-dimensionalinversion [Park and Livelybrooks, 1989℄. Pedersen and Engels [2005℄ advo
ate theuse the determinant in two-dimensional inversion to in
orporate information fromthe diagonal elements. In any 
ase 
are has to be taken in the interpretation ofresults from modelling these quantities. Near 3D inhomogeneities, where the 1Dapproximation breaks down, models of these invariants 
an 
ontain arti�
ial re-sistors or 
ondu
tors [Park and Livelybrooks, 1989℄. Therefore a 
areful analysisof the data is needed before modelling it.

15



�. . . You know, that might be the answer�to a
t boastfully aboutsomething we ought to be ashamed of. That's a tri
k that neverseems to fail.��Do you think it will work?��I'm sure it will. And let's promote him to 
aptain, too, just tomake 
ertain.� Joseph Heller, Cat
h 22
3From magnetotelluri
 time seriesto transfer fun
tion

3.1 Pro
essing magnetotelluri
 data, a shortoverviewAs outlined in Se
tion 2.1, in theory the transfer fun
tion between the horizontalele
tri
 and magneti
 �elds depends only on the 
ondu
tivity distribution of theEarth. In an ideal situation the 
al
ulation of the transfer fun
tion from simulta-neous re
ordings of the ele
tri
 and magneti
 �eld is simple and straightforward.1. Fra
tionalize the re
ording in segments of equal length, the length of thesegments depends on the longest period needed.2. Multiply ea
h segment with a suitable window fun
tion, e.g., the Hammingwindow, to avoid spe
tral leakage.3. Fourier transform ea
h segment.4. Cal
ulate the auto- and 
ross spe
tra for ea
h segment.5. Cal
ulate the mean and the error from the various spe
tral estimates.6. Cal
ulate the resulting transfer fun
tion and its error.To illustrate the basi
 prin
iples, we will des
ribe the most basi
 approa
h toimpedan
e tensor estimation in some detail, before we dis
uss more advan
edmethods. 16



3 From magnetotelluri
 time series to transfer fun
tion3.1.1 The anatomy of modern pro
essing algorithmsAs the impedan
e tensor is de�ned in the frequen
y domain, the �rst step is toobtain spe
tra for the re
orded �elds. A number of methods exist to estimate thespe
trum of a time series. The most basi
 spe
tral estimate is the periodogram,the mean of the Fourier transform of di�erent segments of the time-series,
S(ωi) =

N/L−1∑

j=0

(j+1)·L−1∑

l=j·L

xl exp(−ıωil) i = 1 . . . L − 1. (3.1)It is easy to implement and 
omputationally fast, but su�ers from spe
tral biasproblems be
ause the segmentation of the time series is equivalent to multipli
a-tion with a box
ar fun
tion. The result in the frequen
y domain is 
onvolutionwith a sin
 fun
tion, and has numerous side-lobes that 
ause spe
tral leakage.This situation 
an be improved by applying a window fun
tion before 
al
ulatingthe Fourier transform,
S(ωi) =

N/L−1∑

j=0

(j+1)·L−1∑

l=j·L

xlw(l) exp(−ıωil) i = 1 . . . L − 1. (3.2)The indu
tive nature of magnetotelluri
 soundings makes spe
tral resolution oftena minor issue and the 
hoi
e of spe
tral window is usually not 
riti
al. Popu-lar 
hoi
es are the Hann window and the Hamming window. When the time-series is 
ontaminated with noise that is 
on
entrated in spe
tral lines, the 
hoi
eof spe
tral estimation method 
an make a noti
eable di�eren
e. In these 
asesmultitaper spe
tral analysis [Thomson, 1982℄ 
an produ
e more a

urate results.The simple windowing fun
tions are repla
ed by spe
ially designed orthogonaltaper fun
tions that optimize spe
tral leakage and varian
e. Multitaper analy-sis is used in the bounded-in�uen
e remote referen
e (birrp) pro
essing 
ode byChave and Thomson [2004℄.In order to estimate the impedan
e tensor 
omponents we have to solve two bi-linear regression problems. Ea
h row of the impedan
e tensor relates two magneti
�eld 
omponents Bx and By to one ele
tri
 �eld 
omponent through two unknownlinear 
oe�
ients,
Ex = ZxxHx + ZxyHy, and (3.3)
Ey = ZyxHx + ZyyHy. (3.4)This seemingly straightforward problem has a lot of di�
ult and subtle problemsto it, and the results depend on the 
hosen solution of these aspe
ts. Obviouslyevery physi
al measurement is a�e
ted by some sort of noise, so we have to estimate17



3 From magnetotelluri
 time series to transfer fun
tionerrors for Zxx and Zxy and the plane des
ribed by them will not go exa
tly throughall measured points. The �rst pro
edures to estimate the impedan
e were basedon the idea of minimizing the distan
e of all points to the plane in the least-squaressense [Sims et al., 1971℄. More modern algorithms based on robustmethods will bedes
ribed below. While least-squares estimation is mathemati
ally un
ompli
ated,another problemati
 point remains. It is not possible to in
orporate independenterror estimates for the ele
tri
 and magneti
 �eld 
omponents, but only a singleerror estimate 
an be used. In most 
ases the magneti
 �eld is assumed to benoise free and all disturban
es 
on
entrated in the ele
tri
 �eld. This assumptionis justi�ed by the observation that in general ele
tri
al �eld re
ordings are mu
hmore noisy than magneti
 �elds.Under these assumptions the impedan
e tensor estimates 
an be 
al
ulated fromthe mean 
ross and auto spe
tra of the ele
tromagneti
 �elds. For Zxy one possi-bility is
Zxy =

HxH⋆
x ExH⋆

y − HxH⋆
y ExH⋆

x

HxH⋆
x HyH⋆

y − HxH⋆
y HyH⋆

x

, (3.5)others are given by Sims et al. [1971℄. The expressions for the other elements aresimilar. This parti
ular form is 
hosen be
ause it is not biased by random noiseon the ele
tri
 
hannels, but only by random noise on the magneti
 
hannels. Asmentioned earlier, the magneti
 
hannels are usually less a�e
ted by noise and theestimates from this formula are 
onsidered more reliable. When magneti
 noise ispresent the estimator in equation 3.5 will result in a downward biased impedan
e.Other forms represent mixed bias or upward bias [Jones, 1980℄.In pra
ti
e a number of issues make this simple approa
h unsuitable for reliableestimation. A number of possible problems during the re
ording 
an strongly biasthe output of su
h a simple pro
essing s
heme. These in
lude� Non-uniform natural �elds that violate the plane-wave assumption, theseo

ur mostly in high latitudes or during strong solar a
tivity [Mares
hal,1986, Osipova et al., 1989, Jones and Spratt, 2002℄,� Cultural noise from various ele
tromagneti
 sour
es su
h as pipelines, ele
tri
trains, power lines et
.,� Temporary sensor problems or saturation of the AD-
onverter input, and� Disturban
es by humans or animals moving in the vi
inity of the instrument.The simplest way to remove the in�uen
e of problemati
 segments of the re
ordingis manual editing of the time series. Segments that are 
onsidered unsuitable areex
luded from further pro
essing by visual inspe
tion. However this approa
h is18



3 From magnetotelluri
 time series to transfer fun
tiontime 
onsuming and problemati
 segments 
an be impossible to identify. Further-more pre
on
eived ideas about the expe
ted transfer fun
tion 
an in�uen
e thede
ision to in
lude 
ertain segments or not. A number of measures within thepro
essing sequen
e itself aim at avoiding the arbitrariness of manual sele
tion,while at the same time identifying problemati
 se
tions.Coheren
e thresholding/ weighting: Under ideal 
ir
umstan
es the 
oheren
ebetween the magneti
 and ele
tri
 �elds should be ≈ 1. A low 
oheren
eindi
ates problems in one of the 
hannels and the 
orresponding segment iseither 
ompletely ex
luded or its in�uen
e is redu
ed in the �nal 
al
ulationof the mean [Jones and Jödi
ke, 1984℄.Remote referen
e: When several instruments are re
ording at the same time, there
orded magneti
 �eld at another site 
an be used to improve the transferfun
tion estimates. Under the plane wave assumption the magneti
 �eldshould be equal at any re
ording site in a purely layered Earth and vary
oherently in the more general 
ase. In pra
ti
e the horizontal wavelengthof the sour
e is mu
h larger than the indu
tion s
ale length. For long-perioddata stations up to several hundred kilometres away are usually suitable as aremote referen
e site. If the noise in the magneti
 �eld at the remote site isorthogonal to the noise at the lo
al site, unbiased estimates 
an be obtained[Gamble et al., 1979a,b℄, in 
ontrast to the downward biased estimates forsingle site pro
essing.Robust estimates: The mean as a statisti
al measure 
an be strongly in�uen
edby a small number of events that fall far from the mean of all other esti-mates and thus violate the assumption of a Gaussian distribution of theresiduals. These events, also known as outliers, then bias the �nal re-sult. By down-weighting or ex
luding su
h outliers the estimation pro
e-dure 
an be made more robust, i.e. less in�uen
ed by spurious estimates[e.g. Egbert and Booker, 1986, Chave and Thomson, 1989℄.Leverage points: Simple least-squares estimation methods 
an be strongly in�u-en
ed by a single data-point with an amplitude that is mu
h larger than theaverage. These leverage points 
an pose problems even for robust methodsif they do not fall su�
iently far from the mean, but still bias the result.New bounded-in�uen
e methods try to identify and redu
e the in�uen
e ofsu
h leverage points [Chave and Thomson, 2003℄.Some or all of these methods are in
luded in modern MT pro
essing 
odes andthey 
an greatly improve transfer fun
tion estimates 
ompared to the simple pro-
essing s
heme presented earlier. Still, some situations exist where even these19



3 From magnetotelluri
 time series to transfer fun
tion
Ex

Example of an uncontaminated site
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Example of cow fence contamination
Site ISLE007

Ey

Hx

0 500 1000
Sample [150 Hz]

HyFigure 3.1: Re
ording of ele
tri
 and magneti
 
hannels from a undisturbed site(ISLE101) and a 
ontaminated site (ISLE007). The high amplitude spikes in theele
tri
 �eld at site ISLE007 are 
aused by ele
tri
 
ow fen
es.sophisti
ated methods fail to yield estimates of transfer fun
tions representativeof the 
ondu
tivity distribution in the Earth. Coheren
e between the ele
tri
 andmagneti
 �elds is not always a reliable measure of data quality. Parti
ularly 
ul-tural noise sour
es, su
h as DC railways or 
ow-fen
es, 
an produ
e signals thatshow high 
oheren
y, but violate the assumptions made in MT pro
essing [Szarka,1988, Qian and Pedersen, 1991, Padua et al., 2002℄. In some 
ases these signals areso strong that they a�e
t neighbouring sites making them unsuitable as remotereferen
e sites. Also, when 
ultural noise is not just a temporary phenomenonbut persists throughout the entire re
ording, robust methods break down. Thesemethods rely on the fa
t that the majority of estimates is not strongly biased. Ifthe majority of the estimates should be termed outliers, robust methods will usethese as the �data� and dis
ard the rarer reliable estimates.3.1.2 The limit of 
urrent pro
essing algorithmsThe problems of available pro
essing 
odes are dramati
ally illustrated by some ofthe high frequen
y data 
olle
ted during the �rst phase of the ISLE-MT proje
t.At most sites the high-frequen
y 
hannels are strongly a�e
ted by noise from
ow fen
es on the farms surrounding the re
ording site. The ele
tromagneti
signal generated by the 
ow fen
es poses a parti
ularly di�
ult problem for anypro
essing algorithm. First, the noise usually 
ontinues throughout the wholetime-series, making it di�
ult to distinguish "good" from "bad" segments. Thenoise is quasi-periodi
, but both the shape of the signal as well as the frequen
y20
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 time series to transfer fun
tion
0.15 1.5 15

10000

1e+06

1e+08

1e+10

E
x 

A
m

pl
itu

de

Site ISLE007
Site ISLE101

Power spectrum for Ex and Hy
Site ISLE007

0.15 1.5 15
Frequency [Hz]

1e+06

1e+08

1e+10

1e+12

H
y 

A
m

pl
itu

de

Figure 3.2: Spe
tra of Ex (top) and Hy (bottom) 
hannels from sites ISLE007(bla
k) and ISLE101 (red). Site ISLE007 is severely 
ontaminated by 
ow fen
enoise whereas ISLE101 is the least disturbed site in the survey area. The dis-turbed sites does not only show a high amplitude base frequen
y at 1.5 Hz andits harmoni
s, but is generally higher in amplitude.
hanges with time. In some 
ases the power of the noise is also mu
h higher thanthe power of the signal.Figure 3.1 shows a 
omparison of a reasonably good site with su
h a problemati
site. Both ele
tri
al 
omponents in the right hand panel show strong spiky signals.While there seems to be a 
ertain repeatability, it 
an be 
learly seen that thesignal is far from being periodi
. The magneti
 
hannels seem to be una�e
tedby the 
ow fen
e noise, but 
lose inspe
tion shows that they also 
ontain, to amu
h lesser degree, tra
es of the 
ow fen
e signal. In 
omparison the 
lean signalin the left hand panel does not 
ontain su
h high amplitude spikes in the ele
tri

hannels. In addition the magneti
 signal seems mu
h smoother, with a 
learsinusoidal 
omponent that is typi
al for natural signals.The impression from the time-series is emphasized by the 
orresponding spe
train Figure 3.2. The spe
trum of the north-south ele
tri
 
hannel at site ISLE007 ismore than three orders of magnitude higher than at site ISLE101. It is theoreti
allypossible that this di�eren
e is due to a mu
h higher subsurfa
e resistivity. Giventhat this would require a fa
tor of 106 higher resistivities, makes this possibilityhighly unlikely though. The strong amplitude os
illations at 1.5 Hz and its har-moni
s reveal, that this e�e
t is 
aused by the spikes observed in the time-series.Also the natural S
humann resonan
es [S
humann, 1954℄ at 7.8 Hz and 13.9 Hz
an be 
learly seen in the ele
tri
 spe
trum of site ISLE101, but are 
ompletelyabsent at site ISLE007. 21
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Figure 3.3: Transfer fun
tion estimates for site ISLE007 
al
ulated with sev-eral popular pro
essing 
odes. From left to right: Robust remote referen
e byJones and Jödi
ke [1984℄, same 
ode but with manually sele
ted spe
tra, bounded-in�uen
e 
ode by Chave and Thomson [2004℄.The magneti
 spe
tra are relatively similar at both sites. Close 
omparisonshows though that there is an os
illatory 
omponent similar to the ele
tri
 spe
-trum in the magneti
 spe
trum of site ISLE007. This indi
ates that the magneti

hannels are a�e
ted by the 
ow-fen
e spikes as well.Figure 3.3 
ompares the estimated o�-diagonal impedan
e tensor elements forthe 
ontaminated site ISLE007 using three di�erent popular approa
hes. The twoleft hand panels were both obtained using the same robust remote referen
e 
ode[Jones and Jödi
ke, 1984, Jones et al., 1989, method 6℄. The di�eren
e betweenthe two plots is that for the middle panel individual impedan
e estimates wereplotted as a fun
tion of time and estimates that were 
onsidered better were se-le
ted manually. The �gure on the right was produ
ed using birrp whi
h in
ludesprote
tion against leverage points [Chave and Thomson, 2004℄. The �rst thing tonote is that all three methods produ
e di�erent results at high frequen
ies. Al-though the general shape of the 
urves, parti
ularly apparent resistivity, is similar,the absolute values at high frequen
ies di�er up to an order of magnitude and mu
hmore than the error estimates suggest. The high apparent resistivities that sharplyrise and then fall o� abruptly, together with low phases in the left hand panel areindi
ative of a grounded dipole in the vi
inity of the station [Qian and Pedersen,1991℄. There is also large s
atter of values for adja
ent frequen
ies. For an indu
-tive method like MT, both apparent resistivity and phase should vary smoothly22
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tionwith frequen
y. Also the theoreti
al relationships between apparent resistivity andphase 
an be used to 
he
k the data for internal 
onsisten
y [Sutarno and Vozo�,1991, Parker and Booker, 1996℄.The smoothness of the apparent resistivity values as an indi
ator of data qualitywas used as a guideline in the manual sele
tion pro
ess that produ
ed the middlepanel in Figure 3.3. Individual estimates have been sele
ted to produ
e a smoothapparent resistivity 
urve. While the apparent resistivities 
onsequently appearto be of better quality, the s
atter between adja
ent phase values reveals that thispart of the sounding 
urve is still problemati
. Finally for the birrp pro
esseddata, the apparent resistivities are mu
h lower than for both other pro
essingmethods and appear to be generally more smooth than in the left hand panel.The phase estimates on the other hand s
atter wildly between 0 and 90° and havelarge errors asso
iated with them. While this visually appears to be the worstsounding 
urve, the large error bars at high frequen
ies at least signal that thispart is problemati
. To the untrained eye, a sounding 
urve like in the middlepanel might seem of su�
ient quality, but in essen
e the high frequen
y part ofany of them 
annot be used for interpretation or modelling. Only at periods
>50 s, where the 
urves of all di�erent pro
essing s
hemes agree, the data appearto be reliable. These limitations of all pro
essing 
odes available to date motivatethe attempt to pre-pro
ess the data in the time domain before feeding it into theusual pro
essing 
odes. We will present a number of signal pro
essing methodsand their appli
ation to the data in the following se
tions.3.1.3 The ISLE-MT re
ordingsBefore we 
an dis
uss signal pro
essing methods and their appli
ation to MT datawe have to look at some of the details of how the data were re
orded during theISLE-MT proje
t. At ea
h site we installed two di�erent instruments that sharedthe ele
trodes to measure the ele
tri
 �elds, but used di�erent magneti
 sensors.LIMS instruments, borrowed from the Geologi
al Survey of Canada, re
orded witha sampling rate of 5 s and used a three-
omponent ring-
ore �uxgate magnetome-ter to re
ord the time varying magneti
 �eld [Narod and Bennest, 1990℄. Theseinstruments re
orded for 2 weeks to 2 months, depending on lo
ation, to obtainreliable estimates of the long period transfer fun
tions. Due to their low samplingrate these re
ordings seem to be una�e
ted by the 
ow fen
es and data quality isgenerally high.To obtain information about the shallow stru
ture, Phoenix MTU-5A broad-band instruments were also installed at ea
h site for 2-3 days. They use magneti

oils to re
ord the time derivative of the magneti
 �eld and 
ompute the highfrequen
y transfer fun
tions. Nearly all broad-band re
ordings are a�e
ted by 
ow23
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tionfen
e noise to some degree, and only at two sites 
ould we obtain high-frequen
yimpedan
e-tensor estimates that we regard as reliable. In 
ontrast to the LIMSinstruments, the broad-band instruments do not re
ord with a single samplingrate, but in three di�erent bands with di�erent re
ording lengths for ea
h band.The parameters for ea
h band are shown in Table 3.1Band Sample rate [Hz℄ Segment length [s℄ Gap [s℄ Total length [hrs℄3 2400 2 158 104 150 16 144 105 15 
ontinuous 48-72Table 3.1: Re
ording parameters for the di�erent bands of the Phoenix MTU-5Abroad-band MT re
ording unit.These bands are then pro
essed separately, and the results are 
ombined into asingle sounding 
urve. For the standard Phoenix pro
essing software SSMT2000the relationship between re
ording bands and frequen
y range of the impedan
etensor are shown in Table 3.2.Band Frequen
y range [Hz℄3 352�354 35�55 5�0.009Table 3.2: Standard pro
essing frequen
ies for ea
h band of the Phoenix MTU-5Abroad-band MT re
ording unit.In the following se
tion we will mainly apply the methods to the time-seriesre
orded in band 4, as the impedan
e estimates from this band seem to be mostproblemati
. If we 
an su

essfully use the method in this band we will 
ontinueto apply it to the other band to test whether we 
an produ
e a reliable sounding
urve for the whole frequen
y range.3.2 Filter TheoryThe term �lter by itself is not well-de�ned. It is used in signal pro
essing todenote a pro
ess that modi�es some input signal and yields an output signal. Inmost 
ases, �lters are asso
iated with mathemati
al 
onvolution as most �lters24
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x(t) f(t) y(t)Figure 3.4: Blo
k diagram of a general �lter.used in pra
ti
al appli
ations 
an be des
ribed as a 
onvolution between the �lterimpulse response f(t) and the input x(t),
y(t) =

∫∞

−∞
f(τ)x(t − τ)dτ = f(t) ∗ x(t), (3.6)or, for dis
rete and �nite length data,

y(ti) =

N∑

j=0

f(tj)x(ti−j). (3.7)It is often 
onvenient and more intuitive to des
ribe the �lter in the frequen
ydomain by its transfer fun
tion. This is be
ause 
onvolution in the time domainis repla
ed by element-wise multipli
ation in the frequen
y domain,
x(t) ∗ y(t)

F←→ x(ω) · y(ω). (3.8)The impedan
e tensor 
an be thought of as a �lter that a
ts on the magneti
 �eldto produ
e the ele
tri
 �eld and that is why the term magnetotelluri
 transferfun
tion is often used equivalently.In signal pro
essing appli
ations a �lter is often used to give the input signal
ertain properties, for example anti-alias �lters that any digital re
ording instru-ment has to apply before digitizing to avoid artifa
ts from frequen
ies higher thanthe Nyquist frequen
y, given by
fN =

1

2∆t
, (3.9)where ∆t is the sampling rate. Anti-alias �lters are analogue low-pass �lters, buta similar step 
an o

ur digitally to down-sample the AD-
onverter output to thedesired sampling rate. Filters 
an also be used to shape the input signal in thesense that the �lter output should resemble some desired referen
e signal. We willdis
uss this later when we des
ribe adaptive �lters.From Equation 3.8 it is 
lear that the appli
ation of any �lter to a 
hannel of anMT re
ording will 
hange the spe
trum of that 
hannel. We have to distinguishtwo di�erent 
ases of spe
tral distortion: 1) Removing the 
ow fen
e spike willobviously alter the spe
trum and this 
hange is desired, 2) In addition the �lter25
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tionMethod Channels Time dependen
e LinearityDelay Single stati
Template Substra
tion Single adaptiveLMS Multi adaptive linearRLS Multi adaptive linearNeural Network Multi adaptive non-linearTable 3.3: Filters dis
ussed in the following se
tions and their propertiesresults in some overall distortion of the spe
trum that has nothing to do with the
ow fen
e spikes but is an inherent property of the �lter. Returning to equation3.5 we see that the impedan
e tensor elements are 
al
ulated from ratios of auto-and 
ross-spe
tra. The overall spe
tral distortion therefore 
an
els out as long asit is identi
al for all 
hannels of the time-series. For stati
 �lters, like the delay-�lter that we will dis
uss below, this is easy to a
hieve. In 
ontrast, for the morepowerfull adaptive �lters the �lter transfer fun
tion depends on the data and thise�e
t 
an be
ome problemati
.The �lters we will use to remove the 
ow fen
e noise 
an be 
lassi�ed in anumber of ways. The simplest �lters work on a single re
orded 
hannel at atime without using any information from other, simultaneously re
orded, 
hannels.In 
ontrast multi-
hannel �lters utilize expe
ted relationships between di�erentre
ording 
hannels to distinguish noise from signal. The �lters 
an also be stati
,i.e., their �lter fun
tion remains 
onstant for the whole time series, or adaptive,i.e., adjust to 
hanging signal 
hara
teristi
s. Finally multi-
hannel �lters 
an be
ategorized as linear or non-linear. Linear, multi-
hannel �lters assume that the�lter output is a linear 
ombination of the input; we will dis
uss linear adaptive�lters in parti
ular. Non-linear �lters, neural networks for example, 
an modelmore 
ompli
ated relationships. Table 3.3 gives an overview over the �lters wewill dis
uss and their properties3.3 Single 
hannel methodsThe simplest example of single-
hannel stati
 �lters are high-pass, low-pass orband-pass �lters. High-pass and low-pass �lters are unsuitable for noise 
an-
ellation in MT time series. They simply redu
e the amplitude of all spe
tralestimates above or below a spe
i�ed frequen
y, whi
h is equivalent to dis
ardingthe impedan
e tensor estimates at those frequen
ies. This is sometimes ne
essaryif all attempts to 
an
el the noise are unsu

essful but 
an be more easily and26
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 time series to transfer fun
tionmore e�
iently a
hieved by sele
ting estimates that are 
onsidered reliable afterpro
essing.On the other hand, band-pass �ltering 
an be useful under 
ertain 
ir
um-stan
es. If the noise is 
on
entrated in a reasonably narrow frequen
y band, aband-pass �lter 
an down-weight the spe
tra in that band and avoid leakage ofthe spe
tral estimates into neighbouring frequen
ies. Due to the indu
tive natureof magnetotelluri
 soundings, adja
ent 
ross- and auto-spe
tra are not indepen-dent. Most pro
essing 
odes use this to in
rease the number of estimates for agiven output frequen
y by averaging over a window of frequen
ies around the 
en-tral output frequen
y. If any of these frequen
ies are a�e
ted by noise, the �naloutput will be so as well. Band-pass �ltering 
an 
ir
umvent this problem, and isroutinely undertaken to remove the in�uen
e of the 50 Hz ele
tromagneti
 signalasso
iated with household ele
tri
ity or the 16.3 Hz signal of AC powered railways.This is possible be
ause, in most 
ountries, the frequen
y is stable over long timeand distan
e and the shape of the signal is sinusoidal, resulting in 
ontaminationat a very narrow range of frequen
ies. In 
ontrast, the aforementioned 
ow-fen
espikes 
ontaminate the MT re
ording over a mu
h broader range of frequen
iesand also at higher harmoni
s of the base frequen
y, as we already observed inFigure 3.2.3.3.1 Delay FilterOne type of �lter that 
an
els signals at a base frequen
y and its harmoni
s isthe Delay-Filter [S
hnegg and Fis
her, 1980, Junge, 1996℄. Its implementation isvery simple: A 
opy of the time-series is time shifted and subtra
ted from theoriginal. To preserve power we multiply the result with a normalizing fa
tor,
y(t) =

1√
2

(x(t) − x(t − t0)) . (3.10)In the frequen
y domain the result is
F {y(t)} =

1√
2
F {x(t) − x(t + t0)}, (3.11)

=
1√
2

(F {x(t)} − exp (ıωt0)F {x(t)}) , (3.12)
=

1√
2

(1 − exp(ıωt0))F {x(t)}. (3.13)Hen
e the transfer fun
tion of the �lter is
f(ω) =

1√
2

(1 − exp(ıωt0)) , (3.14)27
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(a) Comparison of the Ex spe
trum before(red) and after (bla
k) delay �ltering. Thebase frequen
y and the �rst 
ouple of multi-ples have been su

essfully suppressed. Manyof the higher harmoni
 frequen
y remain inthe spe
trum though.
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(b) Comparison of the Hy spe
trum before(red) and after (bla
k) delay �ltering. The�ltered spe
trum reveals the 
osine shape ofthe �lter transfer fun
tion.Figure 3.5: The e�e
t of a delay �lter on the spe
trum of Ex (left) and Hy (right).and the resulting power spe
trum is
P{y(t)} = F {y(t)}F∗{y(t)} = (1 − 
osωt0)P{x(t)}. (3.15)This means that the power at the base frequen
y 1/t0, and all its harmoni
s, willbe suppressed by the vanishing �lter transfer fun
tion. Note that the spe
trum isalso altered at all other frequen
ies, apart from n/(2t0) with n odd. As mentionedbefore it is not a problem for pro
essing if we apply the same �lter to all 
ompo-nents of the time series as the resulting distortion of the spe
tra is identi
al for all
omponents. The e�e
t of su
h a delay �lter on the spe
trum of an MT re
ordingis shown in �gure 3.5. The time shift was determined by inspe
ting the time-series and measuring the prevalent distan
e between spikes. The 
orrespondingshift of n = 207 resulted in better suppression of the 
ow-fen
e noise than a shiftof n = 216 that was suggested by the lowest maximum in the ele
tri
 spe
trum.For our experiment we 
onsidered only integer valued shifts. In theory it wouldbe possible to shift the time-series by a fra
tion of a sample by interpolation andresampling. However 
hanging the shift by ±1 does not vary the output of the�lter signi�
antly, so that this additional 
omplexity seems unne
essary.Figure 3.5 shows how the �rst maximum in the power-spe
trum at 0.8 Hz andits harmoni
s are suppressed by the �lter, but it also illustrates the problemati
nature of 
ow fen
e noise. While the �rst few frequen
ies redu
ed by the �lterare maxima in the original spe
tra, the high frequen
y �lter minima 
oin
ide with28
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Figure 3.6: O� diagonal elements of the impedan
e tensor for site ISLE007. Bla
ksymbols show original estimates, red-symbols show estimates after applying adelay �lter.minima in the original spe
trum, and some strong spikes in the spe
trum areleft undisturbed or are even ampli�ed. Likely explanations are that the signalis not exa
tly repetitive and that the higher frequen
y signature is not an exa
tinteger multiple of the base frequen
y. This 
an be due to the 
o-a
tion of severalfen
es with slightly di�erent frequen
ies, or simply a variations in the me
hani
alme
hanism that produ
es the spikes. Several attempts with di�erent shifts t0 forthe �lter, and a 
as
aded appli
ation with di�erent shifts at ea
h step did notresult in any signi�
ant improvement.Figure 3.6 shows, that the delay �lter does not signi�
antly improve the im-pedan
e estimates. Around the base frequen
y of 1 Hz the s
atter in the xy-
omponent apparent resistivities is slightly redu
ed, but for the most part theestimates remain the same as before. For the yx-
omponent the estimates have
hanged as well, but they s
atter in a similar manner as before, and it is notpossible to de
ide whi
h of the results 
ould be termed better. The phases ofboth 
omponents have not 
hanged signi�
antly, apart from an outlier in the xy-
omponent. This suggests that a delay �lter is unsuitable to remove the 
ow-fen
e29
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Figure 3.7: Histogram of normalized 
ross-
orrelation between a template spikeand the time series (left) and the 
orresponding spike form (right) for a spike thatis not representative of the 
ow fen
e spikes. The inset graph in the left hand�gure shows a magni�
ation of the 0.8 . . . 1 range.noise from the data.3.3.2 Dire
t Template Substra
tionApart from simple �ltering operations with well 
ontrolled behaviour in the timeand frequen
y domain, we will also try a rather ad-ho
 method to substra
t theundesired signal from the time series. The �rst method that might 
ome into mindis to identify a �typi
al spike signature� by visual inspe
tion or some automatedmethod, identify se
tions of the time-series where this template spike mat
hes andsubstra
t it. If the shape of the spike remains approximately similar throughoutthe time series, perhaps with some amplitude variations, whi
h are easy to 
orre
tfor, this appears to be a reasonable approa
h. We will show the su

esses andproblems of this approa
h in the 
ase of 
ow fen
e noise in this se
tion.To identify segments of the time-series xi that mat
h our template spike si weuse the normalized 
ross-
orrelation ci given by
ci =

∑
j sjxj+i

√∑
j x

2
j

∑
j s

2
j

, (3.16)between the two.The possible values of ci are in the range ±1. An absolute value 
lose to unityindi
ates a highly similar segment of the time-series, while values around 0 indi
atedissimilar shapes in the time-series and the template spike. The histogram of 
ross-
orrelation values shown in Figure 3.7 illustrates the problem of this approa
h30
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Figure 3.8: Histogram of normalized 
ross-
orrelation between a template spikeand the time series (left) and the 
orresponding spike form (right) for a spike thatrepresents some of the 
ow-fen
e disturban
es in the time series. The inset graphin the left hand �gure shows a magni�
ation of the 0.8 . . . 1 range.for a manually sele
ted spike. As expe
ted, the peak of the distribution is at0 
orrelation, most of the time-series does not resemble the template spike atall. But if the template spike was as representative of the numerous spikes inthe re
ording as we hope, there should be se
ondary peaks at ±1 or at least asigni�
ant number of points with a 
orrelation > 0.9. What we observe instead isan extremely low 
ount of high 
orrelation points; the distribution drops rapidlyo� to zero at high 
orrelation values. In the whole time series there are about20 segments that have a 
orrelation > 0.9 with the template spike. There are anumber of possible reasons for the low agreement: The 
hosen spike might not berepresentative of the noise, but in fa
t just be a single disturban
e, or the 
hosensegment of points around the spike might be too long and 
ontain natural sour
edata. If this is the 
ase, the 
orrelation will be lower than for an adequately 
hosentime window.To avoid tedious trial and error sear
hes for the right template spike, we use asimple automati
 routine to identify possible 
ow fen
e spikes. The visual inspe
-tion of the time series shows that, at least in the ele
tri
 �elds, the spikes appearnearly as delta fun
tions with a high amplitude. At the onset of the spike the�rst di�eren
e, the di�eren
e to the previous value, rea
hes values that are up toseveral magnitudes higher than for the rest of the data. We de�ne a thresholdvalue diffthreshold and if the �rst di�eren
e ex
eeds this value the segment is
onsidered part of a spike.Figure 3.8 shows the 
hosen spike and the 
orresponding histogram for a moresu

essfull 
ase that was identi�ed automati
ally. We 
an now see from the his-31
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tionParameter name explanation
diffthreshold Minimum �rst di�eren
e above whi
ha point is 
onsidered a spike
trailpoints Number of points before the identi�ed spikein
luded in the template
decaypoints Number of points after the identi�ed spikein
luded in the template
minspikeavg Minimum number of spikes needed for average so thatthe average is used for substra
tion
corrthreshold Minimum 
orrelation between template and other spikesfor averaging and substra
tion
iterations Number of iterations of the algorithm,at ea
h iteration a new spike is sele
tedTable 3.4: Des
ription of user-de�ned parameters for the dire
t template substra
-tion algorithmtogram that large positive 
orrelation values appear mu
h more often than in the
ase displayed in Figure 3.7. Parti
ularly the 
omparison with negative 
orre-lation values, where the distribution still falls o� to zero qui
kly, 
on�rms thatthere is a large number of similar waveforms within the time-series. On the basisof this observation we 
onstru
t a simple algorithm to remove spikes from a timeseries shown in Algorithm 1. There are a number of user-de�ned parameters thatdetermine whi
h kind of shapes are 
onsidered spikes and how they are removed;these are summarized in Table 3.4. The same algorithm is applied with identi-
al parameters to both 
omponents of the ele
tri
 �eld for simpli
ity, although itwould also be possible to use di�erent parameters for ea
h 
omponent. Applyingthe algorithm to the magneti
 �eld 
omponents introdu
es strong artifa
ts intothe time-series. As we 
an see from Figure 3.1 the 
hara
teristi
s of the 
ow-fen
enoise are very di�erent for the magneti
 
hannels. Parti
ularly there are now highamplitude spikes that 
an be used to identify the disturban
es and the signatureis generally mu
h weaker. We therefore leave these 
hannels un
hanged to avoidthe introdu
tion of artifa
ts.As mentioned above, this algorithm is purely based on a phenomenologi
al de-s
ription of what is thought to be a 
ow fen
e spike, and the algorithm is thebare minimum ne
essary to identify spikes and similar shapes in the time series.Espe
ially the minimum 
orrelation threshold corrthreshold has to be set highenough to avoid averaging and subtra
ting spike shapes that have little similarity.This is also one of the di�eren
es to the similar iterative de
onvolution algorithm32
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 time series to transfer fun
tionAlgorithm 1 Algorithm to remove spikes from one 
omponent1: Read parameters2: for iterations do3: repeat4: + + i5: until x(i) − x(i − 1) > diffthreshold6: Copy x(i − trailpoints) . . . x(i + decaypoints) into s7: Cal
ulate 
ross-
orrelation c of s and x8: for all i do9: if c(i) > corrthreshold then10: Sta
k x(i − trailpoints) . . . x(i + decaypoints) with s11: end if12: end for13: if Sta
k 
onsists of more than minspikeavg spikes then14: Normalize c, that maximum value is 115: Cal
ulate 
ross-
orrelation c of sta
ked s and x16: for all i do17: if c(i) > corrthreshold then18: S
ale s to maximum amplitude of 
urrent window19: Substra
t s from x(i − trailpoints) . . . x(i + decaypoints)20: end if21: end for22: end if23: end for[Ligorria and Ammon, 1999℄ that we will introdu
e in Chapter 4 to 
al
ulate re-
eiver fun
tions in the presen
e of noise. The other main di�eren
es are that wedo not use the full time-series of another 
hannel, but an averaged extra
t fromthe same 
hannel, and that we are not interested in the transfer fun
tion, but inthe modi�ed time-series.The performan
e of the algorithm on typi
al data from Ireland is shown inFigure 3.9. The �gure shows that a number of spikes is signi�
antly redu
ed,while some others remain un
hanged. The reason for this is the high variability inspike shape. The 
orrelation threshold in this 
ase was set to 0.9; a lower thresholdwill remove more spikes from the time-series, but will introdu
e artifa
ts be
auseof mismat
hes between the spike shape and the time-series.The introdu
tion of arti�
ial features into the time-series is a risk that is 
ommonto all signal pro
essing te
hniques, and is extremely di�
ult to assess be
ause thenoise-free time-series is unknown. We will examine the impa
t of the minimum33
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Figure 3.9: Comparison of original time series with time series after appli
ationof the template substra
tion algorithm. The 
orrelation threshold was set to 0.9in this 
ase.
orrelation parameter corrthreshold by systemati
ally varying it and 
omparingthe resulting time-series and spe
tra. The parameters for the various runs 
an befound in Table 3.5 and the resulting time-series in Figure 3.10.1 2 3Spike height 10,000 10,000 10,000Trail points 5 5 5De
ay points 20 20 20Minimum 
orrelation 0.95 0.9 0.8Minimum samples 10 10 10Iterations 50 50 50Table 3.5: Parameters used to examine the performan
e of the template substra
-tion algorithmIt is immediately obvious that the 
orrelation threshold of 0.8 in the lowermostplot of Figure 3.10 is too low. A number of high amplitude spikes and downwardshifts have been added to the time-series. Some other spikes have been redu
ed inamplitude and the remaining signal resembles natural variations, but the strongartifa
ts make it unusable for any further pro
essing. Both other time-series,with 
orrelation thresholds >0.9, do not show any obvious artifa
ts. As observedbefore, some spikes remain un
hanged while others seem to be removed. Carefull34
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Cmin=0.9Figure 3.10: Comparison of original time series with time series after appli
ationof the template substra
tion algorithm with di�erent 
orrelation thresholds. Theright graph is a magni�ed version of the upper three panels in the left graph toshow the di�eren
es after spike removal.
omparison of the two time-series, with 
orrelation thresholds of 0.9 and 0.95respe
tively, reveals some subtle di�eren
es where spikes have been removed. Theright panel of Figure 3.10 shows these di�eren
es for a few spikes. From the time-series plot alone it is impossible to de
ide whi
h one is more representative of thenatural signal, but it appears that with a higher 
orrelation threshold, the artifa
tsare less severe.The 
orresponding power-spe
tra provide an alternative view on the a
tion ofthe noise removal algorithm. Figure 3.11 shows the power-spe
tra that 
orrespondto the time-series in Figure 3.10. It is interesting to see that the maximum atthe base-frequen
y of 0.8 Hz remains virtually un
hanged by all di�erent runs,only the high-frequen
y harmoni
s are redu
ed. The power spe
tra 
on�rm the
on
lusion that a 
orrelation threshold of 0.8 is too low and introdu
es strongartifa
ts. Throughout the whole frequen
y range the spe
trum after spike removalis 4 orders of magnitude higher than the original spe
trum, and is essentially �at.This indi
ates the presen
e of a number of high amplitude spikes whose frequen
yresponse is a straight line. Again there are some subtle di�eren
es between theother two spe
tra. In general the 
orrelation threshold of 0.9 seems to removemore power from the time series, but this is, by no means, an indi
ator that thealgorithm works better than with a higher 
orrelation threshold.Both the 
leaned time-series and the 
orresponding spe
tra, for a 
orrelationthreshold of 0.9, indi
ate that the algorithm works and does not introdu
e majorartifa
ts. We will therefore apply the algorithm to all frequen
y bands and pro
essthe resulting time series to 
ompare the impedan
e estimates with the original.Due to the di�erent sampling rates and the di�ering appearan
e of the 
ow-fen
e35
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Figure 3.11: The spe
tra 
orresponding to the three pro
essed time series in Figure3.10. For 
omparison we plot the spe
trum of the original time-series in red inea
h plot as well.spikes we have to adjust some of the parameters for the other bands. Theseparameters are shown in Table 3.6Finally we 
ompare the impedan
e tensor estimates after applying the algorithmwith the parameters given in Table 3.6 with the estimates from the unpro
essedtime-series. The o�-diagonal apparent resistivity and phase are plotted in Figure3.12. It appears that the apparent resistivities are generally smoother for both
omponents, usually an indi
ator of better data quality, and in the 
riti
al bandof 0.1-1 s also lower. This is the e�e
t of removing the high energy spikes fromthe ele
tri
 �eld re
ordings, whi
h results in a smaller enumerator in equation 3.5while the denominator remains 
onstant. Still, there is 
onsiderable s
atter in boththe apparent resistivity and phase estimates. Espe
ially the Zyx estimates appearto be too noisy to be used for any kind of interpretation. The Zxy estimates, onthe other hand, appear to be of reasonable quality, but it is di�
ult to assesshow mu
h impa
t the 
ow-fen
e noise still has. At the end of this 
hapter we will36
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tionBand 3 Band 4 Band 5Spike height 100,000 10,000 5,000Trail points 20 5 5De
ay points 200 20 5Minimum 
orrelation 0.9 0.9 0.9Minimum samples 10 10 10Iterations 50 50 50Table 3.6: Parameters of the template substra
tion algorithm for the di�erentre
ording bands
ompare the results from all noise removal methods to get an idea of the qualityof these estimates.3.4 Linear adaptive �ltersIn 
ontrast to stati
 �lters, adaptive �lters 
an 
hange their transfer fun
tion dur-ing the �ltering pro
ess. Usually the adaption is performed in order to minimizea 
ertain pre-de�ned 
riterion, for example the di�eren
e between the �lter out-put and a referen
e signal. Adaptive �lters are now an integral part of modernele
troni
 devi
es, su
h as wireless network 
ards, mobile phones hearing aids andmu
h more [Widrow et al., 1975, Widrow and Stearns, 1985℄. A wide variety ofadaptive �ltering algorithms exists ea
h of whi
h has 
ertain advantages and dis-advantages depending on the requirements [Haykin, 2002℄. We will only deal withfairly simple adaptive �ltering algorithms whi
h nevertheless have been proven tobe most useful in pra
ti
e. Also these �lters are usually implemented digitally, sowe will only be 
on
erned with dis
retely sampled data.3.4.1 The LMS adaptive �lterFor a linear adaptive 
ombiner the output of the �lter y at time ti is the sum ofthe input x weighted by the �lter weights w,
y(ti) = wT(ti)x(ti) or shorter yi = wT

i xi, (3.17)where w and x are both ve
tor quantities. This is in 
ontrast to non-linear �lters,like neural networks, that we will dis
uss below, where the �lter output is a non-linear fun
tion of this weighted sum. For x the ve
tor property 
an be interpretedin di�erent ways: Ea
h 
omponent of the ve
tor represents one sample at a giventime from a di�erent 
hannel, ea
h 
omponent represents a sample at di�erent37
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Figure 3.12: O� diagonal elements of the impedan
e tensor for site ISLE007. Bla
ksymbols show estimates without pre-pro
essing, red-symbols show estimates afterpre-pro
essing with the template substra
tion algorithm.times from the same 
hannel, or a 
ombination of both. A s
hemati
 overview ofa general adaptive �lter 
an be found in Figure 3.13. For the MT 
ase we will
ombine a number of samples from two remote magneti
 
hannels to predi
t oneof the lo
al ele
tri
 or magneti
 
hannels,
xi = {Hx(ti), . . . , Hx(ti−L), Hy(ti), . . . , Hy(ti−L)} . (3.18)This approa
h was �rst proposed by Hattingh [1989℄ and proved to be the most su
-
essfull in the absen
e of dire
t information about the noise. Lezaeta et al. [2005℄also used an LMS-adaptive �lter to remove noise from sea-bottom magnetotelluri
re
ordings. In their 
ase though the noise sour
e, the tilt of the instruments fromwave motion, had been measured and 
ould be used for removal.In order to make the �lter adaptive we have to de�ne an error 
riterion ǫ(ti)that we want to minimize. This is usually the di�eren
e between the �lter outputand a given referen
e signal d(ti),

ǫ(ti) = d(ti) − y(ti) = di − wT
i xi, (3.19)38
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Figure 3.13: S
hemati
 overview of a linear adaptive �lter.whi
h in our 
ase is a sample from the lo
al 
hannel that we want to mat
h.We want to minimize this error in the least-mean-square sense. If we assume,for now, that ǫi, di and xi are all stationary, the expe
tation of the squared errorover time is given by
E[ǫ2

i] = E[d2
i ] + wT

i E[xix
T
i ]w − 2E[dix

T
i ]wi. (3.20)The square matrix E[xix

T
i ] is the 
orrelation matrix R of the input ve
tor, and we
an de�ne the ve
tor P as

P = E[dix
T
i ] = {dixi, dixi−1, . . . , dixi−L}

T
, (3.21)i.e., the 
ross-
orrelation between the referen
e and the input signal. With thesede�nitions we 
an rewrite the mean-square-error ξ in 3.20,

ξ = E[ǫ2
i ] = E[d2

i ] + wT
i Rwi − 2Pwi, (3.22)and we 
an see that for a stationary signal the mean-square-error is a quadrati
fun
tion in w so it has a unique optimum solution w⋆, the so 
alled Wienersolution. We 
an �nd this solution by 
al
ulating the gradient of equation 3.22with respe
t to w,

∂ξ

∂w
= 2Rw − 2P. (3.23)At the optimum value w⋆ the gradient is zero,

2Rw⋆ − 2P = 0⇒ w⋆ = R−1P. (3.24)39
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tionThis equation is the Wiener-Hopf equation. Noti
e that we assume here that theinverse of the auto-
orrelation matrix R−1 exists. This is not the 
ase in generaland even when it exists, the dire
t inverse 
an be numeri
ally unstable.All adaptive �lters we will be 
on
erned with try to minimize the mean-square-error; the di�eren
e lies in the way how the minimization is a
hieved. This isa dire
t analogy to the inversion algorithms we will dis
uss in Chapter 5 and,to some degree, the same algorithms are used. There are a number of impor-tant di�eren
es though, that in�uen
e the implementation details and 
hoi
e ofminimization method.First, while in inversion we seek a model that explains the whole dataset, theanalogue to the input ve
tor, in adaptive �ltering we operate only on a limitedse
tion of the data and the model (the weights of the �lter) 
an vary with time.The �ltering pro
ess thus 
onsists of two stages: 1) Convergen
e from the start-ing weights to the optimum weights w⋆, and 2) tra
king of the optimum weightsthrough time. Se
ond, most �ltering algorithms are intended for real time appli-
ations, whi
h means that 
omputational 
ost is a major 
on
ern and therefore�ltering routines tend to use more simple minimization methods than 
ommonlyused in inversion.The simplest possible adaptive �lter is the least mean square or LMS-adaptive�lter. It is similar to the method of steepest de
ent, but with some spe
ial adap-tions for signal pro
essing appli
ations. For a steepest de
ent type iteration wefollow the negative dire
tion of gradient s
aled by some stepsize µ,
wi+1 = wi + µ(−∇ξ). (3.25)A straightforward implementation of this algorithm would use �nite di�eren
esof short term averages of ǫ2

i , an estimate for the expe
tation value, to obtain anestimate of the gradient. For the LMS algorithm we use ǫ2
i itself as an estimate ofthe expe
tation value ξi. Our estimated gradient is then

∇ξ =

{
∂ǫ2

i

∂w1

, . . . ,
∂ǫ2

i

∂wL

}
, (3.26)

= 2ǫi

{
∂ǫi

∂w1

, . . . ,
∂ǫi

∂wL

}
, (3.27)

= −2ǫixi. (3.28)Equation 3.28 is equivalent to equation 3.23 as we 
an see from
2Rw − 2P = 2

(

xxTw − dx
)

= 2x
(

xTw − d
)

= −2xǫ. (3.29)Hen
e the �lter weights are updated by
wi+1 = wi + 2µǫixi. (3.30)40
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Figure 3.14: Simple performan
e test for the LMS adaptive �lter. The left panelshows �lter output (bla
k), �lter input (red) and the noise free signal (green).On the right the di�eren
e to the noise free signal is plotted for the �lter output(bla
k) and the original time-series (red). The �lter length was N = 5 with astepsize µ = 0.005.Usually all weights are initially set to zero. It would be possible to initialize themwith values based on an a-priori estimate of the relationship between input andreferen
e 
hannels, but we will not 
onsider these 
ases, but rely on the algorithmto �nd the appropriate weights. The stepsize µ has to be 
hosen by the user and is
riti
al for the algorithm's performan
e. We will dis
uss the problem of 
hoosing
µ and a modi�ed algorithm below.We test the algorithm and its basi
 abilities with two simple harmoni
 signalsfor input and referen
e:

xi = sin(2πi/N), di = 2 
os(2πi/N) + rand(−0.5, 0.5). (3.31)Here rand(−0.5, 0.5) denotes a random number in the interval [−0.5, 0.5]. The re-sults 
an be seen in Figure 3.14. The left hand panel shows that the original noise
ontaminated referen
e time series (red) deviates from the noise free signal morethan the �lter output. This impression is 
on�rmed by plotting the di�eren
ebetween the noise free signal and the referen
e time-series and �lter output, re-spe
tively. After an initial adaptation stage, the di�eren
e falls below the originalnoise level and the �lter output is a 
loser approximation to the noise free signal.This is, of 
ourse, be
ause noise and signal are un
orrelated and a stable transferfun
tion between input and noise free referen
e signal exists. As the adaptationpro
ess 
ontinues the �lter weights approa
h the transfer fun
tion and we re
overthe noise free signal nearly perfe
tly. 41
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 time series to transfer fun
tionAlgorithm 2 The normalized LMS algorithm1: w0 = 02: for all time samples i do3: yi = wT
i xi4: ǫi = di − yi5: µi = ~µ

δ+‖xi‖26: wi+1 = wi + 2µǫixi7: end forWhen using the LMS adaptive �lter, two 
hoi
es have to be made that a�e
t theperforman
e of the �lter. The number of �lter weights, N, determines to whi
hlevel of detail the �lter 
an model the transfer fun
tion, or if thought of in thefrequen
y domain, the spe
tral resolution of the �lter. This parameter has to be
hosen by trial and error and we will use long �lters with N > 100 to deal withthe spe
tral spikes in the 
ontaminated ele
tri
 �eld.The se
ond 
riti
al parameter is the 
hoi
e of the stepsize, µ. If the step sizeis too small, the �lter will not adapt fast enough and the �lter output will notrepresent the desired signal. On the other hand, if the step size is too large thepro
ess will be
ome unstable. In this 
ase the 
orre
tions applied in ea
h step ofthe algorithm are too large and subsequent attempts to 
orre
t this error resultin even larger maladjustment. The optimum stepsize is di�
ult to 
hose a priori;it depends on the �lter length, the input power and the error signal power. Onesolution to, at least, narrow the range of a

eptable values for µ is to use theNormalized LMS Algorithm [Haykin, 2002℄. The step size µ is repla
ed by theadaptation 
onstant ~µ that relates to the step size through,
µ =

~µ
δ + ‖xi‖2

. (3.32)The small 
onstant δ avoids numeri
al problems with the divisor when ‖xi‖2 ≪ 1.In 
ontrast to the step size, whi
h has dimensions of inverse power, the adaptation
onstant is dimensionless, removing at least the need to estimate the signal power.Note also that now the step size 
hanges during the adaptation pro
ess. Duringsegments of high input power, a small step size is used to avoid divergen
e, whereasduring segments of low input power the step size be
omes larger to fa
ilitate rapid
onvergen
e. The 
omputational steps for the LMS adaptive �lter are summarizedin Algorithm 2 42
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 time series to transfer fun
tion3.4.2 Applying a LMS �lter to MT dataBefore we 
an apply the LMS-adaptive �lter to the MT time-series we have to per-form one step of additional prepro
essing. As Figure 3.2 shows, the spe
trum ofthe magneti
 
hannel, in parti
ular, has a 
onsiderable overall slope. This is prob-lemati
 be
ause for a spe
trum like this, the adaptation pro
ess will largely fo
uson reprodu
ing this slope and not the variations we are interested in. The pro
essof �attening the spe
trum is known as whitening. In our 
ase this 
an be a
hievedfairly easily by taking the �rst di�eren
e of the data. This an approximation forthe �rst derivative and we 
an see from
F {x ′(t)} = ıωF {x(t)} (3.33)that this e�e
tively a
ts as a high-pass �lter subtra
ting a linear trend from thespe
trum. At the same time it solves the problem that the individual re
ordingsegments in re
ording Bands 3 and 4 have a varying non-zero mean. When thispre-pro
essing has been performed on all 
hannels we 
an apply the adaptive �lterto the data.As mentioned above we �lter a segment of the remote magneti
 �eld to produ
ean improved version of one of the lo
al 
hannels, whi
h we use as a referen
e.We shift the referen
e 
hannel so that the 
urrent sample of the referen
e 
hannel
orresponds to a sample in the 
entre of the input segments. This allows the�lter transfer fun
tion to model both positive and negative phase relationshipsbetween the input and referen
e 
hannels. Finally, we will perform two �lteringruns for ea
h 
omponent. During the �rst run the �lter 
an 
onverge to theoptimum value, a pro
ess that 
an take a 
onsiderable fra
tion of the re
ordinglength. After rea
hing the end of the re
ording we start again from the beginningwith the �lter weights from the previous run. We therefore avoid problems inthe subsequent impedan
e estimation stage, where we would have to dis
ard thesegment of the time-series where the algorithm has not 
onverged yet. With oursetup we 
an utilize the 
omplete time-series as the algorithm only has to tra
kthe minimum during the se
ond iteration.Figure 3.15 
ompares a segment from the 
ontaminated Ex 
omponent beforeand after �ltering. We 
an see that most of the high energy variations have beenremoved. During times that appear to be 
ontaminated by 
ow fen
e noise the�lter output is an order of magnitude lower than the original signal, but approa
hesthe re
orded time series during quieter segments that seem to be undisturbed.The 
orresponding power-spe
tra in Figure 3.16 show that, in general, the adap-tive �lter redu
es signal-power signi�
antly. This 
an be expe
ted though be
ause,regardless of the estimation method used, the high power 
ow-fen
e signal will pro-du
e spe
tral leakage, and even the estimates that appear to be between the spikes43
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Figure 3.15: Comparison of the Ex 
omponent of site ISLE007 before (red) andafter (bla
k) appli
ation of a LMS adaptive �lter with 100 �lter 
oe�
ients.are biased towards higher values. This is also the main reason that the 
ow-fen
espikes produ
e higher apparent resistivities in the impedan
e estimates at highfrequen
ies. In Figure 3.16 we 
an also observe the aforementioned spe
tral reso-lution 
hara
teristi
s of adaptive �lters of di�ering length. The spe
trum obtainedafter �ltering with a �lter of length N = 10 results in a smooth spe
trum withoutlarge variations. With in
reasing �lter length N the resulting spe
tra show moreand more small s
ale variation.It is reassuring that all power spe
tra of �ltered time-series now reveal theS
humann resonan
es at 8 Hz and 14 Hz that are 
ompletely obs
ured in theoriginal time series. Another en
ouraging observation is the overall agreement withthe spe
trum from site ISLE101. The exa
t shape of the ele
tri
 �eld spe
trumdepends on the time of re
ording and the resistivity distribution in the sub-surfa
e,so a dire
t 
omparison is not ne
essarily instru
tive. Nonetheless, for a site in asimilar geologi
 setting and without unusual geomagneti
 a
tivity, we 
an expe
tat least a similar overall shape of the spe
tra. We observe this similar shape forthe spe
tra after pro
essing with LMS-�lters of lengths N = 100 and N = 500,respe
tively.We therefore 
ontinue and pro
ess the data, �rst with a very simple least-squaretype algorithm based on the prin
iples outlined in 
hapter 3.1. Figure 3.17 showsindividual estimates of the Zxy impedan
e element for short segments of the origi-nal and �ltered data. In addition the mean and the median, 
al
ulated separatelyfor real and imaginary part, are plotted. These two plots show the potentially44
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Figure 3.16: Comparison of the Ex 
omponent of site ISLE007 before (red) and af-ter appli
ation of a LMS adaptive �lter with a di�erent number of �lter 
oe�
ients.For 
omparison we also plot the spe
trum for the undisturbed site ISLE101.drasti
 impa
t of the �ltering pro
ess on the estimates. Parti
ularly for the es-timate at 10 Hz the s
atter of the individual estimates is strongly redu
ed andthe �ltered estimates 
on
entrate in a small subregion of the original 
loud ofpoints. This fa
t is also re�e
ted in the di�ering mean and median values at thisfrequen
y. At 2.5 Hz the a
tion of the �lter seems to be less strong. The s
atter isalso redu
ed and we see a 
onsiderable di�eren
e in the 
orresponding mean andmedian values, but the distribution of the estimates after �ltering �lls most of thearea of the original distribution.While initially the mu
h more 
onsistent impedan
e estimates at 10 Hz mightbe taken as an indi
ator of highly improved data quality, we have to 
onsider theoperation method of the adaptive �lter. After the initial 
onvergen
e stage theweights of the �lter will model the transfer fun
tion between the input, in our
ase the magneti
 
hannels at a remote site, and the referen
e signal, i.e., one45



3 From magnetotelluri
 time series to transfer fun
tion

-1000 0 1000 2000
Re(Zxy)

-2000

-1000

0

1000

2000

Im
(Z

xy
)

Before filtering
LMS with N=500
Mean filtered
Median filtered
Mean unfiltered
Median unfiltered

Distribution of impedance estimates
Site ISLE007 2.5 Hz

-2000 -1000 0 1000 2000 3000 4000
Re(Zxy)

-3000

-2000

-1000

0

1000

2000

3000

4000

Im
(Z

xy
)

Distribution of impedance estimates
Site ISLE007 10Hz

Figure 3.17: Comparison of the Zxy impedan
e estimate for site ISLE007 before(bla
k) and after (blue) appli
ation of a LMS adaptive �lter with 500 �lter 
oe�-
ients. The left hand panel shows the estimates at a frequen
y of 2.5 Hz, the righthand panel at 10 Hz.of the ele
tri
 or magneti
 
hannels. Through the adaption pro
ess this transferfun
tion 
an 
hange with time, but as long as the 
oherent parts of the signal 
anbe des
ribed by this transfer fun
tion, the weights will not 
hange. If the naturalsignal is 
ontained in both remote and lo
al re
ordings and 
an be des
ribed bya time-invariant sour
e �eld, a stable transfer fun
tion between the lo
al andremote 
hannels exists. Thus the adaption pro
ess will attempt to keep the �lterweights 
lose to this transfer fun
tion and departures from this state are 
ausedby high amplitude disturban
es, but are usually fairly small. This applies to alllo
al 
hannels equally and 
onsequently the impedan
e estimates will by designbe relatively similar throughout the re
ording period. The relatively high s
atterfor the estimates at 2.5 Hz therefore indi
ates strong disturban
e of the �lter fromthe optimum state by the 
ow fen
e spikes. In 
ontrast the 
on
entrated 
loud ofpoints at 10 Hz only signals that the �ltering algorithm stayed in a stable statethroughout the �ltering pro
ess, but does not dire
tly re�e
t the quality of thedata.We now examine the sounding 
urves after pro
essing with the robust remote-referen
e 
ode by Jones and Jödi
ke [1984℄, as we did for the template substra
tionmethod. Figure 3.18 shows apparent resistivity and phase for the two o�-diagonalelements in the 
riti
al frequen
y range of 0.01−10 s for the �ltered and un�lteredtime-series. Similar to the template substra
tion method we observe a smootherapparent resistivity 
urve, parti
ularly for Zxy. Zyx exhibits more s
atter, par-ti
ularly in the phase, despite very small error bars. The small error bars are aresult of the time invariant impedan
e estimates dis
ussed above and are 
ertainly46
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Figure 3.18: O� diagonal elements of the impedan
e tensor for site ISLE007 forthe period range 0.003-10 s. Bla
k symbols show estimates without pre-pro
essing,red-symbols show estimates after pre-pro
essing. The error estimates for the pro-
essed time-series are so small that they only appear as verti
al bars.grossly underestimated. In 
omparison with the template substra
tion results andthe original estimates, the LMS-�ltered results appear to be better than both forthe Zxy 
omponent and worse than both for Zyx.Finally we will look at the �lter weights and their spe
tral 
hara
teristi
s. Fig-ures 3.19 and 3.20 show the �lter weights for the last output sample of the Hxand Ex 
omponents sampled at 15 Hz and 150 Hz, respe
tively. For the relativelyunproblemati
 north-south magneti
 
omponent re
orded at 15 Hz (Figure 3.19)we 
an see that the main �lter weight is predominantly a single value at 
oe�
ient150 for the Hx remote weights. This demonstrates the 
onsisten
y of the magneti
�eld re
ordings. The lo
ation of the spike at 
oe�
ient 150 re�e
ts the shift weintrodu
ed between the remote and lo
al re
ordings in order to be able to modela wider range of �lter transfer fun
tions. If the two 
hannels were exa
tly equal,this 
oe�
ient should be unity and all others zero. Instead the value is ≈ 0.6 withsome small adja
ent non-zero 
oe�
ients and a small 
ontribution from the Hy
oe�
ients. In 
omparison, the 
oe�
ients for the Hy 
omponent are two orders47
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Figure 3.19: Final �lter weights (bla
k) of the LMS �lter and 
orresponding spe
-tra for the Hx 
hannel of site ISLE007 sampled at 15 Hz (Band 5).of magnitude smaller. They most likely represent a small amount of 
oherent sig-nal due to imperfe
t alignment of the magneti
 
oils at the respe
tive sites. The
orresponding spe
tra show some variation with a minimum in the Hx spe
trumaround 1Hz where the 
ow-fen
e noise is 
on
entrated. In general though bothspe
tra do not show a large dynami
 range.The pi
ture 
hanges drasti
ally when we look at the �lter weights for the Ex
omponent sampled at 150 Hz. We 
an still identify a maximum 
oe�
ient at ashift of 150 samples, now for the remote Hy 
omponent. In addition there are alarge number of non zero 
oe�
ients with similar magnitude. The fa
t that thebest 
orrelation o

urs between Ex and Hy 
an be expe
ted, as we saw before fromequation 2.29. The 
oe�
ient for Hx, however, is of similar magnitude and re�e
tsthe 
oheren
e between these two 
omponents, as expressed by the impedan
etensor. In that sense the �lter weights indi
ate that there is a natural signal inthe re
ordings that obeys the laws of indu
tion. In 
ontrast, the broad range ofnon-zero values elsewhere re�e
ts the strong disturban
e by the 
ow-fen
e signal.The spe
tral signature of the �lter weights is also very interesting: There is a largeamplitude maximum at 50 Hz in the spe
tra, indi
ating that here we �nd the most
oherent signal. This 
oin
ides with the not
h �lter applied during the re
ording48
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Figure 3.20: Final �lter weights (bla
k) of the LMS �lter and 
orresponding spe
-tra for the Ex 
hannel of site ISLE007 sampled at 150Hz (Band 4).to suppress the 50 Hz household ele
tri
ity signal. The �lter 
an let the signal atthis frequen
y pass, simply be
ause the amplitudes are extremely low. Two moremaxima, parti
ularly visible in the Hy se
tion, around 8 Hz and 14 Hz 
orrespondto the S
humann resonan
es mentioned above. A number of strong minima in the
Hx se
tion indi
ate strong disturban
e at these frequen
ies, but it is di�
ult toasso
iate them with a parti
ular feature in the time-series spe
trum.3.4.3 The RLS adaptive �lterAs shown in the previous se
tion, the LMS adaptive �lter works reasonably wellon the 
ontaminated data, but the quality of the sounding 
urve is still question-able. We will therefore try a more 
ompli
ated linear �ltering algorithm to seewhether we 
an improve the results further. As mentioned before, the LMS adap-tive �lter is based on a steepest des
ent type optimization algorithm. In manysituations, where the performan
e surfa
e is not purely quadrati
, the dire
tion ofsteepest de
ent is not ne
essarily the best way to approa
h the minimum. Instead,the Re
ursive Least Squares-algorithm uses 
urvature information similar to theNewton method for optimization to improve the 
onvergen
e rate.49



3 From magnetotelluri
 time series to transfer fun
tionAnother issue that appears in analogy to inversion methods is regularization.We defer an extended dis
ussion to Chapter 5 and only state here that we modifythe minimization 
riterion to in
lude the norm of the weight ve
tor. The LMSerror fun
tion only depends on the mis�t at the 
urrent iteration. In 
ontrast theRLS error fun
tion utilizes information from the previous iterations and in
ludesa regularization term. The new error fun
tion E at time step i is then
Ei =

i∑

n=1

λi−n |ǫ2
n| + δ λi‖wi‖. (3.34)We 
an see that the error at the 
urrent iteration is the sum of errors fromprevious iterations weighted by the fa
tor λi−n plus a weighted regularizationterm. λ lies in the interval 0 < λ ≤ 1 and 
ontrols how fast previous values of

ǫ are forgotten and for how long the regularization term is applied. For λ = 0the formula simpli�es to the error fun
tion for the LMS �lter and for λ = 1 theerrors from all iterations 
ontribute equally. In pra
ti
e λ is usually 
hosen slightlyless than unity, to utilize the information from previous times on the one hand,but emphasize the 
urrent �lter error on the other hand. In term of the adaptivebehaviour of the algorithm the forgetting fa
tor λ plays a similar role to the step-size µ of the LMS-algorithm. δ, the other user de�ned parameter in the algorithm,is equivalent to the Lagrangian Multiplier in regularized inversion and is usuallysmall for �ltering. Note also that the regularization term de
reases with ea
htime-step i. The regularization is only applied during the initial phase, where itis most 
riti
al.Algorithm 3 The re
ursive-least-squares (RLS) algorithm1: w0 = 02: P0 = δ−1I3: for all time samples i do4: πi = Pi−1xi5: ki = πi

λ+xT
i

πi6: ǫi = di − wT
i−1 xi7: wi = wi−1 + kiǫi8: Pi = λ−1 Pi−1 − λ−1 ki x

T
i Pi−19: end forA detailed derivation of the RLS-algorithm is given in Haykin [2002℄. We willfo
us here on the pra
ti
al aspe
ts; the ne
essary 
omputations are summarizedin Algorithm 3.Before we dis
uss more pra
ti
al issues it is instru
tive to make the link toNewton-style optimization algorithms more expli
it. Combining lines 4, 5 and 750
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Figure 3.21: Analogue illustration to Figure 3.14 for the RLS-�lter. We only plotthe di�eren
e to the noise free signal (right hand panel in Figure 3.14) as it showsthe di�eren
e to the LMS-�lter more 
learly.of the algorithm we obtain
wi = wi−1 + kiξi = wi−1 +

1

λ + xT
i πi

Pi−1xiǫi. (3.35)The term xiǫi is a s
aled version of the gradient (see equation 3.23), so we 
anidentify the matrix Pi−1 with the inverse of the Hessian in a Newton-type opti-mization algorithm (see equation 5.15). Thus, we 
an expe
t similar advantagesin 
onversion rate over a steepest des
ent type algorithm, like the LMS algorithmdes
ribed above. This improved performan
e 
omes at the 
ost of mu
h higher
omputational 
omplexity. Whereas for the LMS algorithm we only had to up-date a ve
tor of length n at ea
h step, where n is the �lter length, for the RLSalgorithm we now need to update an n × n matrix. The 
omputational 
omplex-ity is therefore O(n2) for the RLS algorithm 
ompared with O(n) for the LMSalgorithm. For example, for a �lter length n = 50 applying an LMS-�lter to atypi
al ISLE-MT re
ording of 500,000 samples takes about 2 minutes, 
omparedwith more than two hours for an RLS-�lter.We perform the same basi
 fun
tionality test with the RLS algorithm as for theLMS algorithm, and apply it to a simple sinusoidal signal with added noise. Theresult 
an be seen in Figure 3.21. The di�eren
e between the �lter output and thenoise free signal approa
hes zero in only a few iterations. The predi
tion error ofthe LMS algorithm only rea
hes the noise level at about 700 iteration (see Figure51
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Figure 3.22: Comparison of the Ex 
omponent of site ISLE007 before (red) and af-ter appli
ation of a RLS adaptive �lter with a di�erent number of �lter 
oe�
ients.For 
omparison we also plot the spe
trum for the undisturbed site ISLE101.3.14), whereas the RLS algorithm a
hieves this in less than 50 iterations. Thisni
ely illustrates the bene�
ial e�e
ts of in
orporating 
urvature information inthe optimization pro
ess.We apply the RLS-�lter with exa
tly the same setup as for the LMS-�lter: Theonly di�eren
e between the two lies in the way the weights are updated, otherwisethe philosophy remains the same. Tests with varying values of the regularizationfa
tor δ show that it has virtually no impa
t on our results for values between 106and 10−6. As before, we run the �lter twi
e on ea
h 
omponent to ensure thatthe initial 
onvergen
e stage is 
ompleted. At that point the regularization termhas already vanished and does not play any role in the further performan
e of thealgorithm.Figure 3.22 
ompares the power spe
tra for the Ex 
omponent before and after�ltering with an RLS-�lter in a similar manner as Figure 3.16 for the LMS-�lter.52



3 From magnetotelluri
 time series to transfer fun
tionFor a �lterlength of n = 500 the high 
omputational 
ost only allowed us topro
ess the Band 4 time-series. A single step of the algorithm takes 0.2 s on a1.6 Ghz Pentium4M using the highly optimized ATLAS linear algebra pa
kage[Whaley et al., 2001℄. For the 500,000 samples of the Band 4 re
ordings the re-sulting run time is 1.2 days per 
omponent. We tried to run the 
omputationsfor the other two bands on the DIAS owned LEDA 
luster and a 
luster of theSHARCNET 
onsortium [SHARCNET℄. In both 
ases interruptions in the opera-tion of the 
luster prevented 
ompletion of the �ltering pro
ess a number of timesand after one month we gave up.In 
omparison to the LMS algorithm, the variation with �lterlength is quitedi�erent. While the spe
tra of the �ltered time-series showed substantial variationwith power for the LMS-algorithm, the RLS-�ltered results show very similarsignal power, parti
ularly at high frequen
ies. All spe
tral plots for the RLS-�lterresemble the spe
trum after �ltering with an LMS-�lter with n = 10 and we donot rea
h the spe
tral power of site ISLE101 as we did for the longer LMS-�lters.There are several possible explanations for this phenomenon: The agreement ofpower-spe
tra for the RLS-�lters with di�erent lengths might indi
ate that thisis the true power spe
trum at site ISLE007 with the 
ow-fen
e noise removed.Alternatively the short LMS-�lter and the RLS-�lter might fail to 
ompletelyremove the 
ow-fen
e noise, or the LMS �lter results a higher overall redu
tion inpower for all 
hannels.Figure 3.23 shows a 
omparison between the original and �ltered Ex-
omponentfor a LMS-�lter with n = 500 and a RLS-�lter with n = 50. We also plot themagneti
 input 
hannels that were used to generate the �ltered versions of theele
tri
 
hannel. The �rst thing to note is the strongly de
reased amplitude forthe ele
tri
 
omponent that we observed before and also saw in the 
orrespondingspe
tra. Even though the original ele
tri
 �eld is plotted with a s
ale of twi
ethe range of the �ltered 
ounterparts, the time-series 
lips the plotting area for asubstantial part of the plotted time. The overall appearan
e of the two �lteredtime-series is very similar, but, as also previously observed, the amplitude of theRLS-�ltered time-series is generally higher than the LMS-�ltered 
omponent. We
an now also identify segments in the remote magneti
 
hannels that have similarshape to the �ltered ele
tri
 
hannels. This 
an of 
ourse be expe
ted, be
ausethe �ltered ele
tri
 
hannels were produ
ed from the magneti
 
hannels.As before with the LMS-�lters, we will now pro
eed and look at the results ofpro
essing the �ltered time-series. Figure 3.24 shows the 
omparison of pro
essedresults between the original data and data after �ltering with the RLS algorithm.In essen
e the results are very similar to the results with the LMS-adaptive �lter.We obtain lower apparent resistivity values for both 
omponents and for the Zxy53
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Figure 3.23: Comparison of the Ex 
omponent of site ISLE007 before (top) andafter appli
ation of a LMS-�lter and a RLS-�lter. We also plot the two remotemagneti
 input 
hannels from site ISLE012. Note the di�erent s
ale for the original
Ex 
omponent and the two �ltered plots.
omponent the overall appearan
e is also smoother. In 
omparison with the LMS�ltered results, the phase of both 
omponents exhibits more s
atter between ad-ja
ent frequen
ies. It is un
lear from this 
omparison whether this is due to thedi�erent algorithms or the variation in �lter length from n = 500 for the LMS�lter and n = 50 here, but 
omparison with results obtained from pro
essing thedata with a LMS �lter with n = 50 (not shown), reveals that 
ompared with thoseresults, the RLS-�lter performs slightly better. Another observation that is relatedto the shorter �lterlength for the RLS-�lter is the drop in apparent resistivity andthe sharp rise in phase for long periods parti
ularly visible in the yx-
omponent.As we mentioned before we only have a �ltered time-series for a single bandfor the RLS �lter with n = 500. Still, we want to present these results in orderto assess whether it is worthwhile investing the 
onsiderable e�ort to apply long54
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Figure 3.24: O� diagonal elements of the impedan
e tensor for site ISLE007. Bla
ksymbols show original estimates, red-symbols show estimates after appli
ation ofa RLS-�lter with n = 50.RLS-type �lters to the data. Figure 3.25 shows a 
omparison between the pro-
essed and original estimates as before. The impedan
e estimate after �ltering are
omparable with the estimates after applying a LMS-�lter of the same length. Forboth polarizations the phase appears to be marginally more smooth, but the ap-parent resistivities, on this plotting s
ale, seem to be identi
al. Due to the limitedrange of estimates from the pro
essed time-series, it is di�
ult to judge whetherthis method provides any improvement over the LMS-�lters.3.5 Neural networks for �lteringLinear adaptive �lters assume that the �lter output is a linear 
ombination of theinput values. As explained above this assumption is reasonable for magnetotel-luri
 data where the �lter weights then model the transfer fun
tions between thedi�erent 
hannels. Still, the question remains whether this kind of model and the
orresponding algorithms provide optimum performan
e in the presen
e of high55
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Figure 3.25: O� diagonal elements of the impedan
e tensor for site ISLE007. Bla
ksymbols show original estimates, red-symbols show estimates after appli
ation ofa RLS-�lter with n = 500. Note that only the Band 4 data has been �ltered,therefore all estimates that are 
al
ulated from a di�erent band are identi
al tothe original, unpro
essed estimates.amplitude noise. We will therefore also explore non-linear �ltering methods to getan idea of the limitations of the linear approa
h.Neural networks have re
eived a lot of attention parti
ularly in the �eld ofarti�
ial intelligen
e and pattern re
ognition [Rai
he, 1991℄, but also for inversionof geophysi
al data [Meier et al., 2007℄. We explore the abilities of simple neuralnetworks for �ltering purposes following Haykin [2002℄. Manoj and Nagarajan[2003℄ des
ribe the use of neural networks for magnetotelluri
 pro
essing. Theirapproa
h is based on the identi�
ation of suitable segments of the re
ordings thatare not 
ontaminated by noise. They report good su

ess with this method fortheir data. Unfortunately it is not suitable for our purposes as there are no goodsegments of usable length in the 
ontaminated re
ords; the 
ow fen
e noise extendsthrough the 
omplete time-series.The basi
 building blo
ks of neural networks are neurons whi
h form an analogyto the biologi
al neurons in the nervous system of animals. The 
ommon sigmoidal56
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Figure 3.26: S
hemati
 overview of a sigmoidal neuron i of a neural network.model des
ribes the neuron mathemati
ally as a 
ombination of a linear 
ombinerwith an additional bias weight b and a non-linear a
tivation fun
tion ϕ(·). As
hemati
 overview is given in Figure 3.26. The output neti of the linear adaptive
ombiner
neti =

N∑

j=1

wijxi + bi (3.36)is used as input into the s
alar a
tivation fun
tion. A number of 
hoi
es existfor this fun
tion, the typi
al sigmoidal neuron uses the logisti
 fun
tion as ana
tivation fun
tion
ϕ(neti) =

1

1 + exp(−neti)
. (3.37)This fun
tion only assumes positive values, for all input values and is therefore
alled unipolar. We need a bipolar a
tivation fun
tion, that 
an also yield negativevalues and 
hoose

ϕ(neti) = tanh(1

2
neti

) (3.38)for the �ltering.The individual neurons 
an now be 
ombined into networks of di�erent topology,depending on the appli
ation. We will use a setup known as fo
used time-laggedfeedforward network, a spe
ial 
ase of a multilayer per
eptron, shown in Figure3.27. The term feedforward refers to the fa
t that the signal only propagates inthe forward dire
tion, from left to right in Figure 3.27, without any feedba
k. It is
alled fo
us time-lagged be
ause time is a

ounted for in the tapped delay line on57
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Figure 3.27: Setup of a fo
used time-lagged feedforward network with two hiddenlayers for predi
ting the lo
al ele
tri
 �eld from the magneti
 �eld of a remotesite. Ea
h 
ir
le 
orresponds to a neuron as shown in Figure 3.26.the input side [Haykin, 2002℄. Other possibilities to in
lude time in the learningpro
ess exist, but we will not 
onsider them here.The 
al
ulation of the output signal and adaptation of weights is very similarto the LMS-adaptive �lter on whi
h the neurons are based, only that we have toa

ount for the non-linear a
tivation fun
tion and the propagation through thehidden layers. For a network with M layers, the output of neuron i in layer l isgiven by
xl

i = ϕ

(

N∑

p=1

wl
ipxl−1

p + bl
i

) with l = 1, . . . , M, (3.39)where N is the number of neurons in the previous layer that this neuron is 
on-ne
ted to.Again we 
al
ulate the error signal, the di�eren
e between the network outputand the referen
e signal, but we 
an now have a number of referen
e 
hannels
ei(n) = di(n) − yi(n). (3.40)We use this error to adjust the weights and bias in a steepest des
end fashion,now starting at the output layer and propagating the 
orre
tions ba
kwards. This58
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Figure 3.28: Simple performan
e test for a neural network with one hidden layer.adaption algorithm is therefore known as the ba
kpropagation algorithm,
wl

ij(n + 1) = wl
ij(n) + µxj(n)δl

i(n), (3.41)
bl

i(n + 1) = bl
i(n) + µδl

i(n), (3.42)and
δl

i(n) =






ϕ ′
(

netl
i

)

[di(n) − yi(n)] l = M

ϕ ′
(

netl
i

) ∑
k wkiδ

l+1
k (n) 1 ≤ l < M

. (3.43)For the bipolar a
tivation fun
tion that we use for our �ltering
ϕ ′
(

netl
i

)

=
1

2 
osh (netl
i

)2
. (3.44)These equations fully spe
ify the evolution of weights and output and we 
an nowperform our standard performan
e test that we used to test all adaptive algorithms.We have to make one modi�
ation though, as the output of the neural networklies in the range (−1, 1). We therefore s
ale the problem and modify the referen
esignal to

di = 0.5 
os(2πi/N) + rand(−0.2, 0.2). (3.45)The results 
an be found in Figure 3.28.We 
an see that it takes a little more than 1,000 samples before the �lter out-put rea
hes the noise-level of the 
ontaminated time-series, 
omparable with theadaptation time of the LMS-�lter, as both are based on steepest des
ent type al-gorithms. The shape of the envelope of the �lter error is very di�erent though.The LMS-�lter a
hieves the best improvement in the �rst few iterations (see Fig-ure 3.14), while the maximum error for the neural network stays roughly 
onstant59
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Figure 3.29: Comparison of the Ex time-series of site ISLE007 before (bla
k) andafter (red) appli
ation of a Neural Network �lter with 100 �lter 
oe�
ients.during the �rst few hundred iterations and then rapidly falls below the originalnoise level. This behaviour demonstrates the non-linear nature of the algorithm.If we look in detail at the �lter output during the rapid adaptation pro
ess, we
an see that the �lter �rst adapts to mat
h the phase of the referen
e signal andthen slowly in
reases the amplitude to the required level.3.5.1 Filtering MT dataThe layered design of the neural network obviously gives us many more possibilitiesto explore di�erent settings for optimum �lter results. Possible parameters to varyare the number of hidden layers, the number of neurons in ea
h layer, the typesof neurons, adaptation rate and the type of input and output. Unfortunatelywe 
annot explore the potential bene�ts of these variations here. One generalobservation we made during our �ltering experiments was that the adaptationrate greatly de
reases with in
reasing number of hidden layers. To some degreethis 
an be balan
ed by a higher adaptation 
onstant, but for our purposes asingle hidden layer appears to perform better. Therefore we only show results fromNeural Networks with a single hidden layer. We also did not explore di�erent typeof non-linearities for the individual neurons due to time restri
tions. The bipolarsigmoidal a
tivation fun
tion, however, is regarded as a good general purposefun
tion [Haykin, 2002℄.Figure 3.29 shows a 
omparison between a segment of the original Ex-
omponentat our test site and the same 
omponent predi
ted by the neural network. In this60
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Figure 3.30: Comparison of the Ex 
omponent of site ISLE007 before (bla
k) andafter appli
ation of Neural Network �lters with 100 (red) and 500 (blue) �lter
oe�
ients. For 
omparison we also plot the spe
trum for the undisturbed siteISLE101.
ase we used two remote magneti
 
hannels as input, as for the linear adaptive�lters, but now predi
ted all 4 
hannels of the lo
al site simultaneously, similarto the setup shown in Figure 3.27 for only two lo
al ele
tri
 
hannels. The total�lter length was 100 in this 
ase. As before with the other methods, it is di�
ultto judge the �ltered results from a 
omparison of the time-series. The high-energy segments that 
orrespond to the 
ow-fen
e spikes have been redu
ed to anamplitude 
omparable to the overall signal strength. In the quieter segments we
an see some similarities between the �ltered time-series and the original, but atthe same time there are some segments that are signi�
antly di�erent.The plot of the power-spe
tra in Figure 3.30 gives some more insight into whathappened in the �ltering pro
ess. At frequen
ies <5 Hz the spe
tral peaks fromthe 
ow-fen
e disturban
es are left un
hanged after �ltering. At frequen
ies >5 Hz61
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Figure 3.31: O� diagonal elements of the impedan
e tensor for site ISLE007. Bla
ksymbols show original estimates, red-symbols show estimates after appli
ation ofa Neural Network �lter with n = 500.the �ltered spe
trum has the same small s
ale appearan
e as the original, but theoverall shape is now �attened. It appears that the main impa
t of the neuralnetwork was an additional whitening of the spe
trum without large modi�
ationof its lo
al stru
ture. Close 
omparison, however, reveals that also on a small s
alethe spe
trum has been 
hanged, but not to the extend of the previous methods.Our experien
e shows that we 
an only judge the su

ess of a method by 
omparingthe pro
essed impedan
e elements.Figure 3.31 shows the 
omparison between the impedan
e estimates before andafter �ltering. Of all �ltering methods, the neural network shows the least im-provement regardless of �lter length. There are some frequen
ies where we observesimilar apparent resistivity and phase values to the linear adaptive �lter results,but the s
atter between adja
ent frequen
ies is generally higher. For the Zyx 
om-ponent the s
atter in phase values even seems to have in
reased 
ompared withthe original impedan
e estimates and at periods between 0.01 and 0.1 s the phaseseven leave the expe
ted quadrant. However, for the Zxy 
omponent between peri-ods of 0.5−1 s we observe a small number of estimates that seem to have improved62
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Figure 3.32: Comparison of the original apparent resistivity and phase estimatesfor the Zxy 
omponent some of the �ltering methods presented in this 
hapter.in the sense that vary smoothly and �t in with the surrounding phase estimates.3.6 Summary of resultsAll in all none of the methods produ
ed results that immediately seem to be inter-pretable. Parti
ularly the Zyx 
omponent proved di�
ult for all signal pro
essingmethods and none of the �ltered results for this 
omponent has su�
ient qualityto be used as input for modelling or inversion. For the Zxy 
omponent we seem toa
hieve some improvement, but ea
h method yields di�erent impedan
e estimates.Figure 3.32 shows a 
omparison of apparent resistivity and phase estimates forthe Zxy 
omponent in the 
riti
al period range of 0.05 − 0.5 s. At short periods,between 0.05 s and 0.2 s, the apparent resistivity estimates from ea
h method di�ersigni�
antly from ea
h other and from the original. The phase, in 
ontrast, agreeswithin the estimated error. At periods > 0.2 s at least the apparent resistivityestimates from the LMS-�lter and the template substra
tion algorithm show somegeneral agreement. The agreement between the RLS-�lter and the original has63
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Figure 3.33: Comparison of the estimated apparent resistivities and phases for the
Zxy 
omponents with the values from the Sutarno phase 
onsistent method.no signi�
an
e in this period ranges, as these estimates are 
al
ulated from theBand 5 re
ordings. In terms of phase, all but the LMS-�ltered results follow theoriginal phase estimates. The smoothness of the LMS phase estimates howeversuggests that these are reasonable quality estimates. At periods >2 s all estimatesfor both phase and apparent resistivity 
onverge. We already spe
ulated from the
hara
teristi
s of the original data that at long periods the in�uen
e of the 
ow-fen
es vanishes. The agreement of the �ltered and un�ltered estimates 
on�rmsthis observation.As a �nal indi
ator of the quality of the estimates we 
ompare the appar-ent resistivities with estimates from the Sutarno phase 
onsistent method[Sutarno and Vozo�, 1991℄, as implemented in the WinGLink software pa
kage.This method uses the Hilbert transform relation between apparent resistivity andphase to 
al
ulate the expe
ted apparent resistivity from the observed phase. Eventhough this relation is stri
tly speaking only valid in a 1D environment, or for theTM-mode in 2D, most high-quality data seems to obey this relationship.Figure 3.33 shows the apparent resistivities and phases together with the Su-tarno estimates for various �ltering methods. Clearly the neural network based64



3 From magnetotelluri
 time series to transfer fun
tion�lter does not 
reate estimates that have apparent resistivities and phases thatobey a Hilbert transform relationship. Together with the high s
atter betweenadja
ent values, and the out of quadrant phase, this demonstrates that in theform we applied the neural network it is not suitable to remove the noise. Weonly tested a small fra
tion of the possibilities of neural networks and it is highlylikely that better 
on�gurations exist that a
hieve the same results as the othermethods, or even better. Within our limited experimentation we were not able to�nd su
h a 
on�guration.The output from the template substra
tion algorithm also does not ful�l theHilbert transform relation. At short periods the estimated apparent resistivitiesare higher than expe
ted from the Sutarno predi
tion. The general shape, however,is similar. Both the LMS-�lter and the RLS-�lter produ
e 
onsistent results. Fromthe plot of the RLS results, where we have a mix of original and �ltered data, we
an see that in this 
ase the Sutarno predi
tions bridge the gap between the reliableoriginal results and the �ltered results by following the overall shape of the phase.For the LMS-�lter we see 
onsistent results with only minor s
atter for periods
<5 s.From this perspe
tive the LMS and RLS results seem to be of similar quality.The di�eren
e between the apparent resistivity and phase estimates from the twomethods is 
onsistently larger than their estimated error. We remarked before thatthe error in both 
ases seem to be greatly underestimated. Using the di�eren
ebetween the two �ltered results as a guideline a representative error is ±5° inphase and ±300 Ωm, or 20%, in apparent resistivity. These numbers are also
onsistent with the error estimates of the unpro
essed impedan
es.As we do not know the true impedan
e values for the 
ontaminated site it is im-possible to de�nitively say whether the �ltered estimates are more representative ofthe subsurfa
e. The quality indi
ators used, the smoothness of adja
ent estimatesand 
omplian
e with a Hilbert transform, indi
ate that for the Zxy 
omponentthey at least have the 
hara
teristi
s of regular MT data. For this 
omponentthe LMS and RLS adaptive �lters perform best and both equally well, so thatthe additional 
omputational 
omplexity of the RLS algorithm seems unjusti�ed.The la
k of improvement for the Zyx 
omponent demonstrates that LMS-adaptive�lters are not a pana
ea, and that the output has to be examined 
riti
ally beforeusing it to make inferen
es about the 
ondu
tivity of the Earth.
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The �rst prin
iple is that you must not fool yourself and you arethe easiest person to fool Ri
hard P. Feynman
4Re
eiver fun
tions

4.1 Wave propagation in a one dimensional EarthFor the same reasons as before with the theory of magnetotelluri
s we will onlydis
uss one-dimensional wave-propagation and re
eiver fun
tion analysis. First,the underlying prin
iples are more easily understood, and se
ond, the inversionapproa
h we will des
ribe later is based on a one-dimensional approximation ofEarth stru
ture. Furthermore we will not derive all equations from �rst prin
iples,as we did for the one-dimensional impedan
e for MT, but only brie�y sket
h themost important steps. More details 
an be found in any textbook on seismology[e.g., Lay and Walla
e, 1995℄.The basi
 sour
e of energy for all teleseismi
 methods, su
h as re
eiver fun
tions,are earthquakes that regularly o

ur in te
toni
ally a
tive regions around theworld. Stress a

umulates in 
ollision zones between di�erent plates, or in some
ases even within one plate, and when this stress ex
eeds the strength of thematerial, a rupture initiates and propagates along the earthquake fault. The sho
kwave 
reated by the rupture travels through the Earth and along the surfa
e andthe a

eleration 
reated by this wave is measured by seismometers around theworld. In the pro
ess of travelling through materials with di�erent propagationvelo
ities and densities, the initial waveform is s
attered and distorted, and theinformation 
ontained in these distortions is then used to obtain information aboutthe Earth's stru
ture. 66



4 Re
eiver fun
tionsThe general equation for a wave travelling through the Earth is
∇
[

(λ + 2µ)∇2φ − ρ
∂2φ

∂t2

]

+ ∇×
[

µ∇2Ψ − ρ
∂2Ψ

∂t2

]

= 0 (4.1)Where φ is a 
url-free s
alar potential, Ψ a divergen
e-free ve
tor potential, µis the shear modulus, λ Lamé's se
ond 
onstant and ρ density. Unfortunatelytwo material parameters that we will be 
on
erned with, ele
tri
al resistivity anddensity, are 
ommonly represented by ρ in mathemati
al equations. Instead ofintrodu
ing an arbitrary new variable for one of the parameters, we will simplyuse ρ for either of them where the 
ontext is 
lear and ρel for ele
tri
al resistivitywhere there is potential for 
onfusion.A possible solution to equation 4.1 is to set ea
h term to zero independently,and we 
an simplify the expressions further by setting
α =

√

λ + 2µ

ρ
, (4.2)

β =

√

µ

ρ
. (4.3)With this we 
an write

∇2φ −
1

α2

∂2φ

∂t
= 0, (4.4)

∇2Ψ −
1

β2

∂2Ψ

∂t
= 0. (4.5)Equation 4.4 des
ribes the propagation of 
ompressional waves through the Earth,while Equation 4.5 des
ribes the propagation of shear waves. α and β are thepropagation velo
ities for the two wave types, respe
tively. Comparing Equations4.2 and 4.3 we 
an see that 
ompressional waves always travel faster than shearwaves. For this reason, the 
ommon nomen
lature is primary or P-waves for
ompressional waves and se
ondary or S-waves for shear waves.A possible set of solutions to the above equations within a homogeneous regionaway from the sour
e is given by

φ(x, t) = A exp (ıωt − kαx) , (4.6)
Ψ(x, t) = B exp (ıωt − kβx) . (4.7)These equations des
ribe harmoni
 waves that travel in the dire
tion of the wave-ve
tors kα and kβ, respe
tively, with |kα| = ω/α and |kβ| = ω/β. Note thestru
tural similarity to the solutions for the ele
tri
 and magneti
 �elds for mag-netotelluri
s in Equations 2.25 and 2.26, respe
tively, but the di�erent 
oe�
ientsfor the spa
e variable in the exponential.67



4 Re
eiver fun
tionsWe 
an now 
onsider the transmission of energy through an interfa
e in a one-dimensional layered Earth. We will not derive the full expressions for the re�e
tionand refra
tion 
oe�
ients, as the algebra is very tedious and not parti
ularly in-stru
tive, but only demonstrate why for an in
ident P-wave, re�e
ted and refra
tedSV-waves are generated at an interfa
e. For a one-dimensional Earth we 
an set
x = {x1, x2, x3} = {x1, 0, x3}. Consider a 
ompressional wave travelling from belowto an interfa
e at x3 = 0 where both β and α 
hange. If we only 
onsider P-waveswe will have the in
ident and re�e
ted wave solution φ1 in the lower layer and therefra
ted P-Wave potential φ2 in the upper layer,

φ1(x, t) = A1 exp (ıω (px1 + η1x3 − t)) + A2 exp (ıω (px1 − η1x3 − t)),(4.8)
φ2(x, t) = A3 exp (ıω (px1 + η2x3 − t)) , (4.9)where the horizontal slowness or ray parameter p and verti
al slowness η aregiven by

p =
sin i

α
, (4.10)

η =

√

1

α2
− p2 =


os i

α
, (4.11)and i is the angle of in
iden
e of the wave.A
ross the boundary we have to satisfy two 
onditions: 1) 
ontinuity of dis-pla
ement and 2) 
ontinuity of stress. For our purposes it is su�
ient to examinethe 
ontinuity of displa
ement

(u1 = ∇φ1 = u2 = ∇φ2)|x=0 . (4.12)If we evaluate this 
ondition, we get two equations for the amplitudes A1, A2 and
A3

∂φ1

∂x1

=
∂φ2

∂x1

∣

∣

∣

∣

x1=0

⇒ A1 − A2 = A3, (4.13)
∂φ1

∂x3

=
∂φ2

∂x3

∣

∣

∣

∣

x3=0

⇒ η1 (A1 − A2) = η2A3. (4.14)But this would required that η1 = η2, unless all amplitudes are zero, whi
h, as we
an see from Equation 4.11, is impossible for a velo
ity 
ontrast between the layers.If we in
lude the S-wave potentials in the 
al
ulations, we 
an �nd a solution forthis 
ondition, and in
luding 
ontinuity of stress we 
an determine the re�e
tionand refra
tion 
oe�
ients. A s
hemati
 version of the re�e
tions and refra
tionsfor an in
ident P-wave is shown in Figure 4.1.68
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Figure 4.1: Re�e
tions and refra
tions for an in
idental P-Wave on a 1D velo
ityand density 
ontrast.The angles of re�e
tion and refra
tion 
an be 
al
ulated from the ray parameterby Snell's Law sin i

v
= p. (4.15)Here i is the angle between the ray and the normal to the interfa
e and v is thevelo
ity for the wave type in the respe
tive layer. The transmission 
oe�
ients
an be 
al
ulated from the boundary 
onditions and depend on the material prop-erties, the angle of in
iden
e and the type of in
oming wave. Equations for these
oe�
ients 
an be found in Lay and Walla
e [1995℄, for example.In a homogeneous halfspa
e without attenuation and a delta fun
tion sour
etime fun
tion, we would expe
t to re
ord only two delta fun
tion shaped spikesfor the P-wave and S-wave arrival. The se
tion between the two arrivals would beessentially �at, as shown in the left panel of Figure 4.2. What we observe instead,typi
ally looks like the right panel in Figure 4.2. After the initial P-wave arrival,we observe a time segment with amplitudes only slightly lower than the initialamplitude before the high amplitude S-arrival. These are s
attered and 
onvertedphases 
aused by 
hanges of seismi
 properties within the Earth. We 
an evenobserve distin
t arrivals of energy like, for example, just after the line labelled�pP� in the real seismogram in Figure 4.2.Ea
h arrival in a seismogram 
an be systemati
ally labelled by the 
onversionsand re�e
tions it has undergone along the path between the sour
e and the re-
eiver. �pP�, in the example above, denotes a phase that was re�e
ted from thesurfa
e above the sour
e and then 
ontinued as a P-wave for the rest of the path.69
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Figure 4.2: Comparison between a syntheti
 seismogram for a homogeneous half-spa
e (left) and a re
orded seismogram (right) for the P-wave and S-wave arrivals.Note the mu
h higher amplitudes between the two main arrivals. The nearly �atline before the P-wave arrival demonstrates that this is not random noise, buts
attered energy from stru
tures inside the Earth.This nomen
lature for teleseismi
 waves is somewhat di�erent from the nomen-
lature used to des
ribe near-sour
e re�e
tion and refra
tions in re
eiver fun
tionstudies. An overview of the labelling for lo
al phases gives Table 4.1.Position Label ExplanationFirst P/S initial wave at the sour
eany p/s up-going wave after refra
tionP/S downgoing wave after re�e
tionTable 4.1: Labelling of seismi
 phases for lo
al re�e
tions and refra
tions.All these re�e
tions and refra
tions add up, and form the 
ompli
ated waveformwe observe in real seismograms. The total re
orded time-series 
an be representedby a 
onvolution of three di�erent signals and a noise term n(t), viz.,
u(t) = s(t) ∗ g(t) ∗ i(t) + n(t). (4.16)

s(t) is 
alled the sour
e-time fun
tion and des
ribes the movement of the rup-ture at the earthquake sour
e with time, i(t) is a des
ription of the response of theinstrument to an in
oming wave, usually this des
ription is given as a frequen
yresponse and, as mentioned in the previous 
hapter, we 
an represent the 
onvolu-tion equivalently in the frequen
y domain, and g(t) is the Green's fun
tion of theEarth and solely depends on its stru
ture. This is what we try to 
al
ulate and70
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Figure 4.3: S
hemati
 overview of a seismi
 wave 
oming into a seismi
 station andlabelling of the 
orresponding 
oordinate system.For simpli
ity we do not showthe 
urvature of the Earth.model when we perform re
eiver fun
tion analyses. Before we 
an des
ribe thesteps ne
essary to isolate g we have to dis
uss the typi
al setup of a seismograph.4.2 Re
ording seismi
 wavesThe typi
al situation for teleseismi
 stations is shown in Figure 4.3. For 
larity wedo not display the 
urvature of the Earth in the illustration. Seismi
 energy travelsfrom the sour
e to the re
eiver along a 
urved path. This is due to the generalin
rease of seismi
 velo
ity with depth. The point above the sour
e lo
ation onthe Earth's surfa
e is 
alled the epi
entre. Usually seismi
 stations re
ord three
omponent of displa
ement, velo
ity or a

eleration oriented in north-south, east-west and verti
al dire
tion. The angle b between the north-south 
omponentand the epi
enter is 
alled the ba
kazimuth and the angle i between the verti
al
omponent and the in
oming ray is the in
iden
e angle. If we rotate the re
orded
omponents around the verti
al axis, so that one 
omponent points towards theepi
enter, parallel to the in
oming wave, and one is orientated perpendi
ular toit, we 
an simplify the analysis of the in
oming seismi
 energy. These two rotated
omponents are 
alled the radial and transverse 
omponents, respe
tively.For one-dimensional plane layered stru
tures, there will not be any P-wave en-ergy on the transverse 
omponent, only shear wave energy polarized in the planeparallel to horizontal, the so-
alled SV-wave, will be re
orded. The P-wave andSH-wave energy on the other hand will be 
ompletely re
orded by the radial andverti
al 
omponent. In pra
ti
e, real seismograms often show some energy on the71
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Figure 4.4: Example of seismi
 data after the initial P-Wave arrival after rotationin the ray 
oordinate system. The main P-Wave energy is 
on
entrated on theverti
al and radial 
omponents, but we 
an observe s
attered energy on all three
omponents.transverse 
omponent during arrival of the P-wave. This 
an be due to s
atteringfrom 3D stru
tures or anisotropy and we will dis
uss this issue again later whenwe look at re
eiver fun
tions from the Slave 
raton.Figure 4.4 illustrates what we just dis
ussed. We plot the re
orded data justbefore and after the P-wave arrival of a large teleseismi
 event with a momentmagnitude Mw = 7.3. We 
an see a 
lear high amplitude arrival on the radial andtransverse 
omponents about 520 s after the event. Be
ause of the steep in
iden
eangle of the P-wave, we observe the highest amplitude on the verti
al 
omponent.In 
ontrast the radial 
omponent only exhibits some low amplitude �u
tuations.After the initial P-wave, the amplitude of the radial and verti
al 
omponents dropsqui
kly and rea
hes the level of the transverse 
omponent. These �u
tuations are
aused by re�e
tions and refra
tions below the re
eiver and will be used for re
eiverfun
tion analysis. A sudden in
rease in amplitude on the verti
al 
omponent at72
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eiver fun
tions580 s marks the arrival of another seismi
 phase, in this 
ase P
P, a P-wave thathas been re�e
ted from the outer 
ore.4.3 Cal
ulating re
eiver fun
tionsWe 
an now dis
uss how to extra
t information about Earth stru
ture from there
orded P-wave and its 
onversions. As we saw in equation 4.16 the total mea-sured seismi
 tra
e 
an be represented as a 
onvolution of three 
ontributors.The instrument response i(t) is known for every 
omponent and 
an be easily
orre
ted for. The problem remains to separate the sour
e time fun
tion 
ontri-bution and distinguish e�e
ts from di�erent stru
tures along the wave path. This
an be a
hieved by de
onvolving the verti
al 
omponent from the radial 
om-ponent [Vinnik, 1977, Berteussen, 1977, Langston, 1979, Kind and Vinnik, 1988℄,i.e., in the frequen
y domain
Rf(ω) =

R(ω)Z⋆(ω)

Z(ω)Z⋆(ω)
. (4.17)This operation removes the e�e
t of the sour
e time fun
tion, whi
h is equalfor both 
omponents. Transformation ba
k into the time domain yields the a
tualre
eiver fun
tion. The representation in the time domain has the advantage thatthe features of the re
eiver fun
tion have a straightforward and dire
t 
onne
tionto Earth stru
ture. The time axis represent distan
e from the re
eiver and, be
auseof the steep in
iden
e of teleseismi
 waves, is a good proxy for depth. A signi�
antnon-zero amplitude marks the arrival of a P-to-S 
onverted wave. As des
ribedabove, the 
onversions take pla
e at velo
ity and density 
ontrasts and thus thesignal of the re
eiver fun
tion 
an be interpreted in terms of velo
ity and density
hanges below the station. A positive amplitude marks a transition from higherto lower velo
ity, with respe
t to the dire
tion of wave-propagation, while for anegative amplitude the situation is reversed. This dire
t interpretation of there
eiver fun
tion is 
ompli
ated though by the appearan
e of multiple re�e
tionsin the later se
tions of the re
eiver fun
tion. A syntheti
 re
eiver fun
tion and apart of the ray geometry are shown in Figure 4.5.For the RTZ-
oordinate system the highest amplitude of the re
eiver fun
tionis observed at time 0, 
orresponding to 0 lag between the two 
omponents, and isrelated to the initial P-wave arrival. We 
an identify a 
lear arrival at 4.5 s that isrelated to the P-to-S 
onverted wave from the layer interfa
e. The �rst multiplere�e
tion from the surfa
e has a 
omparable amplitude and identi
al polarity,while the polarity of the se
ond multiple is reversed and its amplitude is slightlysmaller. For a simple two-layer model the arrival times of the refra
ted wave and73
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Figure 4.5: Syntheti
 re
eiver fun
tion (right) 
al
ulated for a two layer model(left). The main 
onversions are labelled in the re
eiver fun
tion plot, and twoexemplary ray paths are shown on the left hand side.the multiples 
an be easily 
al
ulated, viz.,
tPs = h

(

√

v−2
s − p2 −

√

v−2
p − p2

)

, (4.18)
tPpPs = h

(

√

v−2
s − p2 +

√

v−2
p − p2

)

, (4.19)
tPpSs = 2h

√

v−2
s − p2. (4.20)The ray parameter p depends on the distan
e from the earthquake and 
an betaken from an earthquake 
atalogue. Hen
e with these three equations we 
anuniquely determine the three parameters vs, vp and h.Pra
ti
al pro
edureIn pra
ti
e Equation 4.17 does not work well to 
al
ulate re
eiver fun
tion dire
tlyfrom re
orded seismograms. We have to perform some additional pro
essing stepsand modify the idealized equation to obtain usable results. The �rst step, is toapply a bandpass �lter to the seismogram. The high frequen
y energy above 1 Hzis often related to s
attering from small inhomogeneities, and does not �t into thetheoreti
al formulation of a refra
ted wave that we assume for re
eiver fun
tions.Below 0.05 Hz ambient noise from wind, tides and 
ultural sour
es 
an overwhelmthe body wave signal whi
h has dominant periods between 1-0.1 Hz. Therefore asimple band-pass �lter 
an improve the quality of the re
eiver fun
tions.This step alone though does not alleviate another more fundamental problemwith Equation 4.17. The division by the auto-spe
trum of the verti
al 
omponentbe
omes numeri
ally unstable, if the spe
trum has a high dynami
 range. Real74



4 Re
eiver fun
tionsseismograms often show pronoun
ed minima in their power spe
tra, and the re-
eiver fun
tion 
al
ulated from su
h a seismogram would be dominated by thesespe
tral holes, whi
h do not 
arry mu
h information about earth stru
ture. Inmagnetotelluri
 pro
essing we solve the problem of unstable division by sta
kingseveral spe
tra and this 
an be done for re
eiver fun
tions as well [Gurrola et al.,1995℄. This approa
h however 
an be problemati
, be
ause as we see from Equa-tion 4.18, the time of the 
onversions in the re
eiver fun
tion depends on theray parameter, whi
h varies from earthquake to earthquake. Careful sele
tion ofearthquakes with similar ray parameter or moveout 
orre
tion (see below) 
ansolve this problem, but in a lot of 
ases di�erent solutions are preferred.The easiest way to 
ir
umvent division by small numeri
al values, is to add asmall but signi�
ant number to the denominator of equation 4.17 [Langston, 1979℄.In addition a Gaussian �lter is applied to the re
eiver fun
tion
Rf(ω) =

R(ω)Z⋆(ω)max (Z(ω)Z⋆(ω), l)
exp (−ω2/4σ2

)

. (4.21)Usually the water-level parameter l is 
hosen with respe
t to the maximum am-plitude of the verti
al 
omponent
l = wmax (Z(ω)Z⋆(ω)) , (4.22)and typi
al values for w range between 0.01 and 10−5. The optimum value dependson the signal to noise ratio, but the �nal result is not overly sensitive to the 
hosenwater-level. The advantage of this method is that it is easy to implement, and fastto 
al
ulate. One problem is though that be
ause of the non-lo
alized nature of theFourier transform and the division operation, noise from all parts of the sele
tedtime-window in�uen
es the re
eiver fun
tion. This 
an often be observed for eventswith magnitudes less than 6. Despite an apparently high-quality seismogram, theresulting re
eiver fun
tion is often strongly distorted.Some of the noise problems of the water-level de
onvolution 
an be 
ir
umventedby using an iterative time-domain de
onvolution method [Ligorria and Ammon,1999℄. At ea
h iteration we 
al
ulate the 
ross-
orrelation between the verti
aland radial 
omponent. We determine the re
eiver fun
tion value at the time
orresponding to the maximum absolute 
orrelation value by dividing the 
ross-
orrelation by the zero lag auto
orrelation of the verti
al 
omponent. After sub-tra
ting the predi
ted wave-form from the radial 
omponent the next iterationstarts. The pro
edure stops when either the improvement between iterations be-
omes too small, or a 
hosen per
entage of the radial 
omponent 
an be predi
tedfrom 
onvolving the re
eiver fun
tion with the verti
al 
omponent. The 
ompletepro
edure is summarized in Algorithm 4.75
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eiver fun
tionsAlgorithm 4 Iterative de
onvolution algorithm1: Cal
ulate zero lag auto-
orrelation of verti
al aZ2: Ri(t) = R(t)3: repeat4: Cal
ulate 
ross-
orrelation c(τ) of 
urrent radial Ri(t) and verti
al Z(t)5: Find maximum of c(τ) and 
orresponding lag τmax6: Rf(τmax) = c(τmax)/aZ7: Ri+1(t) = R(t) − Rf(t) ∗ Z(t)8: until |Ri+1 − Ri| < δmin or |Ri+1 − R| < emin or i = imaxCompared to the water-level de
onvolution we often get better results withrespe
t to the following 
riteria to assess the quality of the re
eiver fun
tion:1. The zero lag amplitude should be the highest throughout the re
eiver fun
-tion.2. Even though the Moho depth is often not know a priori, a high amplitude
onversion from the Moho 
an be expe
ted at times between 3 and 5 se
ondsfor Moho depths of 25 � 40 km.3. The Moho multiples should be visible at times given by equations 4.18 �4.20.4. In general the amplitude of 
onversions 
an be expe
ted to de
rease withtime, strong os
illations throughout the re
eiver fun
tion indi
ate problemswith noise.5. The base-line should be �at, long-period ba
kground variations indi
ate noise
ontributions that often 
an be removed by high-pass �ltering.We will dis
uss these issues further when we look at re
eiver fun
tions from theSlave 
raton in Chapter 7.Figure 4.6 shows a 
omparison between a re
eiver fun
tion 
al
ulated with thewaterlevel te
hnique (top) and the iterative de
onvolution te
hnique (bottom) forthe same event, station and �lter parameters. The re
eiver fun
tion 
al
ulatedwith the waterlevel te
hnique shows many high amplitude variations for the �rst30 se
onds. The Moho 
onversion at a lag time of about 5 se
onds shows thehighest amplitude after the zero lag pulse, but a high number of segments withsimilar amplitude make it di�
ult to identify the 
onversion reliably. This applieseven more to the multiples and all other 
onversions. The iterative de
onvolutionte
hnique, in 
ontrast, yields a re
eiver fun
tion that is mu
h easier to interpret.76
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Figure 4.6: Comparison between re
eiver fun
tions 
al
ulated with the waterlevelte
hnique (top) and the iterative de
onvolution te
hnique (bottom).The Moho 
onversions and its multiples are easy to identify. A number of smalleramplitude maxima and minima exist and a good 
orresponden
e with features ofthe waterlevel re
eiver fun
tion suggests that these are a
tual 
onversions withinthe Earth and not noise. Remarkably, 
onvolving the verti
al 
omponent with thisre
eiver fun
tion retrieves 98.5% of the radial 
omponent's energy, illustrating thelarge in�uen
e of a reasonably low amount of noise on the waterlevel result.4.4 Sta
king re
eiver fun
tionsEven after �ltering and with the iterative de
onvolution method, re
eiver fun
-tions 
an still be a�e
ted by noise whi
h, if not identi�ed 
orre
tly, 
an 
ausespurious stru
tures in the subsequent inversion. The in�uen
e of random noise
an be further redu
ed by sta
king a number of high-quality re
eiver fun
tions.A few things have to be 
onsidered before we 
an apply the sta
king pro
edure.Equation 4.18 shows that the delay time of any 
onversion depends on the ray pa-rameter, whi
h in turn depends on the distan
e between the seismi
 station andthe earthquake. If we sta
k re
eiver fun
tions from di�erent distan
es, we will notonly suppress noise, but also smear out the signal we are interested in. Figure 4.777



4 Re
eiver fun
tions

5 10 15 20 25 30
Time [s]

-0.2

-0.1

0

0.1

0.2
A

m
pl

itu
de

Receiver function moveout
Distance Range 30 - 90

Figure 4.7: Syntheti
 re
eiver fun
tions 
al
ulated for a number of distan
es be-tween 30°and 90° (bottom to top). The two lines mark the maximum amplitudeof two primary 
onversions. We 
an identify multiples by their inverted moveoutrelationship.shows syntheti
 re
eiver fun
tions 
al
ulated for a number of distan
es.We 
an see that for the primary 
onversions the delay time de
reases within
reasing distan
e, while for the multiples the delay time in
reases. For highquality data this 
riterion 
an be used to distinguish the two, but in pra
ti
e noise
an make it di�
ult to identify the weaker amplitudes reliably. For the Mohoprimary 
onversion, the shift in time is less than 0.5 se
onds a
ross the wholedistan
e range, and therefore not signi�
ant for data that have been �ltered to amaximum frequen
y of 1 Hz. Already for the se
ond 
onversion, marked with aline in Figure 4.7, the moveout is signi�
ant and we 
an also see that the 
hangein time is not linear.There are two ways to prevent problems with sta
king events with di�erentmoveout 
hara
teristi
s. The easiest possibility is to restri
t the sta
king to events
oming from the same distan
e range. A di�eren
e in distan
e of 10° is not 
riti
alfor delay times less than 25 se
onds, whi
h 
orresponds to the lithospheri
 depthswe are interested in. For deeper 
onversions, and if the number of earthquakesfrom any distan
e range is not su�
ient, an alternative approa
h is to 
orre
t for78



4 Re
eiver fun
tionsthe moveout. We 
an use equation 4.18 to 
onvert the time of ea
h sample tothe 
orresponding time at a given referen
e distan
e. This, of 
ourse, requiresassumptions about the seismi
 velo
ities, and usually a standard referen
e modelsu
h as PREM [Dziewonski and Anderson, 1981℄, IASP91 [Kennett and Engdahl,1991℄ or AK135 [Kennett et al., 1995℄ is used for the 
orre
tion. Another e�e
t ofthe moveout 
orre
tion is that all multiples are suppressed. Due to their invertedmoveout 
hara
teristi
s with respe
t to the primary 
onversions, they are spreadout even more after the 
orre
tion and their amplitude is redu
ed in the followingsta
king pro
ess. This is an advantage when re
eiver fun
tions are used as animaging te
hnique, and 
an bring out smaller 
onversions that are hidden by themultiples. When modelling re
eiver fun
tions the advantage is not that 
learthough, as the multiples also 
ontain information about Earth stru
ture.Another 
ompli
ation for sta
king re
eiver fun
tions 
an arise when the stru
-tures are not purely one-dimensional. As mentioned above, we will then observeenergy on the re
eiver fun
tion for the transverse 
omponent, but also the radialre
eiver fun
tion then depends on the ba
k-azimuth, the dire
tion of the in
omingwave. The only solution then is to restri
t the sta
king to a range of ba
kazimuthswhere no variations are observed.4.5 Modelling re
eiver fun
tionIn 
ontrast to the 1D magnetotelluri
 
ase, there is no dire
t way to 
al
ulatethe re
eiver fun
tion from a model. Instead, we 
al
ulate syntheti
 radial andverti
al seismograms, and obtain the re
eiver fun
tions with the same pro
edureas for observed data. A number of di�erent methods exist to 
al
ulate syntheti
seismograms. Ray-theoreti
al methods [Helmberger, 1974℄ are 
omputationallyfast, but require to spe
ify the various rays that we want to model. This 
an beproblemati
, be
ause the importan
e of the various 
onversions is not obvious apriori and the in
lusion of a large number of re�e
ted and refra
ted rays in
reases
omputation time and hen
e removes the speed advantage. Spe
tral methods[Fu
hs and Muller, 1971℄ are exa
t in the 1D 
ase, but are 
omputationally expen-sive. Their main advantage is for modelling regional and lo
al wave propagation,as they 
an in
lude near-sour
e e�e
ts.For teleseismi
 events, matrix propagation methods [Haskell, 1962℄ provide agood 
ompromise between pre
ision and speed. Assuming a plane wave propa-gating into the region of interest, the e�e
t of re�e
tions and refra
tions at ea
hinterfa
e 
an be 
al
ulated by a number of matrix operations. We use the program
respktn des
ribed in Randall [1989℄.
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The ruler of the Universe thought for a long while whilst Zarni-woop quivered with anger.`You're very sure of your fa
ts,' he said at last, `I 
ouldn't trustthe thinking of a man who takes the Universe � if there is one �for granted.'Zarniwoop still quivered, but was silent.`I only de
ide about my Universe,' 
ontinued the man quietly.`My Universe is my eyes and my ears. Anything else is hearsay.'Douglas Adams, The Restaurant at the End of the Universe 5Optimization in the 
ontext of�ltering and inversion
The mathemati
al �elds of optimization and inverse theory, play an importantrole in geophysi
s. For all but the simplemost problems, the relationship betweenthe observations and the properties of the Earth one is looking for is non-linear.In addition we usually only have observations at the Earth's surfa
e and at a fewlo
ations, and there is no analyti
al formula to extra
t the information from thedata. Usually we are fa
ed with a situation, were we 
an only solve the forwardproblem

dpred = f(m), (5.1)i.e., we 
an predi
t the expe
ted data d for a given model m of the Earth. Theentries of the ve
tor m des
ribe the distribution of one or more physi
al properties,in our 
ase ele
tri
al resistivity or seismi
 velo
ities, and the fun
tion f 
apturesthe physi
s of the problem. What we need is the solution of the inverse problem,whi
h formally 
an be written as
m = f−1(dobs), (5.2)but, as mentioned, the inverse of f is usually not a

essible. What we have to doinstead is to minimize the di�eren
e between the predi
ted and the observed datawith respe
t to a 
ertain norm,

‖dobs − dpred‖→ min, (5.3)and for this we have to use optimization methods.80



5 Optimization in the 
ontext of �ltering and inversionMinimization or maximization problems are en
ountered in various �elds, andthus a large number of di�erent methods exist, ea
h geared towards spe
ial ap-pli
ations, and with 
ertain advantages and disadvantages. We will dis
uss thosemethods that are relevant for geophysi
al appli
ations, and in parti
ular for jointinversion. We 
an separate optimization methods in two broad 
lasses:1. Dire
t sear
h methods use a starting point in model spa
e, i.e., a modelof the Earth that the user regards as representative before the inversion,and look for dire
tions that redu
e the norm in equation 5.3. For non-linear problems this is an iterative pro
ess, and the minimization dire
tion
hanges at ea
h step. Often gradient and 
urvature information is exploitedto improve the speed of 
onvergen
e to the minimum. The main advantageof these methods is their rapid 
onvergen
e, whi
h makes them suitable forlarge s
ale problems. The major drawba
k is the risk of being trapped in alo
al minimum.2. Sto
hasti
 sear
h methods randomly sample model spa
e, and preserve mod-els that perform better with respe
t to the minimization 
riterion. As onewould expe
t, the random nature of the pro
ess makes it ne
essary to 
on-sider a large number of models, whi
h is the main disadvantage of thesemethods. Several variants try to in
rease the 
han
e of �nding suitablemodels, by introdu
ing systemati
 elements into the random sear
h, butstill they are usually orders of magnitude slower than dire
t sear
h meth-ods. The great advantage of random methods, that justi�es their usage, isthe redu
ed in�uen
e of the starting point and the ability to es
ape lo
alminima.In the following se
tions we will �rst dis
uss some popular linearized methodsand also des
ribe various aspe
ts of inverse theory that are usually applied in the
ontext of these methods. We will then turn to geneti
 algorithms, a sto
hasti
optimization method based on biologi
al evolution, and des
ribe their suitabilityfor our joint inversion problem.5.1 Linearized methodsAlthough we use a geneti
 algorithm for our optimization problem, it is instru
tiveto dis
uss dire
t sear
h and, parti
ularly, linearized methods. A lot of the toolsthat we will use later to quantify the quality of our models were developed in the
ontext of these methods, so we need to understand their me
hani
s. Also thisdis
ussion will enable us to understand some of the advantages and disadvantagesof geneti
 algorithms. 81



5 Optimization in the 
ontext of �ltering and inversionMost linearized methods minimize equation 5.3 in the least-squares sense, i.e.,with respe
t to the L2 norm
E(m) = ‖dobs − dpred‖2 =

∑

i

(

dobs
i − d

pred
i

)2

→ min . (5.4)This 
hoi
e of norm has the advantage that the predi
tion error e is 
ontinuouslydi�erentiable, a property that is used by all linearized algorithms. Also the least-squares 
riterion provides an optimal solution in the presen
e of Gaussian errors.It is however possible to use other norms than the l2 norm through an iterativereweighting s
heme in linearized inversions [Farquharson and Oldenburg, 1998℄.For geneti
 algorithm inversions we are not bound by the requirement of di�eren-tiability and we 
an 
hoose arbitrary lp norms a well as other measures of mis�tsu
h as 
orrelation. These will, of 
ourse, in�uen
e the type of models we obtain.For observed data that is a�e
ted by measurement errors we make a furthermodi�
ation to equation 5.4 to weight the 
ontribution of ea
h datum with respe
tto its error σi and a spe
i�ed relative error �oor ǫ

E(m) =
∑

i

(

dobs
i − d

pred
imax (σi, ǫdobs

i

)

)2

= eTe. (5.5)The division by the maximum of the data error and the absolute error �oor forea
h datum avoids problems with unrealisti
ally small error estimates for the dataand at the same time balan
es numeri
al di�eren
es. Data points with high valuesor unrealisti
ally small errors would otherwise dominate the mis�t fun
tion, andall other data would be mostly ignored.The gradient of E with respe
t to the model-parameters m 
an be 
al
ulatedusing the 
hain rule
γ = ∇E(m) = GT · dobs

i − d
pred
imax (σi, ǫdobs

i

) = GTe, (5.6)where we assumed a linearized relationship between model and data
d = Gm. (5.7)The n × m matrix
G =

∂f

∂m
(5.8)is 
alled the sensitivity matrix, where n is the number of datapoints, and mis the number of model parameters. For a lot of problems the sensitivity matrix
annot be 
al
ulated analyti
ally, but has to be approximated by a �nite di�eren
emethod

Gij ≈
fj(mi + ∆i) − fj(mi)

∆i

. (5.9)82



5 Optimization in the 
ontext of �ltering and inversionor automati
 di�erentiation [Sambridge et al., 2007℄.As we 
an see, �nite di�eren
e estimation requires m + 1 evaluations of theforward modelling fun
tion f , whi
h is the limiting fa
tor in terms of 
omputa-tional time for large-s
ale problems. For 
ertain types of problems, the 
al
ula-tion of the gradient 
an be a
hieved 
omputationally faster using adjoint methods[Avdeeva and Avdeev, 2006, Plessix, 2006℄ whi
h we will not dis
uss here.The gradient points in the dire
tion of steepest as
ent, so we 
an 
onstru
t a�rst simple optimization algorithm by performing a step in the opposite dire
tion
mn+1 = mn − µ∇e. (5.10)This equation is exa
tly the same as Equation 3.25 for the LMS-adaptive �lter, butnow viewed in the more general 
ontext of minimization of an non-linear fun
tion,instead of adaptive signal pro
essing.The steepest des
ent algorithm is very simple, but not ideal with respe
t to
onvergen
e to the minimum, as we already saw in Chapter 3. For many problemsthe dire
tion of steepest des
ent is not the shortest way towards the minimum.In situations where one forward model evaluation is 
omputationally expensive,the simpli
ity of the optimization algorithm is outweighed by the fa
t that manyiterations are needed to �nd the minimum.The most 
ommonly used method to improve the speed of 
onvergen
e of lin-earized optimization algorithms is to in
orporate 
urvature information by either
al
ulating or approximating the Hessian matrix of se
ond derivatives,

H =
∂f

∂mi∂mj

. (5.11)For geophysi
al problems the Hessian matrix is rarely available analyti
ally and
omputation by �nite di�eren
es similar to the gradient is 
omputationally pro-hibitive, even for rather simple problems su
h as one-dimensional magnetotelluri
inversion. For large s
ale problems with a lot of model parameters, even the stor-age of the m × m matrix H 
an be problemati
. For this reason, a number ofdi�erent algorithms exist that approximate the Hessian matrix either dire
tly orby its a
tion on a ve
tor [e.g. No
edal, 1992, Tarantola, 2004℄. We will dis
uss herethe variable metri
 method, whi
h uses information from gradients from previousiterations to build up an approximation of the Hessian matrix, as an example fora widely used state of the art method.At the minimum m⋆ the gradient vanishes
f ′(m⋆) = 0. (5.12)From a Taylor expansion of f ′ around the 
urrent model m we get

f ′(m + h) = f ′(m) + f ′′(m)h + O(h2). (5.13)83



5 Optimization in the 
ontext of �ltering and inversionAssuming |h| is small we 
an dis
ard se
ond order terms, and we 
an �nd the nextstep h by solving
f ′′(m)h = Hh = −f ′(m). (5.14)Analyti
ally the solution is, of 
ourse,

h = −H−1 f ′(m) = −Ff ′(m). (5.15)For this reason, some of the pra
ti
al numeri
al algorithms do not approximate theHessian, but its inverse. A detailed derivation of the approximations is beyond ours
ope here, and not of parti
ular interest for the dis
ussion, one important aspe
tof it is though, that for h being a des
ent dire
tion a ne
essary requirement is that
H is positive de�nite, i.e., for all ve
tors u

uTHu > 0. (5.16)The 
omputational steps are summarized in Algorithm 5.Algorithm 5 The variable metri
 optimization algorithm1: Initialize F0 = I2: Choose starting model m03: while not 
onverged do4: γi = GTe5: Φi = Fiγi6: mi+1 = mi + µΦi7: Fi+1 = Fi + δFi8: end whileThree important steps have been omitted in Algorithm 5, the adjustment of thestepsize parameter µ, the update δFi of the inverse of the hessian matrix, and thede�nition of the 
onvergen
e 
riterion.In 
ontrast to the algorithms we dis
ussed in the 
ontext of �ltering, the stepsize
µ is usually not �xed, but adjusted through a line-sear
h algorithm. The reasonfor this di�eren
e lies in the slightly di�erent 
omputational 
omplexity 
riteria.For an optimization algorithm used for inversion of data, we want to a
hievethe minimization with the least amount of forward modellings. Even thoughthe line-sear
h algorithm also requires a few forward modelling 
al
ulations, theoverall number within the whole optimization pro
ess is still lower than for a�xed stepsize. For �ltering appli
ations, the number of forward 
al
ulations is thenumber of samples in the time-series and 
onsequently �xed. Adding a line sear
hwould in
rease this number even further and thus the stepsize is either kept �xedor estimated by a simple formula (see equation 3.32).84



5 Optimization in the 
ontext of �ltering and inversionFor the update of Fi a number of di�erent possibilities exist, the most widelyused is the BFGS formula [Flet
her, 1980℄
Fi+1 =

(

I −
δm δγT

δγT δm

)

Fi

(

I −
δm δγT

δγT δm

)

+
δm δmT

δγT δm
, (5.17)whi
h preserves the positive de�niteness of F in most situations.The 
onvergen
e 
riterion for all gradient-based optimization te
hniques is givenby 
omparing the length of the gradient with the ma
hine pre
ision ǫ

‖γ‖ ≤ ǫ. (5.18)This termination 
riterion, and the way the minimum is approa
hed, has im-portant impli
ations for the performan
e of the algorithm 
ompared with globaloptimizationmethods. Any point on the error surfa
e, where the gradient be
omessmall enough, will be regarded as a valid optimum point, even though it mightonly be a lo
al minimum, and not the global minimumwe are seeking. As gradientbased optimization algorithms only use lo
al information from the 
urrent and, insome 
ases previous, iterations, the algorithm has no way to identify a minimumas lo
al and will terminate as soon as the 
riterion in equation 5.18 is satis�ed.5.2 Geneti
 algorithmsGeneti
 algorithms (GA's) are one 
lass of global sear
h algorithms that avoidthe lo
alized sear
h strategy of linearized methods. Using strategies mimi
kingbiologi
al evolution they provide a good 
ompromise between 
omputationallymore expensive Monte-Carlo methods and linearized methods and o�er parti
ularadvantages for multi-obje
tive inversion. As the optimization method used inour joint inversion approa
h is based on a modern geneti
 algorithm, we willdis
uss them in some detail in the following se
tions. A good overview over thehistori
al development and the basi
 properties of geneti
 algorithms 
an be foundin Goldberg [1989℄. Sin
e the introdu
tion of GA's in the �eld of optimizationby Holland [1975℄, a large variety of geneti
 algorithms have been developed,and, be
ause of the non-linear nature of geophysi
al inverse problems, appliedto various types of datasets [e.g., Everett and S
hultz, 1993, Jervis et al., 1993,Pérez-Flores and S
hultz, 2002℄. We will fo
us on the 
ore properties 
ommon toall GA's and more spe
i�
ally on the modern NSGA-II [Deb et al., 2002℄ whi
hforms the 
ore of our inversion algorithm. The general program �ow for a geneti
algorithm is shown in Figure 5.1. Ea
h individual step 
an be performed in avariety of ways, depending on the problem at hand and the type of solution weare looking for. 85



5 Optimization in the 
ontext of �ltering and inversionThe �rst design 
hoi
e that in�uen
es most of the other steps of the geneti
algorithm is the way in whi
h the model parameters are represented within theGA. The earliest GA's expli
itly en
oded the parameters as a 
on
atenated binarystring, but in the meantime real valued geneti
 algorithms have gained popularity[Goldberg, 1989℄. The binary representation is motivated by the analogy betweenDNA in an evolutionary pro
ess and the models in geneti
 algorithm optimizationand makes the two modi�
ation operators 
rossover and mutation independentfrom model parameter storage.
Choose parameters

Generate Random Population

Calculate probabilities

from objective function

Select individuals
for new population

Crossover

Mutation

N
it

er
a
ti

o
n
s

Figure 5.1: Program �ow of a ge-neti
 algorithm

Given the model ve
tor m, as des
ribed inthe previous se
tion, we 
reate the geneti
string by translating ea
h individual 
ompo-nent mi into a binary form and 
on
atenatingthem into a single string. For this the user hasto 
hose three trans
ription parameters for ea
hmodel parameter mi: The minimum possibleparameter value mmin
i , the dis
retization step

δi and the number of bits used to en
ode theparameter value ni. The relationship betweenthe a
tual model parameters for the inversionproblem and the representation within the ge-neti
 algorithm is then given by
mi = mmin

i + δi

ni∑

j=1

2j−1sj, (5.19)where sj represents the part of the geneti
 stringthat 
orresponds to that model parameter. Asimple example 
an illustrate the relationshipbetween the model parameters and the geneti
string.Given a problem that depends on two param-eters m1 and m2 where m1 is expe
ted to be inthe range −1 . . . 1 and m2 between 0 and 3.1, we 
an adjust the en
oding lengthof ea
h parameter, so that the variations in the minimization fun
tion f(m1, m2)are represented without aliasing. The Table 5.1 lists examples for trans
riptionparameter values, 
orresponding example strings and model parameters values.We 
an immediately see two major di�eren
es to the linearized algorithms dis-
ussed in the previous se
tion. First of all the parameter values are 
onstrainedby the minimum value mmin
i , and the maximum that results from the other twoparameters. The linearized algorithms we dis
ussed do not have su
h limitations,86



5 Optimization in the 
ontext of �ltering and inversioni mmin
i δi ni1 -1 2/63 62 0 0.1 5 −→ 101011︸ ︷︷ ︸

m1

01011︸ ︷︷ ︸
m2

−→ m1 = 0.6825 m2 = 2.6i mmin
i δi ni1 -1 2/7 32 0 0.05 6 −→ 011︸︷︷︸

m1

101101︸ ︷︷ ︸
m2

−→ m1 = 0.7143 m2 = 2.25Table 5.1: Example for trans
ription parameters of a geneti
 algorithm for a prob-lem with two parametersbut modi�
ations 
an be made to in
orporate 
onstraints into linearized methodsif needed [e.g. Byrd et al., 1995℄. The impli
it 
onstraints on the model parame-ters by the geneti
 algorithm are both and advantage and a disadvantage. Mostgeophysi
al problems have well known limits on �reasonable� values for physi
alparameters of the Earth. Therefore the limitedness of the inversion parameters
an even be an advantage 
ompared to linearized methods, where e�orts have tobe made to enfor
e the 
onstraints. When the possible range of parameter valuesis large though, the user has to 
hoose between a large number of bits for therespe
tive model parameters and a large dis
retization step.This leads dire
tly to the next signi�
ant di�eren
e between linearized methodsand geneti
 algorithms. The mathemati
al foundation of linearized methods as-sumes 
ontinuous model parameters, and the methods are 
ontinuous in as mu
h asa 
omputer 
an represent real numbers. For geneti
 algorithms, the dis
retizationlength is typi
ally orders of magnitude above numeri
al pre
ision, and thereforetreat the model spa
e as dis
rete. Again for geophysi
al problems this is usuallynot of 
on
ern, as we anyway assume that our obje
tive fun
tion varies smoothlywith the model parameters and typi
al variations are well known. Still the 
hoi
esof the trans
ription parameters in�uen
e the out
ome of the inversion and anyuser of geneti
 algorithms has to be aware of it.With the information on the trans
ription parameters, the algorithm 
an thengenerate a number of random model strings, the so-
alled population. Ea
hmem-ber of the population represents one individual model and the size Np of the pop-ulation is usually spe
i�ed by the user. A larger Np will result in more randomstarting models and thus sample a larger portion of model spa
e. Of 
ourse, this
omes at the 
ost of more forward modelling 
alls and a longer run-time of thealgorithm.On
e the random starting population has been generated, ea
h population mem-ber is trans
ribed ba
k to the real-valued inversion parameters and its �tness is87
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ontext of �ltering and inversion
al
ulated. For inversion appli
ations this usually means 
al
ulating the mis�tbetween the predi
ted data from the model parameters and the observed data ina manner similar to equation 5.5. However, be
ause geneti
 algorithms do notrequire the mis�t fun
tion to be di�erentiable, we 
an modify the way the mis�tis 
al
ulated in a number of ways. We will return to this issue when we dis
ussmulti-obje
tive optimization and NSGA-II. The mis�t determines the probabilitythat a given member will be sele
ted for the next generation. It is this probabilis-ti
 approa
h, that enables the geneti
 algorithm to es
ape lo
al minima. Some ofthe models in the �rst generations might not have a good �t 
ompared with thebest model in that generation. Still, there is a possibility that these models arekept in further generations and through modi�
ation or ex
hange of information
reate a better model.On
e the models for the next generation have been sele
ted, we have to makesome modi�
ations, otherwise there will be no new information and we 
ould juststop after the �rst iteration. Two pro
esses provide innovation to the originalmodels. Crossover provides a me
hanism to ex
hange information between dif-ferent members of the population. With a probability pc two random populationmembers ex
hange part of their geneti
 string after a randomly 
hosen point. The
on
ept behind this is that some of the models might perform well due to a 
ertainsegment within the geneti
 string, while the good performan
e of another modelis 
aused by another part of the geneti
 string. Ex
hanging parts of these strings
an then 
reate an even better model, but in any 
ase helps to distribute wellperforming parts through the population. Typi
ally we 
hoose 0.2 ≤ pc ≤ 0.7, sothat a fair proportion of the population performs 
rossover.The se
ond me
hanism to 
reate new models is mutation. With a probability
pm a bit of the geneti
 string of a given member 
hanges its value. This me
hanismis undire
ted and 
reates 
ompletely new models. Espe
ially in the later stages ofthe algorithm, when a small number of similar models dominate the population,this me
hanism ensures that the algorithm does not 
onverge prematurely. Afterthe sele
tion, 
rossover and mutation pro
esses, the mis�t for the new populationis 
al
ulated and these steps are repeated for a �xed number of iterations. Dueto the sto
hasti
 nature of the pro
ess and the la
k of information about anygradients, there is no simple termination 
riterion. What we usually observe, isthat the mis�t of the best model and the average mis�t de
rease qui
kly in the�rst iterations until they rea
h a stable level. After this initial phase, the bestmis�t stays 
onstant for a number of generations and then de
reases again. With
ontinuing evolution the stable phases be
ome longer and longer, but there isalways the possibility of another de
rease.88



5 Optimization in the 
ontext of �ltering and inversion5.3 NSGA-IIWe will now turn our attention to the spe
i�
 implementation of the geneti
algorithm we use for our joint inversion approa
h, NSGA-II [Deb et al., 2002℄. Inthis 
ontext we will also dis
uss some spe
i�
 problems of multi-obje
tive inversionand 
ontrast the approa
h taken by NSGA-II with linearized methods and othergeneti
 algorithms.To represent the models we use the standard binary strings des
ribed aboveand 
onsequently the initialization stage, as well as 
rossover and mutation workexa
tly as des
ribed for the general 
ase. The sele
tion pro
ess, and the way the�tness of ea
h individual member is determined, is spe
i�
ally geared towardsmulti-obje
tive optimization. We will therefore look at this problem setting now.In 
ontrast to single-obje
tive optimization that we dis
ussed at the beginning ofthe 
hapter, the optimization fun
tional has now several 
omponents,
E(m) =







e1(m)...
en(m)






, (5.20)where ea
h 
omponent ei(m) is de�ned similar to equation 5.5. In linearizedapproa
hes and some geneti
 algorithms this problem would be transformed intoa single-obje
tive problem by minimizing a weighted sum of the 
omponents

Eso(m) =
∑

i

λiei(m). (5.21)The most prominent example for su
h an approa
h in geophysi
s is regularizedinversion, whi
h we will dis
uss in more detail later, where λ is 
alled the Lagrangemultiplier [Tikhonov and Arsenin, 1977℄, but it has also been applied to jointinversion problems [Julia et al., 2000, Gallardo and Meju, 2003℄. The problemwith this is that the optimum weighting fa
tors λi are not know a priori, but haveeither to be guessed or systemati
ally varied to see the in�uen
e on the resultingmodels [Hansen, 1992℄. NSGA-II does not follow this approa
h but preservesthe information from the various minimization fun
tions by ranking the modelsa

ording to dominan
e.A model a is said to dominate another model b, a ≺ b, if and only if all obje
tivefun
tion values are less or equal and at least one obje
tive fun
tion value is lessin a than in b,
a ≺ b⇔ ∀i : ei(a) ≤ ei(b) ∧ ∃i : ei(a) < ei(b). (5.22)We 
an see that with this de�nition, we only 
ompare 
orresponding obje
tivefun
tion values and avoid the mixing of Equation 5.21. Even though the de�ni-tion is simple, it is quite di�
ult to envisage its impli
ations and whi
h models89
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Figure 5.2: Graphi
al representation of the prin
iple of dominan
e. The bluetriangles are 
onsidered to be of equal quality with respe
t to the 
riterion ofequation 5.22 and assigned rank 1. Every model plotted with a red square isdominated by one of the rank 1 models.dominate others, a graphi
al representation in Figure 5.2 illustrates the situation.For this example we assume a two 
omponent obje
tive fun
tion E(m) =

(e1(m), e2(m)). Ea
h model then 
an be plotted as a point in a two-dimensionalplane, for more 
omponents the same prin
iples apply, but visualization be
omesmore di�
ult. The shaded regions in Figure 5.2 show the areas in obje
tivefun
tion spa
e that dominate the two models marked A and B. Basi
ally thedominan
e 
riterion divides the obje
tive fun
tion spa
e into four quadrants withrespe
t to the 
hosen model. Models lo
ated in the �rst quadrant are dominatedby the 
hosen model, while it is dominated by models lo
ated in the third quad-rant. Models in the se
ond and fourth quadrants are neither dominated, nor dothey dominate, the 
hosen model, and are 
onsidered to be of equal quality. This90



5 Optimization in the 
ontext of �ltering and inversionis fundamentally di�erent from the weighted sum in Equation 5.21 that des
ribesellipses around the origin where the ratio of the semi-major and semi-minor axesis given by the ratio of the weights λi.Using the 
riterion of dominan
e, we 
an now rank the population. Members ofthe population that are not dominated by any other members are 
alled Paretooptimal and assigned rank 1. On
e all non-dominated members have been found,they are removed from the ranking s
heme, and the pro
ess is repeated. Membersof the population that are now non-dominated are assigned rank 2, and we 
ontinueuntil the 
omplete population has been ranked.Deb et al. [2002℄ des
ribe a more 
ompli
ated algorithm to redu
e the 
ompu-tational 
omplexity of the ranking operation at the 
ost of additional storage.In our 
ase, this part of the inversion s
heme only takes a small fra
tion of theoverall 
omputations, even for large populations, so there is no need for the moresophisti
ated implementation.Another, se
ondary, 
riterion Deb et al. [2002℄ use to judge the quality of amodel is the proximity to other models in obje
tive fun
tion spa
e. What we wantto a

omplish, by using the Pareto-optimality 
riterion, is to get an idea aboutthe inherent trade-o� between a
hieving the various minimization goals. To thisend we want to obtain not only models that mat
h both 
riteria reasonably well,but also �nd extremal 
ases where one of the goals is met, but the other one isnot. To prevent the algorithm from 
onverging only to the middling models, wehave to implement spe
ial measures [Goldberg, 1989℄. The approa
h taken byDeb et al. [2002℄ uses the 
rowding distan
e 
riterion without the need for anyuser spe
i�ed parameters.For ea
h rank I we sort the members of the population in that rank su

es-sively by ea
h obje
tive fun
tion value, 
al
ulate the distan
e to the neighbouringmembers in obje
tive fun
tion value spa
e and normalize by the maximum dis-tan
e within that rank. The average of those distan
es over all obje
tive fun
tion
omponents is the 
rowding distan
e. Models at the edge of ea
h front that haveonly one neighbour are assigned a 
rowding distan
e of in�nity. Again a graphi
alrepresentation makes the 
on
ept mu
h 
learer (see Figure 5.3).On
e the rank and the 
rowding distan
e CD have been 
al
ulated, we 
an orderthe models with the 
rowded-
omparison operator, ≺n

a ≺n b⇔ Rank(a) < Rank(b) ∨ (Rank(a) = Rank(b) ∧ CD(a) > CD(b)) .(5.23)This 
rowded-
omparison operator is used in a binary-tournament sele
tion s
hemeto 
reate 
andidates for the new population. In binary tournament sele
tion twomembers of the population are 
hosen randomly and 
ompared using the 
rowded-
omparison operator. The smaller one of the two, with respe
t to the operator91
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Figure 5.3: Graphi
al representation of 
rowding distan
e 
al
ulations. Withinea
h rank the distan
e to the neighbouring models in obje
tive fun
tion spa
eis 
al
ulated and the average distan
e is the 
rowding distan
e of the respe
tivemodels.
≺n, is sele
ted for the next generation. This approa
h has two advantages overa �tness s
aling [Goldberg, 1989℄ or annealing [Sambridge and Mosegaard, 2002℄approa
h. First, it does not need a user sele
ted parameter to determine the dis-tribution of models with �tness, and se
ond, it is robust in the sense that a singlemodel with �tness mu
h higher than average will not be repli
ated ex
essively insubsequent generations.One drawba
k of binary tournament sele
tion is that there is no guarantee thatthe best model will be present in the next generation. Even though it alwayswins the 
omparison stage, it might not be sele
ted in the random drawing pro-
ess. To avoid dis
arding good models, NSGA-II uses an elitist sele
tion pro
ess.At ea
h iteration, the new generation is 
ombined with the last generation, andthe 
ombined population of size 2N is ranked. The best N members from thisintermediate population form the �nal next generation.These steps together with the diagram in Figure 5.1 
ompletely des
ribe NSGA-II. As in our 
ase one 
al
ulation of the obje
tive fun
tion value takes a mu
h longertime than all other operations within the geneti
 algorithm, we implement an ad-92



5 Optimization in the 
ontext of �ltering and inversionditional feature. For ea
h model we 
al
ulate a hash value, and this value and the
orresponding obje
tive fun
tion value are stored in an ar
hive during one run ofthe algorithm. Before the obje
tive fun
tion is evaluated, the algorithm 
he
kswhether this model has been 
al
ulated before. If this is the 
ase, the obje
tivefun
tion values are taken from the ar
hive and not re
al
ulated. Espe
ially in thelater stages of the inversion, where most new models are generated through mu-tation and 
omprise only a small fra
tion of the population, the speedup a
hievedby ar
hiving is a fa
tor of 2 or higher. Even in the earlier stages, the gain byavoiding re
al
ulation of a few models is larger than the 
omputational 
ost ofhashing and retrieving the stored values.5.4 Simple performan
e tests for multi-obje
tiveproblemsBefore we dis
uss inversion of magnetotelluri
 and re
eiver fun
tion data, we willdemonstrate some of the abilities of the geneti
 algorithm on a simple, but well
ontrolled, arti�
ial minimization problem. This will highlight the bene�ts ofusing a geneti
 algorithm for multi-obje
tive inversion.
f1(x, y) f2(x, y)
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g
(f

)

f3(x, y)

Figure 5.4: Graphi
al representation of the values of the three test fun
tions f1, f2and f3 to demonstrate the abilities of the geneti
 algorithm. The minimum valuesare marked with a white dot.Figure 5.4 shows the three fun
tions we use to 
onstru
t di�erent multi-obje
tivetest problems for the geneti
 algorithm:
f1(x) = 10

(

x1 − x2
2

)2
+ (1 − x2)

2 min = (1, 1), (5.24)
f2(x) = 10

(

x1 + x2
2

)2
+ (1 + x2)

2 min = (−1, −1), (5.25)
f3(x) = 10

(

x2 − x2
1

)2
+ (1 − x1)

2 min = (1, 1). (5.26)93
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Figure 5.5: Equally weighted sum of fun
tions f1 and f3 as an example for amulti-obje
tive test problem where the individual minima 
oin
ide.One problem in multi-obje
tive optimization, and parti
ularly in the joint inver-sion of di�erent geophysi
al datasets, is the possibility of di�erent minima in ea
hobje
tive fun
tion. In terms of Earth stru
ture and our inversion problem, thismeans that magnetotelluri
s and seismi
s sense di�erent stru
tural features withinthe subsurfa
e. We will dis
uss the arguments for and against similarity betweenthe two datasets in Chapter 7, for now we only note that this problem exists,and that ideally a joint inversion s
heme not only produ
es a model that �ts thedata, but also gives some indi
ation whether the 
ommon model approa
h has anymeaning for the given data.From the three test fun
tions we 
onstru
t two multi-obje
tive optimizationproblems,
O1(m) =

(

f1(m)

f2(m)

) and O2(m) =

(

f1(m)

f3(m)

)

. (5.27)
f1 and f2 have di�erent minima, so O1 simulates a 
ase where the MT and seismi
models are in
ompatible with ea
h other, whereas the minima for f1 and f3 areidenti
al, and thus O2 simulates 
ompatible models. Before we analyse the per-forman
e of the geneti
 algorithm on these two problems, we will show why thelinearized approa
h is problemati
 even in this very simple 
ase.As mentioned above, we have to 
onstru
t a s
alar obje
tive fun
tion from Equa-tions 5.27 by multipli
ation with a weight ve
tor λ. For the minimization problemwith identi
al minima, we see an example with identi
al weights in Figure 5.5.In this 
ase the 
ombination of the two obje
tive fun
tion has made the mini-mization problem easier. The 
ombined error surfa
e does not show the elongatedvalley stru
ture of the two original surfa
es, but is more symmetri
 and 
loser to aquadrati
 fun
tion. We 
an expe
t any linearized method to perform well in this
ase. In addition, for any given relative weighting the absolute minimum remains94
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λ = 0.1 λ = 1.0

λ = 2.5 λ = 10.0

Figure 5.6: Weighted sums of the two in
ompatible test fun
tions f1 and f2 fordi�erent relative weights λ. In ea
h plot the minima of the individual test fun
tionsis marked by a white 
ir
le.the same.The situation 
hanges when we examine weighted sums of O1. Figure 5.6 showsthe weighted sums of O1 for 4 di�erent relative weighting fa
tors λ. The whitedots mark the minima of the individual obje
tive fun
tions. We 
an see that noneof the minima of the summed obje
tive fun
tions 
oin
ide with any of the minimaof the individual obje
tive fun
tions for any weighting fa
tor λ. As with theother test problem, the error surfa
e for the summed obje
tive fun
tions is 
loserto a quadrati
 fun
tion, but in this 
ase a linearized method would 
onverge to aminimum that has no relation to the minima of the individual obje
tive fun
tions.The only way to realize this with a linearized method is to systemati
ally vary theweighting fa
tors and the starting models, and examine the impa
t on the results.We now turn to the results from the geneti
 algorithm on these two test prob-lems. To demonstrate the maximum potential of the method we use a large pop-ulation size Np = 500 and number of iterations Ni = 50 
orresponding to 25,00095
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Figure 5.7: The set of Pareto optimum obje
tive fun
tion values retrieved by thegeneti
 algorithm for the multi-obje
tive test fun
tions O2 (left) and O1 (right).model evaluations. The two model parameters are en
oded with a 10-bit string,a minimum value of -10, and a stepsize of 0.02 ea
h. The resulting sear
h area is
−10 . . . 10.48 and if all models used in the sear
h were di�erent, we would 
overabout 10−4% of the model spa
e. This is unrealisti
ally high, and later we showthe results with more realisti
 settings. At the moment we are interested in whatis theoreti
ally possible.Figure 5.7 shows the Pareto optimum fronts that the geneti
 algorithms yieldsfor the two test problems. For problem O2 that 
onsists of two 
omponents withthe same minimum, the front 
onsists of a single model with obje
tive fun
tionvalues that are 
lose to the numeri
al pre
ision. The geneti
 algorithm identi�edthe single minimum of the 
ombined error surfa
e. In 
ontrast, the front forthe problem with in
ompatible 
omponents 
onsists of a large number of modelsthat span a large range of obje
tive fun
tion values for both 
omponents. Ea
hpoint within this front represents a solution of the multi-obje
tive problem with adi�erent weighting fa
tor between the two 
omponents. The full general solutionto the problem is given by all the models in the theoreti
al Pareto-optimal front.The geneti
 algorithm retrieves a large part of this front, although the extremevalues are not very well represented. We do not observe very small values foreither of the 
omponents of the obje
tive fun
tion, even though solutions withzero weight to one of the 
omponents are part of the theoreti
al Pareto front.Despite the me
hanisms build into the algorithm to spread out the front, thereis a tenden
y towards individuals that perform reasonably well for all 
riteria.96
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Figure 5.8: The set of Pareto optimum models plotted on top of a ve
torial repre-sentation ofO1(m). The two 
omponents of the ve
tor 
orrespond to the logarithmof the two obje
tive fun
tion 
omponents. In addition ea
h ve
tor is 
oloured a
-
ording to its length.Nonetheless, in this 
ase the solutions to the two problems given by the geneti
algorithm 
learly distinguish the 
ase of 
oin
ident minima from di�ering minimaof the two 
omponents.We now have a look at the distribution of solutions for the in
ompatible 
ase.Figure 5.8 shows the solutions found by the geneti
 algorithm, together with thevalues of the two obje
tive fun
tions plotted as ve
tors. The x1-
omponent of ea
hve
tor is given by the logarithm of the �rst obje
tive fun
tion value, while the x2
omponent is given by the logarithm of the se
ond fun
tion value. The 
olour ofthe ve
tor represents its overall length. We 
an see how the solutions tra
e thepath of the minima with di�erent weights that we already observed in Figure 5.6.We also observe the e�e
t of �nite dis
retization of the model parameters withinthe geneti
 algorithm. The solutions found by the GA fall onto a regular grid, andwhere the tra
e of the minima 
urves we 
an see the step-like fashion in whi
h theGA solutions follow this tra
e. 97
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Figure 5.9: Comparison of the results of di�erent runs of the GA on the two testproblems with a small population size and limited iterations. In general the Paretofronts for the in
ompatible test problems 
ontain more solutions and have highermis�t. However, some runs on the 
ompatible problem exhibit relatively poorperforman
e.Finally we examine the e�e
t of a small population size. By de
reasing thepopulation size by a fa
tor of 20 to Np = 25 and the number of iterations by afa
tor of 5 to Ni = 10, we de
rease the overall fun
tion evaluations by a fa
tor of100. The new Pareto front from 20 di�erent runs for ea
h obje
tive fun
tion isshown in Figure 5.9. Compared to the results shown in Figure 5.7, the di�eren
ebetween the in
ompatible and 
ompatible obje
tive fun
tions is less 
lear. Noneof the runs for the 
ompatible 
ase retrieves the low value we a
hieved with thelarge population. More than half of those runs also result in two or more modelswithin the Pareto front, suggesting a non-existent trade-o� between �tting thetwo 
omponents of the obje
tive fun
tion. In one 
ase the performan
e of themodels is even worse than that of most of the in
ompatible results. Still, themajority of solutions for the 
ompatible problem has a lower �nal mis�t and lesssolutions within the Pareto optimal front than the in
ompatible solutions. Thedistin
tion between the 
ompatible and in
ompatible 
ases is not as 
lear as it was98



5 Optimization in the 
ontext of �ltering and inversionfor the large population. However, we still get and indi
ation of the 
ompatibility,parti
ularly when we 
ompare the results from several runs.Another thing to bear in mind is that with the small population we used thestatisti
al properties of the geneti
 algorithms are worse than for a large popula-tion, even if the sear
h spa
e for the large population is mu
h bigger. The smallnumber of iterations severely limits the intera
tion between the models, whi
h inother 
ases would, to some degree, balan
e the �u
tuations in starting population.One lesson to be learned from this experiment is that as large a population size as
omputationally feasible should be used and several runs of the algorithms shouldbe performed to obtain reliable results. We will return to this issue when we testsyntheti
 models of re
eiver fun
tion and magnetotelluri
 data.5.5 Regularization and non-uniquenessSo far we have only dis
ussed the minimization algorithm and how we measure thequality of our model in terms of data mis�t, but negle
ted the issue of regulariza-tion [Tikhonov and Arsenin, 1977℄, whi
h plays an important role in geophysi
alinversion. The obje
tive fun
tions we examined so far had one uniquely de�nedminimum, even though in the in
ompatible test 
ase these minima were di�erentfor ea
h fun
tion. When looking at the error surfa
e of geophysi
al inverse prob-lems, parti
ularly if we 
onsider measurement noise, we see that the minimumis not very well de�ned, but 
onsiderable trade-o�s exist (
.f. Figure 6.1). Allmodels that �t the measured data to the same level, 
an be 
onsidered to be ofequal quality, so we have to use another 
riterion to sele
t amongst these models.The 
ommonly used approa
h to over
ome this problem, is based on a paradigmknown as O

am's razor, whi
h states that we should use the simplest possiblemodel to explain the data [Constable et al., 1987℄. Obviously the notion of sim-pli
ity is somewhat vague, but a few standard measures have been established andare used in most inversion 
odes. The 
hoi
e of measure, however, depends on ourpre
on
eption on the stru
ture of the Earth and will in�uen
e what type of modelwe �nd.The simplest possible type of regularization, even though it is often not regardedas regularization, is to limit the range of the parameter values and the number ofmodel layers to spe
i�ed values that are 
onsidered reasonable [Constable et al.,1987℄. This type of regularization is an intrinsi
 part of our geneti
 algorithm, aswe have to spe
ify the parameter en
oding before the inversion. The restri
tionsthat result from the 
hosen en
oding will keep the output models simple, as longas we keep the parameter range and number of layers small. This method is notwithout problem, be
ause at the same time we want to allow the algorithm to have99



5 Optimization in the 
ontext of �ltering and inversionenough �exibility to model the stru
ture of the subsurfa
e. By varying the numberof layers and the model ranges, we 
an often identify appropriate 
hoi
es in 1Dinversion problems, for 2D or even 3D problems, this approa
h is not feasible, andwe have to in
lude a measure of model stru
ture into the inversion. Even in 1D aproperly 
hosen regularization fun
tional 
an improve the inversion.The most widespread measures to quantify the 
omplexity of a model in 1D are
R1 =

∫∞

z=0

|m − mref|
2dz, (5.28)
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∣

∣

∣
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dz. (5.30)The optional referen
e model mref 
an be used to tie the inversion models to aknown referen
e model su
h as PREM [Dziewonski and Anderson, 1981℄ for seis-mi
 data. If no sensible referen
e model exist, the 
orresponding ve
tor 
an beset to zero. Note the similar stru
ture of all these measures to the mis�t fun
tionin Equation 5.4. In fa
t they are in
orporated into the inversion as just anotherobje
tive fun
tion.
R1 limits the absolute value of the model parameters. If no referen
e model isused, it will 
hose the model with the lowest average parameter values, for examplethe least resistive model in the 
ase of magnetotelluri
s. When a referen
e modelis used, it limits the variation of the inversion model from that referen
e model.
R2 redu
es the variability of the gradient. Without a referen
e model, it limitsthe 
hange of parameter values between adja
ent layers. This represents the 
om-mon notion of a smooth model. When we use a referen
e model with this measure,it results in small values when the 
hanges in the inversion model are the same asin the referen
e model. The absolute values 
an di�er by an arbitrary 
onstant.The use of the se
ond derivatives in R3, 
orresponds to minimizing the 
urvatureof the models. Without a referen
e model this allows for inversion models with auniform gradient, but suppresses strong os
illations. With a referen
e model theminimum value is given for models that have the same 
urvature as the referen
emodel.These three measures are not the only possible regularization fun
tionals, buta large number of di�erent fun
tionals exists [e.g. Farquharson and Oldenburg,1998, Zhdanov and Tolstaya, 2004℄. For our purposes, and for 1D, the measurespresented above are su�
ient. It is important to note that in virtually all situa-tions the regularized inversion problem provides an in
ompatible problem. For allbut uniform models, the model with minimum data mis�t will not be the modelwith lowest 
omplexity. This trade-o�, and the resulting di�
ulty in 
hoosing100



5 Optimization in the 
ontext of �ltering and inversionthe 
orre
t weighting parameters, is well known in all inversion problems, and theplot of the trade-o� between mis�t and roughness is termed the L-
urve [e.g.Hansen, 1992, Farquharson and Oldenburg, 1998, Farquharson and Oldenburg,2004, Pedersen, 2004℄. As we dis
ussed above, NSGA-II provides an alternativeway to in
orporate this 
ompeting obje
tive fun
tion into the minimization algo-rithm, and the �rst appli
ation of this algorithm in geophysi
al inversion was toautomate the 
onstru
tion of the L-
urve [S
hwarzba
h et al., 2005℄.Apart from guiding the inversion pro
ess to a 
ertain type of model, regular-ization has another role in linearized inversion methods. The equations 5.28 �5.29 are all stri
tly quadrati
. Adding su
h a quadrati
 fun
tional to the possi-bly non-quadrati
 error fun
tional, gives the obje
tive fun
tion an approximatelyquadrati
 shape. This geometry makes it easier for the linearized algorithm to ap-proa
h the minimum and redu
es the in�uen
e of noise. For our geneti
 algorithmapproa
h, this does not make any di�eren
e, as we do not use gradient informa-tion. We 
an in
orporate a regularization fun
tional as an additional obje
tivefun
tion, however, this makes the trade-o� plots as shown in Figures 5.9 and 5.7three-dimensional.5.6 Resolution and model 
ovarian
eOne of the reasons we dis
ussed linearized inversion in su
h detail, apart from
ontrasting it to GA based inversion, is that a lot of methods to appraise theinversion results have been developed in this 
ontext and we will need the 
on
eptsintrodu
ed above to understand them. Two 
hara
teristi
s of any model of theEarth are parti
ularly useful to understand the quality of the model: resolutionand model 
ovarian
e. These two quantities were introdu
ed into geophysi
alinversion by Ba
kus and Gilbert [1968℄ and have sin
e then been used to assesswhi
h parts of the model 
an be deemed reliable and where the data does not
ontain su�
ient information on the stru
tures in the subsurfa
e.Both of them are 
onne
ted to the sensitivity matrix G and hen
e are onlyexa
t for linear inverse problems. Using them for non-linear problems will providea �rst order approximation, whi
h is useful to get an idea of the problem, butnot always appropriate [Ledo et al., 2004℄. The model 
ovarian
e matrix simplyexpresses how errors in the data map into errors of the model [Menke, 1989℄
cov(m) = G−gcov(d)G−gT

. (5.31)Here the supers
ript −g denotes the generalized inverse of the sensitivity matrix.In general the sensitivity matrix is not square, so we 
annot use the ordinary ma-trix inverse. Even when it is square, the inverse might not exist, if the sensitivity101



5 Optimization in the 
ontext of �ltering and inversionmatrix is singular. Instead, we perform a singular value de
omposition of the
n × m matrix G, i.e. we fa
torize it into three matri
es

G = UΛVT. (5.32)The n × n matrix U spans the data spa
e, while the m × m matrix V spans themodel spa
e. The n×m matrix Λ 
ontains the non-negative singular values on itsdiagonal. If n < m, i.e. we have more model parameters than data and are solvingan underdetermined problem, we will have n − m singular values that are exa
tly0. But even when n ≥ m, the magnitude of the eigenvalues 
an span severalorders of magnitude and we 
an 
onsider values below a 
ertain threshold p aszero for numeri
al purposes. Setting these eigenvalues to zero gives the trun
atedsingular value de
omposition
Gp = Up ΛpVT

p (5.33)and the 
orresponding generalized inverse
G−g

p = VpΛ−1
p UT

p. (5.34)Comparing equations 5.31 and 5.34, we see that with in
reasing threshold, i.e.,using only the eigenve
tors asso
iated with large eigenvalues, the model 
ovarian
ebe
omes smaller and smaller. This de
rease in 
ovarian
e 
omes at a pri
e though.Re
alling from equation 5.7 that
dobs = Gmtrue (5.35)and realizing that our estimated model mest is given by

mest = G−gdobs, (5.36)we see that in the trun
ated 
ase
mest = G−gdobs = Gp

−gGp mtrue = Rmtrue. (5.37)The matrix R is 
alled the resolution matrix. If we do not have any vanishingsingular values and do not trun
ate, we theoreti
ally 
an re
over the true model.This model will be strongly in�uen
ed by noise in the data though. Removingsmall singular values stabilizes the model, but R will no longer be the identitymatrix and we re
over a �ltered version of the true model
R = Gp

−gGp = VpV
T
p. (5.38)102



5 Optimization in the 
ontext of �ltering and inversionThus with in
reasing trun
ation level we redu
e the model 
ovarian
e, but the
orresponding model be
omes a strongly �ltered version of the true model [e.g.Kals
heuer and Pedersen, 2007℄. Conversely the null-spa
e proje
tion matrix
P = I − R (5.39)indi
ates possible 
hanges in the model that have no or only minor impa
t on thepredi
ted data.Muñoz and Rath [2006℄ use this fa
t to 
onstru
t a model perturbation algo-rithm that illustrates the range of possible models that 
an explain the data

mc = m0 + P∆m. (5.40)A random model perturbation is proje
ted into the null-spa
e and added to theinversion model to 
onstru
t an equivalent model in terms of data mis�t. We haveto bear in mind though that this approa
h is based on a linear approximationaround the inversion model and monitor the 
hange in data mis�t to avoid vio-lating the approximation. Alternatively Kals
heuer and Pedersen [2007℄ employ anon-linear analysis whi
h is 
omputationally mu
h more demanding, but improvesthe a

ura
y of the results.We will use the simple perturbation algorithm des
ribed by Equation 5.40 toexamine in how far we 
an modify our resulting models to violate the joint interfa
eassumption of the joint inversion approa
h.
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If my answers frighten you Vin
ent, then you should 
ease askings
ary questions. Jules Winn�eld
6Is it real? Testing the algorithmand appraising the inversionresults

Now that we have a good understanding of the inner workings of the inversionmethod, we 
an start to examine the datasets and their behaviour in an inversionpro
edure. First, we will de�ne the exa
t obje
tive fun
tions we use for ea
h of thedatasets, and explain the motivation behind these 
hoi
es. Then we will look atthe dependen
e of the individual obje
tive fun
tions on the model parameters, toidentify a suitable set of parameters for the inversion pro
edure. Finally, we lookat the inversion results from syntheti
 data 
reated from realisti
 Earth models,to see in how far the geneti
 algorithm 
an distinguish between 
ompatible andin
ompatible datasets in the 
ase of MT and re
eiver fun
tion inversion. In thepro
ess we introdu
e some additional tools to quantify the 
ompatibility of thedatasets.6.1 De�ning the individual obje
tive fun
tionsAlthough Equation 5.4 fully des
ribes the mis�t 
riterion of the inversion pro
e-dure, we have to make a number of 
hoi
es for ea
h dataset that will in�uen
e theresults of the inversion. The two main de
isions we have to make are, (1) whi
hdata to use and (2) how to spe
ify the 
orresponding error. The �rst de
ision ismainly of 
on
ern for magnetotelluri
 data, while the se
ond 
on
erns mostly the104



6 Is it real? Testing the algorithm and appraising the inversion resultsre
eiver fun
tion data.The best, and most a

urate, way to model our data would be to 
reate a fullthree-dimensional model of the region of interest and model all aspe
ts of bothdatasets. Even though 3D forward modelling 
odes for both MT and teleseismi
data exist [Siripunvaraporn et al., 2002, Avdeev, 2005℄, and individual 3D inver-sion is slowly 
oming within rea
h [Weiland et al., 1995, Siripunvaraporn et al.,2005, Avdeeva and Avdeev, 2006℄, the forward modelling 
odes are 
omputation-ally too demanding for our geneti
 algorithm approa
h. The more e�
ient lin-earized methods might be 
omputationally feasible, but the issue of possible mis-mat
hes between seismi
 and ele
tri
 stru
ture would be 
ompletely ignored insu
h an approa
h as demonstrated with the simple example in Chapter 5. With-out independent information, an indi
ator of the 
ompatibility of the datasets isequally as important as the best �tting model. For this reason we have to 
onstrainourselves to a 
omputationally feasible 1D approa
h.For the MT data, we 
hoose to model the real and imaginary parts of theBerdi
hevskiy invariant [Berdi
hevskiy and Dmitriev℄ of the observed and pre-di
ted data to 
al
ulate the mis�t in Equation 5.5. For the syntheti
 input modelsthat we examine here the 
hoi
e of the invariant does not have any impa
t, as forthe syntheti
 1D data we invert the invariant is equal to the o� diagonal elements.For re
orded data, the invariant has two important e�e
ts: For purely one dimen-sional data that are a�e
ted by random noise, the averaging pro
ess redu
es theimpa
t of the noise. For data that are not stri
tly one dimensional, and where thethe two polarizations di�er, the Berdi
hevskiy invariant makes the inversion dataindependent of the 
oordinate system by 
ombining the information from bothpolarizations to 
reate an average one dimensional approximation.For the re
eiver fun
tions, we have to make a modi�
ation to Equation 5.5.We do not have individual error estimates for ea
h datapoint, but only an overallrelative error for the entire re
eiver fun
tion. Also, a number of datapoints will be
lose or equal to zero. For these datapoints the division by a relative error will benumeri
al unstable. For this reason we 
ompute the squared di�eren
e betweenobserved and modelled data, and divide the sum by a 
onstant relative errorestimate. Unfortunately this also removes the equalizing property from Equation5.5, and therefore we have to ex
lude the initial 
orrelation peak that is numeri
allymu
h larger than the part of the re
eiver fun
tion we are interested in.6.2 Choosing the inversion parametersFor the following syntheti
 tests and the inversions of real data we use a 
rossoverprobability pc = 0.6 and a mutation probability of pm = 0.2. Experiments with105



6 Is it real? Testing the algorithm and appraising the inversion resultsdi�erent values have shown that these two values provide a good 
ompromisebetween su�
ient innovation and preservation of well performing models. Thepopulation size is usually set to Np = 1000 and we perform 100 iterations. Whenthese numbers di�er we will indi
ate it in the text.The model parameters we use in the inversion are the logarithm of ele
tri
alresistivity log(ρi
el), the thi
kness of ea
h layer ti, and the S-wave velo
ity vi

s. Intheory the shape of the re
eiver fun
tion also depends on P-wave velo
ity vi
p anddensity ρi. Tests with di�erent P-wave velo
ities and densities revealed, that thisdependen
y is poorly resolved. We therefore predi
t these values from the S-wavevelo
ities through the relations [Owens et al., 1984℄

vp =
√

3vs, and (6.1)
ρ = 0.77 + 0.554vs. (6.2)These relationships help to redu
e the number of parameters and 
on
entrate thesear
h on the resolvable parts of the model, while at the same time keeping theunresolved parameters at realisti
 values.One well known property of re
eiver fun
tions is that they have a substantialtrade-o� between the thi
kness and the velo
ity of the surfa
e layer [Ammon et al.,1990, Sambridge et al., 2006℄. The 
hara
teristi
s of this trade-o� are shown inFigure 6.1. We 
ompute the mis�t between a syntheti
 two-layer test model with

2% added noise and a number of test models with varying layer thi
kness andvelo
ity in the top layer. We 
an see an elongated valley of low mis�t values;within this valley the mis�t 
hanges only gradually. The position and shape ofthis valley 
an be easily understood by looking at Equation 4.18. An in
rease in
vs 
an be 
ompensated for by a de
reased layer thi
kness h, and result in the samelag time for the 
onversion. The transmission 
oe�
ient for the P-to-S 
onversionalso depends on vs and h, and 
onsequently the amplitude of the 
onversion willbe di�erent for di�erent parameter 
ombinations. However this dependen
y isonly weak, so within the valley we only have poor sensitivity to di�eren
es instru
tures. As mentioned in the dis
ussion about regularization, this problem iswidespread in geophysi
al inverse problems and not restri
ted to re
eiver fun
tioninversion. The issue of non-uniqueness will be of major 
on
ern when we examineour results.It is also interesting to observe that there are a number of se
ondary lo
alminima far away from the global minimum. Parti
ularly at low velo
ities, weobserve a number of ridge stru
tures in the error surfa
e. These ridges provideobsta
les for linearized inversion s
hemes if the starting model is 
hosen in anarea between two of them. This provides another 
ompelling reason to use a non-linearized inversion instead of a linearized approa
h to invert re
eiver fun
tion106
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Figure 6.1: Re
eiver fun
tion mis�t as a fun
tion of layer thi
kness and S-wavevelo
ity of the surfa
e layer. The true model parameters are marked by a whitedot. The 
olour illustrates the length and dire
tion of the gradient ve
tor.data [Shibutani et al., 1993℄. Even when using a GA the stru
ture of the errorsurfa
e demonstrates the need to set the surfa
e velo
ity to a �xed value. For thesyntheti
 tests we present here, we set the velo
ity to the true value of the inputmodels. For the real data inversion that we des
ribe in Chapter 7, we will takevalues from regional and global 
rustal velo
ity models [Dziewonski and Anderson,1981, Perry et al., 2002, Chen et al., 2007℄.6.3 Conne
ting seismi
 velo
ities and ele
tri
al
ondu
tivitiesArguably the most important 
hoi
e we have to make when we set up the inversionis how we link the magnetotelluri
 and seismi
 models to 
onstru
t a joint model.107



6 Is it real? Testing the algorithm and appraising the inversion resultsIn our approa
h, the 
oupling between the seismi
 and magnetotelluri
 models ispurely based on 
oin
ident layer boundaries. The model ve
tor only 
ontains oneset of layer thi
kness values that is used for both types of forward models. Theresistivities and velo
ities within ea
h layer 
an vary independently, and there isno restri
tion on the gradient or se
ond derivatives between the layers. This typeof 
oupling provides only a loose 
onne
tion between the models, and is the one-dimensional analogue to the 
ross-gradient approa
h [Gallardo and Meju, 2003℄.The 
ross-gradient between two models is de�ned as
t(x) = ∇m1(x) ×∇m2(x). (6.3)It allows 
hanges in the parameters of both models in the same dire
tion, or a
hange in only one of the models while the other model stays 
onstant. In 1D the
ross-gradient is always zero, but our 
oin
ident layer approa
h provides a suitableapproximation.This is, of 
ourse, not the only possible approa
h. Saunders et al. [2005℄ use reg-ularization based on the se
ond derivative to 
ouple ele
tri
al and seismi
 stru
turein a sedimentary environment. In their 
ase the seismi
 model is �xed and onlyused to guide the ele
tri
al inversion. Another problem with their approa
h, aswell as the similar one used by Haber and Oldenburg [1997℄, is that ea
h time oneparameter 
hanges, the other has to 
hange too.Even more restri
tive would be a fun
tional 
oupling between the two parame-ters, where one parameter value is 
al
ulated from the other by some user spe
i�edfun
tion. For now, while we do not have a good understanding of the expe
tedrelationship between ele
tri
al 
ondu
tivities and seismi
 velo
ities, we will useonly the loose 
onstraints of 
oin
ident layer boundaries. We will return to thisdis
ussion when we look at the inversion of real data.6.4 Testing the inversion pro
edure with syntheti
data: A simple problemWe test our joint inversion algorithm with syntheti
 input data that we 
al
ulatedfrom a known model. We will start with noise free data from simple models, andgradually make the task more di�
ult by adding noise and making the modelsmore 
omplex. This will help to 
larify a number of questions that we mentionedbefore:� Can we retrieve the input models ?� Can we distinguish 
ompatible from in
ompatible models ?108



6 Is it real? Testing the algorithm and appraising the inversion results
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vS [km/s]Figure 6.2: The models used to 
reate the 
ompatible test problem (left) and thein
ompatible test problem (right).� How robust is the geneti
 algorithm inversion ?The �rst set of models we will test is shown in Figure 6.2. On the left handside we see MT and seismi
 models with a single, 
oin
ident layer interfa
e. Thiss
enario is the simplest possible situation for the inversion algorithm. Both meth-ods have good independent resolution for the thi
kness of the upper layer andthe layer parameters. Therefore 
ombining the two datasets should simplify theinversion and we 
an expe
t to retrieve both models.In 
ontrast, the two models on the right hand side in Figure 6.2 do not have any
oin
ident layer boundaries. The seismi
 model remains the same, but the magne-totelluri
 model now 
onsists of 4 layers. The �rst 
ondu
tive layer at 15 − 20 kmdepth models a widespread observation in MT measurements of a 
ondu
tive layerin the lower 
rust [Jones, 1992℄. Again this model does not pose any problems foran individual inversion, we have to bear in mind though that, in the presen
e ofdata errors, magnetotelluri
s does not resolve the 
ondu
tivity and thi
kness of a
ondu
tive layer well, but mainly its produ
t, the 
ondu
tan
e [Weidelt, 1985℄.This non-uniqueness problem in prin
iple allows the joint inversion algorithm toadjust the parameters of this layer to move the boundary where it is required bythe seismi
 data. The MT and re
eiver fun
tion data that we use as input for theinversion pro
edure is shown in Figure 6.3.Noise free dataFirst, we perform a joint inversion on noise free syntheti
 data. We set the numberof inversion layers to 4 in both 
ases and assume an error �oor of 2%. This numberof layers provides enough �exibility to �t all of the models individually, but doesnot allow modelling both stru
tures in the in
ompatible 
ase simultaneously.109
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Figure 6.3: The syntheti
 MT data with 5% added noise for the 
ompatible prob-lem (upper left) and the in
ompatible problem (upper right). We do not show thenoise free MT data, as it essentially is just a smooth version of the noisy data.The re
eiver fun
tions for both problems are plotted in the lower row; the 
leanre
eiver fun
tion (lower left) and with 5% added noise (lower right).Figure 6.4 shows the resulting fronts from 20 individual runs on ea
h test prob-lem. The pi
ture we obtain is similar to the results of the test problem in Chapter5 under ideal 
onditions. In all 
ases the inversion of the 
ompatible models yieldsa single model with an RMS below 1. This indi
ates that we �t the data betterthan the estimated noise level. The mis�t values for the re
eiver fun
tion datavary slightly between di�erent runs of the inversion, but for the magnetotelluri
data we rea
h the same mis�t in all 
ases.For the in
ompatible test problem the Pareto-front looks radi
ally di�erent. Asexpe
ted, the algorithm 
annot �nd a 
ommon model that �ts both the MT andthe re
eiver fun
tion data simultaneously. Instead we obtain a trade-o� 
urvewhere only one or the other mis�t value is su�
iently low. The lowest individual110
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Figure 6.4: Comparison of the Pareto-fronts for 20 runs on the 
ompatible andin
ompatible test problem. The syntheti
 input data were noise free.mis�t values are again below an RMS of 1. For this test s
enario we only a
hievemis�ts 
omparable to the 
ompatible models for the re
eiver fun
tion data. Thebest mis�t for the MT data is nearly an order of magnitude higher than for the
ompatible test 
ase, although their RMS's would still 
lassify them as suitablemodels. These results are en
ouraging be
ause they show that, at least in thissimple situation, the properties we observed for the arti�
ial test problems alsoapply to our joint inversion problem.Figure 6.5 shows the inversion output for the un
orrelated 
ase in two di�erentperspe
tives. On the left hand side we 
an see all models for one parameter plottedin the same graph. This gives us an impression of the spread of the models, butit is di�
ult to judge how many models have the same values in a 
ertain region.For this reason we plot a 2D histogram of the model values on the left hand side.For a range of model parameters and depths we plot the number of models thathave a given parameter value at that depth. In both 
ases we also plot the inputmodels for 
omparison.Most of the re
eiver fun
tion models reprodu
e the velo
ity dis
ontinuity at35 km depth 
orre
tly. This agrees with the observation in Figure 6.4 that the111
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Figure 6.5: Resulting models from a single run for the un
orrelated test 
ase. Onthe left hand side we plot all individual models for one parameter together in asingle plot. The input model is shown as a dashed line. In addition to the inversionparameters vs and ρ, we also plot the 
ondu
tan
e G for the ele
tri
al parameters.On the right hand side we plot a 2D histogram that shows the number of modelsfor a given parameter pair. The input models are shown as lines.RMS for most models is below 1. There is a small number of models howeverthat do not 
ontain the dis
ontinuity. These are the models that have their layerboundaries at the resistivity dis
ontinuities. Due to the small number of layers,the algorithm has to 
hoose between putting the layer interfa
es at the seismi
boundaries or ele
tri
al boundaries.For the ele
tri
al models the pi
ture is less 
lear. While the near surfa
e anddeep resistivity values are 
orre
tly reprodu
ed, even without �xing any resistiv-ities, we observe a large number of di�erent boundaries at intermediate depths.Only a small number of models reprodu
es the �rst 
ondu
tive layer 
orre
tly.As we spe
ulated before, a number of models shows a smeared representation ofthat layer. Instead of a thin and highly 
ondu
tive layer, we observe a mu
hthi
ker and less 
ondu
tive layer whose lower boundary 
oin
ides with the seismi
112
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Figure 6.6: Comparison of the Pareto-fronts for 20 runs on the 
ompatible andin
ompatible test problem. Both MT and RF data had 5% random noise added.dis
ontinuity. This way the inversion algorithm 
an reasonably reprodu
e bothdatasets. In other 
ases this layer is not present in the inversion results. The ex-pression of this layer in the data is small and the gain in terms of mis�t is higherif the asymptoti
 behaviour is reprodu
ed 
orre
tly. Virtually all models 
ontaina highly resistive layer at depths of about 50 km. This is another non-uniquenessphenomenon with limited-bandwidth magnetotelluri
 data. Dire
tly below a 
on-du
tive layer we 
annot resolve the resistivity of a more resistive layer. One way toavoid these arti�
ial stru
tures is to introdu
e regularization. We will show resultsfrom a regularized inversion later. From the plot of 
ondu
tan
e with depth forall models we 
an see that the 
ondu
tan
e, in 
ontrast to the resistivities, is well
onstrained at depths >40 km [Weidelt, 1985℄.Adding 5% noiseObserved data are never 
ompletely noise free, so we have to examine the impa
tof noise on our inversion s
heme. We therefore add 5% random noise to the realand imaginary parts of the impedan
e tensor elements, and to the two 
omponents113
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Figure 6.7: 2D histogram of re
eiver fun
tion (left) and MT (right) inversionmodels for the 
ompatible test 
ase with 5% added noiseof the syntheti
 seismograms, shown in Figure 6.3. In this 
ase we have used thewaterlevel de
onvolution algorithm to 
al
ulate both re
eiver fun
tions, to in
reasethe impa
t of the noise. In the noisy example we 
an still 
learly identify the threepositive 
orrelation spikes, but the negative multiple 
onversion is now buried innoise. We also observe a number of additional lo
al minima and maxima that,at �rst sight, 
annot be distinguished from the original 
onversions, and we willsee how these 
an add arti�
ial stru
tures in the inversion. This appearan
e of are
eiver fun
tion is representative for a fair quality real data example (
ompareFigure 4.6), so we 
an expe
t to en
ounter similar e�e
ts with real data.Figure 6.6 shows the Pareto fronts for 20 runs of the geneti
 algorithm on bothtest problems. In addition we plot the mis�t level we a
hieve when we invertthe data individually with a linearized inversion. The general appearan
e of thegraph is similar to Figure 6.4, but there are some important di�eren
es. For the
ompatible input models, we now get a number of output models with identi
alMT mis�t, but varying re
eiver fun
tion mis�t in ea
h run. For the in
ompatiblemodels, the range in both the MT and the re
eiver fun
tion mis�t has de
reasedsubstantially. Before there was an order of magnitude di�eren
e in mis�t for bothdata types, now it is a fa
tor of 5 for the MT mis�t, and less than a fa
tor of 2for the re
eiver fun
tion mis�t. Also the separation between the 
ompatible andin
ompatible results de
reased. Still the two groups 
learly separate; there is noneof the overlap we observed in Figure 5.9, so we 
an distinguish the two 
ases.Figure 6.7 shows the model histograms for the 
ompatible test 
ase. Comparedwith the noise free results, the re
eiver fun
tion models now 
ontain a larger degreeof arti�
ial stru
ture that is not present in the input models. The MT data, in
ontrast, seems to be mu
h less a�e
ted by noise; the in
rease in s
atter is less114
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6 Is it real? Testing the algorithm and appraising the inversion resultssevere. The explanation for this observation is simple. The amplitude 
hangesin re
eiver fun
tions are 
reated by velo
ity 
ontrasts at layer boundaries. As weremarked before, the appearan
e of the noise resembles the data. Therefore itis easy for the inversion algorithm to reprodu
e some of the noise by introdu
ingadditional layer boundaries with velo
ity 
ontrasts. The noise for MT, on the otherhand, is usually a high frequen
y phenomenon. Unless the data are systemati
allybiased, only a small number of frequen
ies is shifted in one dire
tion. The di�usivenature of the indu
tion pro
ess distributes the e�e
t of 
hanging the 
ondu
tivityor position of a layer over several neighbouring frequen
ies. If we only use a smallnumber of layers, this e�e
t prevents the introdu
tion of strong artifa
ts due tonoise.Looking at the resulting models for the un
orrelated test 
ase displayed in Figure6.8 mostly 
on�rms the impression we already gained with the 
ompatible testproblem. The shallow and deep stru
ture of the MT model are well represented.Somewhat surprisingly we do not observe the high resistivity layer at intermediatedepths. Ironi
ally, this is most likely due to the noise in the re
eiver fun
tiondata. As we saw with the 
orrelated 
ase, the re
eiver fun
tion models 
ontain a
onsiderable amount of arti�
ial stru
ture that results from �tting noise. This doesnot leave su�
ient freedom for the algorithm to introdu
e unresolved stru
ture inthe MT models, but requires a 
on
entration on the essential features. Although inthis 
ase the artifa
ts in the seismi
 model are 
ertainly undesirable, this stabilizinge�e
t is one of the obje
tives we want to a
hieve when we perform joint inversion.A possible solution to suppress the in�uen
e of noise, is to use a more robustmeasure of mis�t. Using the l1-norm, instead of the 
ommonly used l2-norm, re-du
es the in�uen
e of high amplitude data and makes the inversion less prone tooutliers [Farquharson and Oldenburg, 1998℄. Our geneti
 algorithm allows 
om-plete �exibility in the kind of norm we employ, and we show the results using an
l1-norm measure of mis�t for the re
eiver fun
tion data in Figure 6.8b. Otherwiseall inversion parameters are kept the same. There are some dis
ernable di�eren
eswhen 
omparing the distribution of models to the l2-norm results, but overallthe di�eren
e is only minor. We still observe artifa
t stru
tures, although moremodels now 
orre
tly reprodu
e the velo
ity 
hange at 35 km.Finally we examine the e�e
t of in
reasing the number of layers to 6. Theoverall e�e
t is only minor, as we 
an see in Figure 6.8
. The trade-o� 
urves (notshown) have a similar appearan
e to the ones shown in Figure 6.6 for 4 inversionlayers. As 
an be expe
ted, there is a larger amount of arti�
ial stru
ture in there
eiver fun
tion models, as the algorithm now has more freedom to model noise
ontributions. In 
ontrast, the MT model is not greatly a�e
ted by the 
hange ofinversion layers, its overall appearan
e is 
omparable to the 4 layer 
ase.116
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Figure 6.9: 2D histogram of re
eiver fun
tion (left) and MT (right) inversionmodels for the in
ompatible (top) and 
ompatible (bottom) test 
ases with 5%added noise, and regularization based on the model gradient. The lines mark theinput models.Adding regularizationAs we remarked before, adding regularization as a third obje
tive fun
tion 
om-pli
ates the analysis of the Pareto-front, whi
h, so far, has proven to be a reliableindi
ator of the 
ompatibility of the seismi
 and ele
tri
 models. The appearan
eof arti�
ial stru
tures in the seismi
 models, on the other hand, is a serious issuewhen we invert and interpret measured data, so the added 
omplexity might bea small pri
e to pay. We will test two types of regularization, with or without areferen
e model. Without a referen
e model we will minimize the model gradient,as given by Equation 5.29. With a referen
e model, we minimize the deviationfrom that model, given by Equation 5.28. The 
al
ulation of deviation from thereferen
e model is only based on seismi
 velo
ities and layer thi
knesses however.Typi
al variations in seismi
 velo
ities are on the order of a few per
ent and goodglobal referen
e models exist that summarize the average stru
ture of the Earth.117
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Figure 6.10: 2D histograms of re
eiver fun
tion (left) and MT (right) inversionmodels for the 
ompatible (top) and in
ompatible (bottom) test 
ases with 5%added noise, and regularization based on di�eren
e to PREM. The turquoise linemarks the input model, while the white line shows the referen
e model for theseismi
 parameters.For MT, the variations are often several orders of magnitude, and no global ref-eren
e models exist. Therefore, we do not have a good referen
e point whi
h we
an use for regularization of the ele
tri
 models.For model gradient based regularization, we obtain the models shown in Figure6.9. For the MT models, the e�e
t of regularization is exa
tly as we would expe
t.Instead of a sharp 
ontrast, we get a number of models that have a gradual 
hangeof 
ondu
tivity between the layers. Being an indu
tive method, MT only haslimited resolution to the 
ondu
tivity gradient. Therefore regularization fa
ilitatesthe sele
tion of models with gradual 
hanges and the impa
t on the mis�t is onlyminor. For the re
eiver fun
tion model the pi
ture is similar, but we also observenow that a number of models shows no velo
ity 
ontrast at all. This is 
ertainlya 
ase of over-regularization. We have to bear in mind though that these plots118



6 Is it real? Testing the algorithm and appraising the inversion resultssummarize all models regardless of regularization level.Comparing these histograms with the histograms in Figure 6.10, displaying theresults for referen
e model regularization, we see a number of di�eren
es. The MTmodels appear to re�e
t the subsurfa
e stru
ture better than with the gradientbased regularization. It is important to note though that these models have onlybeen regularized indire
tly. The di�eren
e to the referen
e model is only 
al
ulatedbased on layer thi
kness and seismi
 velo
ities, the ele
tri
al 
ondu
tivities play norole in the regularization. The 
onstraints on thi
knesses on the other hand, limitpossible model geometries and therefore, indire
tly, limit the range of possible
ondu
tivity values.The re
eiver fun
tion models also appear to resemble the input model more thanwith the previous approa
h. When 
omparing these models with the referen
emodel used for regularization, we dis
over that the results are mostly in�uen
edby this referen
e model. The fa
t that the seismi
 velo
ities only vary by a fewper
ent and that depth to the Moho only varies by ±15 km in most 
ontinentalareas, makes it appear on this s
ale that we re
overed the input model. Againthese plots only summarize all models the inversion algorithm retrieved, but donot take into a

ount the mis�t and other 
hara
teristi
s of any of those models.We have to analyze the trade-o� between the di�erent 
riteria to identify theoptimum model.As mentioned above the trade-o� is now represented by a 
ompli
ated-shapedsurfa
e that 
an only be faithfully represented in three-dimensional plots. Exper-iments with di�erent viewing angles and plotting styles showed that, while wellvisible on the 
omputer s
reen, the printed versions do not provide mu
h insightinto the shape of the surfa
e, as the sense for the third dimension gets lost. Wetherefore de
ided to represent the model roughness by 
olour, interpolated be-tween the models and with added 
ontours. While this plotting style has thedisadvantage of suggesting values where we do not have any data (best seen in theupper right plot of Figure 6.11), it gives the best sense of the trade-o� 
hara
ter-isti
s of the di�erent 
riteria. To show in whi
h region the 
olour is appropriatewe also plot the position of the models as bla
k 
ir
les.Figure 6.11 shows plots for the four setups we 
onsidered so far. For the 
orre-lated 
ase with regularization based on the gradient, we observe a 
loud of modelswith varying mis�t values for MT and re
eiver fun
tions, roughly distributedwithin a re
tangular area. The 
oloured 
ontours reveal that the roughness valuesasso
iated with ea
h model group in bands more or less parallel to the abs
issa.We �nd the highest roughness values with the lowest MT and RF mis�t valuesand vi
e versa, just as we would expe
t. Within ea
h range of roughness values,i.e., ea
h regularization level, we 
an �nd a small 
luster of models with low mis�t119
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Figure 6.11: Trade-o� plots for the two test s
enarios with di�erent types ofregularization. The upper row shows the results for the 
ompatible input datawith gradient based regularization (left) and regularization with a referen
e model(right). The lower row shows the same for the in
ompatible input data.values for both datasets. These are the optimum models for that regularizationlevel.When we 
hange the type of regularization and use a referen
e model the pi
ture
hanges in some sense but also retains some similar features. The largest 
hangewe observe, is that the 
loud of models 
ollapses to a line parallel to the y-axis.The re
eiver fun
tion mis�t 
hanges, while the MT mis�t stays nearly 
onstant.As mentioned before, the ele
tri
al model does not have a dire
t impa
t on theregularization value. Hen
e whenever the algorithm �nds a model with lower MTmis�t for a given RF mis�t, the new model dominates the old one and repla
esit. We observe a few 
ases where the models do not plot along the main line.These are most likely 
ases where the algorithm did not 
onverge fully to theoptimal solution. Again we observe bands of similar roughness values, although120
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Figure 6.12: RF mis�t � roughness trade-o� 
urve for an MTmis�t of 0.8−1.2 (left)and the 
hosen best models based on the maximum 
urvature 
riterion (right).this appearan
e is mostly due to the surfa
e plotting algorithm. Still, within themain line of models, we 
an 
hoose a regularization level and �nd an optimummodel.When we look at the in
ompatible test 
ases, we 
annot �nd a single optimummodel for a given regularization level any more. Parti
ularly for high roughnessvalues, i.e., low regularization, we get separate 
lusters of models with the sameregularization value, but either a low MT mis�t or a low RF mis�t. This situ-ation is analogous to the behaviour of the trade-o� without any regularization.We do not obtain any models that minimize re
eiver fun
tion and MT data si-multaneously. The re
tangular area that we observed for the 
ompatible 
ase isnow missing its lower left 
orner. The di�eren
es between the two types of reg-ularization for the in
ompatible 
ase are similar to the 
ompatible 
ase. Whenregularized with respe
t to a referen
e model, the models 
on
entrate in a linearfeature. Only now this line is o�set to higher MT mis�t values for low RF mis�tvalues, as we would expe
t.As an example we show how to �nd the best model for the 
orrelated test 
asewith gradient based regularization. From the full trade-o� plot we sele
t all modelswith an MT RMS between 0.8 and 1.2. By 
hoosing an RMS of about 1 we avoid�tting noise 
ontributions. For these models we 
an now plot the trade-o� betweenre
eiver fun
tion mis�t and roughness as shown in Figure 6.12. The plot resemblesthe trade-o� plot for a single obje
tive regularized problem, although, due to theproje
tion of a range of MT mis�t values, not all models are Pareto-optimal inthe spa
e spanned by the two obje
tive fun
tions. Still, we 
an pi
k an optimummodel by 
hoosing the point of maximum 
urvature [Hansen, 1992℄. This point ismarked in the trade-o� plot and the 
orresponding models are shown on the right121
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Figure 6.13: The input models used to 
reate our three realisti
 test 
ases. In all
ases the seismi
 model (upper right) remains 
onstant. Only the MT 
hanges to
reate a 
ompatible (upper left), partially 
ompatible (lower left) and in
ompatible(lower right) test 
ase.
hand side of Figure 6.12.We observe that the MT model agrees well with the input model. The layeris reprodu
ed 
orre
tly and we observe only minor �u
tuations around the truemodel in the lower part. This suggests that the 
hosen level of regularization is
orre
t for the MT data. The re
eiver fun
tion model does not �t as well. Althoughthe depth to the Moho is 
orre
tly re
overed, the velo
ities in the lower part aresystemati
ally too low. In addition we observe a number of arti�
ial low velo
itylayers with deviations that are substantial for seismi
 data. Comparison withthe other seismi
 models along the trade-o� 
urve shows that this is a 
onsistentfeature 
aused by the noise in the re
eiver fun
tion.122
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Figure 6.14: Syntheti
 input data generated from the models in Figure 6.13. Weonly display the noise free MT data (left), but show the re
eiver fun
tion datawith 5% added noise (top right) and noise free (bottom right).6.5 A more realisti
 modelWe now look at a more representative test 
ase. The two-layered model showed thepotential of our approa
h, but the situation we 
an expe
t to �nd in the subsurfa
eis 
ertainly more 
ompli
ated than that. Figure 6.13 shows the models we use totest the algorithm in this se
tion. In addition to the two s
enarios we tested inthe last se
tion, we add a partially 
orrelated test 
ase. In this 
ase the Moho andlithosphere-asthenosphere interfa
es 
orrelate, but some other interfa
es do not.The seismi
 model is based on PREM with some small velo
ity perturbations inthe upper mantle, and is the same in all three 
ases. We vary the MT model to
reate varying degrees of 
orrelation. Figure 6.14 shows the syntheti
 data thatwe 
reate from these models.There are some visible di�eren
es between the three MT datasets both in ap-parent resistivity and phase, but in the period range of 1−500 s, these di�eren
esare as small as we 
an expe
t to dete
t with high quality data. Thus the threetest s
enarios will be mu
h harder to distinguish than the simple examples be-fore. Furthermore we 
annot expe
t to resolve the small velo
ity and 
ondu
tivity
hanges in the sub-Moho layers. We will examine these 
ases in the same wayas we did in the previous se
tion. First, we use noise free data to see what is123
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Figure 6.15: Comparison of the Pareto-fronts for 10 runs on the 
ompatible, par-tially 
ompatible and in
ompatible test problems.theoreti
ally possible, then we add random noise to simulate observed data.Noise free dataThe parameters we use for the inversion are nearly the same as for the two-layertest 
ase. We only in
rease the number of inversion layers to 12, in order to givethe algorithm more �exibility. The 
omparison of the Pareto-fronts from di�erentruns of the geneti
 algorithm on the three test 
ases, shown in Figure 6.15, assertsthe di�
ulty to distinguish those 
ases. In 
ontrast to the two-layer test 
ase,the fronts for the 
ompatible and in
ompatible problems do not separate 
learly.Some of the Pareto-front for the 
ompatible test problem plot in the region of thein
ompatible results and their appearan
e is similar. Still, when looking at allthe fronts, the 
ompatible test problem gives lower mis�ts for both datasets andthe fronts 
ontain less models. As we would expe
t, the partially 
orrelated test
ase plots between the two extremal 
ases and the appearan
e of the front is alsomixed. Some fronts 
ontain only a small number of models and a
hieve mis�ts
omparable to the 
ompatible problem, while others resemble the in
ompatible124
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Figure 6.16: 2D histogram of re
eiver fun
tion (left) and MT (right) inversionmodels for the 
ompatible test 
ase for noise free data.problem.The model histograms for the 
ompatible 
ase in Figure 6.16 give an overviewof the type of models we retrieve. For both seismi
 and ele
tri
 models we obtainparameter values 
lose to the true value for the upper layers. The resistive layersbelow the Moho and the small velo
ity variations in the same depth region arenot well reprodu
ed, as we dis
ussed before. It is interesting to note thoughthat most of the ele
tri
 and seismi
 models reprodu
e the 
hanges between thelayers fairly well. For the deeper parts of the model, the ele
tri
 inversion modelsapproa
h the value of the half-spa
e, while the seismi
 models overestimate thevelo
ity at depth. The reason for this behaviour is that the re
eiver fun
tiondata, as explained before, is mostly sensitive to 
hanges in seismi
 velo
ities. Ifthe velo
ity 
hange is modelled in
orre
tly at one interfa
e, subsequent interfa
eswill still reprodu
e the relative 
hanges 
orre
tly,but the seismi
 velo
ities remainbiased. Be
ause of the velo
ity�thi
kness trade-o� of re
eiver fun
tion data, thiswill also shift the position of the interfa
es. This is exa
tly what we observe inthis plot.Adding 5% noiseIn analogy in the two layer test 
ase, we add 5% random noise to both datasetsin order to simulate measured data. The resulting trade-o� 
urve is shown inFigure 6.17. As we expe
t, the noise makes it even more di�
ult to distinguishthe three di�erent 
ompatibility situations in the trade-o� plot. Now all fronts
omprise a number of models regardless of whether the input data was produ
edby 
ompatible, in
ompatible or partially 
ompatible models. Also the level of125
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Figure 6.17: Comparison of the Pareto-fronts for 10 runs on the 
ompatible, par-tially 
ompatible and in
ompatible test problems.mis�t that we a
hieve is similar for all three test 
ases. There is one visibledi�eren
e between the 
ompatible and in
ompatible 
ases, however. Apart fromthree runs, all 
ompatible Pareto-fronts show a near verti
al trade-o�. Withinthis trade-o� 
urve it is easy to pi
k the best model, be
ause a substantial gainin re
eiver fun
tion mis�t 
omes at a small de
rease in MT mis�t. In addition,all MT mis�ts are below an RMS of 1. For the in
ompatible 
ase, most trade-o�
urves show a mu
h larger de
rease in MT mis�t and are missing the lower left
orner. There is one ex
eptional run though, where we simultaneously a
hievelow MT and re
eiver fun
tion mis�t. Even when we in
rease the population sizeby a fa
tor of 2 and the number of iterations to 150, these observations remainessentially the same.The histograms in Figure 6.18 summarize the inversion results for a single runon ea
h of the test 
ases. The general observations agree with what we alreadyobserved in the two layer 
ase. Only now, due to the in
reased number of inversionlayers and model 
omplexity, the e�e
t of noise is even more pronoun
ed. Overall,the re
eiver fun
tion models are more strongly a�e
ted by noise. Where the MTmodels, at least in a general sense, reprodu
e the feature of the input model,126
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Figure 6.19: Trade-o� plots for the three test s
enarios with regularization basedon the model gradient. The upper row shows the results for the 
ompatible inputdata (left) and partially 
ompatible data (right). The lower row shows the samefor the in
ompatible input data.
the re
eiver fun
tion models show a high degree of artifa
ts in the upper part ofthe model. At depths between 100 and 170 km the majority of the models arereasonably a

urate. It is puzzling though that the velo
ity of the lowermost layeris severely biased downwards for the 
ompatible models. Even when 
onsideringthe mis�t of the re
eiver fun
tion data and sele
ting the best model (not shown),we observe the same 
hara
teristi
s as in the summary histogram. It is thereforeimportant to make sure that we use high-quality re
eiver fun
tion data when weapply the inversion algorithm to real data. Also a good regional seismi
 model
an be used as a referen
e model to suppress some of the artifa
ts as we showedfor the two layer 
ase before. We will now see in how far regularization helps inthis 
ase. 128
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Figure 6.20: Histograms of the inversion results for the 
ompatible test problemwith gradient based regularization. The ele
tri
 models (right) seem to representthe input better than the seismi
 models (left).Adding regularizationThe trade-o� plots for the regularized runs in Figure 6.19 overall have a similarappearan
e as for the two-layer 
ase. Only now the MT model seems to have themajor impa
t on the model roughness measure. For the 
orrelated 
ase, ea
h bandof similar roughness plots roughly parallel to the ordinate and for high roughnessvalues it is easy to pi
k the optimummodel. For low roughness values, i.e., smoothmodels, this be
omes in
reasingly di�
ult, mainly be
ause these models are sosmooth that they do not predi
t the data any more. For the partially 
orrelatedand un
orrelated 
ase we observe a similar phenomenon as for the un
orrelatedtwo-layer 
ase. The verti
al band of models with similar roughness values is o�setto higher MT mis�t values for low re
eiver fun
tion mis�t values. As the two-dimensional plots before, the trade-o� 
urve is missing its lower left 
orner. Fromthese plots, however, it is not possible to distinguish the partially 
ompatible fromthe in
ompatible 
ase.The model histograms in Figure 6.20 show the expe
ted pi
ture for the mag-netotelluri
 models. The sharp boundaries are approximated by a su

ession oflayers with small resistivity 
hanges similar to the model generated by the OCCAM
ode [Constable et al., 1987℄. The position of the transitions between resistive and
ondu
tive stru
tures is reprodu
ed 
orre
tly, although we do not re
over the fullamplitude of the resistive layer. This 
an be expe
ted though, as the methoddoes not have good resolution to this resistivity value. The results for the seismi
models are somewhat disappointing. It is understandable that the strong 
hangein velo
ity is now damped in the inversion models, it is un
lear however why the129
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Figure 6.21: Re
eiver fun
tion mis�t roughness trade-o� for models with an MTmis�t of ≈ 1 (left). We mark the optimum model based on the 
urvature of thetrade-o� 
urve and plot this model and the neighbouring models in the mis�t plottogether with the input model (right).relatively small 
hanges at depth between 50 and 200 km are repla
ed by a neg-ative velo
ity gradient. One would expe
t that the regularization would prefer auniform seismi
 velo
ity and the data mis�t fun
tional would 
ause the inversionto add interfa
es where the data require it. This seems not to be the 
ase for themajority of models here. We have to bear in mind again that these plots sum upall models regardless of data mis�t and roughness. We will therefore follow there
ipe laid out in the previous example to identify an optimum model and see howthis model performs.Figure 6.21 shows the trade-o� between re
eiver fun
tion mis�t and roughnessfor all models with an MT RMS of ≈ 1. In 
omparison with the two-layer 
ase,we see that the trade-o� 
urve now exhibits 
onsiderable s
atter between adja
entmodels. Still, we 
an identify the general L-shape and we pi
k one of the modelsfrom the area of maximum 
urvature as our optimummodel. We show the ele
tri
and seismi
 parameters on the right hand side of Figure 6.21 together with theinput models. The inversion results mainly re�e
t the 
hara
teristi
s we alreadyobserved in the histogram. Still, the seismi
 velo
ity is not representative of theoriginal stru
ture and we observe the 
urious negative velo
ity gradient at largedepths.We perform a sensitivity study in order to identify the reason for this gradient.Figure 6.22 shows a 
omparison between the original data with noise, the datagenerated by our preferred model, data generated from the preferred model, butwith a 
onstant velo
ity at depth, and the input data without noise. We havemarked the minima that result from the gradient with arrows. The 
omparison130
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Figure 6.22: Comparison of re
eiver fun
tion data from di�erent types of model.From top to bottom: Input model with added noise, inversion result, inversionresult with 
onstant velo
ity at depth, and input without added noise.with the noisy input data reveals that most of the minima have a 
orrespondingminimum in the inversion input. As the inversion pro
edure 
annot distinguishnoise from data, it adjusts the model stru
ture to a

ommodate this feature. Theseresults reinfor
e our previous statement that it is essential to use high-qualityre
eiver fun
tion data in the inversion, and explains why so few re
eiver fun
tionsare modelled but mainly used as an imaging te
hnique.So far we have not dis
ussed regularization with a referen
e model for thisexample. We will not show the trade-o� plots for this type of regularization, asthey resemble the two-layer 
ase as mu
h as the smooth regularization did. Wewill, however, see whether we 
an use this approa
h to �nd a better model in the
orrelated 
ase.The referen
e model we use is shown, together with the input model and ahistogram of the inversion results, in Figure 6.23. Although it reprodu
es thebasi
 shape of the input model, it does not have any of the small s
ale features,su
h as the velo
ity 
hange in the 
rust or the variations in the mantle. Obviouslythis means that a model that resembles the referen
e model will reprodu
e someimportant features of the data, but this is by no means unrealisti
, as for someparts of the Earth good regional models exist that 
an be used for regularization.The histogram of the EM-models shows that these models reprodu
e the resis-131
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Figure 6.23: Histograms of the seismi
 (left) and ele
tri
 (right) inversion modelsfor a run with regularization with a referen
e model. We plot the original model(bla
k) and the referen
e model (white) together with the seismi
 inversion results.tivity stru
ture well. We remarked before that this type of regularization does nothave dire
t in�uen
e on this part of the joint model and 
onsequently this plotresembles the results for the unregularized 
ase. Also the seismi
 model, due tothe proximity of the referen
e model to the input model, now resembles the inputmodel more than before. We re
over, although with redu
ed amplitude, the velo
-ity 
ontrast in the 
rust, that does not have a 
ounterpart in the referen
e model.The position of the Moho is similar in referen
e and input models, and thereforewell reprodu
ed by the inversion results. In the upper mantle the situation is not
lear, as input and referen
e do not di�er substantially, but we seem to re
oversome stru
tures there. There is even a small number of models that reprodu
e themain aspe
t of the velo
ity de
rease at a depth of 120 km. Somewhat surprisinglythe majority of models shows a 
onstant velo
ity in this depth range, and neitherfollows the de
rease of the input nor the referen
e model. One possible reason isthat the limited number of layers in the inversion does not allow another 
hangeat this depth.Following the same re
ipe as before to identify the optimummodel, we 
onstru
tthe trade-o� 
urve shown in Figure 6.24. As the MT data do not take part in theregularization, the a
hieved mis�t is signi�
antly below 1 for most of the models.We therefore pi
k a mis�t range that represents the best 10% of the models interms of MT mis�t. For low mis�t values the trade-o� plots as a narrow bandthat bran
hes out with in
reasing re
eiver fun
tion mis�t. This is an e�e
t ofproje
ting the three-dimensional trade-o� points onto a plane. The optimummodel, where the 
urve bends most strongly, still lies in the region where we haveonly a single bran
h. The 
omparison of the resulting inversion model with the132
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Figure 6.24: Trade-o� between re
eiver fun
tion mis�t and roughness for the best
10% MT models (left). The optimum model is marked in the trade-o� plot andplotted together with the input models and the referen
e model (right).input and referen
e models reveals the strong in�uen
e of the referen
e model onthe seismi
 part of the inversion. Nevertheless we re
over some of the features ofthe input model. It is also interesting to note that the position of the Moho inthe inversion result is shallower than in both the referen
e and the input model.Another interesting e�e
t 
an be observed at the interfa
e of the layer between60 and 80 km. The position of the interfa
e is reprodu
e fairly a

urately in bothmodels, but the gradient a
ross the boundary has the opposite sign in both 
ases.For both datasets this feature only has a minor impa
t on the data, so in generalwe 
annot expe
t to �nd it in our inversion results. The transition to the low-velo
ity/low-resistivity layer at the bottom of the model is only reprodu
ed bythe MT model. The most likely explanation for the failure of the seismi
 model inthis part is the fa
t that the referen
e model has a 
onstant velo
ity in this partand only de
reases at greater depths.In summary these tests indi
ate that even with relatively 
ompli
ated and real-isti
 models we get some indi
ator on the 
ompatibility of the seismi
 and ele
tro-magneti
 data. The quality of this indi
ator, as well as the quality of the inversionmodels, strongly depends on the level of noise in the data, parti
ularly for the re-
eiver fun
tions. This requires us to use only high-quality data in the inversion.In addition regularization with a good referen
e model 
an help to improve theinversion results. This of 
ourse 
arries the risk of enfor
ing spurious stru
tures ifthe referen
e model is not appropriate. We therefore have to 
ompare the resultingmodels with the output of runs with di�erent referen
e models or di�erent typesof regularization.

133
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7Appli
ation to data from the Slave
raton

The syntheti
 test 
ases in the previous 
hapter outlined the strengths and limi-tations of our approa
h. We 
an use the insight we gained from those experimentsto assess the quality of the results we obtain from measured data in this 
hap-ter. The Slave 
raton in north-western Canada is a well studied Ar
hean 
ratonand the observed 
oin
iden
e of seismi
 interfa
es with 
hanges in 
ondu
tivity[Snyder et al., 2004℄ was one of the motivating fa
tors for this work. We 
an rea-sonably expe
t at least partial 
ompatibility of the two datasets, and thereforeapply our joint inversion method to two sites from this area.7.1 An overview of the data and sele
ting suitablesitesDue to its diamoniferous kimberlites and thanks to the LITHOPROBE programthe Slave 
raton has been studied extensively with di�erent kinds of geophysi
aland geo
hemi
al methods [e.g., Gri�n et al., 1999, Jones et al., 2003, Snyder et al.,2004, Clowes et al., 2005℄. Figure 7.1 shows a sele
ted number of sites lo
ated onthe 
entral Slave 
raton around the Ekati diamond mine. These were part ofthe studies by Jones et al. [2003℄ and Snyder et al. [2004℄, and therefore are goodpotential 
andidates for our joint inversion approa
h.Here we apply the joint inversion algorithm to a small sele
tion of stations,to demonstrate its potential, but do not attempt to 
onstru
t a 
omprehensive134
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Figure 7.1: Lo
ation of some of the seismi
 stations (stars) and MT sites (dots)in the 
entral Slave Craton. The sites we will dis
uss in detail are labelled in red.The lo
ation of the map area on the Ameri
an 
ontinent is shown in the insetmap.model for the whole Slave 
raton. For this reason we 
on
entrate on sites wherewe 
an expe
t few problems with the inversion approa
h. Figure 7.2 shows themagnetotelluri
 data for two of the sites in Figure 7.1 that appear to 
omply withour assumption of a layered Earth. In the measurement 
oordinate system thereis no visible phase splitting at high frequen
ies, and less than 15° splitting atperiods >100 s. Figure 7.3 shows a number of di�erent dimensionality measuresas suggested by Martí et al. [2005℄ and the 
orresponding threshold values forone-dimensional stru
tures.The �
lassi
al� one-dimensional indi
ator Σ [Swift, 1967℄ has values larger thanthe proposed threshold for all frequen
ies and both sites. This suggests that asimple layered earth model is not adequate to des
ribe the data. However, Σ is anamplitude based measure of dimensionality, and is very sensitive to near-surfa
e135
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Figure 7.2: Apparent resistivity and phase for the o�-diagonal elements and theBerdi
hevskyi invariant for two sites from the Slave 
raton.distortion, as we already dis
ussed in 
hapter 2. In 
ontrast, the rotationallyinvariant phase di�eren
e µ, is below the threshold for most frequen
ies at bothsites. This indi
ates a one-dimensional model with lo
al 3D distortion, as proposedby Larsen [1975℄. A

ording to Martí et al. [2005℄ this would also require either
η or Q to be below their respe
tive threshold values. Considering the error bars,this is the 
ase for most periods between 0.1− 100 s at site s99225 and all but thelongest periods at site s99226. As mentioned in the theoreti
al dis
ussion, we haveto bear in mind that these are ne
essary, but not su�
ient 
onditions. We 
antherefore 
on
lude that the data admit the Larsen model for most of the periodrange, but 
annot ne
essarily ex
lude a more 
ompli
ated model. The high phase-sensitive skew values at long periods indi
ate the need for a three dimensionalmodel, so at those periods our inversion results will only have limited validity. We
an also see this from a 
omparison with the 3D model by Jones et al. [2003℄. Sites99225 is lo
ated 
lose to their site deGras (Figure 9 in Jones et al. [2003℄) and we
an see the three-dimensional 
hara
ter of the model at depths > 100 km. Still,these two sites show the best agreement with a one dimensional model hypothesisamong all 
onsidered sites and unless the stru
ture is very 
ompli
ated, we 
anexpe
t to retrieve the general 
hara
teristi
s.For the re
eiver fun
tion analysis we initially inspe
ted all re
orded events with amoment magnitude >5 re
orded between June 2002 and De
ember 2005, resultingin a total of 598 events. It qui
kly be
ame apparent that the re
eiver fun
tions136
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Figure 7.3: Frequen
y dependen
e of several dimensionality parameters for thetwo magnetotelluri
 sites. The red line in ea
h plot shows the threshold valuesuggested by Martí et al. [2005℄.from events with magnitude < 5.8 and shallow sour
e depths did not satisfy thequality 
riteria we des
ribed on page 76 in 
hapter 4. Through manual sele
tionwe redu
ed the number to 59 reasonable to high quality events. The re
eiverfun
tions 
al
ulated from these events are shown in Figure 7.4. For ea
h site weshow the re
eiver fun
tions sorted on
e by ba
kazimuth and on
e by distan
e.In the plots ea
h event o

upies the same verti
al spa
e and we do not insertgaps to indi
ate missing ba
kazimuthal or distan
e 
overage. While this resultsin a highly non-uniform y-axis s
ale and distorts the moveout of 
oherent phases,it is the best way to give an overview of the data. The events are 
lustered in asmall number of regions with similar ba
kazimuth and distan
e, and 
onsequentlya plot that would take have a linear ba
kazimuth or distan
e s
ale, would mostlybe empty. Figure B.1 in the Appendix shows the lo
ation of the events in relationto the Slave 
raton.Overall, we observe a good agreement of general features between most re
eiverfun
tions. At both sites we only observe some re
eiver fun
tions that either donot show the zero 
orrelation peak, or the Moho. For most events we observea 
onsistent 
onversion at ≈ 5 s that is asso
iated with the Moho. In additiona number of other signi�
ant features exist, with varying amplitude and varyingdegree of 
onsisten
y between events with di�erent ba
kazimuth or distan
e.We have marked the most important features for both sites in Figure 7.4. The137
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Figure 7.4: Re
eiver fun
tion data for 59 events with moment magnitudes between
5.8 and 8.3 re
orded between June 2002 and De
ember 2005. For ea
h site we showthe events sorted by ba
kazimuth and epi
entral distan
e. Note that while ea
hre
eiver fun
tion is plotted with the same width, the di�eren
e in ba
kazimuth ordistan
e between adja
ent events varies enormously and non-systemati
ally alongthe axis. We have marked the Moho 
onversion, its multiples and two feature F1and F2 that we will dis
uss in the text.

138



7 Appli
ation to data from the Slave 
raton
learest and most 
onsistent 
onversions at both sites are the primary Moho 
on-version and its multiples, although the primary 
onversion seems to be of higheramplitude at site EKTN. In addition we observe two more negative amplitude
onversions labelled F1 and F2. F1 extends over several events at site EKTN, butwe 
annot identify it 
learly at site BOXN. The negative amplitude suggests a
onversion from high to low velo
ity and the rule of thumb 
onversion to depth,multiplying the lag time by 8, suggests a depth of ≈ 100 km. This agrees withresults from Snyder et al. [2004℄, who make similar observations at the same siteand identify a low velo
ity zone at a depth of 110 − 120 km.The expression of feature F2 is more subtle than F1 at site EKTN, and there isalso some indi
ation of it at site BOXN. It marks a negative amplitude 
onversionjust after the se
ond Moho multiple. Again using the rule of thumb depth 
onver-sion, we 
al
ulate a depth of 190 km. At this depth Snyder et al. [2004℄ identifya similar feature in the transverse re
eiver fun
tion. In a purely one dimensionalenvironment, the transverse re
eiver fun
tion would only show noise. They there-fore interpret it as a sign of anisotropi
 shear wave velo
ity, whi
h is supported byother studies [Snyder and Bruneton, 2007℄, and anisotropi
 stru
tures also havebeen identi�ed in other depth intervals in the south-western Slave 
raton [Bosto
k,1997℄. Our observation on the radial re
eiver fun
tion suggests that there mightbe another low-velo
ity zone at this depth.We do not model anisotropy of seismi
 velo
ity or ele
tri
al 
ondu
tivity withthe 
urrent inversion algorithm, as neither forward 
ode has the ability to do so.As dis
ussed above there is no sign of strong ele
tri
al anisotropy in the data,as this would require phase split and imply an elevated µ value, but the seismi

omponent of our results will depend on the ba
kazimuth of the events we 
hosefor re
eiver fun
tion 
omputation. Depending on whether the in
oming wave istravelling along a fast dire
tion of propagation, or slow axis of propagation, theretrieved velo
ities will be higher or lower, respe
tively. At this point we aremore interested in the geometry of stru
tures than the absolute velo
ities. Also,our syntheti
 tests showed that re
eiver fun
tions do not have good resolution toabsolute velo
ities anyway. Even in the presen
e of anisotropy we should be ableto re
over the lo
ation of velo
ity 
ontrasts, as a 
hange in velo
ity will produ
ea P-to-S 
onversion regardless whether the stru
ture is anisotropi
 or not.We have several possibilities to deal with the issue of seismi
 anisotropy: We 
ansele
t a re
eiver fun
tion from a single event that we regard as representative. Ob-viously, we do not have any quantitative measure of noise in this 
ase, but through
areful 
omparison with other events we 
an get at least a qualitative idea. Alter-natively we 
an sele
t re
eiver fun
tions from a narrow range of ba
kazimuths thatshow interesting 
onversions, or we 
an average over all ba
kazimuths to average139
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Figure 7.5: Comparison of re
eiver fun
tions for the two Slave 
raton sites withdi�erent types of events used for the average and a single event re
eiver fun
tion.For ea
h site we 
ompute the average of all high quality events (labelled all), ofevents with a ba
kazimuth between 299° and 306° (labelled 300), and also showa single high-quality re
eiver fun
tion (labelled single). The single event RF is
al
ulated from event 4 in Table B.1out the anisotropy. The �rst approa
h has the advantage that we will get strongsignatures from features that only appear in a limited range of ba
kazimuths, su
has F1 and F2. This also implies though that we are looking at a 
ertain dire
tionfrom whi
h the wave is travelling to the station, and the feature we are observingmight be only present in this dire
tion. The MT data in 
ontrast will be sensitiveto a volume around the measurement site, and the seismi
 feature might onlyo

upy a small fra
tion of this volume. This would suggest that we average overall ba
kazimuths to 
onstru
t a re
eiver fun
tion for inversion. The problem withthis approa
h is that we do not have uniform 
overage over all ba
kazimuths andthat we also might average 
onversions from major interfa
es in the pro
ess.Figure 7.5 shows two types of averages for both Slave 
raton sites plus a re
eiverfun
tion that has been 
al
ulated from a single deep event with magnitude 7.3(number 4 in Table B.1). The two plots labelled �all� show averages over all140
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ratonba
kazimuths and distan
es (a histogram of the distribution 
an be found in FigureB.2), while the plots with label �300� are only over a ba
kazimuthal range between299°� 306°. This ba
kazimuthal range 
orresponds to the region in Figure 7.4where we 
an observe features F1 and F2 most 
learly and a lot of the high qualityevents are lo
ated in this ba
kazimuth range. The thi
knesses of the individualre
eiver fun
tion lines display the error based on the standard deviation. Thereare some signi�
ant di�eren
es between the two types of averages. In general the
onstrained averages show more pronoun
ed features. This is even true for theMoho multiples, but parti
ularly for both F1 and F2, as we expe
t. We do notemploy any moveout 
orre
tion, whi
h might a

ount for some of the amplituderedu
tion. However, most of the events 
ome from a similar distan
e range, sothis e�e
t should not be very strong.This plot also reveals the di�erent expression of F1 and F2 at both sites. While
F1 is barely visible at site BOXN, it is, together with the Moho 
onversion, themost signi�
ant feature at site EKTN. F2 is more subdued at both sites, butstill more pronoun
ed at site EKTN. The single event re
eiver fun
tion shows thesame features as the limited ba
kazimuth average with some additional 
onversionamplitudes. It is di�
ult to quantify whi
h of these are noise, and whi
h area
tual 
onversions. In general, this re
eiver fun
tion seems to be of high qualityand we will also perform some inversions with just this one re
eiver fun
tion. Forthese two sites, it appears that a simple sta
king of re
eiver fun
tions from allba
kazimuths strongly redu
es the amplitude of all 
onversions but the primaryMoho 
onversion. We will therefore not 
onsider it for joint inversion.7.2 Results from separate inversionsWe will invert the data with a number of di�erent parameter settings to investigatethe e�e
t of di�erent numbers of layers, regularization and di�erent types of data.First we will invert ea
h dataset separately to get an idea of features required bythe individual datasets. Then we will 
ombine the datasets to see in how far this
ompares to the results of the individual inversions. From here on we will labelboth the MT and the RF data with the names of the seismi
 stations to make iteasier to relate the results.Inverting the MT dataFigure 7.6 shows the results when we invert the MT data for ea
h site separately.We use 20 layers to parametrize the model and regularize its smoothness in anO

am-like approa
h [Constable et al., 1987℄. For site BOXN we observe the typ-141
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Figure 7.6: Roughness-mis�t trade-o� 
urves and optimum models for inversionof the MT data alone. Ea
h model was parametrized with 20 layers. We also markthe most relevant features in the model plot.i
al L-shaped trade-o� 
urve for regularized inversion when we plot mis�t againstroughness, and we pi
k a model from the region of maximum 
urvature as theoptimum model. There is a general de
rease of resistivity with depth, but we 
anidentify three main features of the model. A 
ondu
tor at a depth of ≈ 20 kmis the main feature in the 
rust. An in
rease of 
ondu
tivity in the middle tolower 
rust is a widespread feature that is observed in various regions aroundthe world and attributed to either salinous �uids or inter
onne
ted graphite [e.g.Jones, 1992, Bahr et al., 2002℄. The se
ond 
ondu
tor, between 90 and 130 kmdepth, has been termed the Central Slave Mantle Condu
tor (CSMC) in earlierstudies [Jones et al., 2001, 2003℄. We also see another de
rease of 
ondu
tivity142
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ation to data from the Slave 
ratonat a depth of 240 km. This 
oin
ides roughly with the reported depth of thelithosphere-asthenosphere boundary (LAB) in this region. Jones et al. [2003℄ re-port a depth of 260 km based on averaged MT data, and 200 km for their La
 deGras site in the vi
inity of our study area, while re
eiver fun
tion results suggest190 km [Snyder et al., 2004℄, and surfa
e wave studies 210 ± 65 km [Chen et al.,2007℄. In our models this de
rease is a minor feature though and not well resolved,we will see whether joint inversion 
an improve this situation.The trade-o� 
urve for site EKTN has a slightly di�erent appearan
e than at siteBOXN. We still observe the overall L-shape, but we observe two regions of high
urvature. We therefore plot two models, one from ea
h area. The two models aregenerally very similar and only di�er signi�
antly at large depths. In 
omparisonwith the model for site BOXN, they both show larger resistivity variations, butthe main features remain the same. We observe a similar 
rustal 
ondu
tor, andalso the low resistivity zone at 100 km depth. Only now it appears to be widerand bounded by higher resistivity below. The resistivity of this resistor, however,is not well resolved, as we 
an see by 
omparison with Model 2. Again we see anexpression of the LAB in form of another resistivity de
rease. As before this isnot a well resolved feature and this also is the area where the two models beginto di�er signi�
antly.Inverting the RF dataFor the re
eiver fun
tion data we have to take a di�erent approa
h for the in-dividual inversion. The non-uniqueness of the models that we demonstrated inFigure 6.1 requires to 
hoose a velo
ity for the 
rust. Perry et al. [2002℄ suggest
vp = 5.9 ± 0.1 km/s for the south-western Slave 
raton, based on the wide-anglere�e
tion and refra
tion study by Fernandez Viejo and Clowes [2003℄. Assuminga Poisson solid this translates into vs = 3.4± 0.06 km/s. Chen et al. [2007℄ obtain
vs = 3.546±0.037 km/s from Rayleigh wave inversion of array data from the Slave
raton. We will test both of these values and examine the impa
t on the inversionresults.To determine the basi
 
rustal stru
ture, we start with a simple two-layer inver-sion to determine the depth to the Moho. Figure 7.7 shows a 
omparison betweenobserved and predi
ted data from the best �tting model for two di�erent kindsof input data and di�erent 
rustal velo
ities at site BOXN. As before the re
eiverfun
tion labelled �BAZ 300� has been 
al
ulated from averages restri
ted to a ba
k-azimuth around 300°, while �BAZ all� denotes an average over all ba
kazimuths.We also noted before that the multiples are less pronoun
ed in the general average,parti
ularly in 
omparison to the predi
ted data. For all models the amplitude ofthe multiple 
onversions is signi�
antly smaller than predi
ted by the syntheti
143
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Figure 7.7: Comparison of observed re
eiver fun
tions and best �tting syntheti
sfrom a two-layer model for site BOXN. For the events from a ba
kazimuth of
299 − 306° (labelled �BAZ 300�) we plot the results with two di�erent 
rustalvelo
ities. For the average over all ba
kazimuths (labelled �BAZ all�) we only plotthe results for one 
rustal velo
ity, as there is not signi�
ant di�eren
e.models. In 
ontrast the Moho 
onversion has approximately the 
orre
t amplitude.We also see that there is only a minor di�eren
e between the models with di�erent
rustal velo
ities and this is also re�e
ted in a nearly identi
al numeri
al mis�tvalue for both of them. The depth to the Moho varies between 35 km and 37.5 kmfor the three models. Assuming that the di�eren
e between the two 
rustal velo
-ities re�e
ts the un
ertainty, it means that we 
an model the depth to the Mohowithin ±1.25 km. These values are smaller than those given by Bank et al. [2000℄,who obtain estimates between 37 and 39 km in the same region. They assume asimilar 
rustal velo
ity, but 
onsistently observe the primary Moho 
onversion atgreater lag times.Figure 7.8 shows a similar 
omparison for site EKTN, but this time we only
onsider a 
rustal velo
ity of 3.4 km/s, as the di�eren
e is only minor. Theresulting Moho depth for both datasets is 35.5 km. For this site we 
an see thatthe dis
repan
y in amplitude for the Moho multiples is mu
h smaller. For there
eiver fun
tions with ba
kazimuth 300°, the amplitude of the se
ond multiplemat
hes exa
tly at the plotting s
ale and there is only a minor di�eren
e for the�rst multiple. Even when we average all data, the di�eren
e in
reases less than144
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Figure 7.8: Observed data and best �tting two-layer predi
tion for the two typesof averaged re
eiver fun
tions at site EKTN.for site BOXN. One possible explanation for this observation is that site BOXNshows a greater departure from a simple one-dimensional stru
ture, either in theform of anisotropy or due to higher-dimensional stru
ture. Another possibilityis that there is some interferen
e with 
onversions from other depth ranges thatde
rease the amplitude of the multiples at site BOXN.We have to in
orporate the information about 
rustal thi
kness into subsequentruns with more degrees of freedom. We performed several experiments where weonly �xed the velo
ity of the uppermost layer, in the hope that the inversionwould automati
ally infer 
rustal and mantle stru
ture. Disappointingly this wasnot the 
ase in any of the runs. While the results for the MT data were robustbetween di�erent inversion runs, the seismi
 stru
ture varied greatly depending onthe number of layers and the permitted range of velo
ities in ea
h layer. On
e we
onstrain the stru
ture of the 
rust for the seismi
 parameters, the results be
omestable. Figure 7.9 shows a 
omparison of optimum models for the RF data alone,obtained from runs with di�erent types of regularization. In ea
h run, the 
rustwas parametrized with 3 layers, a thin surfa
e layer with velo
ities in the rangebetween 2.5−4.0 km/s, the main 
rustal layer with a minimum thi
kness of 25 kmand a �xed S-velo
ity of 3.4 km/s, and another thin layer with S-velo
ities in therange between 3.8 − 5.3 km/s. The 
omplete model 
omprised 20 layers.145
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Figure 7.9: Comparison of individual re
eiver fun
tion models with di�erent typesof inversion settings for site EKTN (left) and site BOXN (right). We also showthe surfa
e wave model by Chen et al. [2007℄ that we use as a referen
e model inthe regularization.Regardless of the type of regularization we obtain a number of similar featuresin ea
h model. The Moho is always lo
ated at a depth of 35.5 km. This isnot surprising, be
ause by enfor
ing the bulk of the 
rust to have a velo
ity of
3.4 km/s we guided the model to resemble the two-layered results. In ea
h modelwe also observe a similar velo
ity 
hange a
ross the Moho. This was not spe
i�edin the inversion and 
an therefore be seen as an indi
ator of the reliability of thisestimate. In the depth range between 40 − 110 km, all models show a gradualvelo
ity in
rease, although the magnitude of this in
rease di�ers depending on thetype of regularization. At a depth of 110−115 km the models for site EKTN showan abrupt de
rease in velo
ity. Again, the magnitude of this de
rease depends onthe type of regularization, but its general depth range between 115 and 150 kmagrees between all models. This is the depth at whi
h we observed the CSMC146



7 Appli
ation to data from the Slave 
ratonin the independent inversion of the MT data from this site, and this 
orrelationhas been observed before [Snyder et al., 2004℄. Below 150 km the models di�ersigni�
antly, indi
ating poor resolution. However, two models show a de
reasein velo
ity at a depth of 190 km, whi
h 
ould be interpreted as an expression ofthe LAB. Yuan et al. [2006℄ argue that in most 
ases for P-re
eiver fun
tions the
onversion from the LAB is buried in the 
onversions frommore shallow stru
tures,and advo
ate the use of S-re
eiver fun
tions to identify the LAB. On the otherhand, Ry
hert et al. [2005℄ interpret negative Ps 
onversions as an expression ofa sharp transition into the asthenosphere. From our limited results so far, thisinterpretation remains highly spe
ulative for our data.The stru
ture of the mantle at site BOXN is similar to site EKTN. We alsoobserve a low-velo
ity zone and obtain a similar depth for the Moho. In 
ontrastto the models for site EKTN, the low velo
ity zone appears to start at shallowerdepth. This agrees with the shallower position of the low-resistivity zone in theMT models. The similar behaviour makes it likely that the low velo
ity and lowresistivity have a 
ommon 
ause. We 
annot identify the LAB at site BOXN.Only the model that has been regularized with a referen
e model shows a velo
ityde
rease at 200 km depth. This is also a feature of the referen
e model andtherefore might be an artifa
t of regularization.7.3 Joint inversion without regularizationThe observed 
oin
iden
e between the low-resistivity CSMC and the low-velo
ityzone in the independent inversion suggests that we 
an expe
t at least a partial
ompatibility of the two datasets in the joint inversion. Ideally the joint modelwill also 
larify the position of the LAB, whi
h is a poorly resolved feature in bothindependent inversions.For the individual inversions, we 
hose a large number of inversion layers thatex
eeds the expe
ted number of layers and 
hose the appropriate model based onregularization. For the joint inversion we have to modify this approa
h. For avery large number of layers the seismi
 and ele
tri
 model e�e
tively de
ouple, asthe 
oupling is established through 
oin
ident layer interfa
es. If the thi
kness oflayers is smaller than the resolution of the data, the ele
tri
al 
ondu
tivity andresistivity 
hanges 
an o

ur anywhere within a broad region and we will not beable to attribute the 
hanges to a 
ommon stru
ture. If we go to the other extremeand use too small a number of layers, we enfor
e arti�
ial 
orrelations and willnot be able to explain the data adequately. We therefore have to determine theoptimum number of layers.Figure 7.10 shows the dependen
e of the minimumRMS on the number of inver-147
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Figure 7.10: Minimum RMS as a fun
tion of number of layers for the MT dataat site EKTN. For more than 12 layers the mis�t does not de
rease signi�
antlywith in
reasing number of layers.sion layers for the MT data from site EKTN. Between 8 and 12 layers we observea signi�
ant de
rease in mis�t, while for more than 12 layers the improvement isless with in
reasing number of layers. From this we 
on
lude that 12 layers aresu�
ient to model the MT data at this site.For site BOXN the pi
ture is similar, although 10 layers appear to be su�
ientfor that site. As the di�eren
e between 10 layers and 12 layers is not very largein both 
ases, we use 11 layers for both sites as a 
ompromise. For the re
eiverfun
tion data the situation is more 
ompli
ated due to the need to �x 
ertainstru
tures, but an inspe
tion of Figure 7.9 shows that 12 layers are lo
ated in thedepth interval of interest between 0 and 250 km depth, and 10 of these in the wellresolved region above 150 km depth, suggesting that 11 layers are also appropriatefor the seismi
 data.Table 7.1 summarizes the parameter sear
h ranges we use for ea
h layer in thefollowing joint inversion runs. Apart from the �xed 
rustal velo
ities, all otherparameter ranges should be large enough not to have an e�e
t on the inversionpro
edure. We show the resulting trade-o� 
urve and some representative modelsfor both sites in Figure 7.11.For site EKTN we obtain a trade-o� 
urve in the form of a strongly bent L, andthe di�eren
e in mis�t between the worst and best �tting model is only about 15%148



7 Appli
ation to data from the Slave 
ratonLayer no . 1 2 3 4 5 6 7 8 9 10 11Min. Thi
k. tmin [km℄ 1 20 10 10 10 10 10 10 10 10 ∞
∆t 1 1 1 1 1 1 1 1 1 1 0Max. Thi
k. tmax 16 35 25 25 25 25 41 41 41 41 ∞Min. Res. ρmin [Ωm] 10 10 10 10 10 10 10 10 10 10 10log(∆ρ) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1Max. Res. ρmax 19 · 106 15 · 103Min. vs [km/s℄ 2.5 3.4 3.4 3.7 3.7 3.7 3.7 4.0 4.0 4.0 4.0
∆vs 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1Max. vs 4.0 3.4 4.5 5.2 5.2 5.2 5.2 5.5 5.5 5.5 5.5Table 7.1: Parameter sear
h range for the unregularized joint inversion runs.for both datasets. This resembles the results for the 
ompatible test problem withadded noise, where we also obtained a 
luster of models, but with low varian
ein mis�t. For site BOXN we plot two trade-o� 
urves, one with the setup asgiven in Table 7.1, labelled �
ondu
tor in the 
rust�, and one where we enfor
e avelo
ity 
hange at the se
ond interfa
e, e�e
tively allowing only for two 
rustallayers, labelled �
ondu
tor in the mantle�. We 
an see how this 
hange in setupdrasti
ally a�e
ts the trade-o� 
urve. While the �
ondu
tor in the 
rust� trade-o�
urve resembles the trade-o� 
urve for site EKTN, and plots as a 
luster of pointson the s
ale of this plot, the �
ondu
tor in the mantle� 
urve 
learly resembles thetrade-o� for an in
ompatible problem. There is not any model with both a low MTand RF mis�t when we use this type of setup. The reason for this experiment isthe observation of a lower resistivity just below the Moho at site EKTN. This is anunusual result, but a similar observation has been made in the south-western Slave
raton [Jones and Ferguson, 1997℄, and therefore is possibly a real feature. As wedis
ussed before though, the high-frequen
y MT data at this site is problemati
and we 
an therefore only in
lude periods >0.8 s. As a 
onsequen
e, this gives usonly limited resolution in this depth range. At site BOXN we 
an 
learly ex
lude amantle origin of the 
ondu
tor, as we 
an only explain both datasets when its topresides in the 
rust. Regardless of the position of the �rst 
ondu
tor, we obtainessentially identi
al results for the mantle stru
tures.For site EKTN we examine the nature of the trade-o� 
urve by 
omparing twomodels within that 
urve. Model A is lo
ated at the position of highest 
urvatureand has both a low re
eiver fun
tion and MT mis�t. In 
omparison, Model Bhas a signi�
antly higher MT mis�t, but only marginally smaller re
eiver fun
tionmis�t. As we saw in the syntheti
 examples, this might be an indi
ator of a partialin
ompatibility between the datasets. Comparing the two models we see a number149
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Figure 7.11: Trade-o� 
urves (left) and some representative models from an un-regularized run of the joint inversion algorithm. For site EKTN we examine thenature of the trade-o� by 
omparing two models within the trade-o� 
urve. Forsite BOXN we examine the impa
t of the position of the �rst 
ondu
tor on thetrade-o� 
urve. The seismi
 model for site BOXN also shows the results obtainedby Chen et al. [2007℄.of di�eren
es, although some of them are mostly an indi
ator of poor resolution.For example the greatly in
reased resistivity below the �rst 
ondu
tor in Model B
an 
ertainly not be resolved by the data. The most signi�
ant di�eren
e betweenModel A and Model B is the di�erent position of the lowermost 
ondu
tive low-velo
ity zone. The re
eiver fun
tion data seem to favour a velo
ity de
rease at190 km, while the MT data favour 220 km for the top of the 
ondu
tor. Figure7.12 shows a 
omparison between the measured data and the predi
ted data fromModel A. We also indi
ate the feature that 
orresponds to the low velo
ity zonein Model B by an arrow. Certainly the feature modelled by Model A is morepronoun
ed, and this is what we labelled F2 in our dis
ussion of the re
eiverfun
tion data. Considering the di�eren
es in mis�t and our assessment of thequality of the features, we regard Model A as the representative model. It appears150
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Figure 7.12: Measured (bla
k) and predi
ted (red) RF and MT data for the op-timum model at ea
h of the sites. We label the main features in the re
eiverfun
tion plot.that in this 
ase we have bene�ted from the joint inversion approa
h, as it guidedthe inversion method to a more robust feature. Furthermore within the resolutionof the data we 
an explain both datasets by a joint model.In general the joint model reprodu
es the stru
tures we already observed in theindividual inversions. Parti
ularly the CSMC and the 
orresponding low velo
ityand low resistivity zone have been reprodu
ed in all models. In addition we 
annow say that we 
an model this feature by a jointly 
ompatible seismi
 and ele
tri
stru
ture. Before the joint analysis there was some indi
ation based on the similardepth range in whi
h these features o

ur in the individual models, now the jointmodel allows us to join these two separate observations into one 
ommon feature.Still, there are limits to the extend to whi
h we 
an identify these stru
tures.For example, the bottom of the CSMC 
annot be resolved by the MT data. Thein
rease in velo
ity, in 
ontrast, is related to signi�
ant features in the re
eiverfun
tion data. We therefore 
an model the bottom of the 
ondu
tor 
oin
identwith the velo
ity in
rease, but this is not stri
tly required by the data. We 
anassess the possible variations in the models by using the nullspa
e perturbationapproa
h [Muñoz and Rath, 2006℄ that we des
ribed in Chapter 5. To ensure thatwe only perturb the models within the nullspa
e, we re
al
ulate the mis�t after151
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Figure 7.13: Optimum MT model for site EKTN (bla
k) and 20 perturbed modelswithin the nullspa
e. The variation between the models illustrates the resolutionto the 
orresponding features.ea
h perturbation and stop the algorithm when the di�eren
e in mis�t ex
eeds
5%. For the following examples the relative 
ut-o� for the eigenvalues was set to
10−2. While this 
hoi
e is somewhat arbitrary, it typi
ally allowed one or moreiterations of the perturbation algorithm before we hit the pres
ribed threshold.This suggests that the 
ut-o� is appropriate.Figure 7.13 shows Model A from site EKTN plus 10 models that have beengenerated by random perturbations with the nullspa
e proje
tion approa
h. We
an see that the resistivity of the resistive lower layers is virtually un
onstrained.In 
ontrast the top of the 
ondu
tive layers and their resistivities are mu
h moretightly bound. The top of the CSMC varies by 7 km within all these models andwhile the bottom of this 
ondu
tor varies by the same amount in most models,152
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Figure 7.14: The individual nullspa
e proje
tion matri
es for the MT model (topleft) and the RF model (top right) at site EKTN. We also plot the joint nullspa
ematrix (lower left) and the joint 
orrelation matrix (lower right).we obtain one model, where it extends to mu
h greater depth.The re
eiver fun
tion models do not show su
h strong di�eren
es between welland poorly resolved parameters. Both seismi
 velo
ities and the position of theinterfa
es vary by similar amounts throughout the model; only the position ofthe Moho seems to be better de�ned. Typi
al variations are ±0.1 km/s for thevelo
ities and ±5 km for the interfa
e positions.The graphi
al display of the nullspa
e proje
tion matri
es in Figure 7.14 vi-sualizes these observations in a di�erent form. The values 
lose to unity for thediagonal elements in the lower right quadrant for the MT matrix suggest thatwe have hardly any resolution for the thi
kness of most of the layers. While theperturbed models show some variation in thi
kness in ea
h of the layers, it seemsthat the nullspa
e matrix paints an overly pessimisti
 pi
ture. The high values forthe entries 
orresponding to the resistivity of the last three layers, in 
ontrast, is
learly re�e
ted by the variations in the perturbed models. The single high value153
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ratonin the 
ondu
tivity quadrant 
orresponds to the resistive layer between 50 and
70 km depth. Here we also �nd signi�
ant o�-diagonal elements that display theintera
tion between the inversion parameters.For the re
eiver fun
tion model parameters we only observe high values of thenullspa
e matrix asso
iated with the thi
kness parameters, parti
ularly for thelower layers. In addition, there is a larger number of signi�
ant o�-diagonalelements, suggesting 
onsiderable intera
tion between the layer thi
kness val-ues. This 
on�rms the observation from our experiments and is due to the non-uniqueness problem of re
eiver fun
tions we dis
ussed before. In this 
ase the lowvalues for the velo
ities give a more optimisti
 view on the situation, as the ap-pli
ation of this matrix in the model perturbation algorithm demonstrates. Fromthe matrix we would expe
t to see only small velo
ity variations, but they are onthe same relative order as the thi
kness variations, as the o�-diagonal elementsproje
t these variations on the velo
ities of the model.These observations provide us with another indi
ation of the 
ompatibility ofthe datasets, as they demonstrate how far we 
an perturb ea
h model and stillmaintain a similar mis�t. For example, the small variation in the top of the CSMCmakes a 
ommon interfa
e plausible, while the larger variations of its bottom inthe MT data do not ex
lude a 
ommon interfa
e, but neither prove its existen
e.Using averaged re
eiver fun
tionsAs dis
ussed before the use of a re
eiver fun
tion 
al
ulated from a single eventbears the risk of inverting noise 
ontributions for stru
ture and 
reating artifa
tsin the models. We will now examine the results when we use the averaged re
eiverfun
tions.Figure 7.15 shows the results for the averaged re
eiver fun
tion from a ba
k-azimuth of 300° for site BOXN with otherwise identi
al settings to the previousinversions. We a
hieve a similar MT RMS, but the re
eiver fun
tion RMS is nearlyhalved and now even rea
hes value below unity. As the 
omparison between thedata and the syntheti
 RF reveals though, this is not so mu
h due to a greatlyimproved �t, but more to the overall lesser amplitude of the re
eiver fun
tion. Wedo a
hieve a good �t to the Moho 
onversion and its multiples and some additionalfeatures, but there are a number of unexplained amplitudes, parti
ularly in thetime window between 5 and 15 s.The two models we show for 
omparison do not di�er signi�
antly for boththe MT and the re
eiver fun
tion parts. Both MT models are similar to themodel we presented before, whi
h is not surprising as they are derived from thesame data. The re
eiver fun
tion models, in turn, are mu
h simpler than before.Espe
ially Model B shows only the low velo
ity zone asso
iated with the CSMC,154
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Figure 7.15: The trade-o� 
urve (top left), two representative ele
tri
al (top mid-dle) and seismi
 (top right) models, and the predi
ted re
eiver fun
tion data fromModel B 
ompared with the re
eiver fun
tion average with a ba
kazimuth of 300° atsite BOXN.but an otherwise 
onstant velo
ity in the mantle. The depth region of the lowvelo
ity zone agrees with the previous inversion results. Comparing the predi
teddata with the averaged re
eiver fun
tion, we see that it is based on a feature inthe data, although the �t to 
ould 
ertainly be improved, and was better for thesingle event re
eiver fun
tion. It appears that this model represents the absoluteminimum in terms of stru
ture that we need to explain the most important aspe
tsof the data.As a 
onsequen
e of the homogeneity of the re
eiver fun
tion model, we see�rst signs of de
oupling between the ele
tri
 and the seismi
 parts of the jointmodel. The resistivity model shows mu
h more stru
ture throughout the mantle,and we therefore obtain a number of interfa
es where the resistivity 
hanges and155
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Figure 7.16: The trade-o� 
urve (left), and ele
tri
 (middle) and seismi
 (right)parameters for the best joint model with 20 layers and without regularization forsite BOXN. In addition we also plot the best model from the single event results.the velo
ity remains 
onstant. One of the results is that we no longer have aone-to-one 
orrelation between low resistivity and low velo
ity for the CSMC, aswe had in the previous model.We 
an take the de
oupling even further by in
reasing the number of layersin the joint model to 20. Figure 7.16 shows the resulting trade-o� 
urve andour 
hosen best model for site BOXN. The variation in MT mis�t is ≈ 1% andtherefore negligible. Again we rea
h and RF mis�t of less than unity. Therefore,and be
ause the di�eren
e to the best �tting model is not large, we 
hose themodel with a re
eiver fun
tion RMS 
losest to 1.Surprisingly, the low-velo
ity zone has now shifted to depths below 140 km,deeper than the previous estimates of its bottom and this is a 
onsistent featuresof all models from this run. What happened is that the inversion now pi
ked anegative 
onversion just after the �rst Moho multiple and modelled it as a lowvelo
ity zone. If we maintain our de�nition of the CSMC as a low resistivity andlow velo
ity zone, this model suggests it to be at a depth of 140 km and onlyabout 10 km wide. Another surprising feature of this model is a 
orrelated 
hange156
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Figure 7.17: The trade-o� 
urve (left), and ele
tri
 (middle) and seismi
 (right)parameters for two joint models with 20 layers and no regularization for site EKTN.to lower velo
ities and resistivities at a depth of 220 km, suggesting the transitioninto the asthenosphere. We did not �nd this feature in previous models and evenhere its expression is only weak.We observed before that the di�eren
e between the averaged and single eventre
eiver fun
tion is less pronoun
ed at site EKTN. Consequently we expe
t themodels based on the averaged RF to be resemble the single event models more
losely than at site BOXN. This expe
tation is 
on�rmed by the inversion resultsshown in Figure 7.17. As before with site BOXN we observe a redu
tion in re
eiverfun
tion mis�t, but this time not as drasti
 as for site BOXN. Also, the rangein MT mis�t for all models is less than 5%, but the di�eren
e in RF mis�t is
onsiderable. We plot the two extremal models in order to see what the reason forthe di�eren
e might be. At depths < 170 km the models generally agree. Thereare some minor variations in velo
ities, but the general appearan
e is the same. Inparti
ular we retrieve the low resistivity and low velo
ity zone at depths between
110 and 150 km that we observed in the previous model for this site.At depths > 170 km the velo
ities for the two models begin to di�er, whereasthe resistivities, at least qualitatively, remain the same. In both resistivity models157



7 Appli
ation to data from the Slave 
raton

18 20 22 24 26 28 30 32 34
Lag Time [s]

-0.2

-0.1

0

0.1

0.2

A
m

pl
itu

de

Model B
Model B, flat
Model A
Data

LAB in single event RF

Main difference to flat model
Multiple

Figure 7.18: Comparison between measured re
eiver fun
tion and various modelpredi
tions in the time window sensitive to the depth region of the LAB.we observe a de
rease in resistivity at depths between 220 and 240 km that wemight interpret as an expression of the LAB. The re
eiver fun
tion models, in
ontrast, show a �rst de
rease in velo
ity at 190 km depth. We dis
ussed thisissue before with the single event re
eiver fun
tion and 
on
luded that the featurein the re
orded data that 
orresponds to a velo
ity de
rease at 220 km is morereliable.We 
an examine this situation for the averaged re
eiver fun
tion by 
omparingthe expression of di�erent models in the predi
ted data, as shown in Figure 7.18.In addition to the predi
ted data from the two models in Figure 7.17, we alsoplot the predi
ted data from a model derived from Model B, but with 
onstantvelo
ity between 170 and 250 km depth. We 
an see that none of the modelsreprodu
es the measured data exa
tly, but they approximate the shape of some ofthe features. The 
omparison between Model B and its �at 
ounterpart shows tworegions of major di�eren
e. The amplitude after the Moho multiple is de
reasedin Model B and in
reased at a lag time of 26 s. Both of these features have a
orresponding expression in the measured data, although Model B now underesti-mates the amplitude after the multiple and performs only marginally better therethan the �at model whi
h overpredi
ts it. Model A, whi
h has a higher mis�t,also overestimates the amplitude after the multiple and, in general, appears tobe shifted with respe
t to the other two models and the data. If we shifted thepredi
ted data from Model A by 0.5 s it seems that we would get an improved�t, and even reprodu
e the negative amplitude that we previously asso
iated withthe LAB better than in the best �tting Model B. This 
ould be a
hieved by eitherdeeper interfa
es or redu
ed velo
ity in one of the layers above.158
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Figure 7.19: Regularized inversion results for site EKTN. We plot the trade-o�
urves between MT mis�t and roughness (upper left) and RF mis�t and roughness(upper right) together with the ele
tri
al (middle) and seismi
 (right) parametersfor two di�erent sele
tion orders.
It is interesting that the MT 
omponent of Model A does not show a resistivityde
rease in this depth region, but only at about 250 km depth. There are twopossible explanations for this observation: Either the LAB is sensed di�erentlyby ele
tri
al and seismi
 data, whi
h would not be very surprising given the am-biguous de�nition of the LAB itself, or the higher number of layers 
ompared tothe single event inversion de
ouples the two models and poor resolution allows fordi�erent positions. We 
annot give a de�nitive answer to this questions, but in thelight of the analysis from the single event re
eiver fun
tion we favour a 
ommonorigin for the LAB, as identi�ed from the joint model with fewer number of layers.159



7 Appli
ation to data from the Slave 
ratonMT RMS RF RMS MT Rough. RF Rough.EKTN MT �rst 1.69 1.56 0.86 11.05EKTN RF �rst 1.66 1.69 4.64 4.73EKTN RF ind. 0 1.55 0 17.89EKTN MT ind. 1.62 0 2.86 0BOXN MT �rst 1.78 1.60 1.56 6.74BOXN RF �rst 2.33 1.55 2.04 3.77BOXN RF ind. 0 1.11 0 11.659BOXN MT ind. 1.45 0 2.43 0Table 7.2: Mis�t and roughness values for the two Slave 
raton sites dependingon the order of trade-o� sele
tion. We also show the mis�t and roughness valuesfor the individual inversions for ea
h site.7.4 Regularized joint inversionAs the last examples showed, in
reasing the number of layers de
ouples the twodatasets and redu
es the stabilizing e�e
t of the joint inversion pro
edure. Thesyntheti
 tests demonstrated that regularization is one way to in
rease the stabilityof the results, parti
ularly if we have a suitable referen
e model. We will applydi�erent strategies to identify the best models and see how the results di�er.We already remarked during the dis
ussion of the syntheti
 tests that a smooth-ness-based regularization is not appropriate for the re
eiver fun
tion data, whereasa referen
e model approa
h is problemati
 for MT. We therefore try a 
ombina-tion of both approa
hes by in
reasing the number of obje
tive fun
tions in theinversion to four. The two data mis�t fun
tionals remain identi
al to the oneswe used before, as well as the di�eren
e to the referen
e model for the seismi
parameters. We now add a smoothness-based fun
tional de�ned purely on theele
tri
al parameters. The resulting four-dimensional hypersurfa
es 
annot be di-re
tly displayed in any form, but we 
an look at proje
tions onto di�erent planesto visualize the di�erent trade-o�s. In the following examples we use the modelby Chen et al. [2007℄ from inversion of surfa
e wave data as a referen
e model.The �rst strategy we use is to plot the trade-o� between MT mis�t and rough-ness for the MT parameters for all models, as shown in Figure 7.19 (upper left).From this 
luster of points we 
an identify the optimum trade-o� for the MT partof the inversion by sele
ting models from the left border of the 
loud that ful�l themaximum 
urvature 
riterion. Due to the proje
tion from four to two dimensionswe usually 
annot identify a single model, but a number of models with similarmis�t and roughness. With these models that are all optimal for the MT, we 
an160
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Figure 7.20: Regularized inversion results for site BOXN. We plot the trade-o�
urves between MT mis�t and roughness (upper left) and RF mis�t and roughness(upper right) together with the ele
tri
al (middle) and seismi
 (right) parametersfor two di�erent sele
tion orders.repeat the pro
edure for the seismi
 part of the model. Obviously the order ofthis sele
tion pro
ess 
an be reversed and we 
an �rst plot the re
eiver fun
tionroughness trade-o� (also plotted in Figure 7.19, lower left) and then sele
t MTmodels from the resulting subset.Surprisingly, the models obtained with these two methods have similar mis�tvalues for both MT and re
eiver fun
tions. When we base the sele
tion on theMT trade-o� �rst, we even only obtain a single model with a RF mis�t of 1.56,
omparable to the best re
eiver fun
tion we obtain in the run. When we reversethe order, we obtain a number of models with similar RF mis�t, but varying MTmis�t. From this group we pi
k the model with lowest MT mis�t, in this 
ase
1.66. A 
omparison of all the mis�t parameters for the two sele
tion orders andboth sites is shown in Table 7.2The two models we obtain in this way for site EKTN have the same overallappearan
e, but we 
an 
learly see the in�uen
e of the sele
tion order on the161



7 Appli
ation to data from the Slave 
raton
hara
teristi
s of the model. When we sele
t a model based on optimum trade-o� between re
eiver fun
tion mis�t and seismi
 parameter roughness �rst, we donot 
onsider the smoothness of the ele
tri
al parameters. Model A in Figure 7.19shows two distin
tive 
ondu
tive zones at depths of 80 km and 120 km with aresistive zone in between, whereas Model B shows a broad 
ondu
tor whi
h startsat the same depth and en
ompasses both 
ondu
tors of Model A. In the shallowerpart the ele
tri
al parameters are virtually identi
al, while in the deeper part weagain observe the elusive LAB in one of the models, but not in the other. Theresults are similar for the seismi
 parameters. Where Model A appears morefo
used, with smaller variations and only a small low-velo
ity zone at 120 kmdepth, Model B shows a mu
h broader low velo
ity zone that 
orrelates with thelow-resistivities of the MT. At depth both models 
onverge, partially be
ause wedo not have su�
ient resolution and the regularization dominates this part, butwe observe di�eren
es in the depth range of the LAB. Unfortunately, as in theexample before, we do not have a 
lear 
oin
ident velo
ity and resistivity de
reasethat would 
learly mark the position of the LAB.We repeat the same analysis with both sele
tion orders for site BOXN and showthe results in Figure 7.20. The main di�eren
e to the previous results is that theMT mis�t is 
onsiderably higher, if we sele
t the optimum re
eiver fun
tion model�rst. Furthermore this model does not show any low velo
ity zone that 
ould beinterpreted as an expression of the CSMC. Similarly to site EKTN, when we sele
tthe optimum MT model �rst we see smoother variations in resistivity and, at thissite, a small low velo
ity zone between 120 and 140 km depth. This results agreeswith the 20 layer, unregularized model, but not with the 11 layer model whi
hsuggests that the low velo
ity zone is more shallow.
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Hofstadter's Law: It always takes longer than you expe
t, evenwhen you take into a

ount Hofstadter's Law.Douglas Hofstadter, Gödel, Es
her, Ba
h
8Dis
ussion

Are seismi
 and MT data an �essential 
ombination� [Jones, 1987℄ or are 
orrela-tions between seismi
 velo
ity 
hanges and ele
tri
al 
ondu
tivities just �A 
aseof Holmes's 
urious dog� [Cook and Jones, 1995℄? Joint inversion methods 
annotgive an answer to this question, but they 
an provide indi
ations in how far 
ertainstru
tures have 
ompatible expressions in both datasets. We saw in the syntheti
test 
ases that we 
an distinguish the situation of 
oin
ident interfa
es from dif-fering interfa
es through the shape of the mis�t trade-o� 
urve, as long as thedata quality and resolution are high enough. To a 
ertain degree the question of
ompatibility is a matter of parametrization. For very large numbers of layers wee�e
tively de
ouple the seismi
 and ele
tri
 datasets and 
an always �nd a modelthat explains both datasets. Therefore one of the 
hallenges of joint inversion is to�nd parametrizations that provide enough freedom to model all essential features,but still 
ouples both parts of the model.One way to a
hieve this is to regularize the inversion by 
hoosing the minimumnumber of layers appropriate for the problem. This requires trial and error in-version runs with di�erent numbers of layers, but seems to provide the strongest
oupling and stabilization. We also demonstrated how we 
an use di�erent typesof regularization with a large number of layers to obtain a similar e�e
t. Thisremoves the ne
essity to test di�erent parametrization, but adds the 
ompli
ationof �nding appropriate levels of regularization, and, for the seismi
 part, �ndinga suitable referen
e model. On
e we have found a suitable parametrization wea
hieve mis�t levels for the joint models that are 
omparable to the mis�t of in-dividual inversions, at least for the two sites on the Slave 
raton. This suggests163



8 Dis
ussionthat we 
an re
on
ile these two di�erent datasets in terms of a joint model. Fromthis point of view our joint inversion approa
h with a geneti
 algorithm is a greatsu

ess. We 
an assess the degree of 
ompatibility between the two datasets ifthey are 
ompatible, we 
an re
on
ile the two models and �nd a joint model thatexplains the data equally well.Unfortunately, the non-unique nature of seismi
 re
eiver fun
tions requires 
on-siderable e�orts to extra
t stable and meaningfull models, be it in individual orjoint inversion. Even then we observe 
onsiderable variations in seismi
 velo
itiesand position of interfa
es in our models. In 
omparison, the ele
tri
 part of themodel is mu
h more stable and requires less e�ort in the 
hoi
e of parameters.For this reason the stabilization e�e
t is less than we hoped for and it is stilldi�
ult to answer relatively simple questions su
h as: Is the CSMC shallower atsite BOXN than at site EKTN? At what depth is the LAB below the two sites?Parti
ularly at site BOXN the expression of those two features is only minor in there
eiver fun
tion data. This 
auses shifts in the depth to the CSMC and varyingexpressions of the LAB in the models.For site EKTN it seems that at least the CSMC is a 
onsistent feature, both inthe re
eiver fun
tion and in the MT data and its position does not vary greatlywith di�ering inversion settings. All joint models show a signi�
ant redu
tion inseismi
 velo
ities and resistivities at a depth of 113 ± 3 km. Figure 8.1 shows a
omparison of the individual and joint inversion results for site EKTN. We 
ansee that in the individual inversions the de
rease in velo
ity does not 
oin
ideexa
tly with any resistivity interfa
e, but the two di�er by 10 km. In the jointmodel these two separate interfa
es have been joined together whi
h suggests thatthere is a 
ommon 
ause for the de
rease in velo
ity and resistivity. Obviously, thejoint inversion result 
annot prove that this is the 
ase, and it is still possible thatthis apparent 
oin
iden
e is 
aused by di�erent pro
esses [Cook and Jones, 1995℄,without indi
ation for the 
ontrary, O

am's razor justi�es an interpretation of a
ommon sour
e.So far we have not dis
ussed what su
h a pro
ess 
ould be that 
auses a simulta-neous de
rease in both velo
ity and resistivity. The reason is that a full dis
ussionof this topi
 would require an extended review of 
ondu
tivity me
hanisms andthe relation between velo
ities, 
ondu
tivities and geologi
al stru
ture. This iseasily a topi
 for a separate thesis and therefore we will not even attempt to doso.The results presented here provide the basis for a wide range of improved jointinversion methods. One of the advantages of the geneti
 algorithm inversion is thatit 
an easily be extended to in
lude further datasets or di�erent types of regulariza-tion. The �rst logi
al extension is to in
lude seismi
 surfa
e wave dispersion data164
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Figure 8.1: Ele
tri
al and seismi
 parameters of the optimum models plotted to-gether for di�erent inversion settings: Individual inversion (top left), regularizedinversion with sele
tion of optimum RF model �rst (top right), regularized in-version with sele
tion of optimum MT model �rst (lower left), and unregularizedinversion with a minimum number of layers (lower right).in the inversion. We dis
ussed the de�
ien
ies of re
eiver fun
tions to resolve seis-mi
 velo
ities and we mentioned the joint inversion method by Julia et al. [2000℄that 
ombines surfa
e waves and re
eiver fun
tions to 
ir
umvent this problem.This 
an easily be added to our approa
h as well, all that is needed is a forwardmodelling 
ode for surfa
e waves, whi
h is part of the Computer programs in seis-mology pa
kage (see Appendix), for example, and another mis�t fun
tional. Witha more stable seismi
 
omponent in the joint model we might be able to obtaininformation about the LAB in the examples presented above.165



8 Dis
ussionWe did not explore the possibilities of di�erent types of 
oupling between seis-mi
 velo
ities and resistivities, mainly be
ause we did not want to restri
t thealgorithm too mu
h. Now that we have some �rst results, we 
an start to experi-ment with di�erent types of 
oupling, either by putting more restri
tions on theinterfa
es, e.g. requiring both parameters to 
hange, to 
hange in the same dire
-tion, to have the same 
urvature, or by inverting for a set of meta-parameters and
al
ulate velo
ities and resistivities from these parameters. The simplest way toa
hieve this is to use a simple linear or logarithmi
 fun
tion to 
al
ulate the modelparameters, but this is most likely not appropriate. More interesting and poten-tially more rewarding is the approa
h to use mineral 
omposition and 
al
ulatevelo
ities and resistivities from it, as has been re
ently done for ele
tromagneti
data [Kopylova et al., 2004, Khan et al., 2006, Bagdassarov et al., 2007℄.The third obvious extension is to in
rease the model dimensions. The one-dimensional approa
h we presented here is limited by the fa
t that most datarequires more 
omplete models. During the inspe
tion of the Slave 
raton datawe had to dis
ard the majority of sites be
ause they showed 
lear signs of two-dimensional stru
tures in the magnetotelluri
 data. Even the two sites we pre-sented, 
ontained segments were a one-dimension model was not fully appropri-ate. This extension is the most di�
ult of the three. Not only does the time to
al
ulate a single forward model in
rease substantially when going from one totwo dimensions, but additional issues su
h as model gridding and geometry forboth datasets have to be 
onsidered. With in
reasing 
omputational power andlarge parallel 
lusters the in
rease in 
omplexity will likely be a nuisan
e ratherthan a serious problem, and two-dimensional inversion of MT data with a geneti
algorithm has already been performed [Everett and S
hultz, 1993℄. Finding ap-propriate grids and providing appropriate regularization and 
oupling between themodels is mu
h more 
hallenging. A �rst step in this dire
tion that 
ir
umvents atleast the gridding problem would be to in
lude anisotropy in the one-dimensionalmodels. We already dis
ussed the issue of seismi
 anisotropy for the re
eiver fun
-tion data, and ele
tri
al anisotropy is also a well know, albeit 
ontroversial, issue[Wannamaker, 2005℄. This would require good azimuthal 
overage for the re
eiverfun
tion data and would raise the question in how far an interpretation of singlestation MT data in terms of anisotropy is appropriate.
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ASoftware
This work 
ould not have been done without the use of a variety of di�erentsoftware. Most of it is freely available and I would like to thank the authorsfor generously sharing their work with others, and letting me bene�t from theire�orts. As my 
ode be
omes more stable and as I have time, I will release it sothat others 
an bene�t from my work. The latest information 
an be found athttp://gplib.sour
eforge.net.The following list of programs I used is probably not 
omplete, but I have triedto give 
redit to everything I have used more than just o

assionally.antlr: This freely available parser generator was used to solve the tri
ky problemof reading in EDI �les and the somewhat less tri
ky problem to read J-Format �les. It also ensures a �exible and robust way of reading in the
on�guration �les for various programs. Look at http://www.antlr.org formore information.asymptote: A few of the �gures in this thesis were prepared using this open-sour
eillustration language. See http://asymptote.sour
eforge.net.atlas: Changing the matrix operations in my RLS-adaptive �lter to the atlaslibrary, improved the speed of the program by a fa
tor of 20. These linearalgebra routines are not only automati
ally, but truly highly tuned. Withthe bindings for boost, it is also just another fun
tion 
all. You 
an get thelibrary from http://math-atlas.sour
eforge.net.179



A Softwarebeamer: If you think of presentations and think of Powerpoint, think again. ThisLATEXpa
kage does not only produ
e mu
h ni
er looking presentations, theyare also smaller and do not have the annoying font problems Powerpoint has.http://latex-beamer.sour
eforge.net.birrp: Some of the MT data, parti
ularly the sites with high noise, were pro-
essed using this state of the art pro
essing 
ode. It is available froma
have�whoi.edu.Boost: The high-quality, peer reviewed, and open sour
e C++ libraries fromhttp://www.boost.org are used in virtually every program that was writtenduring this thesis. Starting from the ublas matrix and ve
tor pa
kage, thedate and time fun
tionality and the �lesystem library to name just a few,this work would not have been possible in this form without these libraries.
fmake: This is a
tually my own 
reation, but it is released separately, as ithas potential use for people that have nothing to do with geophysi
s. Itautomati
ally 
reates C++ 
lasses that read in 
on�guration �les. If you�nd yourself 
ontinuously programming something like that, have a look athttp://
fmake.sour
eforge.net.dot: The dot language (http://www.graphviz.org) was used to automati
ally
reate �gures that show the topology of neural networks. It is also used indoxygen.doxygen: The automati
ally generated do
umentation from doxygen(http://www.doxygen.org) is probably more useful to other users of theprogram than me, but they greatly helped to keep an overview of the evergrowing �les and 
lasses.E
lipse: All programming was done within the E
lipse IDE. Together with thesub
lipse plugin and the CDT this provided everything I 
ould ask for interms of development environment and more.Go to http://www.e
lipse.org.�tw: All fourier transforms were done using the Fastest Fourier Transform inthe West library, available from http://www.fftw.org.GMT: No pra
ti
al geophysi
s thesis without the Generi
 Mapping Tools. Inaddition to the standard map plots these were also used for plotting net
dfdata, as seen in Figure 6.1, for example. http://gmt.soest.hawaii.edu hasthe sour
e 
ode as well as ex
ellent do
umentation and examples.180



A Softwaregsa
: This program is part of the Computer Programs in Seismology pa
kage(http://www.eas.slu.edu/People/RBHermann/ComputerPrograms.html),and is 
onsidered an alternative and updated version to the popular SACpa
kage (see below).GSL: The Gnu S
ientifi
 library was also used in various programs; most im-portantly for resampling and numeri
al pre
ision 
he
king.http://www.gnu.org/software/gsl/kdissert: Thomas Nagy's minmapping software helped to organize spontaneousideas. If you use it right, it will even write your thesis(http://freeha
kers.org/∼tnagy/kdissert).kile: This integrated environment for writing LATEX do
uments provided me witha ni
e and easy to use tool that makes writing a joy. It might not be ashard-
ore as using vi or ed, but it makes life a lot easier. It is part of KDE,so it 
an be obtained from http://www.kde.org.Lapa
k: Without lapa
k 
al
ulating singular value 
ompositions would have takenmu
h more time, both to exe
ute the 
ode, but also to develop without majorbugs. This library is the reason, that all matri
es are 
olumn major format.Long live Fortran ! (http://www.netlib.org/lapa
k).latex: Obvious to the trained eye, this thesis was written using LATEX2εand the
on
rete pa
kage plus a few more. Thanks to Leslie Lamport and DonaldKnuth for saving me from using W#�%. Probably the best pla
e to getyourself informed about LATEX and TEX is http://www.tug.org.levmar: Even though I implemented my own linearized inversion routines, thereis a huge di�eren
e between the 
ore optimization method and a full-blownoptimization library with all bells and whistles that handles all types ofpossible 
ases 
orre
tly. Therefore I performed the pra
ti
al work with lin-earized algorithms using the levmar library available athttp://www.i
s.forth.gr/∼lourakis/levmar/.net
df: net
df is not only a library, but more importantly a standardized dataformat for s
ienti�
 data. Using the provided C-fun
tions writing net
df �lesis very easy and these 
an then be used with GMT, n
view, visit or othervisualization tools. More information 
an be found athttp://www.unidata.u
ar.edu/software/net
df.NSGA-II: I didn't use this software for my inversion algorithm, but wrote myown implementation. Having the possibility to look at the sour
e
ode and181



A Softwaresee how �they� have done it, was 
ertainly very helpfull and saved me somebug hunting. You 
an download the original NSGA-II fromhttp://www.iitk.a
.in/kangal/soft.htm.respktn: I used this program to 
ompute all the syntheti
 seismograms in thisthesis, apart from the ones shown in Figure 4.2, whi
h were 
al
ulated witha spe
tral 
ode. This is part of the Computer Programs in Seismology (seegsa
).sa
: The Seismi
 Analysis Code helps to perform all standard and some not sostandard operations http://www.llnl.gov/sa
/.s
ons I never got the hang of make �les, so I de
ided to give this build toola go and I a
hieved what I tried for weeks before within half an hour.http://www.s
ons.org has more if you need to build libraries that aremore than just a 
ouple of �les.Subversion: A version management system might seem overkill for a single devel-oper, but I try to 
ompensate my la
k of organisation by using this immenselyuseful development tool. Tra
e the evolution of your �les and �nd out wherethings �nally went 
ompletely wrong. http://subversion.tigris.orgtaup: This 
olle
tion of Java programs 
al
ulates traveltimes from di�erent globalmodels, displays ray paths and a lot of other usefull seismologi
al parameters.Without the help of this valuable little tool teleseismi
 analyses would bemu
h more di�
ult.You 
an �nd it at http://www.seis.s
.edu/software/TauP.Ubuntu: My favorite Linux-distribution. Easy to set up, easy to use and fairly
omplete for all s
ienti�
 
omputing needs. Thanks a lot to all 
ontributors.The latest Pa
kages are available at http://www.ubuntu.
om.valgrind Memory leaks and a

ess violations 
an be the most annoying and di�-
ult to �nd bugs in any program with dynami
 memory allo
ation. With thehelp of this little tool you 
an not only �nd those fairly easily, but 
an alsoget all kinds of di�erent diagnosti
s on the performan
e of your programs.http://valgrind.org.wikindx: This web-based referen
e management tool not only helps you keepingtra
k of all your bibliographi
 referen
es, but also allows you to atta
h the
orresponding paper and share the information between di�erent users. You
an even write papers with it. http://wikindx.sour
eforge.net182



A Softwarex�g: It might look like it 
omes straight from the eighties (whi
h it does), butunderneath the shabby surfa
e you 
an �nd an ex
ellent drawing program.Less trouble with importing ps, pdf and other �les and drawing on them, then
orel draw, illustrator and all that �modern� stu�. There is not a lot of re
entimprovement, but it doesn't need any, it's perfe
t. http://www.xfig.orgxmgra
e: Most of the plots in this thesis were done using xmgra
e. If you needto plot xy data of any kind, with or without error bars, I 
annot imagine abetter plotting tool. It 
an even be invoked through C-library 
alls, to giveyour programs their own plot window. However I prefer the old style version5, but that's just me getting old.Look at http://plasma-gate.weizmann.a
.il/Gra
e/ for the latest ver-sion.
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BEvent parameters
No. Date Time Lat Long Depth [km℄ Mw1 2002/06/22 02:58:21.30 35.6260 49.0470 10.00 6.502 2002/08/02 23:11:39.13 29.2800 138.9700 426.10 6.303 2002/10/12 20:09:11.46 -8.2950 -71.7380 534.30 6.904 2002/11/17 04:53:53.54 47.8240 146.2090 459.10 7.305 2003/01/21 02:46:47.74 13.6260 -90.7740 24.00 6.506 2003/01/22 02:06:34.61 18.7700 -104.1040 24.00 7.607 2003/03/17 16:36:17.31 51.2720 177.9780 33.00 7.108 2003/04/17 00:48:38.58 37.5290 96.4760 14.00 6.409 2003/04/27 22:57:44.84 -8.1950 -71.5920 559.90 6.0010 2003/05/14 06:03:35.86 18.2660 -58.6330 41.50 6.7011 2003/05/19 16:27:10.20 17.5460 -105.4730 10.00 6.1012 2003/05/21 18:44:20.10 36.9640 3.6340 12.00 6.8013 2003/05/26 09:24:33.40 38.8490 141.5680 68.00 7.0014 2003/06/20 06:19:38.91 -7.6060 -71.7220 558.10 7.1015 2003/06/23 12:12:34.47 51.4390 176.7830 20.00 6.9016 2003/07/25 22:13:29.97 38.4150 140.9960 6.00 6.1017 2003/07/27 06:25:31.95 47.1510 139.2480 470.30 6.8018 2003/08/25 23:24:59.13 18.5410 -106.6950 10.00 5.8019 2003/09/25 19:50:06.36 41.8150 143.9100 27.00 8.3020 2003/09/29 02:36:53.14 42.4500 144.3800 25.00 6.5021 2003/10/31 01:06:28.28 37.8120 142.6190 10.00 7.00Continued on next page184



B Event parametersContinued from previous pageNo Date Time Lat Long Depth Mw22 2003/11/12 08:26:43.74 33.1710 137.0720 384.90 6.4023 2003/11/17 06:43:06.80 51.1460 178.6500 33.00 7.8024 2003/12/05 21:26:09.48 55.5380 165.7800 10.00 6.7025 2004/02/24 02:27:46.23 35.1420 -3.9970 0.00 6.4026 2004/03/12 22:45:19.00 36.3970 70.7740 218.00 5.8027 2004/03/27 18:47:29.20 33.9540 89.1790 8.00 6.0028 2004/04/14 23:07:39.94 71.0670 -7.7470 12.20 6.0029 2004/04/19 08:14:11.42 3.6140 -32.2340 10.00 5.6030 2004/05/10 23:27:25.49 37.4850 96.6040 10.00 5.6031 2004/05/29 20:56:09.60 34.2510 141.4060 16.00 6.5032 2004/06/10 15:19:57.75 55.6820 160.0030 188.60 6.9033 2004/06/14 22:54:21.32 16.3370 -97.8450 10.00 5.9034 2004/07/22 09:45:14.90 26.4890 128.8940 20.90 6.1035 2004/08/07 09:30:16.94 51.7530 -166.3130 8.00 6.0036 2004/08/10 01:47:32.81 36.4440 70.7960 207.00 6.0037 2004/08/11 15:48:26.82 38.3770 39.2610 7.40 5.7038 2004/09/05 10:07:07.82 33.0700 136.6180 14.00 7.2039 2004/09/05 14:57:18.61 33.1840 137.0710 10.00 7.4040 2004/09/06 23:29:35.09 33.2050 137.2270 10.00 6.6041 2004/10/09 21:26:53.69 11.4220 -86.6650 35.00 7.0042 2004/10/15 04:08:50.24 24.5300 122.6940 94.00 6.7043 2004/10/23 08:56:00.86 37.2260 138.7790 16.00 6.6044 2004/11/15 09:06:56.56 4.6950 -77.5080 15.00 7.2045 2004/11/28 18:32:14.13 43.0060 145.1190 39.00 7.0046 2005/02/05 03:34:25.73 16.0110 145.8670 142.70 6.6047 2005/06/13 22:44:33.90 -19.9870 -69.1970 115.60 7.8048 2005/06/14 17:10:12.28 51.2390 179.3140 17.00 6.8049 2005/07/25 16:02:07.57 71.1110 -7.4320 10.00 5.5050 2005/07/26 12:17:14.27 52.8710 160.1050 27.60 5.8051 2005/08/16 02:46:28.40 38.2760 142.0390 36.00 7.2052 2005/09/21 02:25:08.11 43.8920 146.1450 103.00 6.1053 2005/09/26 01:55:37.67 -5.6780 -76.3980 115.00 7.5054 2005/10/08 03:50:40.80 34.5390 73.5880 26.00 7.6055 2005/10/08 10:46:28.79 34.7330 73.1000 8.00 6.4056 2005/10/15 15:51:07.21 25.3210 123.3560 183.40 6.5057 2005/11/14 21:38:51.42 38.1070 144.8960 11.00 7.00Continued on next page
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B Event parametersContinued from previous pageNo Date Time Lat Long Depth Mw58 2005/12/02 13:13:09.52 38.0890 142.1220 29.00 6.5059 2005/12/12 21:47:46.07 36.3570 71.0930 224.60 6.50Table B.1: List of events used in the re
eiver fun
tion analysis for sites BOXNand EKTN.
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