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Summary

The main objective of my PhD research is developing a better understanding of the

mathematics, physics and numerical aspects of 3D MT inversion. This should lead

to a working software that allows inversion of MT datasets in three dimensions. It

is well known that reliable inversion includes three important and well-developed

constituents: forward modelling, optimization and regularization methods. Fortu-

nately, I am lucky to have full access to an up-to-date forward modelling code, x3d.

In addition there is a large number of optimization and regularization techniques.

Having all those components in place greatly facilitate my task. It should be under-

stood however that developing such complicated software as 3D inversion is not by

any means a simple mix of the three constituents mentioned above. Even if all three

mentioned constituents are ready to be used, the development of reliable inversion

software still requires many years of hard work, as is shown by experience of many

other inversion software developers. So why is it not just a simple mix? First of

all, all three main constituents should be adjusted to our specific case - 3D MT

data. As an example, it is unclear a priori which optimization method better suits

3D MT inversion. The theory and algorithm of our chosen optimization method -

the limited memory quasi-Newton (QN) method - is presented in Section 2.2. To

investigate what specific parameters of QN optimization are optimal for 3D MT

inversion we, as a start, studied thoroughly the 1D MT case (Chapter 3). Another

important point is that optimization methods require the calculation of derivatives

(such as gradients, Jacobians, Hessians) of some penalty function. In my work this

important question is considered in Sections 3.1.1 and 4.1.1. Even more simple than

this, it is unclear a priori what specific form of the penalty function is effective for

3D MT inversion. We introduce the chosen penalty function for the 3D case in

Section 4.1. Finally, of course, the whole approach has to be verified on synthetic

examples. We performed this verification for several representative MT models and

present the results in Section 4.2 and Chapter 5.

In summary we have developed a working 3D MT inversion approach and verified

x



Summary

it on synthetic test examples.

Of course, as usual some unresolved problem remains. This problem is related

to the physics of the 3D MT inversion itself, rather than to bugs in the numerical

software. This problem manifests itself in the synthetic experiment presented in

Section 4.2.4. There we encountered a problem that the recovered anomaly image

shows erratic behaviour in conductivity in the upper part of the model. For the

moment the reason for this behaviour is clear - sizes of inversion cells are much

smaller than an average distance between MT sites and at the same time the gradient

is much higher for cells located just below the sites. This problem is not new and

some remedies has been proposed. For example, usage of model covariance matrix

to address this problem is reported in Siripunvaraporn et al. (2005) or usage of

preconditioning of Newton system by an approximation to the inverted Hessian

matrix (Newman, personal communication). This is discussed in Chapter 5 and is

subject of my ongoing research.

Regardless of this unresolved issue, our solution can be used to recover the true

resistivity of the lower parts of realistic Earth models. Proper recovery of the true

resistivity for the upper part of the models depends on many factors, such as the

geometry and resistivity of the structures inside the Earth, coverage of the region

by MT sites and many others.
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Chapter 1.

Introduction

1.1. Thesis outline

This thesis consists of six chapters. As this work was performed in close collabo-

ration with Dr. Dmitry Avdeev, I will also describe for each chapter the specific

contributions I made.

In Chapter 1 we give a brief overview of magnetotellurics, and its contributions to

understanding Earth interior structure and dynamic processes. Then we shortly out-

line the basic equations of electromagnetism - Maxwell’s equations. In this chapter

we also present the history and relevant references on three-dimensional magneto-

telluric inversion.

In Chapter 2 we present the essential parts of our EM inversion technique. These

are forward modelling, optimization and regularization methods. In Section 2.1, we

describe the basics of the integral equation (IE) approach for modelling EM fields

in three dimensions, since we use the x3d forward modelling IE code by Avdeev

et al. (1997, 2002) as an engine for 3D inversion. In order to accelerate the inversion

I parallelized critical subroutines of the x3d code using message passing interface

(MPI). We outline this parallel implementation and present some results obtained on

distributed and shared memory clusters in Section 2.1.3. A 2D digital convolution

routine used by the IE method is a performance bottleneck in its serial implemen-

tation, and is this part that we accelerate through parallelization. In Section 2.2 we

describe in detail how to formulate MT inversion as a quasi-Newton optimization

problem. We also present the basic equation for a particular form of QN method, the

so-called limited memory quasi-Newton method, which we further use in this work.

It should be noted here that our setting is somewhat unconventional for EM, since

we chose to use conductivities as model parameters and explicitly impose natural

1



Chapter 1. Introduction

conductivity constraints. The conventional way is to use logarithmic transforma-

tion to ensure positiveness of the conductivity values. In Section 2.3 we consider

a Tikhonov-type regularization to stabilize the solution, as the inverse problem is

ill-posed.

In order to test the QN method, I applied it to 1D MT and present the results in

Chapter 3. Thus, we introduce the particular form of the data misfit and stabilizer

we use for this case. In addition, we present a complete theory for calculating the

gradient of the penalty function, based on the IE representation. This theory forms a

very useful prelude to the general case of 3D inversion. I performed a large number

of numerical studies for this 1D case to optimize the parameters for our limited

memory quasi-Newton inversion. Tuning the method using 3D models would be too

expensive in terms of computer time and storage.

Chapter 4 is a key chapter of this work. It is devoted to our solution of the

3D MT inverse problem. In Section 4.1 we present the problem as an optimiza-

tion problem for a special form of penalty function. We propose this new form of

penalty function, as it most adequately represents MT data misfit. There we also

present the complete theory for the calculation of gradients of the penalty function

with an adjoint method. The application of the adjoint method to the particular

case of 3D MT was mainly performed by Dr. Dmitry Avdeev. The equations in-

volved in this derivation are presented in Section 4.1.1. The solution of the inverse

problem in three dimensions also requires an advanced type of regularization that

I implemented and tested. Section 4.2 is devoted to synthetic model studies that

are extremely important for proper judgment of the quality of our approach. These

studies involve information about performance, robustness and limitations of the

inversion. We present several 3D MT models and the corresponding results of the

inversion obtained for these models.

Chapter 5 we discuss different preconditioners, which can help to smooth the

erratic behaviour of the conductivity values in the upper part of the inversion re-

sults observed for some of our synthetic examples. In Chapter 6 we present some

conclusions and outline the possibilities for future work.

Some additional material to further understand the inversion method is placed

into appendices. This material is not essential for general comprehension, but gives

deeper understanding of the mathematics involved.

2



Chapter 1. Introduction

1.2. History and main aspects of magnetotellurics

Magnetotellurics (MT) appeared in the 1950’s as a method of electromagnetic sound-

ing of the Earth (Tikhonov, 1950; Cagniard, 1953). In contrast to other geoelectrical

methods, which are based on the study of the relationship between electromagnetic

fields and their sources, the MT method is studying the ratios between the horizontal

components of the electric (telluric) and magnetic fields to investigate the electrical

conductivity structure of the Earth. This is due to the fact that the sources of MT

are ionospheric and magnetospheric currents originating from the interaction of solar

and near-earth plasma with the Earth’s magnetic field, and we do not have precise

information on the distribution of these currents. Fortunately, in most cases the

electromagnetic field arising from these sources can be considered a plane wave and

the source geometry does not need to be known. This is one of the advantages of

MT, as the geometry of artificial sources complicates the interpretation (i.e. forward

modelling and inversion). In the following section we describe the MT sources in

more detail.

1.2.1. Sources

There are two major types of source mechanisms that generate electromagnetic fields

used for MT soundings (e.g. Simpson and Bahr, 2005):

1. Above 1 Hz the electromagnetic waves used for MT sounding are generated by

worldwide lightning activity. The electromagnetic waves emitted by individual

lightning strokes get partially trapped in the waveguide, formed between the

conductive ionosphere, the part of the atmosphere with the largest concentra-

tion of ions extending from 100 to 250 km above the Earth’s surface, and the

Earth. These waves can travel long distances and the lightning somewhere

in the world is enough to provide a continuous source at any location of the

Earth’s surface. The measured field at the surface of the Earth is a superposi-

tion of waves generated from individual lightnings and the exact characteristics

of the electromagnetic fields depends on the size, shape and the nature of the

boundaries of the waveguide. As long as the measurements are far away from

the individual thunderstorms this superposition can be considered as a plane

wave.

2. Solar wind consists of ionized particles flowing radially outward from the sun.

3



Chapter 1. Introduction

Figure 1.1.: Schematic image of magnetic field lines forming the Earth magneto-
sphere. The magnetosphere extends to more than 10 Earth radii on the
day-side and to 40 radii on the night-side of the Earth (modified from
Simpson and Bahr, 2005).

These ionized particles are deflected by the Earth’s magnetic field at the outer

region of the magnetosphere (at the magnetopause) and are guided around

the Earth to the far tail, along the magnetic field lines (see Figure 1.1). When

moving around the Earth they distort the Earth’s magnetic field and generate

their own field. The variations of these external magnetic fields can be mea-

sured at the surface of the Earth. The typical frequencies of these variations

are from about 10−5 to 1 Hz. The amplitudes of these variations are greater at

times of the high solar activity and reach several 100 nT at periods of several

hours. When the solar wind is strongly enhanced, stronger magnetic effects

occur, these are known as magnetic storms. Even though these storms provide

a good source for MT measurements, when their activity becomes too strong,

the plane wave assumption is no longer valid. Hence, segments of the data

corresponding to these times should be discarded. This problem mostly exists

in polar regions where charged particles come close to the Earth’s surface in

the cusp region, however when a storm is particularly large these effects can

also be observed in mid-latitudes. Jones and Spratt (2002) provide a tech-

nique for identifying problematic segments of the data under some simplifying

assumptions.

The narrow frequency range from 0.5 to 5 Hz, in the limit between solar wind and

lightning activity, is known as the dead-band. In this frequency range the power

spectrum of the natural electromagnetic field has a minimum (see Figure 1.2). In

MT sounding curves this frequency range usually corresponds to a reduction of data

quality.

4



Chapter 1. Introduction

Figure 1.2.: Power spectrum of natural magnetic variations. The inset shows the
minimum of the power spectrum in the dead-band (modified from Simp-
son and Bahr, 2005).

Both of the above source mechanisms create small, but measurable, time-varying

electromagnetic signals. The problem is that the amplitudes of these signals vary

considerably, which means that data have to be acquired for hours or even days at

one MT site to ensure sufficient signal strength at all frequencies of interest.

1.2.2. Conductivity mechanisms in earth materials

As was mentioned earlier in this section the purpose of MT is to investigate the

distribution of electrical conductivity inside the Earth’s subsurface. In order to

understand the expected conductivity variations and possible targets of MT surveys

we will review the major conductivity mechanisms within the Earth.

Conductivity is the ability of a material to conduct electrical current. In rocks

and minerals there are three types of the electrical charge transport mechanisms,

these are semiconduction, electrolytic and electronic conduction.

1. The main conductivity mechanism in dry unaltered rocks in the crust and

upper mantle is semiconduction. In this case the electrical current flow is due

to the movement of positive holes or missing electrons. Typical resistivities

due to this conduction mechanism are 103 − 106 Ωm. These are the upper

limits of what is usually observed in MT surveys (e.g. Ledo et al., 2004).

5
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2. Electrolytic conduction means that the electric current is accompanied by the

movement of matter in the form of ions. This type of conduction can appear

in crustal rocks containing pores or fractures that are filled with fluid elec-

trolytes containing, for example, NaCl. The amount of NaCl in the electrolyte

fluid is usually the most important factor affecting the fluid saturated rock

conductivity. This type of conduction usually suggested in tectonically active

regions (e.g. Li et al., 2003). Under the temperatures of the upper mantle

water itself is present in the form of H+ and OH− ions which strongly enhance

the observed conductivity (e.g. Gatzemeier and Moorkamp, 2005).

In geothermal or volcanic areas very high conductivity can be explained by

an interconnected network of partial melts, which is also act as electrolyte.

Partial melts are formed when the temperature crosses the solidus line in

pressure/temperature diagram. Small amounts of partial melt can greatly

enhance the observed conductivity as long as it is interconnected and not in

the form of isolated melt pockets (e.g. Heise et al., 2007).

3. In electronic conductors, such as metals, the electrons can freely move within

the material and transport charges. In the presence of an interconnected

network of highly conducting matter, such as graphite or ores, this type of

conduction increases the conductivity of the rock by orders of magnitude.

Various groups of scientists assume this as a reason for the highly conductive

areas within the crust (e.g. Haak et al., 1997), however this is under debate,

as electrolytic conduction through a similar interconnected pore system can

be also an explanation (e.g. Li et al., 2003).

A more detailed overview of mechanisms of conductivity together with some ref-

erences can be found in the review paper by Nover (2005).

1.2.3. Practical measurements and processing

Although we will only give a theoretical justification of the method below, we de-

scribe here the practical aspects of acquiring MT data and how we obtain the fre-

quency dependent impedance tensor that is the base of all MT surveys.

As explained above, MT is based on the simultaneous measurement of the hori-

zontal components of the electric and magnetic fields at the Earth’s surface. The

exact way in which these fields are measured depends on the frequency range and

whether the measurement site is on land or on the seafloor. We will concentrate

6



Chapter 1. Introduction

here on land-based measurements in the frequency range 300 Hz − 10, 000 s as they

are performed at the Dublin Institute for Advanced Studies.

Each component of the electric field in this frequency range is measured through

the voltage between a pair of Pb/PbCl electrodes separated by 50− 100 m. As for

a constant electric field the voltage increases linearly with the distance between the

electrodes, longer separation allows to detect smaller signals and enhances the signal

to noise ratio. However it is rarely practical to have separations greater than 100 m

as the installation becomes increasingly difficult.

The magnetic fields are measured either with a set of coils for frequencies greater

than 1 Hz or with three-component fluxgate magnetometers for longer periods. Mod-

ern broad-band magnetic coils have signal to noise ratios that allow to register signals

with periods up to 5,000 s under ideal circumstances and fluxgate magnetometers

therefore might seem unnecessary. In contrast to coils that measure the change of

the magnetic field and whose sensitivity consequently falls of as 1/(frequency), flux-

gate magnetometers have a nearly constant sensitivity below a threshold frequency

and can better record long period signals. Thus often both types of sensors are in-

stalled at a single measurement site to ensure a wide frequency range can be used in

the analysis. Regardless of which type of sensors are used, their electrical signals are

digitized in a central recordings box and each component is stored on flash memory

or a hard-disk as a time-series for further processing.

Even though MT processing is theoretically straightforward, modern processing

algorithms use sophisticated statistical methods such as robust estimation (Egbert

and Booker, 1986; Chave et al., 1987) and the behaviour of the fields at neighbouring

sites (Gamble et al., 1979). This is necessary because any violation of the plane

wave assumption can seriously distort the estimated impedance. We will restrict

ourselves here to a basic description of the simplemost processing scheme, a more

detailed review can be found in Egbert (2002).

The recorded time-series is divided into segments of equal length, depending on

the total recording length and the longest period required. Each segment is fourier

transformed and the auto- and cross-spectra are calculated. For each of those spectra

we calculate the mean and the variance and then use a simple analytical formula

to calculate the impedance estimates at the desired frequencies and their error. As

mentioned above this way of calculating the estimates is highly susceptible to noise

and therefore not recommended for practical applications. However it gives a better

idea of the relationship between the measured quantities and the magnetotelluric

7



Chapter 1. Introduction

impedance used in inversion and modelling.

1.2.4. MT applications

Due to the huge frequency range from 10−5−104 Hz and therefore depths of penetra-

tion from 10 m to up to 200 km, MT can be used for a large number of applications.

In this section we present typical examples for some of most common ones.

1. Deep crustal and mantle studies The aim of crustal and mantle studies is

usually to understand the structure and tectonic history of a certain region

on a large scale. Therefore these kind of studies are mostly conducted by

academic institutions although the results can also help the mining industry

to understand fundamental properties of that region.

Jones et al. (2001) present result from three MT experiments on the Slave

craton, which became a very popular area for geosciences since the discov-

ery of diamoniferous kimberlite pipes. The first experiment used conventional

land-based broadband instruments (from 10−4 up to 104 Hz). For the second

experiment they sank the electrodes to the bottom of the lake for electri-

cal field recordings, while magnetometers were placed on the nearby shores.

The third experiment used seafloor MT instruments deployed in the lakes.

Analysing these data they found an electrical conductivity anomaly at a depth

of ≈ 80 km that spatially coincides with the kimberlite field and is now known

as the Central Slave Mantle Conductor (CSMC). To interpret this anomaly

they discussed several possible causes for the high conductivity, such as melt,

hydrated minerals, diffusion of hydrogen in the mantle, graphitization and sul-

fides. Combining their results with the results from geochemical data from the

same area they suggest that the most probable explanation of the high con-

ductivity is either interconnected graphite or dissolved hydrogen. They also

speculate on possible tectonic formation processes that might have caused the

enhanced conductivity. However the limited information available from this

depth prevents the clear identification of a single cause.

2. Geothermal studies Geothermal studies are of interest to both academia and

industry. Examining the structure of geothermal areas helps to understand

basic properties of these systems and the connection to large scale tectonic

processes, but also allows energy companies to identify interesting regions for

geothermal power generation.

8
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Heise et al. (2007) collected MT data along a profile across the Taupo Volcanic

Zone (TVZ) consisting of 28 broad-band (0.003 - 2000 s) and 3 long period

(10 - 10000 s) sites. Using the 2D inversion code by Rodi and Mackie (2001)

and phase tensor analysis (Caldwell et al., 2004) they constructed an electrical

conductivity model beneath this geothermal zone. They showed that the resis-

tive (500 - 1500 Ωm) crust is thinned underneath the TVZ from 20 to 10 km.

Beneath this thinned crust there is an area of high conductivity (3 - 30 Ωm),

which they interpret as a zone of melt accumulation. This interconnected melt

zone starts at about 13 km depth, however the bottom of the conductor is not

well constrained, which is typical for MT.

3. Environmental studies Usually shallow borehole measurements are used to

investigate the extent and to monitor changes within waste sites. This tech-

nique, however, is relatively expensive. Buried waste often has an electrical

conductivity much higher than the surrounding host material and therefore

EM methods seem suitable for investigating the extent of the waste more eco-

nomically. In addition, repeating these EM measurements can help to monitor

the changes in conductivity within the waste site and the surrounding. Often

groundwater contamination appears as a conductive zone around the waste

site and can be identified from EM models. MT has been shown to be very

useful for buried waste characterization when used at radio frequencies (from

10 kHz up to 1 MHz) (Pellerin, 2002). The principle of the radio magneto-

telluric (RMT) method is the same as MT, but the source is the EM far-field

of a radio transmitter, which can be viewed as a propagating plane wave. As

RMT uses such high frequencies quick soundings are possible. As an example,

Newman et al. (2003) had 320 RMT measurements using eight frequencies cov-

ering the range between 18.3 and 234 kHz. These measurements were collected

over a buried waste site near Cologne, Germany. Inverting these data using a

3D MT inversion scheme (Newman and Alumbaugh, 2000) they successfully

recovered the shape and extent of the contamination, which agrees with the

borehole data. However, this success was partially due to incorporating a

priori information within the inversion.

4. Oil and mineral exploration MT methods are important cheap supplementary

methods to seismic surveys for petroleum exploration. Petroleum and natural

gas are often trapped in pockets between rock and salt that were formed by

9



Chapter 1. Introduction

the upward movement of salt towards the surface, penetrating and bending the

existing rock. Due to this fact, mapping the top and bottom of salt structures

is important to identify the location of reservoirs. Salt structures contain

entrained sediments that produce significant scattering and have strong re-

flecting vertical boundaries that produce ambiguities in the interpretation of

seismic reflection data. Especially the steeply dipping sides and base of the salt

are sometimes unresolved. Since the resistivity of salt is often more than ten

times greater than the surrounding sediments, MT can help to resolve these

problems. However, because of the attenuation of MT fields in conductive

seawater the amplitude of the fields at short periods is within the noise level

of traditional marine MT instruments. For this reason traditional instruments

are used only at periods of 103 to 105 s in the marine environment. Yet, Hov-

ersten et al. (1998) showed on the synthetic, but realistic examples that MT

responses at periods from 1 and 103 s are sensitive to the salt structures at

depth substantial for petroleum exploration. To solve this problem Constable

et al. (1998) developed a novel broadband marine MT instrument and tested

it for different sea water depths offshore San Diego. As a result they obtained

good-quality responses at periods of 3 to 103 s in 1-km-deep water, while in

shallower water due to wave activity and water currents the quality of the

magnetic field recordings was not sufficient. They therefore suggest to replace

these with nearby land magnetic recordings.

Using this novel instrumentation, data in the period band of 1 to 3000 s were

collected over a salt body at Gemini Prospect, Gulf of Mexico. These data

were used by Key et al. (2006) in order to investigate the effectiveness of using

2D marine MT methods to map 3D salt structures. Based on the result of the

2D inversion of 1) a synthetic dataset calculated for a 3D model constructed

from the seismic salt model and 2) the real data, they conclude that for the

adequate recovery of the boundaries of the salt structure, a full 3D inversion is

needed. 2D inversion should still be used for data quality assessment, finding

appropriate error floors and, most importantly, for constructing an improved

starting model for 3D MT inversion.

These examples of recent applications of MT also show that most analyses of MT

data are still performed with 2D inversion schemes and only rarely 3D tools are

utilized. This is due to limited computer power, limited availability of 3D inversion

codes and generally lower requirements in terms of number of stations for 2D surveys.

10
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With current computer power and a greater variety of 3D inversion codes available

it is starting to become mostly a matter of experimental design and costs whether

3D methods can be used or not.

1.3. Maxwell’s equations and very basic definitions

Electromagnetic (EM) phenomena can be described by Maxwell’s equations (pre-

sented here in the frequency-domain) (Ward and Hohmann, 1987)

∇×H = (σ − iωε)E + jext, (1.1a)

∇× E = iωµ(H + hext), (1.1b)

where µ and ε are the permeability and permittivity of the medium, respectively, σ

is the electric conductivity, ω is the angular frequency of an EM field with assumed

time-dependence e−iωt, and jext and hext are external sources.

We will now shortly describe the definitions for forward and inverse problems that

are commonly agreed on within the EM community. During forward modelling (1D,

2D or 3D) one numerically solves Maxwell’s equations in order to calculate electric,

E, and magnetic, H, fields within the volume of interest. Such mapping from the

space of model parameters to the space of EM fields is called forward problem and

we denote it as

σ, ε, µ, jext,hext −→ E, H. (1.2)

On the contrary, for inverse problem one assumes that the EM fields are known,

usually at some sites on the surface (or underground) of the Earth, and the problem

is to find a distribution of underground electrical conductivity, σ, permeability, µ,

and permittivity, ε. In other words, the inverse problem is one of the following

mappings

E, H, jext, hext −→ σ, ε, µ, (1.3a)

or

E, H −→ f(E, H)︸ ︷︷ ︸
transfer function

−→ σ, ε, µ. (1.3b)

The electric and magnetic fields are functions of the extraneous sources, the con-

ductivity distribution, and the point of observation. Fortunately, the transfer func-

tion in 1.3b that is independent of the geometry and polarization of the source can
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be determined for MT. The MT transfer function is the impedance tensor, Z. This

tensor Z is a 2× 2 complex-valued matrix(
Ex

Ey

)
=

(
Zxx Zxy

Zyx Zyy

)(
Hx

Hy

)
. (1.4)

This tensor relationship between the field components was first proposed by Neves

(1957) and Berdichevsky (1960). In Appendix A we present some exact formulae

for the MT impedance in the particular case of a layered-earth model.

Figure 1.3.: Trivial scheme of model-data interaction.

In Figure 1.3 we present a trivial scheme of model-data interaction together with

a schematic inverse procedure, which can be understood as following:

1) start with some initial guess model m(0), 0→ n,

2) calculate the residual r(n) =
∥∥d(n) − dobs

∥∥,

3) if r(n) ≤ ε stop, else goto 4)

4) jump in the model space from model m(n) to some other model m(n+1),

5) n+ 1→ n, goto 2

In the above algorithm, d(n) = F (m(n)) is the solution of the forward problem for

the model m(n), and ε is some preassigned tolerance.

From this trivial scheme we recognize two important components of the inversion

procedure. First, the solution of the forward problem, and second, finding a way of

jumping in the space of model parameters.

12
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1.4. History of 3D MT inversion

Since Tikhonov’s and Cagniard’s times, the MT method has dramatically devel-

oped. Generally, modern MT can be viewed as a discipline, consisting of several

self-contained parts, such as the MT equipment design, data acquisition, process-

ing etc. In particular, it includes data interpretation, which, in its turn, includes

a numerical inversion as an important constituent. Starting from the 1D case (in

Tikhonov’s and Cagniard’s time) through 2D case (in the 70’s), it has now become

feasible to invert data with respect to a 3D Earth model. In other words the in-

version in three dimensions is an actual and important topic of modern MT. To

further back up the idea of importance of 3D MT inversion today, we mention three

international meetings partially devoted to this subject (Oristaglio and Spies, 1999;

Zhdanov and Wannamaker, 2002; Macnae and Liu, 2003). We see three main reasons

for that - first, significant improvement in instruments and acquisition techniques,

second, dramatic rise in numerical methods and computer performance and, third,

the need among geologists and Earth scientists to understand crustal-scale geological

structures and processes.

Interestingly, in spite of the urgent need for sophisticated 3D MT inversion soft-

ware only a few developments of such a software are reported. It is not very sur-

prising considering the level of complexity of 3D MT inverse problems (Mackie

and Madden, 1993; Mackie et al., 2001; Newman and Alumbaugh, 2000; Newman

et al., 2003; Zhdanov and Golubev, 2003; Sasaki, 2004; Siripunvaraporn et al., 2005;

Avdeev and Avdeeva, 2006). Here we briefly summarize the main achievements of

these previously published works.

Usually a solution of the inverse problem is sought as a stationary point of some

penalty functional ϕ(m). In order to do this Newton-type iterative methods are

commonly applied. These methods traditionally require to compute and store the

sensitivity matrix J = ∂F
∂m

(F - forward problem solution) and Hessian matrix H =
∂2ϕ
∂m2 , or its approximation. These matrices are long to compute and large memory

is required in order to store them in the 3D case. That is why it is important to

make this computations more economical or even try to avoid them.

Mackie and Madden (1993) present algorithms for the solution of a 3D least-

squares inverse problem using the conjugate gradient method (CG). This method

does not require to calculate the sensitivity matrix J explicitly. At each iteration

it only needs to compute the effect of the sensitivity matrix or its transpose mul-

13
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tiplied by an arbitrary vector. They show that this is equivalent to the solution of

two forward problems per frequency with sources distributed throughout the vol-

ume and across the surface and demonstrate that their procedure works well for

simple 3D models. Newman and Alumbaugh (2000); Newman et al. (2003); Mackie

et al. (2001) use another optimization approach – the non-linear conjugate gradi-

ent method (NLCG) by (Fletcher and Reeves, 1964; Polak and Ribiere, 1969) for

the 3D MT inversion solution development. This approach avoids the calculation

of sensitivities, but requires to compute the gradient vectors g = ∂ϕ
∂m

instead. The

evaluation of the gradients involves a single solution of one forward problem and

one adjoint problem at each NLCG iteration. This approach has been used to invert

commercial datasets.

Zhdanov and Golubev (2003) developed a 3D inversion algorithm also based on

the NLCG method. To speed up the solution of the inverse problem they use a

quasi-analytical approximation for the forward modelling solution. Another opti-

mization method used to invert 3D MT data is the Gauss-Newton method (GN).

This method requires to calculate the sensitivity matrix J in order to compute a

first order approximation to the Hessian matrix H. Sasaki (2004) developed a 3D

MT inversion based on a typical GN optimization with some modifications made to

reduce the number of forward modellings to a reasonable level. His inversion algo-

rithm allows to invert the MT data with static shift. Siripunvaraporn et al. (2005)

successfully developed a solution based again on a GN approach, but this time in

data space to reduce the size of the sensitivity matrix, as in 3D the amount of data

is usually much smaller than the number of model parameters.

In this work we apply a limited memory quasi-Newton optimization method to

solve the 3D MT inverse problem. Quasi-Newton methods, similarly to NLCG,

also require only the gradients g of the penalty functional ϕ to be supplied at each

iteration. Using the gradients these methods construct an approximation to the

Hessian matrix or its inverse. When computing the approximation to the inverse of

the Hessian they circumvent the solution of the system of linear equations at each

iteration, which is necessary for GN method. However their approximations to the

Hessian or its inverse are usually dense, which makes it difficult to store and compute

them in memory for large-scale problems. In this cases a modification of the method

has to be applied. One of such modifications – the limited memory quasi-Newton

method – obtains an inverse Hessian approximation that can be stored in just a few

vectors. The length of these vectors is the same as the amount of model parameters.

14
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This method is fairly robust and inexpensive, does not converge rapidly (Nocedal

and Wright, 1999). As far as we know this method has never been applied before

to solve an MT inverse problem, although Haber (2005) used QN methods to invert

controlled-source electromagnetic data.
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Chapter 2.

Essential parts of EM inversion

In this chapter we present the main constituents of EM inversion: forward modelling,

optimization and regularization. In our current implementation we use the integral

equation forward modelling code x3d by Avdeev et al. (1997, 2002). We chose

to use a limited memory quasi-Newton optimization method, as an optimization

technique. For regularization, we used various Tikhonov-type regularizations. The

essential details of these components are described below; we begin with the forward

modelling technique used.

2.1. Forward modelling method

There are three main ways of solving the forward problem: finite-difference (e.g.

Mackie et al., 1993; Newman and Alumbaugh, 1995; Xiong, 1999; Wang and Fang,

2001; Siripunvaraporn et al., 2002), integral equation (e.g. Hohmann, 1975; Wanna-

maker, 1991; Avdeev et al., 1997, 2002) and finite-element (e.g. Reddy et al., 1977;

Zyserman and Santos, 2000; Badea et al., 2001; Mitsuhata and Uchida, 2004) ap-

proaches. The FD methods are the most widely used, mostly due to the apparent

simplicity of the numerical implementation. IE methods are not so trivial in their

implementation, however if they are implemented accurately they are efficient in

terms of computer memory. FE methods are still not widely used in 3D MT modell-

ing, due to the nontrivial and time-consuming construction of the finite elements

themselves. This approach operates with unstructured meshes, and hence, is more

appropriate for complex geometries, than FD and IE methods (Badea et al., 2001).

For all of these approaches the initial system of Maxwell’s equations reduces to

the system of linear equations

Ax = b. (2.1)
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The difference between these three approaches is the properties of the matrix A.

For FD the matrix A is complex, large, sparse and symmetric. For FE this matrix

is also complex, large and sparse, but now it is usually nonsymmetric. For the IE

approach the matrix A is complex and dense, but much more compact than for FD

or FE.

The important points here for all three approaches are how well the system 2.1

approximates the original system of Maxwell’s equations and how fast one can find

its solution x. After many years of competition we have a few accurate, reliable and

fast FD, FE and IE forward solvers. Comparison of these solvers is a very difficult

task, for the reason that they perform better for different models and there is always

a large number of meshes (completely different for different approaches) that have

to be used to find the most appropriate ones. One of the attempts to compare

FD, FE and IE was the COMMEMI project of Zhdanov et al. (1997). One should

understand that the COMMEMI project was performed in 1997 and the results are

out of date. The more complete overview and reference list on forward modelling

can be found in the recent review paper by Avdeev (2005).

I have never worked with any of FE forward solvers, but had an opportunity to

work with the IE x3d code, which is used as an engine for our inversion solution and

had some experience with two advanced 3D FD forward modelling codes, during a

two-month visit to the Lawrence Berkeley National Laboratory. These FD codes are

a time-domain FD code by Commer and Newman (2004) and a frequency-domain

FD code by Newman and Alumbaugh (1995). As the results of this two-month work

are not related to MT inversion, I present them in Appendix E.

Regarding the forward modelling solver for my PhD research, I had only two

options: (a) to develop such a code myself, or (b) to use an existing code written by

somebody else. Item (a) involves enough work for a PhD thesis, and therefore was an

unacceptable option. Item (b) also presents some difficulties, since the development

of an MT inversion solution requires access to a forward modelling code together

with its sources. Additionally, this code has to be able to handle controlled-source

problems along with MT ones for reasons we will explain below. Fortunately, I had

access to the x3d code through collaboration with Dr. Dmitry Avdeev. This code is

based on a volume integral equation method originally presented by Singer (1995).

The relevant references about the further development of the method can be found,

for example, in Avdeev et al. (2002). A serial implementation of the method, named

x3d, is thoroughly described in the papers of Avdeev et al. (1997, 2002), where the
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reader can find more details about the algorithm. Here we also present a parallel

implementation of this code. This parallel implementation is essential for 3D EM

inversion, as it reduces the required computation times significantly.

In Section 2.1.1 we briefly summarize the main aspects of the volume IE ap-

proach. We present formulae of the 3D IE EM forward modelling method that are

of importance for us.

In Section 2.1.2, we describe some numerical bottlenecks of the serial x3d code

and show how the solution may be parallelized to circumvent these bottlenecks. In

particular, we demonstrate that a 2D digital convolution is the most time-consuming

part, at least for large-scale models. Further, in Subsection 2.1.3 we analyse to what

extent our parallel implementation outperforms the serial x3d solution for various

numbers of processors and model sizes. Comparisons have been undertaken on both

distributed and shared memory clusters. The results presented are encouraging and

suggest the parallel implementation can accelerate the x3d solution and, therefore,

the inversion of EM data. This parallel implementation is one of the important

parts of this thesis, but it is by no means a main scientific contribution to the work.

2.1.1. Key formulae of IE method

In this section we summarize the main aspects of the forward modelling code x3d

based on the volume IE approach, following works by Avdeev et al. (1997, 2002).

For the volume IE approach, first we have to choose some reference model with

generalized conductivity ζ0 = σ0−iωε0. This model can be chosen in many ways with

the condition that we are able to effectively calculate the 3×3 dyadic Green’s tensors

for it. For example, it can have isotropic or transversely anisotropic conductivity.

Avdeev et al. (1997) present the explicit formulae of the Green’s tensors for a general

case of a layered uniaxial anisotropic model. Anisotropic conductivity has been

observed in lab measurements on the upper mantle materials (e.g. Simpson and

Tommasi, 2005) and is sometimes used to explain MT data (e.g. Mareschal et al.,

1995).

Once the reference model is chosen, we can write the following system of Maxwell’s

equations:

∇×H0 = ζ0E
0 + jext, (2.2a)

∇× E0 = iωµ(H0 + hext), (2.2b)
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where E0 and H0 are the electric and magnetic fields, respectively. Using the defi-

nition of the Green’s tensor the electric field E0 is easy to calculate as

E0(r) =

∫
V ext

Gee
0 (r, r′)(jext(r′) +∇× hext(r′))d3r′, (2.3)

where V ext is the volume supporting the extraneous current jext + ∇ × hext, r =

(x, y, z), r′ = (x′, y′, z′) are the vectors of 3D space, d3r′ = dx′dy′dz′ is the element

of 3D volume. Substracting equations 2.2 from equations 1.1 we obtain the system

of Maxwell’s equations for the scattered fields:

∇×Hs = ζ0E
s + jq, (2.4a)

∇× Es = iωµHs. (2.4b)

In equations 2.4 Es = E − E0 and Hs = H − H0 are the scattered electric and

magnetic fields, respectively, and jq = (ζ − ζ0)(Es + E0).

We can derive the scattered electric field in a similar manner to formula 2.3.

Es(r) =

∫
V s
Gee

0 (r, r′)jq(r′)d3r′

= E0(r) +

∫
V s
Gee

0 (r, r′)(ζ(r′)− ζ0(r′))Es(r′)d3r′, (2.5)

where E0(r) =
∫
V s
Gee

0 (r, r′)(ζ(r′)− ζ0(r′))E0(r′)d3r′ is a free term, and the volume

V s is the volume where ζ − ζ0 differs from 0. Equation 2.5 is a traditional integral

scattering equation (Dmitriev, 1969; Weidelt, 1975a).

In order to efficiently solve this scattering equation for models with high con-

ductivity contrasts, the modified iterative dissipative method (MIDM) should be

applied. This method was first proposed by Singer (1995). Following MIDM the

following change of variables has to be made Es → χ, where

χ(r) =
1

2
ν−1(r)

[
(ζ(r) + ζ0(r))Es(r) + (ζ(r)− ζ0(r))E0(r)

]
. (2.6)

Here ν = diag
(√
<(ζ0τ ),

√
<(ζ0τ ),

√
<(ζ0z)

)
, the upper bar and < in the above

expressions, as everywhere else, are the complex conjugate and real parts of their

argument, respectively. After this change of variables we can rewrite equation 2.5
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as:

χ(r) = χ0(r) +R(r)χ(r) + 2ν(r)

∫
V s
Gee

0 (r, r′)ν(r′)R(r′)χ(r′)d3r′, (2.7)

where

χ0(r) = R(r)ν(r)E0(r) + 2ν(r)

∫
V s
Gee

0 (r, r′)ν(r′)R(r′)ν(r′)E0(r′)d3r′. (2.8)

To derive the above equations 2.7 and 2.8 we used the formula ζ0 + ζ0 = 2ν2 and

the notation R = (ζ − ζ0)(ζ + ζ0)−1.

From equation 2.7, imposing a numerical grid on the model allows us to derive

the following system of linear equations with respect to the unknown field χ:

(Aχ)i,j,k = (χ0)i,j,k. (2.9)

Operator A of equation 2.9 is defined as follows

(Aχ)i,j,k = χi,j,k − (Rχ)i,j,k − Φ−1
2

[
Nz∑
k′=1

Qk,k′Φ2

[
(R̃χ̃)k′

]]
i,j

. (2.10)

It is assumed that the modelling volume V s is discretized by prisms Di,j,k (i =

1, ..., Nx, j = 1, ..., Ny, k = 1, ..., Nz), where we assume also that all prisms in the

mesh are of the same horizontal size, but their vertical size is variable along the

vertical axis. Subscript i, j, k of equation 2.10 stands for an average value over

prism Di,j,k. In this key equation

Ri,j,k = (ζi,j,k − (ζ0)k)
(
ζi,j,k + (ζ0)k

)−1

; (2.11)

Φ2 and Φ−1
2 are respectively the direct and inverse 2D digital Fourier transforms

over both subscripts i and j;

(Qk,k′)i′,j′ = 2νkΦ2 [q̃k,k′ ]i′,j′ νk′ , (2.12)

where i′ = 1, ..., 2Nx, j
′ = 1, ..., 2Ny,

νk = diag
(√
<(ζ0τ )k,

√
<(ζ0τ )k,

√
<(ζ0z)k

)
, (2.13)
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and

(qk,k′)i,j =

∫
Di,j,k′

Gee
0 (x, y, zk, z

′)dz′. (2.14)

Here zk is the depth of the centre of prism Di,j,k.

The theory for the derivation of equation 2.10 from equation 2.7 is explained in

appendix B. There the reader also can find an explanation for the tilde sign.

The serial implementation of Avdeev et al. (2002) solves the system 2.9 using a

Krylov subspace iteration technique. This iteration technique generates the sequence

of Krylov approximations,
{
χ

(n)
i,j,k

}
, n = 1, ..., that approach the solution, χi,j,k, of

the system 2.9 as

χi,j,k ≈ lim
n→∞

χ
(n)
i,j,k. (2.15)

The stopping criteria for the Krylov iteration is based on reducing the relative

residual

r(n) =

∥∥Aχ(n) − χ0

∥∥
L2

‖χ0‖L2

(2.16)

down to a user-determined level ε.

When the solution χi,j,k of equation 2.15 is found, the electric field within the

modelling volume V s is calculated as

Ei,j,k =
(
ζi,j,k + (ζ0)k

)−1 (
2νkχi,j,k − jsi,j,k

)
+ E0

i,j,k, (2.17)

where

jsi,j,k = (ζi,j,k − (ζ0)k)E
0
i,j,k, (2.18)

and E0
i,j,k is the reference electric field.

In the context of this study it is of particular importance that the solution exploits

the multiple calculation of a discrete 2D convolution given on the right hand side of

equation 2.10.

2.1.2. Bottlenecks of serial implementation

The performance of the serial implementation x3d for the solution presented above

strongly depends on two time-consuming parts of the algorithm. The first is the

calculation of the 3 × 3 Green’s matrices (Qk,k′)i′,j′ given in equation 2.12, where

k, k′ = 1, ..., Nz, i
′ = 1, ..., 2Nx and j′ = 1, ..., 2Ny. This requires the calculation

of 9 × 2Nx × 2Ny × N2
z complex-valued numbers in total. It should be noted that
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x3d stores the Green’s matrices (Qk,k′)i′,j′ on hard disk for large-scale problems, and

standard IO operations are used to read and write them to RAM when needed. This

allows x3d to carry out this calculation only once during the whole iterative solution

process, at the very beginning.

The second time-consuming part is the multiple 2D convolution presented in the

right hand side of equation 2.10. The amount of these convolutions depends on the

number of Krylov iterates. Figures 2.1 and 2.2 present a typical computation time

ratio between those two parts of the x3d solution. This ratio

q =
TAχ
TQ

(2.19)

is a fraction of the wall time, TAχ, spent by the x3d solution within the 2D convo-

lution routine, summed up for all Krylov iterates, over the wall time, TQ, required

for calculation of the Green’s matrices (Qk,k′)i′,j′ . The ratio 2.19 is presented for 3D

models with a conductivity contrast of 30 in bilogarithmic scale as a function of the

model sizes Nx(= Ny) and Nz.

Figure 2.1.: Factor q of equation 2.19 obtained on a distributed memory cluster
Leda. The results are presented in bilogarithmic scale as a function of
model sizes Nx(= Ny) and Nz.

It is interesting that, for the models considered, the whole x3d solution requires

only six Krylov iterates to achieve a relative residual as small as ε = 5 × 10−4.

The models with higher conductivity contrasts would need more Krylov iterates,

and hence, the ratio q for these models would be even larger than that presented in

Figures 2.1 and 2.2. From these figures we can see that the ratio q can be as large
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Figure 2.2.: Factor q of equation 2.19 obtained on a shared memory cluster Hamil-
ton. The results are presented in bilogarithmic scale as a function of
model sizes Nx(= Ny) and Nz.

as 30 for the models considered. Therefore, we conclude that the 2D convolution

routine is the best candidate for acceleration of EM inversion through parallelization

of the x3d computer code. Accordingly, we implemented this solution on distributed

and shared memory clusters to investigate relative improvements in computational

speed.

2.1.3. Parallel implementation

2.1.3.1. Distributed memory cluster

First we developed a parallel implementation of the solution described above to run

on a distributed memory cluster. Similar work was previously undertaken by Yosh-

ioka and Zhdanov (2005) using the ScaLAPACK package. In our implementation,

however, we adopted a more trivial scheme, which assigns the number k (number of

the layer) given in the right hand side of equation 2.10 to the kth processor of the

cluster. In other words, the kth processor calculates (Aχ)i,j,k of equation 2.10 for

all i = 1, ..., Nx and j = 1, ..., Ny. A modification of this approach to the case where

the total number Npr of processors is less than Nz is straightforward and easy to

implement.

The acceleration factor

qNpr =
T 1
Aχ

T
Npr
Aχ

(2.20)
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of the parallel implementation over the serial one is presented in Figure 2.3. Here

T
Npr
Aχ is the wall time for the calculation of (Aχ)i,j,k, using Npr processors. For

our research we used a Linux cluster (Leda) available at the Dublin Institute for

Advanced Studies. This cluster has 16 nodes, each with 2 processors, networked

through a Gigabit ethernet. To parallelize the solution we used the MPI (mes-

sage passing interface) for the interprocessor communications. The panels 2.3(a),

2.3(b), and 2.3(c) show the factor qNpr of equation 2.20, calculated for various num-

bers of processors Npr = 4, 8, 16, as a function of the model size of Nx(= Ny) =

16, 32, 64, 128, 256, 512, 1000 and Nz = 1, 4, 16, 32, 64. From Figure 2.3(c) we can

see that for as much as Npr = 16 processors the maximum acceleration, defined by

qNpr , is less than 6. This is because interprocessor communication takes up a lot

of wall time. In particular, the Nz arrays of Φ2

[
(R̃χ̃)k′

]
of equation 2.10 for all

k′ = 1, ..., Nz must be broadcast to all processors. This is a very time-consuming

operation on a distributed memory cluster. Indeed, since

T
Npr
Aχ ≈

T 1
Aχ

Npr − 1
+ Tcomm,

where Tcomm is the wall time spent on the interprocessor communications, the ac-

celeration factor is

qNpr ≈
T 1
Aχ

1
Npr−1

T 1
Aχ + Tcomm

≤
T 1
Aχ

Tcomm
.

It is therefore clear that for any number of processors Npr the acceleration qNpr

cannot be more than
T 1
Aχ

Tcomm
. This value depends on the size of 3D grid under con-

sideration and the speed of communication of the particular cluster employed in the

calculation. In order to try to reduce the effect of interprocessor communications

we repeated the above experiments on a shared memory cluster.

2.1.3.2. Shared memory cluster

For our experiments we used a Linux shared memory cluster (Hamilton) managed

by the ICHEC1 project. In Figure 2.4 the acceleration factor qNpr of equation 2.20 is

presented. However, it should be understood that we did not have exclusive access

to the cluster and the performance measurements are not very reliable. One factor

affecting the performance is the current amount of users running their jobs. From

the comparison of Figures 2.3 and 2.4 we see that the acceleration achieved on the

1Irish Centre for High-End Computing, http://www.ichec.ie/
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shared memory cluster is only slightly greater than that obtained on the distributed

memory cluster. This is far from what might be anticipated and the reason for

that is still unclear. One possible explanation is that the parallel implementation

was written for a distributed memory cluster architecture and therefore transfers

significant amount of data beetween different parts of the shared memory. Although

this is considerably faster than transferring data over the network, a dedicated shared

memory implementation, using OpenMP for example, could further enhance the

performance.

In this section we have described the basic equations of the serial implementation

for 3D EM forward modelling, based on the volume integral equation approach.

The key time-consuming part of this serial solution is the discrete 2D convolution

routine. We chose to parallelize this routine, since we demonstrated that another

time-consuming part of the solution, calculation of the Green’s matrices, takes much

less wall time, especially for large-scale 3D models. To understand to what extend

our parallel implementation improves performance of 3D EM forward modelling, we

compared it with the serial x3d implementation by Avdeev et al. (1997, 2002). On

both distributed and shared memory clusters, our parallel implementation allowed

the solution to be reasonably accelerated. As an example, acceleration of 7 times

was achieved with 16 processors for large models.
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2.2. Optimization method

A large number of optimization methods for various applications, including geo-

physics, has been developed. A very good review of some of these methods can be

found in Nocedal and Wright (1999). For large-scale nonlinear problems, such as 3D

MT inversion, we shall minimize some objective functional using gradient based op-

timization techniques, including non-linear conjugate gradient (NLCG) and limited

memory quasi-Newton schemes, because of their minimal storage requirements. In

this work we chose a limited memory quasi-Newton method to be applied to solve

our MT inverse problem.

2.2.1. General setting of EM inverse problem, as optimization

problem

The EM inverse problem of equation 1.3b is usually solved by minimization,

min
m,λ

ϕ(m, λ), of the following objective function:

ϕ(m, λ) = ϕd(m) + λϕs(m), (2.21)

where

ϕd(m) =
1

2

∥∥dobs − F (m)
∥∥2

(2.22)

is the data misfit. Here m = (m1, ...,mN)T is the vector consisting of the model

parameters; for EM applications this is usually vector consisting of the conductivities

or log conductivities of the layers (for 1D case) or cells (for 3D case); superscript

T means transpose; N is the number of model parameters; F (m) is the solution

of the forward mapping 1.2; dobs is the observed data; and λ is the regularization

parameter. As prescribed by the theory of Tikhonov (1963), the objective function

in equation 2.21 has a regularization part (stabilizer) ϕs(m). This stabilizer can

be chosen in many ways (see, for example, Farquharson and Oldenburg (1998), and

references therein), and moreover, the choice of ϕs(m) influences the inversion result.

Traditionaly, this stabilizer is chosen to obtain smooth models, however this remains

a subjective matter. We will discuss our choices of the stabilizer in Sections 3.1.2

and 4.1.2.

In our inversion scheme we chose to use conductivities σk as the model parameters

mk, (k = 1, ..., N). Conductivity must be nonnegative, and usually lies in the range

of 10−6 to 100 S/m (Simpson and Bahr, 2005), and hence, the optimization problem
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given in equation 2.21 is subject to the bounds:

l ≤m ≤ u, (2.23)

where l = (l1, ..., lN)T and u = (u1, ..., uN)T are the lower and upper bounds, respec-

tively, lk ≥ 0 (k = 1, ..., N).

An alternative way to keep the conductivities nonnegative is to define model pa-

rameters mk as mk = log(σk− lk), or mk = log
(
σk−lk
uk−σk

)
. After such transformations,

the bounds of the model parameters, mk, extend to infinity, and the constrained

problem of equations 2.21-2.23 nominally turns to an easier unconstrained problem.

Although these transformations are commonly used, they may slow down the con-

vergence of the solution if a minimum of the objective function of equation 4.1 is

located on or near the bounds. However, a detailed study of the convergence of such

an approach would require additional investigation.

The problem posed in equations 2.21-2.23 is a typical optimization problem with

simple bounds (Nocedal and Wright, 1999). One possible method to solve this

problem is quasi-Newton optimization.

2.2.2. Quasi-Newton optimization method

Quasi-Newton (QN) optimization methods have become very popular tools for the

numerical solution of EM inverse problems (Newman and Boggs, 2004; Haber, 2005).

The reason behind this is that the methods only require calculation of gradients and

avoid the calculation of second-derivative terms. For large-scale inverse problems,

such as the three-dimensional (3D) magnetotelluric (MT) inverse problem, limited

memory QN methods are preferable, because their requirements for storage are

not as excessive as for other QN methods. However, it should be understood that

their small memory requirements are counterbalanced by slower convergence. Our

inverse problem solution is based on a limited memory quasi-Newton method and

we describe its implementation below; it is an extension of previous work by Ni and

Yuan (1997). In contrast to this earlier work, we implement Wolfe conditions, given

in equations 2.36 to terminate the line search procedure, as was recommended by

Byrd et al. (1995).

We now present a general theory of QN optimization. This method operates

similar to the other Newton-type methods that are also commonly applied to solve

problem in equations 2.21-2.23. At each iteration step n, the Newton system of
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linear equations

H(n)p(n) = −g(n) (2.24)

is solved to find the search direction p(n). It is desirable that the vector p(n) is a

descent direction, i.e. g(n)Tp(n) < 0. In equation 2.24 the gradient

g =

(
∂ϕ

∂m1

, ...,
∂ϕ

∂mN

)T
(2.25)

and the Hessian matrix

H =


∂2ϕ

∂m1∂m1
· · · ∂2ϕ

∂m1∂mN

· · · · · · · · ·
∂2ϕ

∂mN∂m1
· · · ∂2ϕ

∂mN∂mN

 (2.26)

are calculated at m = m(n). The next iterate m(n+1) is then found as

m(n+1) = m(n) + α(n)p(n), (2.27)

where the step length α(n) is computed by an inexact line search procedure.

The calculation and storage of the Hessian matrix H is a complex numerical prob-

lem. Fortunately, there is a group of Newton-type methods that avoids having to

deal with the Hessian of equation 2.26, the so-called quasi-Newton (QN) methods.

These methods require only the (multiple) calculation of the gradients of equa-

tion 2.25. For these methods, at each iteration step n the search direction p(n) has

the following form

p(n) = −G(n)g(n), (2.28)

where the symmetric matrix G(n) is an approximation to the inverse Hessian matrix,

H(n)−1
, and is updated at every iteration. When the vector p(n) is found from

equation 2.28, and G(n) is positive definite, one has

p(n)Tg(n) = −g(n)TG(n)g(n) < 0, (2.29)

and, hence, p(n) is a descent direction. Even though we are guaranteed that the

vector p(n) is a descent direction as long as G(n) is symmetric and positive definite,

the convergence to the solution is better if G(n) is a good approximation to the

inverse of the Hessian. There are a variety of approaches that allow G(n) to be

calculated, one of them is the so-called Broyden-Fletcher-Goldfarb-Shanno formula
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(Nocedal and Wright, 1999).

2.2.2.1. BFGS formula

According to the BFGS formula, at each iteration step n the approximation G(n) is

updated as

G(n) = V(n−1)TG(n−1)V(n−1) + ρ(n−1)s(n−1)s(n−1)T , (2.30)

where ρ(n−1) = 1

y(n−1)T s(n−1)
,

G(0) = I, (2.31)

and

V(n−1) = I− ρ(n−1)y(n−1)s(n−1)T , (2.32)

s(n−1) = m(n) −m(n−1), y(n−1) = g(n) − g(n−1). (2.33)

It follows from 2.30 that the matrix G(n) satisfies the secant equation

G(n)y(n−1) = s(n−1). (2.34)

To explain the term “secant” let us, for simplicity, consider the case of only one

model parameter (N = 1). In this case G(n) is just a 1× 1 matrix, and m and g are

scalars. From 2.34, we can see that G(n)−1
approximates the slope of the gradient

function g at point m(n) by taking the secant through points (m(n−1),g(n−1)) and

(m(n),g(n)). This means that G(n) is an approximation of the inverse of the true

Hessian H(n) of equation 2.24. Moreover, when the vectors s(n−1) and y(n−1) satisfy

the curvature condition

s(n−1)Ty(n−1) > 0, (2.35)

it can be easily shown that the matrix G(n) is positive definite, as required by

inequality 2.29 to guarantee the descent direction p(n). However, the condition 2.35

does not always hold, and in such cases one needs to enforce 2.35 explicitly by

imposing restrictions on step length α(n) of equation 2.27. The condition 2.35 is

guaranteed to hold if we impose the following Wolfe conditions

ϕ(n) ≤ ϕ(n−1) + c1α
(n−1)g(n−1)Tp(n−1), (2.36a)

g(n)Tp(n−1) ≥ c2g
(n−1)Tp(n−1), (2.36b)
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with 0 < c1 < c2 < 1 (typical values for c1 and c2 are 10−4 and 0.9, respectively),

where ϕ(n) = ϕ(m(n), λ). To verify this statement we note that from equation 2.33

and condition 2.36b it follows that

g(n)T s(n−1) ≥ c2g
(n−1)T s(n−1),

and therefore,

y(n−1)T s(n−1) ≥ (c2 − 1)α(n−1)g(n−1)Tp(n−1).

Since c2 < 1 and p(n−1) is a descent direction, the term on the right of the above

inequality is positive, and the curvature condition 2.35 holds. A good illustration of

the Wolfe conditions can be found in (p.37-41 Nocedal and Wright, 1999).

Unfortunately, the BFGS formula is not practically applicable to large-scale op-

timization problems, because matrix G(n) is usually dense. Therefore the storage

and computational requirements grow in proportion to N2, and become excessive

for large N . In order to circumvent this issue a limited memory QN methods must

be applied.

2.2.2.2. L-BFGS formula

In accordance with the L-BFGS formula (Nocedal and Wright, 1999), the BFGS

matrix G(n) is approximated as

G(n) ≈ G
(n)
L =

(
V(n−1)T · · ·V(n−ncp)T

)
γ(n)I

(
V(n−ncp) · · ·V(n−1)

)
+ ρ(n−ncp)

(
V(n−1)T · · ·V(n−ncp+1)T

)
s(n−ncp)s(n−ncp)T

(
V(n−ncp+1) · · ·V(n−1)

)
+ ρ(n−ncp+1)

(
V(n−1)T · · ·V(n−ncp+2)T

)
s(n−ncp+1)s(n−ncp+1)T

(
V(n−ncp+2) · · ·V(n−1)

)
+ · · ·

+ ρ(n−1)s(n−1)s(n−1)T ,

(2.37)

where γ(n) = s(n−1)Ty(n−1)

y(n−1)Ty(n−1)
, and stored implicitly using the ncp correction pairs

{s(i),y(i) : i = n − ncp, ..., n − 1} given in equation 2.33. After the correction pair

{s(n),y(n)} is computed, the oldest pair {s(n−ncp),y(n−ncp)} is deleted and replaced by

this new pair. The main idea behind this approach is to use information from only

the most recent iterations and the information from earlier iterations is discarded

32



Chapter 2. Essential parts of EM inversion

in the interests of saving storage.

It can be shown that the matrix G
(n)
L also satisfies the secant equation 2.34 and,

hence, all the above argumentation about G(n) remains valid for G
(n)
L .

2.2.2.3. Simple bounds constraints

In our case the problem is also subject to simple bounds defined in inequality 2.23.

As it was proved above, the Wolfe conditions guarantee that the matrix G
(n)
L is

positive definite and, hence, p(n) is a descent direction. But condition 2.36b may

not be reached inside the feasible region 2.23 and therefore the methods mentioned

above may not work. If condition 2.36b does not hold, one should modify s(n−1)

of 2.33 as follows (Ni and Yuan, 1997)

θs(n−1) + (1− θ)G(n−1)
L y(n−1) → s(n−1) (2.38)

where θ =

{
1, if a ≥ 0.2b

0.8b/(b− a), otherwise
, a = s(n−1)Ty(n−1), b = y(n−1)TG

(n−1)
L y(n−1).

Ni and Yuan (1997) proved that the transformation 2.38 guarantees that the matrix

G
(n)
L is positive definite.

Alternative ways to deal with the bound constrained QN optimization can be

found in Byrd et al. (1995) and Kelley (1999).

To conclude this section let us mention that the QN method described above does

not depend on the dimensionality of the inverse problem. It can be equally applied

to 1D, 2D or 3D cases. For the 1D case, mi is the electrical conductivity of the ith

layer, for 2D and 3D cases, it is the electrical conductivity of the ith cell.

2.3. Regularization

The inverse problem 2.21-2.23 is ill-posed, as it is illustrated in Figure 2.5. This

means that (due to the fact that the EM inverse problem is nonlinear and data are

limited and contaminated by noise) there are an infinite number of models that can

equally fit the data within a given tolerance threshold, i.e. ϕd(m1) ≈ ϕd(m2), when

‖m1 −m2‖ >> ‖m1‖.
One approach for narrowing down the set of solutions of the inverse problem is to

introduce a regularization term in the objective function, as done in the objective
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Figure 2.5.: Sensitivity of inverse mapping.

function of equation 2.21:

ϕ(m, λ) = ϕd(m) + λϕs(m).

A possible way to construct the regularization term is to apply the following expres-

sion:

ϕs(m) = ‖Wm‖2 (2.39)

This form usually forces the model m to be either:

1. the flattest that is still consistent with the data. This means that the first

derivative of m is minimized, i.e. the matrix W is finite-difference approxi-

mation to the gradient operator,

2. the smoothest, but again consistent with the data, meaning that the second

derivative of m is minimized, i.e. W represents the Laplacian,

or some combination of the above two. The explicit expressions for the regularization

function ϕs, we used in our implementations, are described in Sections 3.1.2 and

4.1.2.
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Chapter 3.

1D MT Inversion

In this chapter we apply the methods of Chapter 2 to a one-dimensional (1D)

magnetotelluric (MT) inverse problem in order to test the optimization routines

and determine suitable parameter values. Section 3.1 explains our setting of the 1D

MT inverse problem. In Subsection 3.1.1 we present our calculation of gradients,

which speeds up the inverse problem solution many times. In Subsection 3.1.2 we

show a possible stabilizer for the 1D case together with an algorithm for choosing

the regularization parameter λ. This regularization successfully stabilizes the QN

inversion result. In Section 3.2 we demonstrate the efficiency of our inversion on a

synthetic, but realistic, numerical example, along with a comparison with the lim-

ited memory Broyden-Fletcher-Goldfarb-Shanno algorithm for bound constrained

optimization (L-BFGS-B) by Byrd et al. (1995). This comparison shows similar

convergence rates. In addition, we show that it is sufficient to store only a few

correction pairs to produce reasonable results. The study presented in this chapter

is a first step towards the solution of large-scale electromagnetic problems, with a

full treatment of the 3D conductivity structure of the Earth, and the results have

been published in Avdeeva and Avdeev (2006).

3.1. Theory and basic equations

In the frame of one-dimensional magnetotelluric inversion we assume a layered earth

model and seek the conductivities of those layers. As mentioned in the previous

chapter, this problem is usually solved by minimization min
m,λ

ϕ(m, λ) of the following

objective function:

ϕ(m, λ) = ϕd(m) + λϕs(m) (3.1)
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For the 1D MT case the data misfit has the following form

ϕd(m) =
1

2

NT∑
j=1

βj |Zj (σ(m))−Dj|2 . (3.2)

Here σ = (σ1, ..., σN)T is the vector consisting of the electrical conductivities of the

layers; m = (m1, ...,mN)T is the vector of model parameters, such that

mk = σk/σ
(0)
k , (k = 1, ..., N); (3.3)

σ(0) is an initial guess conductivity model; superscript T means transpose; N is

the number of layers; Zj(σ) and Dj are the complex-valued, modeled, and observed

impedances at the jth period (j = 1, ..., NT ), respectively;

βj =
1

NT

2

ε2
j |Dj|2

(3.4)

are positive weights. In definition 3.4 εj are the user-estimated relative errors of

the impedance Dj. We will call these errors εj the noise floor. A large noise floor

corresponds to bad quality MT data.

There are two reasons for the form 3.4 for the weights βj: first, to be able to

equally fit the impedances at all frequencies or choose the frequencies, which are

important for a particular case and put large errors εj for the others, and second,

to know to what level we should minimize our data misfit ϕd, in order not to overfit

the data. For example, we should not minimize the data misfit to a level lower than

1, if our data has noise of εj.

Since the conductivities σk (k = 1, ..., N) must be nonnegative and reasonable,

the optimization problem given in equation 3.1 is subject to bounds:

l ≤ σ ≤ u, (3.5)

where l = (l1, ..., lN)T and u = (u1, ..., uN)T are the lower and upper bounds, respec-

tively, lk ≥ 0.

To solve the problem posed in equations 3.1-3.5 we use the limited memory QN

method described in Chapter 2. An essential difficulty of this optimization method

is the calculation of derivatives ∂ϕd/∂mk as given in equation 2.25. Taking in mind
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equation 3.3, we see that
∂ϕd
∂mk

=
∂ϕd
∂σk

σ
(0)
k . (3.6)

3.1.1. Calculation of derivatives ∂ϕd

∂σk

A straightforward numerical calculation of the derivatives by finite differences

∂ϕd
∂σk
≈ ϕd(σ1, . . . , σk + δσk, . . . , σN)− ϕd(σ1, . . . , σk, . . . , σN)

δσk
(3.7)

involves at least N + 1 solutions of the forward problem. However, for large-scale

problems, when N is large, such a straightforward calculation may be prohibitive

in terms of computational time. In addition, the selection of the increment δσk is

not easy in order to ensure numerical stability, and usually few increments should

be tried. One can significantly speed up the inverse problem solution by avoiding

this straightforward calculation, given in formula 3.7.

Our approach for calculating the derivatives exploits the Green’s function tech-

nique and requires time equal to the time of the solution of two forward problems,

rather than N + 1 forward problems.

To derive the derivatives ∂ϕd
∂σk

let us first rewrite equation 3.2 as

ϕd(σ) =
1

2
〈Z−D,Z−D〉2 , (3.8)

where we introduce the vectors σ = (σ1, ..., σN)T , Z = (Z1, ..., ZNT )T , and D =

(D1, ..., DNT )T and an inner product 〈·, ·〉2 of vectors a and b as

〈a,b〉2 =

NT∑
j=1

βjajbj. (3.9)

From equations 3.8 and 3.9, it follows that

∂ϕd
∂σk

=
1

2

NT∑
j=1

βj

{
∂(Zj −Dj)

∂σk
(Zj −Dj) +

∂(Zj −Dj)

∂σk
(Zj −Dj)

}

= <
〈

Z−D,
∂Z

∂σk

〉
2

. (3.10)

The main problem now is how to calculate the derivatives ∂Z
∂σk

. From Maxwell’s

equations written for a layered earth (see Appendix A), it follows that at any depth
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z, the impedance can be derived as

Zj(z) =
iωjµ0vj
∂zvj

, (3.11)

where vj(z) satisfies the Helmholtz equation

∂2
zvj + iωjµ0σ(z)vj = 0, (3.12)

and the boundary condition vj →
z→∞

0. Here, ωj = 2π/Tj is the jth angular frequency,

and µ0 is the magnetic permeability of free space. Further, for a layered earth we

easily may decompose σ(z) as

σ(z) =
N∑
k=1

σkχk(z), (3.13)

where σk is the conductivity of the kth layer confined between boundaries zk and

zk+1, and the boxcar function χk(z) = θ(z − zk) − θ(z − zk+1), where θ(z) is the

Heaviside function. Note that in equation 3.13 we assume that zN+1 = ∞. From

equations 3.12 and 3.13 it follows that

∂2
z

∂vj
∂σk

+ iωjµ0σ(z)
∂vj
∂σk

= −iωjµ0χk(z)vj. (3.14)

From equation 3.14, it follows that the derivative
∂vj
∂σk

is expressed as

∂vj
∂σk

= −
∫
Gj(z, ζ)χk(ζ)vj(ζ)dζ = −

∫ zk+1

zk

Gj(z, ζ)vj(ζ)dζ, (3.15)

where the Green’s function is a solution to the following equation:

∂2
zGj(z, ζ) + iωjµ0σ(z)Gj(z, ζ) = iωjµ0δ(z − ζ), (3.16)

and where δ(z) is the delta-function. From equation 3.11 it follows that

∂Zj
∂σk

(z) = Zj

(
1

vj

∂vj
∂σk
− 1

∂zvj
∂z
∂vj
∂σk

)
. (3.17)
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Substituting equation 3.15 into equation 3.17 (and assuming z = 0) yields

∂Zj
∂σk

(0) = Zj(0)

(
− 1

vj(0)

∫ zk+1

zk

Gj(0, ζ)vj(ζ)dζ

+
1

∂zvj|z=0

∫ zk+1

zk

∂zGj(z, ζ)|z=0vj(ζ)dζ

)
.

(3.18)

Using the following properties of Gj(z, ζ) (at z < ζ ) (Avdeev et al., 1997):

∂zGj(z, ζ) = iωjµ0
1

Z∗j (z)
Gj(z, ζ), (3.19)

Gj(z, ζ) =
1

Zj
−1(z)− Z∗j −1(z)

γj(z, ζ), (3.20)

where

γj(z, ζ) = exp

(
iωjµ0

∫ ζ

z

Zj
−1(ζ)dζ

)
, (3.21)

and Z∗j (z) is the impedance of the layered earth model above the depth z, from

equation 3.18 we derive that

∂Zj
∂σk

(0) = Zj(0)

(
− 1

vj(0)
+
iωµ0Z

∗
j
−1(0)

∂zvj|z=0

)
1

Zj
−1(0)− Z∗j −1(0)

zk+1∫
zk

γj(0, ζ)vj(ζ)dζ

3.11
= −Zj(0)

iωµ0

∂zvj|z=0

zk+1∫
zk

γj(0, ζ)vj(ζ)dζ
3.11
= −Z2

j (0)

zk+1∫
zk

γj(0, ζ)
vj(ζ)

vj(0)
dζ

= −Z2
j (0)

∫ zk+1

zk

γ2
j (0, ζ)dζ. (3.22)

To obtain equation 3.22 we also used the fact that

γj(0, ζ)
3.21,3.11

= exp

(∫ ζ

0

∂zvj|z=ζ
vj(ζ)

dζ

)
=
vj(ζ)

vj(0)

Substituting equation 3.22 in equation 3.10 yields the desired derivatives

∂ϕd
∂σk

= −<

(
NT∑
j=1

βjΓkj
(
Zj −Dj

)
Z2
j

)
, (3.23)
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where for simplicity we denoted Zj = Zj(0), and

Γkj =

∫ zk+1

zk

γ2
j (0, ζ)dζ (k = 1, ..., N). (3.24)

Let us now derive an explicit expression for the coefficients Γkj.

3.1.1.1. Calculation of Γkj

By definition (see equation 3.24 and 3.21)

Γkj =

∫ zk+1

zk

γ2
j (0, ζ)dζ (k = 1, ..., N),

where

γj(z, ζ) = exp

(
iωjµ0

∫ ζ

z

Zj
−1(ζ)dζ

)
.

From these two equations it follows that

Γkj =

∫ zk+1

zk

exp

iωjµ0

k−1∑
l=1

zl+1∫
zl

Zj
−1(ζ)dζ + iωjµ0

ζ∫
zk

Zj
−1(ζ)dζ

2

dζ

=

(
k−1∏
l=1

γ2
j (zl, zl+1)

)
γkj, (3.25)

where

γkj =

∫ zk+1

zk

γ2
j (zk, ζ)dζ. (3.26)

In the above expressions, we assumed that z1 = 0 and zN+1 = ∞. From equa-

tion 3.25 it follows that the coefficients Γkj can be calculated recursively as

Γk+1j = γ2
j (zk, zk+1)

γk+1j

γkj
Γkj, (3.27)

where Γ1j = γ1j as can be seen from equations 3.25 and 3.26. From equations 3.11,

3.12 and the definition given by equation 3.21, it follows that

γj(zk, ζ) = cosh (κkj(ζ − zk)) + λkj sinh (κkj(ζ − zk)) , (zk ≤ ζ ≤ zk+1), (3.28)
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where κkj =
√
−iωµ0σk and

λkj =
iωµ0

κkj
Zj
−1(zk). (3.29)

From equations 3.11 and 3.12 and the definition given by equation 3.29, the following

recursive formula follows

λkj =


− sinh(∆kκkj)+cosh(∆kκkj)

κk+1j
κkj

λk+1j

cosh(∆kκkj)−sinh(∆kκkj)
κk+1j
κkj

λk+1j

, k = N − 1, ..., 1

−1, k = N

(3.30)

This formula can also be easily obtained from definition 3.29 and the recursive

formula for the 1D impedance A.9, explicitly derived in Appendix A.

From equation 3.28 it also follows that

γj(zk, zk+1) = cosh(∆kκkj) + λkj sinh(∆kκkj). (3.31)

Finally, substituting equation 3.28 into equation 3.26, and after some manipulation,

one obtains

γkj =


∆k

(
1−λ2

kj

2
+

sinh(∆kκkj)

∆kκkj
·[

(1+λkj)
2

2
cosh(∆kκkj) + λkj sinh(∆kκkj)

])
, k = N − 1, ..., 1

1
2κkj

, k = N

(3.32)

The expressions presented in equations 3.31 and 3.32 permit the recursive calculation

of the coefficients Γkj using equation 3.27. Comparing equations 3.30-3.32, one can

see that the coefficients λkj, γkj, and γj(zk, zk+1) are calculated simultaneously while

moving from the bottom of the model to the surface. Such a calculation is somewhat

equivalent to the forward problem solution. Once the coefficients γkj and γj(zk, zk+1)

are found, the Γkj required by the derivatives defined in equation 3.23 are calculated

recursively from the surface to the bottom using equation 3.27. Thus the time to

calculate the derivatives of equation 3.23 is not more than twice that required for

the forward problem solution (calculating λkj alone).

It is important to mention that the derivatives ∂ϕd/∂σk can also be calculated

using the chain-rule (e.g. Constable et al., 1987), which is based on the differentiation

of an analytical solution to a 1D forward problem.
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3.1.2. Regularization technique

In our 1D implementation the regularized part (stabilizer) ϕs introduced earlier in

equation 3.1 has the following form:

ϕs(m) =
N∑
k=2

(mk −mk−1)2 (3.33)

where m = (m1, ...,mN)T and model parameters mk are given by equation 3.3.

3.1.2.1. Choice of parameter λ

When we use any stabilizer ϕs we encounter the additional problem of finding the

regularization parameter λ. We know that the solution of underdetermined (M <<

N) inverse problems very much depends on the choice of parameter λ (Farquharson

and Oldenburg, 1998). A large value of λ may lead to a model that is extremely

smooth, whereas a value of λ that is small may deliver a model with oscillating

conductivity values. In this study, we applied a simple cooling-type approach that

comprises two stages. First, we find two values λlow and λhigh such that ϕd(m
λlow) <

1, and ϕd(m
λhigh) > 1, where mλ delivers the solution of min

m
ϕ(m, λ), with the

parameter λ. To do this we solve the inverse problem posed in equations 3.1-3.5

for different values of λ. As prescribed by the cooling approach, we start this

process with a large value of the parameter λ. Note that the weight coefficients βj

j = 1, ..., NT of the misfit ϕd are chosen so that the value ϕd = 1 exactly corresponds

to the noise floor (see page 36). In the second stage, we find the biggest possible

λopt such that ϕd(m
λopt) ≤ 1, where mλopt is a solution of min

m
ϕ(m, λopt). To find

such a value λ, we iteratively apply the linear interpolation of φ(λ) = ϕd(m
λ)

at the segment [λlow, λhigh]. This approach is a simple variant of an algorithm by

Haber and Oldenburg (1997). It should be understood, however, that it does not

make sense to fine tune the regularization parameter λ, following our procedure, if

the noise floor cannot be estimated reliably. In the numerical examples presented

below, we demonstrate that our procedure works successfully for the case of a slightly

overestimated noise floor.
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3.2. Model study

We demonstrate on a synthetic example the extent to which the calculation of the

derivatives given by equation 3.6 presented in Section 3.1.1 accelerates the solution

of the inverse problem. A seven-layered earth model is given in Table 3.1. This

Conductivity [S/m] Thickness [km]

0.01 64
0.05 180
0.1 150
0.12 126
0.28 130
1.1 150
1.5

Table 3.1.: A seven-layered earth model

model was compiled from the models derived from a seafloor MT and a global GDS

long-period data set collected in the North Pacific Ocean (see Avdeev et al., 2004).

To complicate the inversion process, we subdivided the three upper layers in this

model (to a depth of 394 km) into 197 sublayers of equal thickness. This means

that we deliberately overparametrized the problem. For this 201-layered (N = 201)

model, we inverted the impedance Dj = Zj(m), calculated at NT = 30 periods,

from 10 s to 10,800 s. In addition, we added 0.5% random noise to the impedance

data. This is a realistic noise level for very good quality MT data. The relative error

εj of equation 3.4 was taken as 0.01, which means that the noise floor is slightly

overestimated and should lead to a smoother result. A 10 Ωm uniform half-space

was used as an initial guess model.

In Figure 3.1(a), we compare the convergence rates of two solutions obtained

with straightforward calculation of the derivatives (see formula 3.7) and using the

method presented in Section 3.1.1, respectively. The curves are shown as a function

of the number of evaluations of ϕ(m, λ) for two cases, λ = 0 and λopt = 320. From

Figure 3.1(a), it is seen that the calculation of the derivatives given in Section 3.1.1

accelerates the solution by 130 times. The results of the inversion are presented

in 3.1(b). As might be expected, the conductivity models recovered do not fit well

for depths greater than 400 km because the responses at the periods considered are

almost insensitive to these depths.
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(a)

(b)

Figure 3.1.: (a) Comparison of convergence rates: The curves present the misfit
of equation 3.2 obtained with the straightforward calculation of the
derivatives shown for λ = 0 (amber) and λopt = 320 (green). The
green dashed line presents the objective function of equation 3.1 for
λopt = 320. The same is shown with the calculation of the derivatives
that is presented in Section 3.1.1, for λ = 0 (red) and λopt = 320 (blue
solid and dashed lines). (b) The conductivity models obtained with the
calculation of the derivatives as presented in Section 3.1.1: for λ = 0
(red) and λopt = 320 (blue). The solid and dashed black lines show the
true and initial guess models, respectively.

In our next example (Figure 3.2), we study the convergence rate of our solution

for various numbers ncp of correction pairs. Let us remind here that every iteration

n a pair of vectors {s(n),y(n)} is calculated. This pair is called a correction pair. The

optimization method requires to store these pairs only from ncp previous iterations.

So the information from only the most recent iterations is stored and information

from the previous iterations is discarded in the interest of saving storage. The

number ncp is defined by user and depends on the amount of available memory. The
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curves in Figure 3.2(a) are shown as a function of nfg. This number, nfg, is the

number of evaluations of objective function ϕ(m, λopt) together with its gradient

(∂ϕ/∂m1, ..., ∂ϕ/∂mN)T |m,λopt and is equal to or a little bit larger than the number

of QN iterations, nit, since the method might need few steps within the line search

procedure.

We can see that for all the ncp numbers considered we get very similar resulting

models (see Figure 3.2(b)). For ncp = 2 the convergence is worse than for all other

ncp numbers (see Figure 3.2(a)). It is surprising that such a small number of pairs

(ncp = 5) can be sufficient to get a relatively good convergence and a reasonable

result.

(a)

(b)

Figure 3.2.: Comparison for different numbers of correction pairs (ncp). (a) The
convergence rate for ncp = 2 (green), ncp = 5 (blue), ncp = 20 (red) and
ncp = 25 (black). (b) The corresponding conductivity models, which
are plotted mostly on top of each other. The solid and dashed black
lines show the true and initial guess models, respectively.

In Figure 3.3, we present the third example – a comparison of two different so-

lutions. The first solution is based on the optimization method offered in previous
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chapter, and the second one uses the L-BFGS-B optimization code by Byrd et al.

(1995). The comparison is presented for ncp = 5 correction pairs and λopt = 320.

These solutions converge in a similar way and produce similar models. In the same

figure we show the curves produced using the conventional QN algorithm of Gill

et al. (1981), subject to simple bounds. To find the search direction p(n), this al-

gorithm solves the Newton system H(n)p(n) = −g(n), rather than making use of

equation p(n) = −G(n)g(n) (see equation 2.28), and it is mostly suitable for small-

scale problems.

(a)

(b)

Figure 3.3.: Comparison of three different QN methods. (a) The convergence rate
for inversions, which uses the approach presented in Chapter 2 (blue
line), L-BFGS-B algorithm (red) and QN algorithm by Gill et al. (1981)
(green). (b) The corresponding conductivity models, which are plotted
on top of each other. The solid and dashed black lines show the true
and initial guess models, respectively.
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3.3. Conclusions

In this chapter we describe a limited memory QN method applied to solve the 1D

MT inverse problem. In the numerical examples presented, we demonstrate that

our method for the calculation of derivatives (see 3.1.1) dramatically accelerates the

problem solution. The nontrivial problem of such a calculation of derivatives in the

3D MT case is presented in the next chapter. We also describe the regularization

procedure and propose a method for finding an optimal regularization parameter,

λopt. This procedure is useful in cases where the noise floor is roughly known and

we demonstrate that it works successfully on numerical examples. Another finding

of our numerical experiments is that we can find a reasonable solution to the inverse

problem with a surprisingly small number of correction pairs (ncp = 5). We also

demonstrate that the solution, based on method described in Chapter 2, converges

similarly to the solution based on the L-BFGS-B method.
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3D MT Inversion

In this chapter we describe how we apply the limited memory quasi-Newton opti-

mization method to develop a novel fully three-dimensional magnetotelluric inversion

technique. The inversion involves all four entries of the MT impedance matrix and

we employ the integral equation forward modelling code x3d by Avdeev et al. (1997,

2002), briefly described in Section 2.1, as an engine for this inversion.

In Section 4.1 we first briefly describe the setting of the inverse problem, as well

as some key features of our implementation. In Subsection 4.1.1, we develop the

theory and basic equations for the calculation of the derivatives of the data misfit,

our theory is based on the known adjoint approach (Rodi, 1976; Rodi and Mackie,

2001; Chen et al., 2005). Then, we demonstrate that the calculation of the deriva-

tives, at a given period, is equivalent to only two forward modellings. Usage of this

adjoint approach dramatically accelerates the inversion. In Section 4.2 we demon-

strate how our inversion works in practice (in terms of the convergence, performance

and accuracy) on synthetic, but realistic numerical examples. One of the examples

(Subsection 4.2.2) includes a tilted conductive dyke in a uniform half-space (Zh-

danov and Tolstaya, 2004). Another example is more complex, involving a model

with resistive and conductive adjacent blocks buried in a two-layered earth (Sub-

section 4.2.4). Both models have also been used to test other forward and inverse

codes. The results presented in this chapter are encouraging and suggest that the

solution developed in this work can be successfully applied to 3D inverse problems

with measured MT data.
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4.1. Theory and basic equations

Let us consider a 3D earth conductivity model discretized by N cells, such that

σ(r) =
N∑
k=1

σkχk(r), where χk(r) =

{
1, r ∈ Vk
0, r /∈ Vk

, Vk is the volume occupied by the

kth cell and r = (x, y, z). In the frame of 3D MT inversion, we seek the conductivities

σk (k = 1, ..., N) of the cells. This is again - as in the previous chapter - a typical

optimization problem, such that ϕ(σ, λ) →
σ,λ

min, with a penalty function ϕ given as

ϕ(σ, λ) = ϕd(σ) + λϕs(σ). (4.1)

As in the previous chapter, the first term, ϕd(σ), is the data misfit and serves to

ensure that our recovered model matches the observed data. The second term in

equation 4.1, ϕs(σ), is a Tikhonov-type stabilizer (Tikhonov, 1963); λ is the regu-

larization parameter that balances the effect of data misfit and model regularization

during minimization. The stabilizer ϕs can be chosen in many different ways. This

aspect of the problem is discussed in Subsection 4.1.2.

For the 3D MT case the data misfit ϕd(σ) has the following form

ϕd =
1

2

NS∑
i=1

NT∑
j=1

βijtr[A
T

ijAij] (4.2)

Here NS is the number of MT sites ri = (xi, yi, z = 0), where i = 1, ..., NS; NT is the

number of the frequencies ωj, where j = 1, ..., NT ; the 2×2 matrices Aij are defined

as Aij = Zij−Dij, where Zij =

(
Zxx Zxy

Zyx Zyy

)
ij

and Dij =

(
Dxx Dxy

Dyx Dyy

)
ij

are ma-

trices of the complex-valued predicted Z(ri, ωj) and observed D(ri, ωj) impedances,

respectively;

βij =
1

NSNT

2

ε2
ijtr

[
D
T

ijDij

] (4.3)

are the positive weights, where εij is the relative error of the observed impedance

Dij(σ). The sign tr [·] introduced above means the trace of its matrix argument,

which is defined as tr [B] = Bxx+Byy, for any B =

(
Bxx Bxy

Byx Byy

)
. The question of

why the form of equation 4.2 was chosen to represent a measure of misfit is discussed

in Appendix C. In addition, a more generalized form of this equation is considered

in Appendix D.
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An alternative way for constructing data misfit ϕd would be to treat the individual

entries of the impedance separately.

Again, the conductivities σk (k = 1, ..., N) must be nonnegative and realistic and,

hence, the optimization problem 4.1 is subject to the bounds

l ≤ σ ≤ u, (4.4)

where l = (l1, ..., lN)T and u = (u1, ..., uN)T are the lower and upper bounds, respec-

tively, and lk ≥ 0, (k = 1, ..., N).

To solve the problem posed in equations 4.1-4.4 we use the limited memory QN

method described in Chapter 2. We assume that

mk = σk/σ
(0)
k , (4.5)

where σ
(0)
k is the conductivity of k-th cell for an initial guess model. As for the 1D

case considered above, the essential difficulty of the 3D solution is the calculation

of derivatives
∂ϕd
∂mk

=
∂ϕd
∂σk

σ
(0)
k (4.6)

4.1.1. Calculation of derivatives ∂ϕd

∂σk

To derive the derivatives ∂ϕd
∂σk

we apply a technique that is based on ideas of the

electromagnetic adjoint method (Rodi, 1976, among others). This method uses

the EM field reciprocity and has been applied previously to calculate sensitivities

(Weidelt, 1975b; McGillivray and Oldenburg, 1990) and for forward modelling and

inversion (Dorn et al., 1999; Rodi and Mackie, 2001; Newman and Boggs, 2004; Chen

et al., 2005). The main idea behind EM field reciprocity is that we can interchange

sources and receivers without affecting the measured electromagnetic field. This

means that instead of calculating the field at the MT sites from sources located at

every cell, we can can calculate the fields from sources located at the MT sites. Let

us now describe our implementation of such a technique.
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From equation 4.2 it easily follows that

∂ϕd
∂σk

=
1

2

NS∑
i=1

NT∑
j=1

βijtr

[(
A
T

ij

∂Zij

∂σk

)T
+ A

T

ij

∂Zij

∂σk

]

∀B:trBT=trB
= <

{
NS∑
i=1

NT∑
j=1

βijtr

[
A
T

ij

∂Zij

∂σk

]}
. (4.7)

The MT impedance Zij = Z(ri, ωj) is a 2× 2 matrix, which satisfies the following

matrix equation

Eij = ZijHij. (4.8)

The matrices Eij, Hij of equation 4.8 are defined as

Eij = pEj(ri),Hij = pHj(ri), (4.9)

where p =

(
1 0 0

0 1 0

)
is the 2×3 projection matrix, Ej(r) =

(
E

(1)
x E

(1)
y E

(1)
z

E
(2)
x E

(2)
y E

(2)
z

)T

j

and Hj(r) =

(
H

(1)
x H

(1)
y H

(1)
z

H
(2)
x H

(2)
y H

(2)
z

)T

j

are functions of the Cartesian coordinates r =

(x, y, z). Here the superscripts 1 and 2 denote the polarization of the source Jj(r) =(
J

(1)
x J

(1)
y J

(1)
z

J
(2)
x J

(2)
y J

(2)
z

)T

j

, and the vectors E = (Ex, Ey, Ez)
T and H = (Hx, Hy, Hz)

T

are the electric and magnetic fields, respectively. We choose the polarizations of

the source parallel(1) and perpendicular(2) to the x-axis. The 3× 2 matrices Ej(r)

and Hj(r) are composed of EM fields and, hence, they satisfy 2 × NT systems of

Maxwell’s equations written as

∇×Hj = σ(r)Ej + Jj, (4.10a)

∇× Ej =
√
−1ωjµHj, (4.10b)

where ∇×Hj and ∇×Ej denote 3× 2 matrices

(
∇×H(1)

∇×H(2)

)T

j

,

(
∇× E(1)

∇× E(2)

)T

j

,

respectively.

From equation 4.8 it immediately follows that

Zij = EijH
−1
ij , (4.11)
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where H−1
ij is the inverse of matrix Hij. Applying the chain-rule of differentiation

to equation 4.11 one can derive

Zij,k = (Eij,k − ZijHij,k)H
−1
ij , (4.12)

where we denote

Zij,k =
∂Zij

∂σk
,Eij,k =

∂Eij

∂σk
,Hij,k =

∂Hij

∂σk
(k = 1, ..., N). (4.13)

Now substituting the derivative of equation 4.12 into equation 4.7 one gets

∂ϕd
∂σk

= <

{
NS∑
i=1

NT∑
j=1

βijtr
[
A
T

ij (Eij,k − ZijHij,k) H−1
ij

]}
. (4.14)

Further, from equations 4.9, 4.10 it follows that

Eij,k = pejk(ri),Hij,k = phjk(ri), (4.15)

where 3 × 2 matrices ejk(r) and hjk(r) satisfy 2 × NT × N systems of Maxwell’s

equations

∇× hjk = σ(r)ejk + jjk, (4.16a)

∇× ejk =
√
−1ωjµhjk, (4.16b)

with the given electric current densities

jjk = χkEj. (4.17)

To derive equations 4.16, 4.17 from 4.10 we decompose the conductivity as σ(r) =
N∑
k=1

σkχk(r) and then differentiate equations 4.10 by σk. We also assume that
∂Jj
∂σk

= 0.

In equations 4.16 and 4.17 the matrices ejk(r) =

(
e

(1)
x e

(1)
y e

(1)
z

e
(2)
x e

(2)
y e

(2)
z

)T

jk

and hjk(r) =(
h

(1)
x h

(1)
y h

(1)
z

h
(2)
x h

(2)
y h

(2)
z

)T

jk

are functions of the Cartesian coordinates r = (x, y, z).

Thus, to calculate the MT impedance derivative ∂Z
∂σk

(ri, ωj) for the complete set

of triple indices {(i, j, k) : i = 1, ..., NS, j = 1, ..., NT , k = 1, ..., N} one should solve
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2 × NT × (N + 1) forward problems, given in equations 4.10 and 4.16. Obviously,

for a 3D conductivity model, where the number of cells, N , is relatively large, such

an approach is not feasible. Fortunately, we need to calculate derivatives ∂ϕ
∂σ1

, ...,
∂ϕ
∂σN

rather than the matrices of equation 4.13. In the following explanation, we

show that for the calculation of these derivatives ∂ϕ
∂σ1

, ..., ∂ϕ
∂σN

, we need to solve only

2×NT × 2 forward problems, rather then 2×NT × (N + 1).

Along with the forward problems given in equation 4.16, let us also consider 2×NT

adjoint problems, presented by Maxwell’s equations

∇× vj = σuj + jextj +∇× hextj , (4.18a)

∇× uj =
√
−1ωjµvj, (4.18b)

where jextj and hextj are defined as

jextj =

NS∑
i=1

βijp
TAijH

−T
ij δ(r− ri), (4.19)

and

hextj = − 1√
−1ωjµ

NS∑
i=1

βijp
TZT

ijAijH
−T
ij δ(r− ri), (4.20)

respectively. In these equations H−Tij means transpose of H−1
ij , and δ is the Dirac’s

delta-function.

Let us now rewrite equations 4.16 and 4.18 as

∇×∇× ejk −
√
−1ωjµσ(r)ejk =

√
−1ωjµχkEj, (4.21a)

∇×∇× uj −
√
−1ωjµσ(r)uj =

√
−1ωjµ(jextj +∇× hextj ). (4.21b)

Multiplying equation 4.21a by uTj and equation 4.21b by eTjk and integrating the

difference of the resulting equations over the whole 3D space, one gets∫
R3

tr
[
eTjkj

ext
j + eTjk∇× hextj

]
dV =

∫
Vk

tr
[
uTj Ej

]
dV. (4.22)

To derive equation 4.22 we use the Green-type formula
∫
R3(v∇×w−w∇×v)dV = 0

that is valid for any complex-valued vector fields v and w. We then modify the left
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hand side of equation 4.22 as∫
R3

tr
[
eTjkj

ext
j +

√
−1ωjµh

T
jkh

ext
j

]
dV =

∫
Vk

tr
[
uTj Ej

]
dV, (4.23)

using tr
[
eTjk∇× hextj

]
= tr

[
(∇× ejk)

Thextj

]
=
√
−1ωjµtr

[
hTjkh

ext
j

]
. Substituting

further equations 4.19, 4.20 for sources jextj , hextj into equation 4.23 and using the

property that
∫
R3 v(r)δ(r− ri)dV = v(ri) for any vector v, one derives

NS∑
i=1

βijtr
[
A
T

ij (pejk(ri)− Zijphjk(ri)) H−1
ij

]
=

∫
Vk

tr
[
uTj Ej

]
dV, (4.24)

since tr[BC] = tr[CB], tr[BT ] = tr[B], (BC)T = CTBT for any pair of matrices B

and C. Comparing equations 4.24, 4.9 and 4.14 one immediately concludes that

∂ϕd
∂σk

= <

{
NT∑
j=1

∫
Vk

tr
[
uTj Ej

]
dV

}
. (4.25)

The formula of equation 4.25 means that the computational loads for calculating

the gradient of equation 2.25 are equivalent to those for the solution of 2 × NT

forward problems using equations 4.10 to find Ej and of 2 × NT adjoint problems

using equations 4.18 to find uj for all j = 1, ..., NT .

4.1.1.1. Numerical verification

To calculate the derivatives of equation 4.25 we need to solve the adjoint system of

Maxwell’s equations 4.18. To solve this system we should be able to calculate not

the electric fields, but their averages over numerical cells, for the media excited by

horizontal electric, jextj , and magnetic, hextj , dipoles. We are lucky that the x3d code

computes exactly these averages. To verify the ability of x3d, we checked it against

an analytical solution for a uniform space.

Thus, let us consider a uniform space with conductivity σ. For such a space

the electric field components excited by a horizontal magnetic dipole of moment

(Mx, 0, 0), which is located at the coordinate origin, are as following (Ward and
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Hohmann, 1987)

Ex = 0, (4.26a)

Ey = −
√
−1ωµ

Mxza(r)

r2
(κr + 1), (4.26b)

Ez =
√
−1ωµ

Mxya(r)

r2
(κr + 1), (4.26c)

where κ2 = −
√
−1ωµσ, r =

√
x2 + y2 + z2 and a(r) = e−κr/4πr.

0-100 m 100-300 m 300-700 m 0.7-1.4 km 1.4-2.7 km 2.7-4.5 km 4.5-7 km

0-100 m 100-300 m 300-700 m 0.7-1.4 km 1.4-2.7 km 2.7-4.5 km 4.5-7 km

Figure 4.1.: Comparisons of averaged 〈Ey〉 for a uniform space excited by a magnetic
dipole. Each row presents 7 horizontal (x−y) slices starting from the top
(left) to the bottom (right). The 1st row corresponds to 〈Ey〉 obtained
using x3d, the 2nd row - to 〈Ey〉 obtained from equations 4.26b, 4.27
and 4.28. The 3rd row shows the relative error between averaged 〈Ey〉
obtained by x3d and those obtained from equations 4.26b, 4.27 and 4.28.

Using the x3d code, we calculated the 10-s electric fields for a 100 Ωm uniform

space. The modelling domain was comprised of Nx×Ny ×Nz = 32× 32× 7 = 7168

rectangular prisms, with dx = dy = 1 km. The magnetic dipole was situated in the

centre of the upper face of the central cell. For each of the prisms we computed
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an average of the electric field E and compared it with the analytical solution of

equation 4.26. This comparison for the y-component of the electric field, 〈Ey〉 =

{
∫

Vαβγ

Eydv}/Vαβγ, is presented in Figure 4.1. In order to calculate analytically the

average 〈Ey〉 for the most complicated central prism, where the dipole is seated, we

make use of the fact that this prism is located at the near zone, |κr| << 1. For the

near zone from equation 4.26b we approximate the average as

〈Ey〉αtrβtr0 =

∫
Vαtrβtr0

Eydv

Vαtrβtr0
≈ −iωµ Mx

2dxdy

{
1 + dz0/d−

√
1 + (dz0/d)2

dz0/d

}
, (4.27)

where d =
√
dxdy/π, dz0 is the thickness of the prism, and subscript tr stands for

transmitter, as the source is located at the upper face of this central prism. For

other cells we use the following formula

〈Ey〉αβγ = Ey(x
c
αβγ, y

c
αβγ, z

c
αβγ), (4.28)

where (xcαβγ, y
c
αβγ, z

c
αβγ) means the centre of the αβγ-th cell and Ey in the right hand

side is given by 4.26b. In the figure we present, for the sake of resolution, only 7× 7

cells located around the magnetic dipole for first 7 horizontal slices, 0 - 7 km depth.

From the figure we can see very good agreement between results produced by x3d

and the analytical solution. We also compared the x3d solution and the analytical

one for all other components of the electric field (not presented here) and found very

good agreement.

We performed similar comparisons for the horizontal electric dipole with moment

(Mx, 0, 0). For this experiment we used the same uniform space with a resistivity of

100 Ωm and the same frequency of 10 s. We also used the same numerical grid of

Nx×Ny ×Nz = 32× 32× 7 = 7168 rectangular prisms, with dx = dy = 1 km. The

analytical expressions for the electric field components in this case are as following:

Ex =
Mxa(r)

σr2

[
(κ2r2 + 3κr + 3)

x2

r2
− (κ2r2 + κr + 1)

]
, (4.29a)

Ey =
Mxa(r)

σr2

[
(κ2r2 + 3κr + 3)

xy

r2

]
, (4.29b)

Ez =
Mxa(r)

σr2

[
(κ2r2 + 3κr + 3)

xz

r2

]
. (4.29c)
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0-100 m 100-300 m 300-700 m 0.7-1.4 km 1.4-2.7 km 2.7-4.5 km 4.5-7 km

0-100 m 100-300 m 300-700 m 0.7-1.4 km 1.4-2.7 km 2.7-4.5 km 4.5-7 km

Figure 4.2.: Comparisons of 〈Ex〉 for a uniform space excited by an electric dipole.
Each row presents 7 horizontal (x−y) slices starting from the top (left)
to the bottom (right). The 1st row corresponds to 〈Ex〉 obtained using
x3d, the 2nd - to 〈Ex〉 obtained from equations 4.29a, 4.30 and 4.31.
The 3rd row shows the relative error between averaged 〈Ex〉 obtained
by x3d and those obtained from equations 4.29a, 4.30 and 4.31.

As mentioned above we need the average values of electric fields over the prisms.

To approximate these averages over the central cell (the cell where the electric dipole

is situated) for the x-component of electric field we use the following formula:

〈Ex〉αtrβtr0 =

∫
Vαtrβtr0

Exdv

Vαtrβtr0
≈ − Mx

4σdxdy

1√
dz2

0 + d2
. (4.30)

This formula is obtained by integrating equation 4.29a over the prism and assuming

the near zone, |κr| << 1. For other cells we again use

〈Ex〉αβγ = Ex(x
c
αβγ, y

c
αβγ, z

c
αβγ), (4.31)

where Ex in the right hand side is given by 4.29a. The comparison of 〈Ex〉 obtained
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from x3d and obtained from the analytical approximations 4.30 and 4.31 is presented

in Figure 4.2. We also performed the comparison for all other components of the

electric field and obtained good agreement.

Our conclusion from the above experiments is that we can use the x3d code for

the calculation of the derivatives 4.25.

4.1.2. Regularization technique

As previously mentioned in Section 2.3, in order to alleviate the ill-posedness of the

inverse problem we use a regularization function of the form 2.39. In our imple-

mentation the matrix W represents a finite-difference approximation to the Laplace

operator. Therefore, the regularization function ϕs has the following form:

ϕs = dxdy
∑
αβγ

[∆σ(x, y, z)]2αβγ dzγ = dxdy
∑
αβγ

[
∂2σ

∂x2
+
∂2σ

∂y2
+
∂2σ

∂z2

]2

αβγ

dzγ (4.32)

where dx, dy and dzγ are the sizes of the cells in x, y and z directions, respectively.

Note that dx and dy are constant throughout the numerical grid, although dx can

be different from dy. At the same time, dzγ can change with depth, the index γ

corresponds to the number of the γ-th layer. These requirements on the cell sizes

are imposed by the x3d code.

In equation 4.32 the second derivative operator is approximated as follows:[
∂2σ

∂x2

]
αβγ

≈ A1
ασα−1βγ + A2

ασαβγ + A3
ασα+1βγ + A4

ασ
b
γ , (4.33)[

∂2σ

∂y2

]
αβγ

≈ B1
βσαβ−1γ +B2

βσαβγ +B3
βσαβ+1γ +B4

βσ
b
γ , (4.34)[

∂2σ

∂z2

]
αβγ

≈ C1
γσαβγ−1 + C2

γσαβγ + C3
γσαβγ+1 + C4

γσ
b
Nz+1 . (4.35)

In equations 4.33-4.35, α = 1, ..., Nx, β = 1, ..., Ny, γ = 1, ..., Nz and σbγ is the con-

ductivity of the background medium. Whether σbγ appears in the stabilizer ϕs de-

pends on the boundary conditions. We implemented two different types of boundary

conditions that we will describe below. We also set σ0βγ = σα0γ = σαβ0 = σNx+1βγ =

σαNy+1γ = σαβNz+1 = 0.

When we use the Neumann boundary conditions, ∂σ/∂ν|∂V = 0, where ν is the

normal to the boundary ∂V , the coefficients Aα, Bβ and Cγ have the following form:
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A1
α =


dx−2,

0,

dx−2,

α 6= 1, Nx

α = 1

α = Nx

,

A2
α =


−2dx−2,

0,

0,

α 6= 1, Nx

α = 1

α = Nx

,

A3
α =


dx−2,

dx−2,

0,

α 6= 1, Nx

α = 1

α = Nx

,

A4
α =


0,

−dx−2,

−dx−2,

α 6= 1, Nx

α = 1

α = Nx

.

(4.36)

The coefficients Bβ are derived in the same manner as the Aα, one just has to

substitute α to β, dx to dy and Nx to Ny in equation 4.36. Finally,

C1
γ =


2

h
(1)
γ (dzγ+dzγ−1)

,

0,
2

h
(3)
γ (dzγ+dzγ−1)

,

γ 6= 1, Nz

γ = 1

γ = Nz

,

C2
γ =


−8

(dzγ+1+dzγ)(dzγ+dzγ−1)
,

−2

h
(2)
γ (dzγ+1+dzγ)

,

0,

γ 6= 1, Nz

γ = 1

γ = Nz

,

C3
γ =


2

h
(1)
γ (dzγ+1+dzγ)

,

2

h
(2)
γ (dzγ+1+dzγ)

,

0,

γ 6= 1, Nz

γ = 1

γ = Nz

,

C4
γ =


0,

0,
−2

h
(3)
γ (dzγ+dzγ−1)

,

γ 6= 1, Nz

γ = 1

γ = Nz,

.

(4.37)

59



Chapter 4. 3D MT Inversion

where
h

(1)
γ = 1

4
(dzγ−1 + 2dzγ + dzγ+1) ,

h
(2)
γ = 1

4
(dzγ−1 + 2dzγ + dzγ+1) ,

h
(3)
γ = 1

4
(dzγ−1 + 2dzγ + dzγ+1) .

(4.38)

In this case the regularization given by equation 4.32 has a strong effect and depends

strongly on the background conductivity σbγ. We will call this strong regularization.

This type of regularization should be used only when we have a very good idea about

the conductivity of the 1D background model. As an example, strong regularization

was used for a simple two-layered model considered in Section 4.2.1.

Another type of the boundary conditions we used in our research is those following

from the continuity of the gradient at the boundary of the inversion domain, i.e.

∂σ

∂ν

∣∣∣∣
∂V −

=
∂σ

∂ν

∣∣∣∣
∂V +

.

In this case the background conductivity, σbγ, is not included in the stabilizer ϕs at

all, and hence, the coefficients A4
α = B4

β = C4
γ = 0, for all α, β and γ. All other

coefficients Aα are

A1
α =

{
dx−2,

0,

α ∈ [2, Nx − 1]

else
,

A2
α =

{
−2dx−2,

0,

α ∈ [2, Nx − 1]

else
,

A3
α =

{
dx−2,

0,

α ∈ [2, Nx − 1]

else
.

(4.39)

The coefficients Bβ are derived in the same manner as the Aα. The coefficients Cγ
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have the following form

C1
γ =

{
2

h
(1)
γ (dzγ+dzγ−1)

,

0,

γ 6= 1, Nz

else
,

C2
γ =

{
−8

(dzγ+1+dzγ)(dzγ+dzγ−1)
,

0,

γ 6= 1, Nz

else
,

C3
γ =

{
2

h
(1)
γ (dzγ+1+dzγ)

,

0,

γ 6= 1, Nz,

else
.

(4.40)

It is this type of regularization we call weak and we use in most of our numerical

experiments (see Section 4.2).

4.1.2.1. Choice of parameter λ

As mentioned in the previous chapter, when a stabilizer ϕs is used in the inversion,

we encounter the additional problem of finding the optimum regularization param-

eter λ. In Section 3.1.2 we proposed an approach for finding the regularization

parameter λ for the 1D MT inversion case. There we solve several inverse problems

with a fixed value of λ, starting from the same initial guess model, in order to find

the optimum regularization parameter.

For the 3D case, the inversion can take several days to compute and this pro-

cedure becomes too time consuming. Therefore, for the 3D case, we choose the

regularization parameter λ in a manner similar to the idea of Haber et al. (2000).

A relatively large value of λ is initially assigned, and then gradually reduced. Then

each new problem is solved using the solution of the previous problem (i.e. the

model obtained using the previous value of λ) as an initial guess. How to choose the

initial value for the regularization parameter λ and how fast it should be reduced

at this moment purely depends on the experience of the user, and some automatic

schemes still have to be developed.

4.2. Model study

To investigate the robustness and effectiveness of the inversion solution developed

we performed a number of numerical experiments. These are described below.
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For all of these experiments, we calculate the 2 × 2 matrices Dij of “observed”

impedances using the x3d code and added random noise to these data. The relative

errors εij of the impedance (see equation 4.3) were taken as 0.05. This value of εij

means that the misfit ϕd defined in equation 4.2 drops to 1, when the

rms =

 1

NSNT

NS∑
i=1

NT∑
j=1

tr
[
(Z−D)

T

ij(Z−D)ij

]
tr
[
D
T

ijDij

]


1
2

(4.41)

drops to 5%. We think that using the same forward code for the predicted and

to generate the “observed” data is sufficient for testing the inversion, because the

forward modelling code x3d has been tested against many other forward modell-

ing codes (see, for example, MT3DINV1 webpage) and the difference between the

responses from different codes is less than the noise we add to the data.

4.2.1. Two-layered half-space

We first consider a simple two-layered model. This model consists of a 10 Ωm, 10 km-

thick layer on top of a 100 Ωm uniform half-space. Our modelling domain, presented

in Figure 4.3, comprises of Nx×Ny×Nz = 19× 19× 7 = 2, 527 rectangular prisms,

with dx = dy = 950 m and dz grows with depth (see Table 4.1). Our inversion

domain coincides with the modelling domain. Thus N = 2, 527 conductivities σk

(k = 1, ..., N) of the prisms need to be recovered. Below are the results of the

inversion, obtained while inverting the data from just a single MT site and from 4

MT sites.

γ dzγ [m] zγ [m]
1 1000 0
2 1500 1000
3 2000 2500
4 2500 4500
5 3000 7000
6 3000 10000
7 3000 13000

Table 4.1.: Thicknesses and depths of the layers. γ corresponds to the number of
the layer

1MT 3D Inversion Workshop, DIAS, March, 2008,
http://www.dias.ie/lang/en/cosmic/geo/mt workshop2008.html
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x-z slice x-y slices
0-10 km 10-16 km

Figure 4.3.: Two-layered conductivity model used for testing the inversion. The left
most panel shows a vertical (x-z) slice through the modelling domain.
The other two panels show the horizontal (x-y) slices for two ranges of
depths, 0-10 km and 10-16 km.

Single MT site

For a period of 100 s (NT = 1) and for one MT site (NS = 1), located on the surface

(z = 0), at the centre of the numerical grid (αs = βs = 10), all 4 complex-valued

elements of MT impedance tensor, D̃ij (see page 49), were calculated. We added

1% noise to these “observed” data, this means that Dij = D̃ij(1 + ξij), where ξij

are random numbers between −0.01 and 0.01. The initial guess model, described

in equation 4.6, was a model with the conductivities σ
(0)
k = 50 Ωm for all the cells

of the inversion domain. Its background coincided with the background of the true

model. The values of the conductivities of the background model do not change

during the inversion, only conductivity values of the cells inside inversion domain

are sought. For this experiment we used the strong regularization (see page 60)

and the regularization parameter λ was kept unchanged and equal to 106. In fact,

this high value of λ means that the process of inversion is mostly governed by the

stabilizer ϕs, rather than ϕd. Indeed ϕd/λϕs ≈ 3%, and hence, practically ϕ ≈ ϕs.

The inversion was stopped at nfg = 289 since it could not generate any significant

improvements. The objective functional at this iteration was ϕ = 113.5 and the

data misfit ϕd = 2.9. This value of the data misfit corresponds to an rms of 8.5%

(see equation 4.41). Let us recall here that the index nfg increases by one after each
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nfg = 1 nfg = 6 nfg = 30

nfg = 84 nfg = 289 true model

Figure 4.4.: The process of the inversion. The panels present vertical (x-z) cross-
sections through the middle (y = 0) of the model starting from the
initial guess model. The iteration number is written over the panels.
True model is also presented for comparison.

Figure 4.5.: The convergence curves for data misfit ϕd (blue) and penalty function
ϕ (red). The curves are plotted as a function of nfg.

evaluation of a pair ϕ and g. This index is proportional to the time of the inversion

and a little larger than the number of the QN iterations nit. Note that for the true

model ϕ = 203, whereas the initial guess model gives ϕ = 6342. Figure 4.4 shows
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a vertical slice through the middle of the models, obtained after various number of

iterations. From the figure we can see how the inversion progresses from iteration to

iteration. We can see that a resistive circular artifact appears around the MT site

in the upper part of the models, when nfg reaches a value between 30 and 84. The

regularization does not help to remove this artifact and it still remains at the end of

the inversion process, when nfg = 289. In contrast, at larger depths the resistivities

of the cells approach the resistivity of the true model. The conclusion from this

example is that the inversion process stagnates after nfg = 289, still not giving the

true image. It is interesting to see what happens if we include more MT sites in the

inversion.

4 MT sites

Let us consider the same two-layered model with the same grid. We chose NS = 4

MT sites on the surface of the earth. The locations of the sites coincides with the

centres of the cells and are shown in Figure 4.6 together with the grid. We again

computed the “observed” MT impedance tensor, D̃ij, and then added 1% noise to

it. It should be noted that the values for the elements of noiseless D̃ij are identical

for all 4 MT sites, as it may be expected for a 1D model.

Figure 4.6.: Location of the MT sites.

Figure 4.7 shows the process of the inversion. This process is presented in a simi-

lar manner as before for 1 MT site, but now we only show the inversion domain. We

again used strong regularization and the regularization parameter λ was kept con-

stant and equal to 106 for the whole process of the inversion. Comparing Figures 4.4

and 4.7, we can see very similar behaviour of the inversion for the first 30 function

and gradient evaluations. However, now we do not get the resistive artifact at later

65



Chapter 4. 3D MT Inversion

nfg = 1 nfg = 6 nfg = 30 nfg = 84 nfg = 435 true model

Figure 4.7.: The process of the inversion. The row of panels presents vertical (x-z)
slice through the middle (y = 0) of the model starting from the initial
guess model (left) to the true model (right). The iteration number is
written over the panels. True model is also presented for comparison.

0− 1 km 1− 2.5 km 2.5− 4.5 km 4.5− 7.0 km 7.0− 10 km 10− 13 km

Figure 4.8.: 3D electrical resistivity model for 4 MT sites without regularization.
The row of panels presents 6 horizontal (x-y) slices through the model
starting from the top (left) to the bottom (right). The range of depths
is given right above each panel.

iterations and we obtain a model very similar to the true model, when nfg = 435

and the data misfit ϕd = 0.4, corresponding to an rms of 3%, which is smaller than

was obtained using one MT site.

In contrast, if we do not apply the regularization functional (λ is set to zero), it

is equivalent to the minimization of the data misfit ϕd only. The recovered model

obtained in this case is presented in Figure 4.8. From the figure we can see that the

inversion result has little similarity with the true model. At first, this result might

seem surprising, because we consider a two-layered model as simple, however 3D

inversion does not have any idea about 1D nature of the model and seeks any model

which would explain the data. It happens that the model presented in Figure 4.8 is

simple for the inversion.

Comparing Figures 4.7 and 4.8 one can conclude that the stabilizer ϕs greatly
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helps to obtain a reasonable image. However, for the sake of objectivity, we should

mention that the good image presented in Figure 4.7 may be just a result of the

strong regularization used. With this strong regularization, the inversion tends to

extend the background conductivity inside inversion domain, as can be seen from

the form of strong regularization, given in Section 4.1.2. When inverting the real

data we usually do not know the conductivity of the background, and hence, we

should not use strong regularization in the inversion. That is why we use weak

regularization for most of the experiments described below.

4.2.2. Buried conductive dyke

100-200 m 200-300 m 300-400 m 400-500 m 500-600 m 600-700 m 700-800 m

Figure 4.9.: 3D electrical resistivity model. The row of panels presents 7 horizontal
(x-y) slices through the model starting from the top (left) to the bottom
(right). The range of depths is given right above each panel.

Figure 4.10.: (x-z) slice through the centre of the 3D resistivity model.

The second example employs a truly 3D model, which is presented in Figures 4.9

and 4.10. One of the reason to consider this model is that it was previously used

to test a 3D MT inversion algorithm in Zhdanov and Tolstaya (2004). This model
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Figure 4.11.: Numerical mesh and location of the MT sites for the model presented
in Figures 4.9 and 4.10.

consists of a tilted 3 Ωm dyke embedded into a 100 Ωm half-space. The dyke is

located at a depth of 200 m to 700 m and it consists of 5 shifted adjacent blocks of

200× 800× 100 m3 size each. Our modelling domain comprises of Nx ×Ny ×Nz =

16×24×8 = 3, 072 rectangular prisms of 100×100×100 m3 size that cover the dyke

and some part of the surroundings. Notice that the modelling volume lies at depths

of 100-900 m and during the forward problem solution x3d embeds this modelling

volume into 100 Ωm background.

The inversion domain coincides with the modelling domain. This means that

N = 3, 072 conductivities σk (k = 1, ..., N) of the prisms need to be recovered. For

this model we calculate 2 × 2 matrices D̃ij of “observed” impedances at NT = 4

frequencies (fi = 1/Ti, i = 1, ..., NT ) of 1000, 100, 10 and 1 Hz. For real MT

surveys usually more frequencies are used, however our experiments are mainly

for understanding and improving the inversion software and using the realisticly

higher number of frequencies would lead to a very long times for the inversion and

therefore to less experiments. The impedances were computed at NS = 168 sites rj

(j = 1, ..., NS) coinciding with the centres of a homogeneous nx×ny = 12× 14 grid,

with a 100 m distance between adjacent nodes (see Figure 4.11).
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With this synthetic example we perform a number of numerical experiments,

which are described below.

4.2.2.1. Regularization by simple bounds

For our first numerical experiment with this model we did not apply the stabilizer

ϕs of equation 2.39, i.e. the regularization parameter λ was assigned a zero value.

Instead, we constrained the conductivity values to lie between lk = 200 Ωm and

uk = 1 Ωm of equation 4.4. Subsequently this turned out to play a similar role to

that of regularization. It should be noted that without putting these constraints on

σk the iteration method without a stabilizer (i.e. when λ = 0) stagnates, when the

data misfit ϕd drops to a value of 0.7 (see Figure 4.12) and it fails to produce a good

conductivity image.

Figure 4.12.: Convergence rates of the inversions without use of a stabilizer ϕs, but
with some limits imposed on the conductivities of the cells. The hori-
zontal dashed line shows the value of the data misfit for the true model
and for the data with 1% noise added.

The curves in Figure 4.12 are shown as a function of the number nfg of evaluations

of the penalty function of equation 4.1 and its gradient given in equation 2.25. To

obtain these results we have chosen a number ncp = 6 of correction pairs, a 100 Ωm

homogeneous half-space as an initial guess and 1% random noise was added to the

impedance matrix D̃ij.

The convergence rates for various numbers ncp of correction pairs is presented in

Figure 4.13(a). From this figure it can be seen that for ncp = 6 we get an even

better convergence rate than for ncp = 20. Therefore, for all simulations presented

later in this section we used ncp = 6. Surprisingly, for 2 correction pairs we only
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get a slightly worse convergence and we manage to obtain a data misfit as small

as ϕd = 0.03. Figure 4.13(b) presents the comparison of the convergence rates of

the various inversions of datasets with different amounts of noise (0%, 1% and 5%)

added. From this figure we can see that even with 5% noise added a reasonable

data misfit is reached. As mentioned above, the noise floor εj is 0.05 for all of our

experiments, and therefore the final misfit levels we try to achieve are different for

different noise levels.

Figure 4.13.: Comparisons of convergence rates of the inversions for different cases:
(a) various numbers of correction pairs: ncp = 2 (dotted line), ncp = 6
(solid line) and ncp = 20 (dashed line). 1% noise was added to the
data; (b) various levels of the data noise: 5% noise (dotted line), 1%
(solid line) and no noise (dashed line). ncp = 6. The horizontal dashed
lines show the level of the data misfit ϕd calculated for the true model
and noisy data (1%, 5%).

It should be noted that it takes 5 minutes for a single penalty function and its

gradient evaluation to be computed on a serial PC. This means that it takes 4 days

to obtain results for the synthetic data with 1% noise added.

4.2.2.2. Acceleration of convergence

The numerical experiment presented in Section 4.2.2.1 was undertaken with some

limits imposed on possible values of the conductivities of the cells. Since these

limits (lk = 200 Ωm and uk = 1 Ωm, k = 1, ..., N) for the conductivities are not

very realistic, we now extend these values to lk = 10000 Ωm and uk = 0.01 Ωm,

but restart the inversion process every nrs-th iteration in order to obtain a better

convergence rate and smaller data misfit. In other words, a model obtained after nrs
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iterations is taken as a new initial guess model and the inversion process is repeated.

From the point of Newton-type optimization the latter means that after each nrs

iterations QN search direction of equation 2.28 is modified to be a steepest descent

direction, p(k) = −g(k), k = nrs ∗ i, i = 0, 1, . . ..

Figure 4.14.: Convergence rates of the inversions with the stabilizer and with grad-
ually diminishing regularization parameter λ (solid line), with restart
every 20-th iteration (dashed line) and without restart and stabilizer,
but with limits on the cells conductivities (dotted line). The curves
present the data misfit versus the number of evaluations of the penalty
functional and its gradient. The dashed horizontal line shows the value
of the data misfit for the true model and data with 1% noise added.

The comparison of convergence rates for restarted and non-restarted inversions

is presented in Figure 4.14. Again, the convergence curves are shown as a function

of nfg. It can be seen that the inversion converges to the solution faster if it is

restarted every 20-th iteration. In addition, only 1 day instead of 4 days of CPU

time is required to reach an acceptable data misfit on a serial PC. One of the possible

explanations of such an improvement is that in order to achieve a good convergence

rate, the limited memory QN approximation of the inverse of the Hessian should

be as close as possible to the true inverse. However, the curvature of the objective

function may change rapidly and gradient information even from the previous ncp

iterations does not improve the inverse of the Hessian approximation at the current

iteration. It therefore can be better to discard this information and restart the

inversion process taking the steepest descent as a search direction. However, this

explanation is very speculative and requires further analysis and investigation.
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4.2.2.3. Regularization by smoothing

The experiments presented in Sections 4.2.2.1 and 4.2.2.2 were done without the

stabilizer ϕs of equation 2.39 involved, i.e. with λ = 0. In this section we use

the stabilizer ϕs and choose the regularization parameter λ, as explained in Sec-

tion 4.1.2.1. For this experiment we start with λ = 106 and then gradually diminish

it to 103. The result of the inversion is presented in Figures 4.15 and 4.16. The

100-200 m 200-300 m 300-400 m 400-500 m 500-600 m 600-700 m 700-800 m

Figure 4.15.: Inversion result with 168 MT sites and 4 frequencies. The row of panels
presents 7 horizontal (x-y) slices through the model starting from the
top (left) to the bottom (right). The upper row of panels presents the
initial guess model, the middle row - the image recovered using smooth-
ing regularization and gradually diminishing regularization parameter
λ, the lower row is for the true model.

comparison with the true model, shown in the same figures, demonstrates good re-

sults when we combine the inversion technique with smoothing regularization and

with gradually diminishing regularization parameter λ. From the figure we can see

that the position, shape and amplitude of the true anomaly is successfully recovered,

although there are few resistive artifacts. This is especially true for the upper part

of the model. As we can expect for MT inversion, the deeper layers are not recovered

as sharp as the upper ones - the bottom part of the recovered model is naturally
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Figure 4.16.: Comparison for a central (x-z) cross-section. The upper panel presents
the inversion result, whereas the lower panel presents true model. We
used responses at 168 MT sites and 4 frequencies.

Figure 4.17.: Convergence of the data misfit ϕd. 168 MT sites and 4 frequencies
were used.

smeared out, delivering only a hint on the presence of the conductive dyke. The

convergence curve for this inversion is presented in Figure 4.17.
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100-200 m 200-300 m 300-400 m 400-500 m 500-600 m 600-700 m 700-800 m

Figure 4.18.: Comparison of the inversion results obtained for various regularization
techniques. Each row of panels present seven horizontal (x− y) slices
of the model starting from 150 m (left) to 750 m (right) depth (z).
1-st row corresponds to the true model; 2-nd row - to the result of
the inversion with use of the stabilizer and with gradually diminishing
regularization parameter λ; 3-rd row - to the result of the inversion
with nrs = 20 and without use of the stabilizer, and the last row
corresponds to the result of the inversion without use of the stabilizer,
but with limits imposed on conductivities.

The comparison of the results using this approach (i.e. reducing the regularization

parameter) and those results without the stabilizer is presented in Figure 4.18. In all

cases the inversions were terminated when the data misfit ϕd could not be improved

significantly, and it dropped to 0.027. This value of the data misfit corresponds to

an rms of 0.8% (see equation 4.41), which is just below the actual noise level. We

observe that the inversion using the stabilizer ϕs and with gradually diminishing

regularization parameter λ produces a much better result. The results of the inver-
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100-200 m 200-300 m 300-400 m 400-500 m 500-600 m 600-700 m 700-800 m

Figure 4.19.: Convergence of the inversion with use of the stabilizer and with grad-
ually diminishing regularization parameter λ. 1-st row - the initial
guess 100 Ωm model (ϕd = 16.44); 2-nd row - model obtained after
nfg = 34 (ϕd = 1.51); 3-rd row - model after nfg = 40 (ϕd = 0.83);
4-th row - model after nfg = 64 (ϕd = 0.25); 5-th row - after nfg = 147
(ϕd = 0.027), the last row corresponds to the true model (ϕd = 0.013).

sions without the stabilizer produce highly erratic images, especially for the upper
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slices. We obtained the worst result when the conductivity values were constrained

between 1 Ωm and 200 Ωm (see the last row in Figure 4.18). One of the reasons

for such a poor result is that it is very easy to reach the boundaries in the process

of the inversion and the method tends to stick to these boundaries. In all of the

following experiments we are not using such close limits for the conductivities, but

instead employ the stabilizer ϕs.

Finally, a set of 3D models recovered at various iterations is presented in Fig-

ure 4.19 for the inversion that uses the stabilizer and with the parameter λ gradually

diminishing from 106 to 103. From this figure we can see that the inversion quickly

senses the presence of the conductor, although the value of the conductivity and

its shape are defocused. When the number of objective function and its gradient

evaluations increases the inversion focuses more and more and when we reach the

nfg of 147 we get the true shape, resistivity and the location of the conductor at the

upper layer of the model. Still, some resistive halo persists.

4.2.3. Outcropping conductive dyke

0-100 m 100-200 m 200-300 m 300-400 m 400-500 m 500-600 m 600-700 m

Figure 4.20.: 3D electrical resistivity model. The row of panels presents 7 horizontal
(x-y) slices through the model starting from the top (left) to the bottom
(right).

The third model is similar to the previous one, but now the 3D conductive dyke

reaches the surface (see Figures 4.20 and 4.21). This model is more challenging, due

to numerical difficulties that arise from the outcropping of the dyke, and we expect

erratic behaviour of the conductivities in the near surface layers. For the calculation

of the gradients of the data misfit ϕd we have to calculate the adjoint electric field

uj, which is the solution of the system of adjoint Maxwell’s equations 4.18. As it

follows from this equation, the adjoint field uj is some combination of electric fields

of horizontal electric and magnetic dipoles. This combination should be averaged
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Figure 4.21.: (x-z) slice through the centre of the 3D resistivity model.

over each cell of the inversion domain. The dipoles are positioned in the locations

of the MT sites. For an outcropped dyke, the upper cells of the inversion domain

touch the dipoles, which makes averaging over the cells a difficult problem. Closer

examination of the problem shows that it is rooted in the physics of MT problem,

rather than numerical - the derivatives of the data misfit for the cells touching the

dipoles are significantly greater than for all other cells. This reflects the fact that

the cells are far more sensitive to the MT data.

Returning to the model, the 3 Ωm dyke is located at a depth of 0 m to 500 m and

consists of the same 5 shifted adjacent blocks of 200× 800× 100 m3 size each. The

modelling domain comprises ofNx×Ny×Nz = 35×35×7 = 8, 575 rectangular prisms

of 100×100×100 m3 size that cover the dyke and some part of the surroundings, and

extends from 0 to 700 m depth. The inversion domain is smaller than the modelling

domain and it comprises of Nx × Ny × Nz = 16 × 24 × 7 = 2, 688 cells that cover

the dyke and some part of the surrounding (see blue box in Figure 4.22).

4.2.3.1. 168 MT sites

For this model we again calculate 2 × 2 matrices D̃ij of “observed” impedances at

NT = 1 frequency of 10 Hz, and then add 1% noise to this data. The impedances

are computed at NS = 168 sites ri (i = 1, ..., NS) coinciding with the centres of

a homogeneous nx × ny = 12 × 14 grid, with a 100 m distance between adjacent

nodes (see Figure 4.22). Of course it is unrealistic to use a single frequency for the

inversion, however with one frequency it is easier to examine and understand the

behaviour of the inversion algorithm. In this case we start the inversion with

the initial guess model, which has 50 Ωm everywhere inside the inversion domain,

in contrast to 100 Ωm we had for the buried dyke. Figure 4.23 presents the result

of the inversion together with the initial and true models. The vertical cross-section
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Figure 4.22.: Location of 168 MT sites.

0-100 m 100-200 m 200-300 m 300-400 m 400-500 m 500-600 m 600-700 m

Figure 4.23.: Inversion result with 168 MT sites and 10-Hz responses. The row of
panels presents 7 horizontal (x-y) slices through the model starting
from the top (left) to the bottom (right). The upper row of panels
presents the initial guess model, the middle row shows the image re-
covered, the lower row is for the true model.
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Figure 4.24.: Comparison for a central (x-z) cross-section. The upper panel presents
the inversion result, whereas the lower panel presents true model. 10-
Hz responses at 168 MT sites were used.

Figure 4.25.: Convergence of the inversion. 10-Hz responses at 168 MT sites were
used. The inversion was terminated when no significant improvement
could be made and when we reached a misfit ϕd = 0.29 which corre-
sponds to rms of 2.5%.
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through the middle of the model is shown in Figure 4.24. Interestingly, only a single

frequency happens to be enough to more or less recover the true position and shape

of the dyke.

The reason for such a good result is obvious - we use a very refined grid of MT

sites. However, it should be mentioned that the value of the dyke’s resistivity is

overestimated by a factor of 1.5-2. We also can see remnants of the initial model at

the edges of the inversion domain and some resistive artifacts, especially at the upper

layer of the model. Figure 4.25 presents the convergence curve for this inversion.

In our next experiment we consider how decreasing of the number of MT sites

deteriorates the result of inversion.

4.2.3.2. 42 MT sites

Figure 4.26.: Location of 42 MT sites.

In this experiment we cover the surface with 42 MT sites, as shown in Figure 4.26.

Again we only invert 10 Hz responses with 1% added noise. The result of the

inversion is shown in Figures 4.27 and 4.28. Similar to Figures 4.23 and 4.24, we get

a blury image of the conductor at the lower part of the model, but now it extends
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0-100 m 100-200 m 200-300 m 300-400 m 400-500 m 500-600 m 600-700 m

Figure 4.27.: Inversion result with 42 MT sites and 10-Hz responses. The row of
panels presents 7 horizontal (x-y) slices through the model starting
from the top (left) to the bottom (right). The upper row of panels
presents the initial guess model, middle row shows the image recovered,
the lower row is for the true model.

Figure 4.28.: Comparison for a central (x-z) cross-section. The upper panel presents
the inversion result, whereas the lower panel presents true model. 10-
Hz responses at 42 MT sites were used.

slightly deeper. We also obtained a lot of strange resistive artifacts, especially in the

very first layer. From the figures we can see that although the shape of the dyke is
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0-100 m 100-200 m 200-300 m 300-400 m 400-500 m 500-600 m 600-700 m

Figure 4.29.: Inversion result for 42 MT sites and 4 frequencies. The row of panels
presents 7 horizontal (x-y) slices through the model starting from the
top (left) to the bottom (right). The upper row of panels presents the
initial guess model, the middle row shows the image recovered, the
lower row is for the true model.

Figure 4.30.: Comparison for a central (x-z) cross-section. The upper panel presents
the inversion result, whereas the lower panel presents the true model.
42 MT sites and 4 frequencies were used.

recovered, the upper part of it is shifted to the right by one cell. The first obvious

explanation is that there are no data that covers the uppermost left margin of the
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Figure 4.31.: Convergence of the inversion. 42 MT sites and 4 frequencies were
used. The inversion was terminated when ϕd drops to 0.18, which
corresponds to rms of 2%.

dyke.

We analyze whether increasing the number of frequencies helps to obtain a more

accurate image. So we repeat the experiment with data at NT = 4 frequencies of

1000, 100, 10 and 1 Hz and plot the result in Figures 4.29 and 4.30, and convergence

curve in Figure 4.31. Not surprisingly we obtain much better result and this time the

shape, position and even the value of the conductivity of the dyke are accurately

recovered. The bottom of the dyke is now better resolved and we obtain much

less resistive artifacts at the top. One can conclude that an increased number of

frequencies, involved in inversion, helps a lot to improve the inversion result.

So far we dealt with only a relatively simple problem with around 3000 unknown

conductivities. Although the results are promising they only give a first indication

of the reliability and stability of the method. Hence, more complicated situations

are studied below.

4.2.4. Two adjacent blocks

This section is very important for the whole work. Running ahead, let us state that

this model for the first time allowed us to realize a problem that is crucial for reliable

inversion of 3D MT dataset. The below experiments imply that Tikhonov-type

regularization, which we included in our inversion solution, in certain cases is not

powerful enough to suppress the non-smoothness of the resistivity image, especially

for the upper part of the model. In order to construct reliable resistivity images
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x-z slice x-y slices
0-10 km 10-32 km

Figure 4.32.: The synthetic test model. The left most panel presents a vertical (x-z)
slice through the middle of the model. The other two panels show
horizontal (x-y) slices for two ranges of depths, 0-10 km and 10-32 km.

one has to put more strong constraints on the model parameters, stronger than

those imposed by traditional Tikhonov-type regularization. In Chapter 5 we suggest

different types of the preconditioners in our inversion to overcome this problem.

This more complex model is somewhat famous. It was previously considered

in various 3D forward modelling papers (Wannamaker, 1991; Mackie et al., 1994;

Avdeev et al., 1997, among others). Moreover, the inversion code by Siripunvaraporn

et al. (2005) was also tested using this model. The model consists of resistive and

conductive blocks buried in a two-layered earth. The horizontal and vertical slices

presented in Figure 4.32 completely describe the model.

To select the appropriate frequency range for the inversion, we perform a simple

sensitivity analysis. This analysis involves the comparison of apparent resistivity,

ρapp, and phase, φ, curves calculated for 4 two-layered models, constructed from

the true and initial guess models used in the inversion. Resistivity values of the

10-km upper layer for these 1D models are 1, 10, 50 and 100 Ωm, respectively, while

resistivity of the lower layer is 100 Ωm. The 1D curves are shown in Figure 4.33 as a

function of period. From the figure, we can see that the frequency range from 10−4

to 10−1 Hz is appropriate in order to sense the important parts of the true model.

Although we only start to sense the 100 Ωm lower layer for 1 Ωm (red) curve at the

frequency of 10−4 Hz, this frequency is the realistic lower limit for the long period

MT data. Note that Siripunvaraporn et al. (2005) used higher frequencies of 10−3,

10−2, 10−1, 1 and 10 Hz.

We perform a set of experiments for the model shown in Figure 4.32. These are

described in the following sections.
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Figure 4.33.: Apparent resistivity and phase curves for 4 different two-layered mod-
els. These models have the resistivity of 100 Ωm for the lower layer,
while the resistivity values of the 10-km upper layer are 1 (red), 10
(blue), 50 (green) and 100 Ωm (black), respectively.

4.2.4.1. Coarse numerical grid

In this section we use a coarse grid for the horizontal dimensions, we will refine this

grid in the next Section 4.2.4.2.

First we choose an inversion domain of Nx × Ny × Nz = 20 × 20 × 9 = 3, 600

rectangular cells with dx = dy = 4000 m. The inversion domain volume reaches a

depth of 32 km, and the modelling domain coincides with the inversion domain.

400 MT sites.

For our first experiment with this grid we cover the surface (z = 0) of the inversion

domain with 400 MT sites (NS = 400), located at the centres of a homogeneous nx×
ny = 20× 20 grid, with 4000 m distance between adjacent nodes (see Figure 4.34).

For these MT sites we simulated data at 3 frequencies of 0.01, 0.0033 and 0.001 Hz

(NT = 3). We again added 1% noise to the simulated data. We also used the

stabilizer ϕs and the technique of gradually diminishing regularization parameter

λ (see Section 4.1.2.1) in the inversion. The result of the inversion is shown in

Figures 4.35 and 4.36 together with the true and initial guess models. It should be

noted here that the initial guess model has the conductivity of 50 Ωm in all cells

of the inversion domain, assuming that outside conductivity coincides with the true

background. For this model the true background is just a two-layered structure with

a 10-km thick 10 Ωm layer on the top of the 100 Ωm halfspace.

Comparing the recovered image with the true model, we obtain a satisfactory

result: the shape and position of the blocks are recovered. The value of the resistiv-
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Figure 4.34.: Location of 400 MT sites.
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Figure 4.36.: Comparison for a central (x-z) cross-section. The upper panel presents
the inversion result, whereas the lower panel presents true model. 400
MT sites and 3 frequencies were used.
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ity for the conductive block is retrieved correctly, although it is overestimated for

the resistive block. As usual for MT inversion, the position of the bottom of the

conductive block is somewhat obscured.

Figure 4.37.: Convergence of the inversion. 400 MT sites and 3 frequencies were
used. The inversion was terminated when ϕd drops to 9.7.

We stopped the inversion process when the value of the data misfit ϕd could not

be improved anymore and it dropped to 9.7. The whole convergence curve is shown

in Figure 4.37. A single calculation of the penalty function together with its gradient

for this experiment takes about 7 minutes on a serial PC, resulting in a total time

of ≈ 50 hours.

80 MT sites.

We now diminish the number of MT sites used for the inversion to 80. These sites

are randomly placed, however, we prevent two sites from being placed in directly

adjacent cells. The locations of these MT sites are shown in Figure 4.38. Everything

else was kept as in the previous experiment, we only changed the number of MT

sites.

Figures 4.39 and 4.40 present the result of the inversion together with the true

and initial guess models. We observe that the recovered image is very different

from the true model. It has a very erratic behaviour, especially for the upper part

of the model, with a lot of artificial structure. This result cannot be considered

satisfactory. It is interesting that if we plot the locations of the MT sites on top of

the recovered image (see Figure 4.41) we see that reasonable resistivity values occur

exactly for those cells that contain MT sites. For these selected cells it is obviously

possible to retrieve the underground structure, at the same time it is absolutely

impossible to utilize the resistivity of the other cells.
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Figure 4.38.: Location of 80 MT sites.
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Chapter 4. 3D MT Inversion

Figure 4.40.: Comparison for a central (x-z) cross-section. The upper panel presents
the inversion result, whereas the lower panel presents true model. 80
MT sites and 3 frequencies were used.
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Chapter 4. 3D MT Inversion

Figure 4.41.: The location of 80 MT sites plotted on top of the upper layer of the
recovered image.
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Chapter 4. 3D MT Inversion

To better understand how our inversion works, we refine the grid, hoping that the

above result is just a consequence of a too coarse grid used for forward modelling.

4.2.4.2. Refined numerical grid

We chose our inversion domain to be Nx × Ny × Nz = 40 × 40 × 5 = 8000 with

dx = dy = 2000 m, compared with dx = dy = 4000 m in the previous section.

Again the modelling domain coincides with the inversion domain. In order to save

computational time we invert only for the first 5 layers up to 10 km depth.

1444 MT sites.

Figure 4.42.: Location of 1444 MT sites.

For the first experiment with this refined grid we cover the surface of the inversion

domain with 1444 MT sites (NS = 1444). The exact locations of the sites are shown

in Figure 4.42. For these MT sites we simulated data at 3 frequencies of 0.033, 0.01

and 0.0033 Hz (NT = 3), slightly higher than in the previous setup. We again add

1% noise to the simulated data. For the initial guess model we assign a resistivity

value of 50 Ωm to all the cells of the inversion domain. The inverted model is shown

94



Chapter 4. 3D MT Inversion

z : 0-1 km 1-2.5 km 2.5-4.5km 4.5-7 km 7-10 km

Figure 4.43.: 3D electrical resistivity models. Each row presents five horizontal (x−
y) slices through the model starting from the top (left) to the bottom
(right). 1st row corresponds to the initial guess model, the 2nd row
- to the result of the inversion and the 3rd - to the true model. 1444
MT sites and 3 frequencies were used for the inversion.

Figure 4.44.: Comparison for a central (x-z) cross-section. The upper panel presents
the inversion result, whereas the lower panel presents the true model.
1444 MT sites and 3 frequencies were used.

on Figure 4.43 and 4.44 along with the true and initial guess models.

As in Section 4.2.4.1 for the coarse grid with a dense site coverage, we obtain a

very satisfactory result. From the figures, we can see that the position and the true
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Chapter 4. 3D MT Inversion

resistivity of the anomalies are retrieved correctly. Although the boundaries of the

anomalies are not so sharp, they are much sharper than for the coarse grid and these

smooth transitions are the normal effect of the regularization. The background re-

sistivity of 10 Ωm is not well resolved at depth, if compared with the result obtained

on the coarse grid. This can be explained by the fact that for this inversion we used

higher frequencies.

Figure 4.45.: Convergence of the inversion. The inversion was terminated when we
reached a data misfit ϕd = 47. 1444 MT sites and 3 frequencies were
used.

The inversion process was stopped when ϕd dropped to 47. The full convergence

curve is shown in Figure 4.45. For the grid used in this experiment a single calcu-

lation of the penalty function together with its gradient takes about 6 minutes on a

serial PC. Even though we used finer grid, the smaller number of layers in z-direction

reduced the computational time (we needed 7 minutes for a single calculation of the

penalty function together with its gradient for the coarse grid).

It is also interesting to compare the results obtained for various numbers and val-

ues of frequencies involved in the inversion. In Figures 4.46 and 4.47 we compare the

recovered images when 1, 2 or 3 frequencies are used in the inversion. When we use

just one period of 100 s we can resolve surprisingly well the resistivity, position and

shape of the conductive anomaly. This anomaly extends all the way to the bottom

of the inversion domain, as it does for the true model. The shape and position of the

resistor are also retrieved, however its resistivity is overestimated. The background

resistivity cannot be resolved for this single frequency. If we use period of 300 s

instead of 100 s we again can retrieve the conductor quite well, however the resistive

anomaly and the 10 Ωm background are full of strange artifacts. To use 2 or 3 fre-
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Chapter 4. 3D MT Inversion

z : 0-1 km 1-2.5 km 2.5-4.5km 4.5-7 km 7-10km

Figure 4.46.: Comparison of the results of inversions with different number of fre-
quencies. Each row presents five horizontal (x− y) slices through the
model starting from the top (left) to the bottom (right). The 1st row
corresponds to the inversion result obtained using only 1 frequency of
0.01 Hz, a data misfit of ϕd = 75 was reached in this case, the 2nd
row presents the result for a frequency of 0.0033 Hz and we obtained
ϕd = 33, the 3rd row shows the result when 2 frequencies of 0.01 and
0.033 Hz were used, there ϕd = 53, in the 4th row - we used 3 fre-
quencies of 0.0033, 0.01 and 0.033 Hz and the data misfit dropped to
ϕd = 47. Finally, the 5th row displays the true model. We used 1444
MT sites for these results.

quencies helps to resolve the background resistivity, especially for the 3 upper layers.

The conductor is reasonably well resolved for both of these cases and we can better

see the resistor if 3 frequencies are used. The main conclusion from the comparison
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Chapter 4. 3D MT Inversion

Figure 4.47.: Comparison for a central (x-z) cross-section. The four upper panels
present the inversion results for the various numbers of frequencies used
in the inversion, whereas the lower panel corresponds to the true model.
Please see the caption for the Figure 4.46 for the used frequencies and
the obtained values of the data misfits ϕd. 1444 MT sites were used.

is that the increased number of frequencies again, as in Subsection 4.2.3.2, helps to

improve quality of the inversion.

Let us see how the problem found with the coarse grid and few sites manifests

itself for the case of the refined grid. For this analysis we diminish the number of

MT sites used in the inversion from 1444 to 500.

500 MT sites.

We randomly choose the locations of the MT sites, these are shown in Figure 4.48

together with the modelling cells. Due to the random distribution it happened that

there are regions where MT sites grouped closely together and regions with hardly

any sites. This observation is important for understanding the inversion results and

is a typical situation in a real field survey. The grid was kept as in the previous
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Figure 4.48.: Location of 500 MT sites.
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z : 0-1 km 1-2.5 km 2.5-4.5km 4.5-7 km 7-10 km

Figure 4.49.: Result of the inversion. Each row presents five horizontal (x−y) slices
through the model starting from the top (left) to the bottom (right).
1st row corresponds to the initial guess model, 2nd to the result of the
inversion and 3rd - the true model. 500 MT sites and 4 frequencies of
0.033, 0.01, 0.0033 and 0.001 Hz were used.
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Chapter 4. 3D MT Inversion

Figure 4.50.: Comparison for (x-z) cross-sections. The recovered resistivity image
is presented for north (upper panel), central (2nd panel), south (3rd
panel) profiles. The lowermost presents the true image. 500 MT sites
and 4 frequencies were used.
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Chapter 4. 3D MT Inversion

experiment with 1444 MT sites.

For the inversion we used data calculated at 4 frequencies of 0.033, 0.01, 0.0033

and 0.001 Hz (NT = 4). Figures 4.49 and 4.50 present the result of the inversion

together with the true and initial guess models. From these figures we can see that

the recovered image is different from the true model, except at the volumes located

under regions with densely located sites. In sparsely covered regions the resistivity

shows the erratic behaviour we already observed in some of the previous examples.

Again the upper part of the model is particularly affected.

We plot the recovered image for the surface layer together with the locations of

the MT sites in Figure 4.51. From this figure we can see that reasonable resistivity

values are recovered exactly under the cells beneath the MT sites. For these selected

cells it is possible to see the underground structure, at the same time it is difficult

to reconstruct the resistivity elsewhere.

We present some thoughts and ideas about possible reasons for this phenomena

in the next chapter.
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Chapter 4. 3D MT Inversion

Figure 4.51.: The location of 500 MT sites plotted on top of the upper layer of the
recovered image.
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Chapter 5.

Additional regularization

In this chapter we will investigate why our current solution for the 3D MT inverse

problem sometimes cannot resolve the resistivity immediately beneath the surface,

in regions that are not covered by MT sites. With this aim in mind, we write down

an explicit formula for the first model update:

σ
(1)
k = σ

(0)
k (1 + αp

(0)
k ). (5.1)

This expression straightforwardly follows from equation 2.27, if one recalls that

m
(1)
k = σ

(1)
k /σ

(0)
k , (k = 1, . . . , N) (see equation 4.5). Here σ

(0)
k is the conductivity of

the k-th cell of the initial guess model. Further,

p
(0)
k = − σ(0)

k

(
∂ϕd
∂σk

+ λ
∂ϕs
∂σk

)∣∣∣∣
σ=σ(0)

, (5.2)

as follows from equations 2.21, 2.25, 2.28 and 2.31. Substituting equation 5.2 into

equation 5.1, we get

σ
(1)
k = σ

(0)
k

(
1− ασ(0)

k

(
∂ϕd
∂σk

+ λ
∂ϕs
∂σk

)∣∣∣∣
σ=σ(0)

)
. (5.3)

This expression for the first update σ
(1)
k means that the smoothness of σ

(1)
k is directly

related to the smoothness of ∂ϕd/∂σk. Indeed, equation 5.3 can be rewritten as

σ
(1)
k = σ

(0)
k − ασ

(0)
k

2∂ϕd
∂σk

, (5.4)

since in many cases the initial guess model σ(0) is chosen as a uniform half-space

and consequently ∂ϕs/∂σk|σ=σ(0) = 0.
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As an example of the first update, in Figure 5.1 we show the resistivities ρ
(1)
k =

1/σ
(1)
k for the model example with two adjacent blocks described on page 89. In

that example, 80 MT sites were inverted and the inversion domain was discretized

by Nx×Ny ×Nz = 20× 20× 9 = 3, 600 rectangular cells. Note that these MT sites

covered only 80 surface cells, leaving 320 surface cells uncovered.

Figure 5.1.: Resistivity of the uppermost layer after the first iteration when starting
from a homogeneous half-space. The resistivity values are proportional
to the elements of the gradient. The locations of 80 MT sites are shown
as black dots.

We can clearly see that the values of σ
(1)
k are dramatically higher for the 80 cells

covered with sites and nearly vanish for the other 320 cells. In other words, the

first update σ(1) looks very rough. Moreover, the smoothness of this image cannot

be improved by Tikhonov-type regularization at all. This conclusion follows from

equation 5.4, since the right hand side of the equation does not depend on ϕs. The
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regularization may help only with improving this erratic image σ(1) in the course

of consequent iterations σ(n). Our experience, and the examples considered in this

work, demonstrate that this type of regularization does not always help, but its

effectiveness depends on many factors.

Summing up, the singularity of the gradient ∂ϕd/∂σk in the vicinity of the MT

sites introduces erratic structures to the model and this behaviour complicates the

solution of the 3D MT inverse problem. This is particularly true with Newton-

type optimization approaches that rely heavily on the gradients. It is surprising

that, although the problem outlined above reflects the physics of the 3D MT inverse

problem, it is not very well reported in literature, but only hinted at. A general

solution is to put more constraints on the model conductivity values directly, rather

than impose them through the Tikhonov-type stabilizer ϕs. As an example of such

an approach, the paper by Siripunvaraporn et al. (2005) proposes to put additional

constraints on the resistivity of the cells using the so-called model covariance ma-

trix. This operation can be alternatively viewed as a change of unknowns. Gregory

Newman, in private communication, has proposed to adjust the gradient using a

Hessian matrix.

These two approaches may help us to eliminate the erratic behaviour at the upper

part of the model sometimes observed for our currently implemented inverse problem

solution. In the following two sections we are trying to solve the problem using these

two ideas.

5.1. Preconditioning by a model covariance matrix

We will now use g̃(n) = Mg(n) instead of our old gradient g(n), where M is the

so-called model covariance matrix. This means that the new BFGS update formula

will get the following form

G̃
(n)

=

(
I− ỹ(n−1)s(n−1)T

ỹ(n−1)T s(n−1)

)T

G̃
(n−1)

(
I− ỹ(n−1)s(n−1)T

ỹ(n−1)T s(n−1)

)
+

s(n−1)s(n−1)T

ỹ(n−1)T s(n−1)
(5.5)

and

G̃
(0)

= I, (5.6)
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where ỹ(n−1) = My(n−1). From equation 5.5 one can easily derive that the new

matrix G̃
(n)

satisfies a new secant equation

G̃
(n)

ỹ(n−1) = s(n−1). (5.7)

From equations 2.34 and 5.7 it follows that

G̃
(n)

= G(n)M−1 (5.8)

This means that all the search directions remain exactly the same, except the very

first one, in other words

p̃(n) =

{
p(n), n > 0,

Mp(n), n = 0.
(5.9)

From equation 5.9 we get that the matrix M has to be positive definite in order

to obtain always a descent search direction p̃(n). A similar argumentation can be

applied to the L-BFGS update formula 2.37.

This means that our optimization method should still work if we multiply the

gradient g(n) by any positive definite matrix M.

Now we are ready to move on to the solution of the problem. We apply the

following Gaussian filter to the gradient g(n),

g̃
(n)
k =

NxNyNz∑
i=1

fi,k · g(n)
i , (5.10)

where

fi,k =


e

− 1
2

(xci−xck
axdx

)2

+

(
yci−y

c
k

aydy

)2


NxNyNz∑
l=1

e

− 1
2

(xcl−xck
axdx

)2

+

(
yc
l
−yc
k

aydy

)2
 , i ∈ [NxNy(γ − 1) + 1, NxNyγ]

0, else.

(5.11)

This filtering could be alternatively viewed as applying our optimization method

to minimize the old objective functional ϕ, but in a new model space of the new

model parameters

σ̃k =

NxNyNz∑
i=1

fi,k · σi. (5.12)
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In equation 5.11 γ corresponds to the number of the layer, where the cell with

conductivity σ̃k is located.

Figure 5.2 illustrates the effect of such a filter on the first update model, the first

layer of which is shown in Figure 5.1. The conductivity values of the first update

have the same behaviour as the gradient g(1). From this figure we can see that the

filter reduces the erratic behaviour for the upper layers and does not significantly

change the already smooth lower layers of the model. We also see that higher values

of the parameters ax and ay produce smoother images.

z : 0-1 km 2.5-4.5km 10-14 km central x-z slice

Figure 5.2.: The effect of the Gaussian filter described in equations 5.10, 5.11. The
first 3 panels of each row show 3 horizontal (x − y) slices through the
model and the last panel shows the central (x−z) cross-section through
the middle of the model. The 1st row corresponds to the unfiltered
model, the 2nd to the model after applying the filter with ax = ay = 0.5
and the last row with ax = ay = 1.

In our implementation k = 1, · · · , NxNyNz and the model covariance matrix

M = {fi,k} is a square matrix. We apply this model covariance matrix M, as a

preconditioner, in order to overcome the problem, stated in the beginning of this
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chapter. Applying such a preconditioner is similar to the idea of Siripunvaraporn

et al. (2005).

We will check now how this idea helps in the example of two adjacent blocks, which

was introduced in section 4.2.4. For the following experiment, we chose to use the two

block model with 80 MT sites described in section 4.2.4.1. As before, the inversion

domain coincides with the modelling domain and comprises of 20× 20× 9 = 3, 600

rectangular cells, extending to a depth of 32 km. Again we covered the surface

(z = 0) of the inversion domain with 80 MT sites (NS = 80). The coordinates of

these MT sites are exactly the same as before (see Figure 4.38). For these MT sites

we simulated data at 3 frequencies of 0.01, 0.0033 and 0.001 Hz (NT = 3). We again

added 1% noise to the simulated data.

For these data we compare results from two versions of our inverse problem so-

lution, one without the filter (g(n) used as the gradient), and another one with the

filter (g̃(n) used as the gradient). Our initial guess conductivity was 50 Ωm for the

whole inversion domain, assuming that the outside conductivity coincides with the

true background for both of these solutions. For this initial model the true back-

ground is just a two-layered structure with a 10-km thick 10 Ωm layer on the top of

the 100 Ωm halfspace.

For the inversion with the filter we now have two extra parameters ax and ay.

Too large values of these filtering parameters deliver an overly smooth resistivity

image, not allowing to get a sufficiently small data misfit ϕd. So in order to reach a

satisfactory value of the data misfit we are using a sequence of decreasing filtering

parameters ax and ay, similarly to the reduction of the regularization parameter

λ. We first choose ax = ay = 3 and then gradually diminish the values of these

parameters. With the first values we run first 10 iterations, then we change them

to ax = ay = 2 for another 20 iterations, then to ax = ay = 1 for additional 20

iterations, and finally run the final 100 iterations without filter at all. We tried

various values of the filtering parameters, but all of these experiments show that the

exact values of ax and ay are not critical for the inversion results.

The comparison of the results of the inversions with and without filtering is shown

in Figures 5.3, 5.4 and 5.5.

From these figures one can obviously see that the results with filtering are much

more similar to the true model. The positions and the resistivity values of the

anomalies are reasonably well matched. The location of the interface between con-

ductor and resistor is found. With depth the image becomes more smooth and the
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Chapter 5. Additional regularization

Figure 5.4.: Comparison for a central (x-z) cross-section. The upper panel presents
cross-section through the inversion result without any filter, the 2nd -
through the result with filtering described in equations 5.10, 5.11, and
the lower panel presents cross-section through the true model. 80 MT
sites and 3 frequencies were used.
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Figure 5.5.: Comparison of the convergence curves. The inversion without the filter
(top) converged to a data misfit ϕd of 11, corresponding to an rms of
16.6% and with the filter (bottom) it drops to 2.5 (rms = 8%). 80 MT
sites and 3 frequencies were used.
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conductor extends slightly deeper, but this can be expected for MT.

5.2. Preconditioning by the Hessian matrix

Another possibility is to smooth the gradient using the inverse of the Hessian matrix.

This idea was proposed to us by Gregory Newman in a personal communication.

Let us introduce the equations we need to implement this idea. As before

g̃(n) = M(n)g(n). (5.13)

We use the preconditioner (Newman and Boggs, 2004; Mackie et al., 2007)

M(n) = (diag(H̃
(n)

) + λWTW)−1, (5.14)

where H(n) and WTW are the Hessian matrices of the data misfit ϕd and stabilizer

ϕs, respectively, and λ as before is the regularization parameter. The tilde sign

stands here for approximation. The matrix W in our implementation represents a

finite-difference approximation to the Laplace operator (see Sections 2.3 and 4.1.2).

The essential difficulty here is the calculation of those diagonal elements

Hkk =
∂2ϕd

∂mk∂mk

=
∂2ϕd
∂σk∂σk

(σ
(0)
k )2. (5.15)

5.2.1. Calculation of second derivatives ∂2ϕd

∂σk∂σk

As we showed earlier in Section 4.1.1

∂ϕd
∂σk

= <

{
NS∑
i=1

NT∑
j=1

βijtr

[
A
T

ij

∂Zij

∂σk

]}
, (5.16)

From this equation and neglecting the second-order terms one can get the following

∂2ϕd
∂σk∂σk

= <

{
NS∑
i=1

NT∑
j=1

βijtr

[
∂Z

T

ij

∂σk

∂Zij

∂σk

]}
, (5.17)

Recalling (see 4.12 and 4.15) that

∂Zij

∂σk
= (pejk(ri)− Zijphjk(ri))H

−1
ij , (5.18)
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we obtain the equations

∂Zij

∂σk
= p(ejk(ri)− pTZijphjk(ri))H

−1
ij , (5.19a)

∂Z
T

ij

∂σk
= H

−T
ij (eTjk(ri)p

T − h
T

jk(ri)p
TZ

T

ij). (5.19b)

Very similar to the calculation of the gradient in Section 4.1.1 let us write the

following equations

∇×∇× ejk −
√
−1ωjµσ(r)ejk =

√
−1ωjµχkEj, (5.20a)

∇×∇× uij −
√
−1ωjµσ(r)uij =

√
−1ωjµ(jextij +∇× hextij ), (5.20b)

where

jextij = pT δ(r− ri), (5.21)

and

hextij = − 1√
−1ωjµ

pTZT
ijpjextij . (5.22)

It is important to note that, in contrast to equation 4.21b, equation 5.20b is now

different for different MT sites (index i). Multiplying equation 5.20a by uTij and

equation 5.20b by eTjk and integrating the difference of the resulting equations over

the whole 3D space, one gets∫
R3

[
eTjkj

ext
ij + eTjk∇× hextij

]
dV =

∫
Vk

[
uTijEj

]
dV. (5.23)

However∫
R3

eTjk∇× hextij dV =

∫
R3

∇× eTjkh
ext
ij dV =

∫
R3

√
−1ωjµh

T
jkh

ext
ij dV, (5.24)

and hence, ∫
Vk

[
uTijEj

]
dV =

∫
R3

(eTjk − hTjkp
TZT

ijp)pT δ(r− ri)dV. (5.25)

From the equations 5.19 and 5.25

∂Zij

∂σk
=

∫
Vk

[
uTijEj

]
dVH−1

ij . (5.26)

114



Chapter 5. Additional regularization

Now we are finally ready to write the equation for the second derivatives of the data

misfit ϕd

∂2ϕd
∂σk∂σk

= <

{
NS∑
i=1

NT∑
j=1

βijtr

[
H
−T
ij

∫
Vk

[
E
T

j uij

]
dV

∫
Vk

[
uTijEj

]
dVH−1

ij

]}
. (5.27)

The formula of equation 5.27 means that the computational load for calculating

the second derivatives is equivalent to the solution of 2 × NT forward problems

using standard Maxwell’s equations to find Ej and of 2×NT ×NS adjoint problems

using equations 5.20b to find uij for all periods j = 1, ..., NT and for all MT sites

i = 1, ..., NS.

In order to reduce the time for caculation of uij, we calculate these fields for the

1D background model. We perform these calculation just once before the inversion.

So instead of the true Hessian matrix, H, we use H̃ with the following diagonal

elements

H̃kk = <

{
NS∑
i=1

NT∑
j=1

βijtr

[
H
−T
ij

∫
Vk

[
E
T

j u
1D
ij

]
dV

∫
Vk

[
u1D
ij

T
Ej

]
dVH−1

ij

]}
(σ

(0)
k )2.

(5.28)

We implemented the theory described in this section and then undertook a number

of the synthetic experiments, but so far did not obtain any satisfactory results. It is

difficult immediately see whether it is some numerical problem of our implementation

or some problem with the approach. This investigation is subject of our ongoing

research.

115



Chapter 6.

Conclusions

3D MT inversion is very large in scale and only a few years ago it seemed to be

impossible due to the limited speed and memory of computers. The only way to

interpret 3D MT datasets was to use 3D forward modelling codes in order to fit the

data through trial and error. In the 3D case this procedure is somewhat cumber-

some, tedious, and requires a lot of imagination. That is why 2D approximations

were usually used. Trial and error techniques are sometimes used in 2D, how-

ever there are also a number of preferable 2D inversion schemes available. To use

2D forward modelling and inversion is a very common practice for interpreting 3D

datasets. In some cases this can be done successfully, however in some instances,

especially in areas of very complex 3D geology, it can lead to wrong interpretation.

Today because of high level of modern computer facilities the numerical solution of

3D inverse problem becomes possible, however it still remains a very difficult and

computationally expensive task. Therefore to date there are only a few 3D MT in-

version codes available, most of which are not free. Recently, Siripunvaraporn et al.

(2005) released their code WSINV3DMT and now, judging by the WSINV3DMT1

webpage, it attracts a large amount of users. This demonstrates the urgent need for

3D MT inversion.

For this thesis we developed and implemented a 3D magnetotelluric inversion

method. This method is based on the limited memory quasi-Newton optimization

approach. The main advantage of this approach, compared to other Newton-type

optimization techniques, is the storage requirement, only a limited number of pairs

of vectors have to be stored in memory. This advantage makes it possible to handle

large-scale problems, such as 3D MT inversion. As for most other types of opti-

mization methods, the limited memory QN optimization requires the calculation

1http://mucc.mahidol.ac.th/∼scwsp/wsinv3dmt
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of the gradient of the penalty function ϕ. Using the adjoint method helps to per-

form this task with a minimum number of forward modellings and we developed

and presented the concrete formulae for the gradients in the 1D and 3D MT cases,

respectively. The mathematics behind the derivation of these formulae and their

numerical implementation are not straightforward. Therefore we assured the accu-

racy of the implementation by comparing our numerical results with an analytical

solution and observe good agreement for the adjoint fields needed for the gradient.

Our development is quite general and is not limited to magnetotellurics alone. It

can be applied to a variety of EM problems, such as marine controlled-source EM

and well induction logging.

Another important part of the inversion is the forward modelling code employed

as an engine for the inversion. Most of the existing 3D inversions use finite-difference

and finite-element forward modelling codes. We use the integral equation (IE) code

x3d. To accelerate the forward modelling code, we parallelize its discrete 2D con-

volution routine, which is the most time-consuming part of the serial solution. The

comparison between the serial and parallel versions on both, distributed-memory

and shared-memory clusters, shows that we achieve a reasonable acceleration, e.g.

a factor of 7 for 16 processors and large models. Another inversion based on IE

approach is developed by Zhdanov and Golubev (2003). To speed up the inversion

process it uses approximate forward modelling solution, but general reliability and

the accuracy of such a solution is still under question. Zhdanov and Tolstaya (2004),

to insure the accuracy of the solution, used rigorous forward modelling at the final

stage of the inversion.

Due to the fact that the solution of the 3D MT inverse problem is non unique, we

need an appropriate regularization approach. We suggest two Tikhonov-type regu-

larizations: strong regularization, which uses the Neumann boundary conditions and

ties the resistivity in the inversion domain to the fixed background resistivity, and

weak regularization, which only assumes continuity of the gradient at the boundary

of the inversion domain. With strong regularization the inversion tends to extend

the background resistivity inside the inversion domain. While this helps in synthetic

tests cases where the true background resistivity is known, it is impractical for the

inversion of real data, as the background resistivity has to be chosen before the

inversion process and exerts an overly strong influence on the inversion results. In

comparison, the weak regularization keeps the influence of the background resistiv-

ity to a minimum and is appropriate for situations where the background resistivity
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is not known a priori.

Our tests with a suite of standard synthetic test models (Wannamaker, 1991;

Mackie et al., 1994; Avdeev et al., 1997; Zhdanov and Tolstaya, 2004; Siripunvara-

porn et al., 2005, among others) demonstrate that with pure Tikhonov-type regu-

larization we only achieve satisfactory results with a dense site coverage. Generally

speaking though, we are satisfied by the software developed and by the results of our

model experiments. For the conductive dyke model, for example, we can reasonably

recover the true resistivity image for both buried and outcropped dykes; and for

both coarse and dense MT site coverage. Therefore we believe in the robustness and

accuracy of the inversion results obtained for the dyke models.

For the more complicated model, the model with two adjacent blocks, our feelings

are controversial. On the one hand side we achieve relatively good results with a

dense MT sites coverage. At the same time, for a coarser coverage we found that

our inversion solution cannot “see” through numerical cells that are not covered

by MT sites. This conclusion promptly implies that Tikhonov-type regularization,

which we included in our inversion solution, is not powerful enough to suppress the

non-smoothness of the resistivity image, especially for the upper part of the model.

However, we believe that our solution can be used to recover the true resistivity

of the lower parts of earth models. As for the upper part of the models its proper

recovery depends on many factors, such as the geometry and resistivity of the struc-

tures inside the Earth, coverage of the region by MT sites and many others. In order

to construct reliable resistivity images one has to put more strong constraints on

the model parameters, stronger than those imposed by traditional Tikhonov-type

regularization.

We suggest to use different types of the preconditioners in our inversion to over-

come this problem. The first one is based on applying a model covariance matrix to

smooth the gradient of the penalty functional. This is similar to the idea of Siripun-

varaporn et al. (2005). In our implementation the model covariance matrix is based

on a Gaussian filter. Applying such a preconditioner improves the results dramat-

ically, although some artifacts are still present. A possible explanation is that our

filter is too simple and a more complicated filter has to be applied. The second

preconditioner is based on the approximation to the inverse of the Hessian matrix.

This approach was proposed by Gregory Newman. The mathematics behind this

approach is not as trivial as for the first one. We developed and implemented this

approach, but so far did not obtain satisfactory results. At the moment we are
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trying to understand whether this is because of some numerical error in our current

implementation of the approach or due to some problem with this approach itself.

This is a subject of ongoing research.

It is difficult to compare different 3D MT inversion codes due to the different

forms of the data misfit used, different forward engines employed, the optimization

approaches, stopping criteria and so on. Some codes require less memory, but con-

verge slower. Another issue is that different codes can perform better in different

situations and that the quantification of the overall quality is difficult. We only can

compare the results of the inversion for particular synthetic datasets. One of such

an attempts was the MT 3D inversion workshop held by DIAS in March 2008 (see

MT3DINV2 webpage). There the data computed from some secret synthetic model

was distributed among 3D MT software developers and the various codes showed

more or less similar results, however the time for calculation and memory require-

ments were not compared. In addition other factors such as noise and incomplete

data were not taken into consideration and such issues can be the dominating factors

for the quality of an inversion of real data.

For the future a closer examination of the implemented preconditioners and the

investigation of possible alternatives would show in how far the efficiency of our

approach can be improved. One possibility would be to relax the influence of the

gaussian filter for deeper layers where it is not needed. However, it seems that the

filter does not affect these layers even in the current version and thus the behaviour

should not change fundamentally.

One more promising extension is the application of the automatic relaxation

scheme to the regularization in 3D case and possibly to the Gaussian precondi-

tioner. So far we adjust the value of the regularization parameter λ at different

stages of the inversion manually based on our experience. This is time consuming as

the inversion has to be stopped, the convergence examined manually and restarted

with the new value. An automatic scheme would accelerate this process, even though

human experience and judgment can never fully be replaced.

Even though the first paper on 3D MT inversion was published over 15 years ago

Mackie and Madden (1993), the field is still in its infancy and 3D inversion codes only

now become available for a wider range of researchers. With more widespread use

the advantages and deficiencies of individual approaches will become more apparent

2MT 3D Inversion Workshop, DIAS, March, 2008,
http://www.dias.ie/lang/en/cosmic/geo/mt workshop2008.html
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and give the developers the opportunity to improve their codes. Even though 2D

inversion approaches will remain in use for their cost effectiveness and comparative

ease of use, 3D inversion will become the standard method for constructing detailed

models of the Earth.
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MT impedance

In this appendix we introduce the basic ideas and equations of the magnetotelluric

method. The MT method was proposed independently by Tikhonov (1950) and

Cagniard (1953) as a method for a one-dimensional sounding of the Earth. They

proposed to use an impedance Z to find the Earth’s conductivity. Below we derive

the explicit expressions for the impedance for the 1D case.

A.1. Impedance of a layered Earth

Let us consider an N−layered Earth model with conductivities σk, (k = 1, ..., N)

within each layer. Within each layer the Helmholtz equation

∆E = −iωµ0σE (A.1)

holds. Choosing the coordinate system so that the external current jext flows in

x−direction and with the z−axis pointing downward, the x−component of the elec-

tric field inside the k-th layer, z ∈ (zk, zk+1), have the following form

Exk = E1ke
κkz + E2ke

−κkz, (A.2)

where κk =
√
−iωµ0σk. Now we can compute the following impedance transfer

function of the k-th layer

Zk =
Exk
Hyk

=
iωµ0Exk
∂zExk

(A.3)

=
iωµ0

κk

E1ke
κkz + E2ke

−κkz

E1keκkz − E2ke−κkz
=
iωµ0

κk

(1 + Ake
−2κkz)

(1− Ake−2κkz)
, (A.4)
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where formula A.3 is obtained using the Faraday’s law ∇ × E = iωµ0H and the

coefficient Ak = E2k/E1k.

We now can derive the transfer functions Zk(zk) and Zk(zk+1) at the top and

bottom of the k-th layer, respectively:

Zk(zk) =
iωµ0

κk

(1 + Ake
−2κkzk)

(1− Ake−2κkzk)
, (A.5a)

Zk(zk+1) =
iωµ0

κk

(1 + Ake
−2κkzk+1)

(1− Ake−2κkzk+1)
. (A.5b)

From equation A.5b we can derive the coefficient Ak as follows

Ak = e2κkzk+1

κk
iωµ0

Zk(zk+1)− 1
κk
iωµ0

Zk(zk+1) + 1
, (A.6)

Now we substitute formula A.6 into equation A.5a to yield:

Zk(zk) =
iωµ0

κk

[
− sinh(κk∆k) + cosh(κk∆k)

κk
iωµ0

Zk(zk+1)

cosh(κk∆k)− sinh(κk∆k)
κk
iωµ0

Zk(zk+1)

]
. (A.7)

In this equation ∆k stands for zk+1 − zk.
Furthermore, the components of the electric and magnetic fields are continuous

at the transition from the k-th to the (k + 1)-th layer, and therefore

Zk(zk+1) = Zk+1(zk+1). (A.8)

From equation A.8 and equation A.7 we can obtain the following recursive formula

for the impedance transfer function:

Zk(zk) =
iωµ0

κk

[
− sinh(κk∆k) + cosh(κk∆k)

κk
iωµ0

Zk+1(zk+1)

cosh(κk∆k)− sinh(κk∆k)
κk
iωµ0

Zk+1(zk+1)

]
. (A.9)

To find the impedance Z1(z1) at the surface of the Earth one should use the fact,

that the impedance ZN(zN) = iωµ0/κN (impedance of a half-space), and apply the

recursive formula A.9 iteratively, moving from the top of the lowermost layer to the

surface.
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A.2. Impedance of 3D Earth

To obtain the impedance tensor in the 3D case one also has to solve a system of

Maxwell’s equations

∇×H = (σ − iωε)E + jext, (A.10a)

∇× E = iωµ(H + hext), (A.10b)

but now the fields and the conductivity depend on the Cartesian coordinates (x, y, z).

When we numerically solve the system of Maxwell’s equations, in other words find

the electric, E, and magnetic, H, fields we can obtain the complex-valued impedance

tensor, Z . This tensor relates the orthogonal components of the horizontal electric

and magnetic fields as (
Ex

Ey

)
=

(
Zxx Zxy

Zyx Zyy

)(
Hx

Hy

)
. (A.11)

123



Appendix B.

Calculation of Digital Convolution

This appendix is the summary of the Appendix C of paper Avdeev et al. (1997). To

simplify the following explanation instead of a 2D digital convolution we assume a

1D digital convolution

hk =
N∑
k′=1

gk−k′fk′ , k = 1, · · · , N (B.1)

In this equation, the function fk is defined for k = 1, · · · , N , while the function gk

is defined for k = 0,±1, · · · ± (N − 1).

If we define the new functions f̃k and g̃k as following

f̃l =

{
fl, l = 1, · · · , N
0, l = N + 1, · · · , 2N

(B.2)

g̃k =


gl−1, l = 1, · · · , N
0, l = N + 1

gl−1−2N , l = N, · · · , 2N,
(B.3)

then the convolution B.1 can be written as

hk = Φ−1
[
Φ[g̃]Φ[f̃ ]

]
k
, k = 1, · · · , N, (B.4)

where Φ and Φ−1 are direct and inverse Digital Fourier Transforms, respectively and

are defined as

Φ[S]k =
2N∑
l=1

Sle
2πi (l − 1)(k − 1)

2N
(B.5)
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Φ−1[S]k =
1

2N

2N∑
l=1

Sle
−2πi (l − 1)(k − 1)

2N
(B.6)

125



Appendix C.

How to measure the 3D misfit?

The predicted Z and observed D impedances (at a given MT site and at a discrete

period) are 2 × 2 matrices, not scalars. So, the question is how to measure the

distance ρ(Z,D) between them in order to define a proper form of misfit ϕd. The

answer is not obvious. A natural way to define such a distance is to consider the

matrix A = Z−D and its induced matrix norm

‖A‖2 = max
‖Au‖2

‖u‖2

(C.1)

where ‖u‖2 =
√
|u1|2 + |u2|2, for any vector u = (u1, u2)T , and define ρ(Z,D) =

‖Z−D‖2. It can be shown that for any matrix A,

‖A‖2 =

√
λ1(A

T
A) (C.2)

where λ1(A
T
A) is the largest (real) eigenvalue of the Hermitian matrix A

T
A. More-

over, for a 2× 2 matrix A, it follows that

(‖A‖2)2 =
1

2

(
tr[A

T
A] +

√
tr[A

T
A]2 − 4det[A

T
A]

)
, (C.3)

where

tr[A
T
A] = |Axx|2 + |Axy|2 + |Ayx|2 + |Ayy|2 (C.4)

and det[A
T
A] are respectively the trace and determinant of matrix A

T
A. Theo-

retically, the formula given in equation C.3 is what we are looking for. But, it is

too complicated, i.e. not quadratic, to be considered an appropriate form of misfit
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function. Somehow, we have to simplify it. From equation C.3 it follows that

1

2
tr[A

T
A] ≤ (‖A‖2)2 ≤ tr[A

T
A]. (C.5)

The inequalities given in equation C.5 means that the distance ρ(Z,D) = ‖Z−D‖2

is controlled by the trace tr[A
T
A], where A = Z − D, and so this trace can be

chosen to measure the misfit as

ϕd =
1

2
tr[A

T
A]. (C.6)

Although it should be mentioned that tr[A
T
A] is not associated with any matrix

norm itself.
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More general 3D misfit and its

derivative

Equation 4.2 is written for a particular problem where the data misfit ϕd includes

the impedance difference matrices Aij whose entries are equally weighted by the

values
√
βij. The generalization of the theory presented in Chapter 4 for the case of

the individually weighted entries of Aij is not straightforward. The main difficulty

here is in deriving equations for the derivatives ∂ϕd
∂σk

. However, it is still possible to

straightforwardly extend the theory to the more general case, if the data misfit

ϕd =
1

2

NS∑
i=1

NT∑
j=1

βijtr[Ã
T

ijÃij], (D.1)

is written in terms of the weighted matrices

Ãij =

(
wxxAxx wxyAxy

wyxAyx wyyAyy

)
ij

, (D.2)

where the tilde sign means the weighting by the real-valued weights, wxx, wxy, wyx, wyy.

If we additionally assume that wxy = wyx, then it is easy to prove that B̃
T

= B̃T and

tr[B̃C] = tr[BC̃] for any matrices B and C. These simple properties allow us to

obtain the relevant alterations of equations, presented in Section 4.1.1 of Chapter 4.

It can be shown that equations 4.7, 4.14, 4.19, 4.20, 4.24 should be, respectively,

altered to the following forms

∂ϕd
∂σk

= <

{
NS∑
i=1

NT∑
j=1

tr

[
Ã
T

ij

∂Z̃ij

∂σk

]}
, (D.3)

128



Appendix D. More general 3D misfit and its derivative

∂ϕd
∂σk

= <

{
NS∑
i=1

NT∑
j=1

tr

[ ˜̃
A
T

ji (Eij,k − ZijHij,k) H−1
ij

]}
, (D.4)

jextj =

NS∑
i=1

pT
˜̃
AijH

−T
ij δ(r− ri), (D.5)

hextj = − 1√
−1ωjµ

NS∑
i=1

pTZT
ij
˜̃
AijH

−T
ij δ(r− ri), (D.6)

NS∑
i=1

tr

[ ˜̃
A
T

ij (pejk(ri)− Zijphjk(ri)) H−1
ij

]
=

∫
Vk

tr
[
uTj Ej

]
dV, (D.7)

where ˜̃
Aij =

(
w2
xxAxx w2

xyAxy

w2
yxAyx w2

yyAyy

)
ij

. (D.8)

All the other equations presented in Chapter 4 remains the same, including the key

formula of equation 4.25.
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Hydrocarbon reservoir detectability

study

In this appendix we present a comparative study about the detectability of a hydro-

carbon reservoir in a marine environment, using controlled-source electromagnetic

(CSEM) methods both in the time and frequency domain. This work was performed

during a two-month visit to the Lawrence Berkeley National Laboratory and the re-

sults are published in Avdeeva et al. (2007). The target is a thin resistive body

buried at a certain depth under the sea floor. The depth of the sea, and depth,

thickness and resistivity of the reservoir are variable model parameters. For differ-

ent sets of these parameters we calculate synthetic electromagnetic (EM) responses

using a parallel version of the three-dimensional (3D) time-domain finite-difference

forward modelling code by Commer and Newman (2004) and the 3D frequency-

domain finite-difference code by Newman and Alumbaugh (1995). To compare the

responses quantitatively, signal-to-noise ratios (SNR) were calculated as a function

of time/frequency and source-receiver separation. SNR were calculated using the

scattered field response of the reservoir as signal and the response of the background,

in our case a two-layered model, as noise.

Marine CSEM is a promising yet challenging method in modern geophysical ex-

ploration for hydrocarbon reservoirs (MacGregor and Sinha, 2000; Eidesmo et al.,

2002; Ellingsrud et al., 2002; Johansen et al., 2005, among others). It is important

as a supplementary method to seismic surveys. Recent works on modelling and in-

version of marine CSEM data include (Um and Alumbaugh, 2005; Abubakar et al.,

2006; Constable and Weiss, 2006; Hoversten et al., 2006, among others).

In contrast to time-domain electromagnetic (TDEM) methods and its correspond-

ing data interpretation tools, the development and application of frequency-domain
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(FDEM) methods for marine surveys has made significant progress. In this appendix

we investigate the detectability of a 3D hydrocarbon reservoir in a marine environ-

ment. The first section presents synthetic responses obtained for different 3D hydro-

carbon reservoir models with a time-domain and a frequency-domain finite-difference

(FD) forward modelling solutions. Further, the two solutions are compared in their

ability to detect a deep hydrocarbon reservoir.

E.1. Numerical examples

In this study a typical 3D hydrocarbon reservoir model, shown in Figure E.1, is

employed. The model consists of a thin resistive target buried at a certain depth

under the sea floor. Four different seawater depths are considered, h1 = 100, 200,

400 and 1000 m. We also varied the depth (h2 = 200, 400, 1000 m), thickness

(h3 = 100, 200, 400 m), and resistivity (ρ3 = 20, 30, 50, 100 Ωm) of the reservoir.

The reservoir itself extends 2000 m along the x and y axes, and its centre is located

at x = 0 m and y = 0 m. The EM responses were simulated using the 3D TDEM

finite-difference forward modelling code of Commer and Newman (2004) and the 3D

FDEM finite-difference code of Newman and Alumbaugh (1995).

Figure E.1.: The 3D hydrocarbon reservoir model and survey configuration. The
white horizontal arrows correspond to the transmitter positions, the
white circles show the receiver profile.

E.1.1. Time-domain modelling

We first analyze TDEM responses over the thin resistive target. The signals are

excited by a 250-m long x-oriented grounded wire. Three transmitter locations at
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the bottom of the sea are considered, marked by the white horizontal arrows in

Figure E.1, these are xtr = −2000, −1000, 0 m, with ytr = 0 m and ztr = 0 m

constant. The TDEM responses were calculated for a profile of 45 receivers with a

receiver spacing of 250 m along the x-axis. The profile is located 50 m above the

sea floor.

To choose an optimal 3D grid for our simulations, its responses are calculated

for a 1D layered model without the resistive target and compared against a quasi-

analytical 1D solution. For the survey scenario depicted in Figure E.1, a grid of

153 × 153 × 90 nodes was used. Its smallest mesh spacing is ∆min = 50 m, hence,

the initial time step required by the FD scheme of Commer and Newman (2004) is

∆t0 = 10−4 s.

Figure E.2.: Horizontal electric field, Ex, excited by an impulse source. The curves
are given for various seawater depths. The transmitter is located at
xtr = −2000 m and the receiver at xrc = 2000 m. The solid lines show
the 3D responses, the dashed lines present the background responses.
The depth of the reservoir is h2 = 1000 m.

E.1.1.1. Impulse source

First, we consider an impulse signal for source excitation. The horizontal, Ex, and

the vertical, Ez, electric fields were calculated for all (4× 3× 3× 4 = 144) possible
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Figure E.3.: The same as Figure E.2, but for the depth of the reservoir h2 = 200 m.

values of the model parameters (h1, h2, h3 and ρ3). Figure E.2 exemplifies the

responses obtained for h3 = 200 m and for ρ3 = 50 Ωm. The figure shows these

responses for a source-receiver offset of 4 km, and a source position of xtr = −2000 m.

Experimenting with different transmitter positions, we found that the position xtr =

−2000 m yields the highest sensitivity. Moreover, as shown below, for the target

geometry considered here, this spacing produces a maximum reservoir effect on Ex

(cf. Figure E.6(a)). In Figure E.2 the curves are plotted as a function of time for

four seawater depths (h1 = 100, 200, 400, 1000 m). In this figure the responses

of the 3D target are solid lines and background responses are dashed lines of the

same colour. A visible effect of the reservoir is seen for all four seawater depths. In

Figure E.3 the responses are exemplified for a more shallow target (h2 = 200 m).

In comparison with Figure E.3, it can be observed that over the four different sea

depths considered, the target response increases with the sea depth. Further analysis

of these results is undertaken below in the Section “Comparison of time-domain and

frequency-domain methods”.

E.1.1.2. Step-off source

Keeping the geometry of the model and positions of the sources and receivers un-

changed, we also simulated the responses generated by a step-off source signal. Here,
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field generation is caused by shutting off an initially steady current within the hori-

zontal grounded line source. Figure E.4 presents the responses again for the source

position xtr = −2000 m, and the receiver position xrc = 2000 m. The curves are

shown for h1 = 200 and 1000 m. From here on, we focus our analysis on the case of

a target thickness of h3 = 200 m and a resistivity of ρ3 = 50 Ωm. From this plot we

can see that the target produces a significant signal. However, the observed differ-

ences between the background (dashed lines) and the 3D reservoir model responses

(solid lines) mostly occur in the signal’s DC limit, rather than during the transient’s

decay.

Figure E.4.: Horizontal electric field, Ex, excited by a step-off source signal. The
curves are given for various seawater depths. The transmitter is located
at xtr = −2000 m and the receiver at xrc = 2000 m. The solid lines show
the 3D responses, the dashed lines present the background responses.
The depth of the reservoir is h2 = 1000 m.

E.1.2. Frequency-domain modelling

We now investigate to what extent a target response can be detected by the FDEM

method. In order to be able to compare this method with TDEM, the model ge-

ometry and survey configuration were kept identical for both methods. The only

difference is that now the x-directed horizontal electric dipole is energized with a

sinusoidal waveform of a particular frequency.

In this study 6 frequencies are considered, these are 0.01, 0.03, 0.1, 0.3, 1 and 3 Hz.

For each of the frequency pairs 0.01/0.03, 0.1/0.3, and 1/3, a separate 3D numerical

grid is employed. The 3D frequency-domain FD code by Newman and Alumbaugh
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(1995) is used for modelling. In order to verify the responses computed on the FD

grids against quasi-analytical 1D solutions, we replaced the 3D resistive target by a

continuous resistive layer, thus considering a 5-layered model (air, sea water, seabed,

the resistive layer and again seabed). For the frequency pair 0.01/0.03 Hz a grid

of size 126 × 101 × 126 nodes is employed, with an uniform grid spacing of 200 m.

For the pair 0.1/0.3 Hz, the grid size is 171 × 101 × 101 nodes, and the smallest

grid spacing is ∆min = 100 m. For the last two frequencies of 1 and 3 Hz the

corresponding grid has 261× 181× 116 nodes with ∆min = 50 m. Both horizontal,

Ex, and vertical, Ez, electric fields were calculated for the 3D reservoir model using

the following model parameters: h1 = 200, 1000 m; h2 = 200, 1000 m; h3 = 200 m

and ρ3 = 50 Ωm.

Figure E.5 presents the amplitude of the horizontal electrical field, Ex, as a func-

tion of receiver position. The curves are plotted for the frequencies of 0.01, 0.1 and

1 Hz and for two seawater depths of h1 = 200 and 1000 m. The source is located at

xtr = −2000 m.

Using a frequency of 1 Hz, no difference can be observed between the 3D reservoir

model and background model responses for the case of a seawater depth of h1 =

200 m (red line in Figure E.5). However for the deep water example (blue line) the

3D reservoir model starts to produce a larger scattered field and the difference to the

background response grows until the receiver position reaches about 2500 m. Beyond

this receiver position, the difference diminishes and then vanishes. The signal at this

receiver distance is affected by the known effect caused by the air-water interface,

when a strong airwave arrives at the sea floor. This airwave contains no information

about the resistivity structure of the seabed. For source-receiver offsets larger than

twice the seawater depth, the airwave starts to influence the EM signal, which

is known as the airwave problem, see for example MacGregor et al. (2006). The

depth of the sea controls the source-receiver offset, where sensitivity to the target

is diminished or lost due to the airwave arrival. Because of this problem it is more

difficult to detect the reservoir for shallow sea water. This is a disadvantage of the

FDEM method.
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Figure E.5.: Horizontal electric field responses obtained using the 3D FDEM finite-
difference code for two seawater depths h1 = 200, 1000 m and for
three frequencies of 0.01, 0.1 and 1 Hz. The transmitter is located at
xtr = −2000 m. The depth of the reservoir is h2 = 1000 m. The solid
lines again show the 3D reservoir model responses, the dashed lines
present the background responses.

E.2. Comparison of time-domain and

frequency-domain methods

To compare TDEM and FDEM responses, signal-to-noise ratios (SNR) were calcu-

lated for both methods. In this study signal is defined as the scattered horizontal

electrical field of the reservoir, as noise the response of the background medium with-

out the target. We show contour plots of SNR as a function of the source-receiver

offset and time (or frequency) for the TDEM (or FDEM) modelling. In Figure E.6

we present the SNR for the model with shallow water (h1 = 200 m) and deep target

(h2 = 1000 m), since this case happens to be the most difficult for all the methods

considered. Figure E.6(a) presents the SNR for the TDEM method when the model

is energized by the impulse signal, Figure E.6(b) shows the SNR for the step-off

signal, and Figure E.6(c) shows the ratio for the FDEM method. To detect the
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(a)

(b)

(c)

Figure E.6.: SNR obtained for the 200 m seawater depth and 1000 m depth of the
target, the transmitter positioned at xtr = −2000 m: (a) the time-
domain method when the model is energized by the impulse source; (b)
the time-domain method when the model is energized by the step-off
source, and (c) the frequency-domain method.
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reservoir, we require a minimum SNR of 0.1. When the transmitter is excited by

the impulse signal, TDEM yields SNR values as large as 0.5, which indicates a very

good target detectability. However, the contour plot in Figure E.6(a) shows that

this region is relatively narrow, limited to a time range of 1.3 s to 2 s, and a range

of source-receiver offsets between 3750 m and 4000 m. The SNR does not get larger

than 0.2 using the step-off source (Figure E.6(b)). Therefore the impulse seems to

be a favorable signal form for the TDEM method.

An important result is that TDEM together with the impulse source signal can

detect the reservoir over the whole range of the receiver profile. Comparing the SNR

values with the ones obtained using the FDEM method, the TDEM results indicate

a better reservoir detectability. Also, we found that this is true for other transmitter

positions (not presented here). The FDEM method is able to detect the target for

source-receivers offsets from approximately 2000 m and up to 7000 m.

E.3. Conclusions

This preliminary study indicates that the TDEM method using an impulse source

signal has a potentially better ability for detecting the type of hydrocarbon reservoir

considered here. An advantage is that the airwave problem, encountered in FDEM

methods, can be overcome. However, we believe that other source signal waveforms

should also be analyzed.
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