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A B S T R A C T

Within the framework of the Southern African Magnetotelluric EXperiment (SAMTEX) the
aim of this study was to gain a better understanding of the southern African geology and
tectonic setting using deep-probing magnetotellurics (MT) with a particular focus on the
westerly extension of the Zimbabwe Craton into Botswana. The area of interest is located in
northeastern Botswana, where Kalahari sands cover most of the geological terranes, and
very little is known about the lithospheric structures and thickness. Some of the terrane
boundary locations based on potential field data are also questionable.

Investigation of the 600 km long ZIM line profile crossing the Zimbabwe Craton (ZC),
Magondi Mobile Belt (MMB) and Ghanzi-Chobe Belt (GCB) showed that the ZC is charac-
terised by thick (∼ 220 km) resistive lithosphere, consistent with geochemical and geothermal
estimates from kimberlite samples of the Orapa and Letlhakane pipes (∼ 175 km west of the
profile). The lithospheric mantle of the GCB is resistive but the lithosphere is only about
180 km thick. At crustal depths a northwards-dipping boundary between the GCB and the
MMB was identified and two mid- to lower-crustal conductors were found in the MMB.
The crustal terrane boundary between MMB and GCB was found to be located further to
the north, and the southwestern boundary of the ZC might be further to the west, than
previously estimated using potential field data.

MT data from sites above the highly resistive Okavango dyke swarm showed that in the
area close to Maun the dilatation of dykes estimated from the magnetic anomaly is too
small (2.6%) to enhance resistivity significantly, and that conductive near-surface layers
mask its minor effect. An anisotropic or fault-like structure was found to be orientated
perpendicular to the dyke swarm direction and extending from about 10 - 15 km depth
down into the lithospheric mantle, to 120 km or deeper.

The second part of this research was to develop a 3D inversion code for MT data based
on the finite-element forward solver by Colin Farquharson. The new developments of the
inversion code, compared to other codes, are that electric galvanic distortion is taken into
account during the inversion process and that the noise-free synthetic data are rotated
into the local coordinate system of the observed data in order to avoid rotation of noisy
observed data prior to modelling.
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1
I N T R O D U C T I O N

Magnetotellurics (MT) is an electromagnetic method that detects the resistivity structure
of the crust and upper mantle. As the resistivity at depths in the upper mantle is strongly
correlated to the thermal conditions, MT has been applied successfully to determine the
depth to the lithosphere-asthenosphere boundary of cratons and their surrounding mobile
belts (e.g., Jones et al., 2003; Muller et al., 2009; Spratt et al., 2009). As part of the Southern
African Magnetotelluric EXperiment (SAMTEX), the work presented in this thesis inves-
tigates a data set acquired above the Zimbabwe Craton and its neighbouring belts. An
approximately 600 km long 2D profile across the area of interest (called the ZIM line) has
been modelled at crustal and upper-mantle depths, and the crustal structure at the northern
end of the profile formed the focus of a more detailed investigation. The MT responses
of sites located in the vicinity of the 2D profile were also examined to help constrain the
locations of significant terrane boundaries. One-dimensional (1D) and two-dimensional (2D)
inversion strategies have been applied to the data. Three-dimensional (3D) inversion is not
yet a standard procedure for modelling MT data. Various 3D forward routines have been
developed in recent years, but 3D inversion codes are still in their infancy. As a contribution
to the advancement of 3D MT inversion codes, a part of the research described in this thesis
deals with the development of a 3D inversion code that takes distortion parameters into
account during the inversion process. The new code is also able to rotate the noise-free
synthetic data into the local coordinate system of the observed data in order to avoid the
conventional approach of decomposition and/or rotation of noisy observed data prior to
modelling.

The thesis is divided into four parts, namely theory and background informa-
tion (Part I), interpretation of the 2d zim profile (Part II), 3d forward mod-
elling and inversion (Part III) and conclusion, bibliography and appen-
dices (Part IV).

The first part, theory and background information, consists of two chapters (mt

theory and southern africa). Chapter 2 summarises MT theory. MT sources (Sec-
tion 2.1) and the electromagnetic properties of Earth materials (Section 2.2) are discussed.
Assumptions and fundamental equations of the MT method follow in Sections 2.3 and 2.4,
respectively. Section 2.5 introduces the MT transfer functions, and their characteristics, that
depend on dimensionality (and anisotropy), are reviewed in Section 2.6. In Section 2.7 the
causes and effects of distortion are explained. Finally, the data acquisition (Section 2.8) and
strategies of data processing, analysis, modelling and inversion (Section 2.9) are described.

Chapter 3 provides information about the geology of the field area, introduces SAMTEX
and reviews previous geophysical work undertaken in southern Africa. The aim of SAM-
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TEX is to improve the understanding of the southern African geological framework and
the history of the tectonic processes involved in the formation of the southern part of
the continent. MT is used to map the lithospheric structure and the geometry of various
terranes. The focus of the thesis is an area in northeastern Botswana, where most of the
geological terranes are covered by Kalahari sands. Only a few outcrops and magnetic and
gravity surveys are available to allow the estimation of rough outlines of these terranes.
The only information about the lithospheric mantle structure in northeastern Botswana is
provided by the kimberlites of the Orapa and Letlhakane pipes, which are located about
150 - 200 km to the west of the ZIM line. It is uncertain which geological terrane these pipes
belong to, as they are located on the boundary (based on the potential field data) between
the Magondi Mobile Belt and the Zimbabwe Craton.

Prior to the SAMTEX work, northeastern Botswana has been mostly terra incognita, es-
pecially at lithospheric mantle depths. For none of the terranes was the thickness of the
lithosphere known, nor the location or nature (e.g., sharp or smooth transition, dip, dif-
ferent location at crustal than lithospheric mantle depths) of the terrane boundaries at
lithospheric depths. Although the terrane boundaries drawn based on the potential field
data are adequate for a larger regional scale picture, focussing locally, the positions of these
boundaries might need adjustment. Especially the western boundary of the Zimbabwe
Craton is of great interest, but the boundary drawn there based on the potential field data
is questionable.

In crustal depths de Beer et al. (1975, 1976) and van Zijl and de Beer (1983) mapped a
conductor that extends from northern Namibia, through northern Botswana into Zim-
babwe/Zambia. In north-south direction they were not able to localise the position and
lateral extent of the conductor more accurately than to within a range of 150 - 200 km. The
lateral extent of the Okavango Dyke Swarm is known from magnetic data but there is no
control on its depth extent prior to this work. Section 3.1 reviews the geology and tectonic
setting of southern Africa in general and of the areas of interest (i.e., the Limpopo Belt,
Zimbabwe Craton, Magondi Belt, Ghanzi-Chobe Belt, Okavango giant mafic dyke swarm
and Makgadikgadi Pans Complex) in more detail. Section 3.2 provides information about
SAMTEX and results published to date. Previous geophysical work in southern Africa is
summarised in Section 3.3.

The second part, interpretation of the 2d zim profile, is focussed on the applied
work undertaken for the thesis. A subset of the SAMTEX data set, located in northeastern
Botswana, is used for the study. The so-called ZIM profile consists of 31 MT stations (only
broad-band MT sites, recording a period range of 0.001 s to a few 1000 s) that cross the
geological terranes of the Limpopo Belt, Zimbabwe Craton, Magondi Mobile Belt and
Ghanzi-Chobe Belt. The sites are in close proximity to the Makgadikgadi Pans (a huge salt
pan complex most likely associated with a brine aquifer) and cross the dominant magnetic
anomaly related to the Okavango dyke swarm. Chapter 4 includes sites from neighbouring
profiles for data imaging (Section 4.1) and strike angle analysis (Section 4.2). The imaging
suggests that the boundary between the Magondi Mobile Belt and the Ghanzi-Chobe Belt is
located further to the north, and the western boundary of the Zimbabwe Craton further
to the west, than defined using the potential field data. The imaging also showed that
two groups of sites, both located above the Okavango dyke swarm, exhibit significantly
different resistivities. The sites related to the ZIM line and nearby sites are highly resistive,

2



whereas a group of sites further west (close to the town of Maun) have low resistivities.
Section 4.3 addresses the search for an explanation, showing that a 2.6% dilatation of the
dykes, observed in the field geology, does not enhance the resistivity significantly and that
its small effect is masked by the conductive near-surface layers.

The 2D inversion results of the ZIM profile are discussed in Chapter 5. Section 5.1 describes
the inversion strategy applied and discusses the chosen inversion parameters (including
trade-off curves to search for the regularisation parameter τ). As the crustal and mantle
components of the lithosphere are characterised by different electrical strike directions, first
a separate inversion of the northern end of the profile at crustal depths was conducted
(using its appropriate strike direction of 55° E of N; Section 5.2). Then the inversion of
the whole profile (Section 5.3) using the lithospheric strike direction (35° E of N) followed.
Results are compared to known geology, another SAMTEX profile, other geophysical data
(e.g., magnetic and gravity data) and geothermal and geochemical data from the kimberlite
pipes at Orapa and Letlhakane. The Zimbabwe Craton is found to be characterised by thick,
resistive lithosphere (lithosphere-asthenosphere boundary (LAB) at about 220 km) and the
Ghanzi-Chobe Belt has about a 40 km thinner resistive lithosphere (LAB at about 180 km).
Due to the poor data coverage, no information about the lithospheric mantle beneath the
Magondi Mobile Belt is possible. At crustal depths, the boundary between the Magondi
and Ghanzi-Chobe Belts was found to be dipping northwards and the crustal conductors
found can be associated with the Magondi Mobile Belt.

The third part, 3d forward modelling and inversion, concentrates on the de-
velopment of a 3D inversion code for MT data. The existing forward routine by Colin
Farquharson, described in Chapter 6, is used as the driving engine for the inversion code. It
is a finite-element code implemented for a rectilinear mesh using Dirchlet boundary condi-
tions. Nodal- and edge-element basis functions (Section 6.1) are applied to the finite-element
forward problem (Section 6.2) and the divergence correction (Section 6.3), respectively.

The forward algorithm was thoroughly tested using different approaches (Chapter 7).
Section 7.1 shows the comparison of different 2D forward responses to 3D results, while
Section 7.2 presents the comparison of 3D response curves to 3D responses calculated with
several other codes, using the COMMEMI models 3D-1A and 3D-2A (Zhdanov et al., 1997)
as well as the Dublin Test Model 1 (DTM1), which was designed for the 3D MT inversion
workshop held at DIAS in March 2008. In summary (Section 7.3), the forward code has been
found to work reliably and is therefore considered suitable as the engine for the inversion
code.

Chapter 8 describes the 3D inversion algorithm. Section 8.1 explains the new developments
in the inversion code compared to other codes, namely taking electric galvanic distortion
into account during the inversion process and avoiding noise propagation from one data
component into the others due to rotation of the observed data. The latter is addressed by
rotation of the noise-free synthetic data instead, and the distortion matrix is implemented
as an optional choice between either fixed distortion parameters or inverting for distortion
parameters simultaneously with the subsurface resistivity structure. The inversion scheme
applied is a Gauss-Newton approach and the objective function is modified to accommodate
the inversion for distortion parameters jointly with the resistivity structure (Section 8.2).
If the distortion parameters are considered during the inversion, the Jacobian matrix also
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needs to be adapted (Section 8.3). Section 8.4 addresses the required modifications asso-
ciated with the rotation of the synthetic data, instead of the observed data prior to the
inversion.

Chapter 9 shows the first preliminary inversion test results. The code is not yet running
perfectly due to a problem with the coding of the Jacobian matrix with respect to the resis-
tivity structure in which the Jacobian is not calculated correctly. Therefore, as a short-term
solution, the part of the code calculating the Jacobian has been replaced by the ’brute-force’
Jacobian. The brute-force Jacobian matrix contains the derivatives of the data with respect
to the conductivity structure and is calculated by changing the model parameter (i.e., the
conductivity of a cell) one at a time and then dividing the difference in the predicted
data by the change in the model parameter that caused the change in the data. The brute-
force method of calculating the Jacobian is expensive in terms of computation time and
is therefore only executed once for the starting model. In the following iteration steps the
Jacobian matrices (which normally should be recalculated using the updated model) are
approximated by applying the brute-force Jacobian of the starting model. This approach
has demonstrated that the inversion with respect to the conductivity structure results in a
inversion model that gives a suggestion of the location of the conductive block, although
neither the exact shape nor the correct resistivity can be obtained due to the approximation
using the starting model brute-force Jacobian. Unfortunately the model remains so fuzzy
that none of the distortion aspects of the code nor the rotation of the synthetic data into the
local measurement coordinate systems of each site can be tested.

The fourth part, conclusion, bibliography and appendices, consists of an over-
all conclusion and an outlook to the future (Chapter 10), the bibliography and several
appendices. Appendix A shows the derivation of the unit conversion from field units
to SI units and the rotation of the transfer functions. Appendices B and C show addi-
tional figures related to data imaging, analysis and inversion of the ZIM line (related to
Chapters 4 and 5, respectively). Detailed equations of the edge- and nodal-element basis
functions, their rotation and gradients and their multiplication as required for the forward
problem (see Chapter 6) are presented in Appendix D. Complementary figures to the 3D
forward modelling tests shown in Chapter 7 are assembled in Appendix E. The derivation
of the derivatives of the data with respect to the resistivity structure and with respect
to the distortion parameters, as needed for the inversion (see Chapter 8), are detailed in
Appendix F.
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2
M T T H E O RY

The magnetotelluric (MT) method is a natural-source (passive), frequency-domain elec-
tromagnetic method. As with almost all electromagnetic methods it is also based on
the fundamental equations of electromagnetics - the Maxwell equations. Tikhonov (1950,
reprinted: Tikhonov, 1986) and independently in more detail Cagniard (1953) were the first
who propounded the fundamental theory of MT. Wait (1954) questioned Cagniard’s (1953)
assumption of a plane wave source, because finite ionospheric sources cannot generate
normally incident plane waves. Therefore Price (1962) developed a general theory for the
MT method based on finite dimensions of the source field. However, computer modelling
studies by Madden and Nelson (1964) and Srivastava (1965) indicated that for realistic
earth conductivity profiles, Cagniard’s (1953) plane wave assumption remains valid for
periods up to 103 s; in mid-latitudes it even is valid for periods up to 105 s (Srivastava,
1965; Swift, 1967). The original scalar representation (Cagniard, 1953) of the impedance
relationship failed in areas of lateral conductivity variation. Therefore it was replaced by a
tensor relationship between the magnetic and electric fields: the admittance tensor (Neves,
1957; Bostick and Smith, 1962) or the impedance tensor (Berdichevsky, 1960; Tikhonov and
Berdichevsky, 1966). Bostick and Smith (1962) showed that the admittance tensor can be
rotated to minimise the diagonal elements and thus can be reduced, as far as possible,
to the scalar representation by Cagniard (1953). In the following years many statistical
and spectral techniques became available to estimate the impedance tensor. After the first
papers on MT theory, it took about 20 years before MT was brought into practise. Since
then, MT has developed fast in all fields (e.g., theory, field instrumentation and interpre-
tation philosophy) and the scientific and industrial interest grew rapidly. Within only a
few decades, interpretation philosophies, processing tools, modelling and inversion codes
evolved from a one-dimensional (1D) Earth to a three-dimensional (3D) understanding,
although the latter is still in its infancy regarding modelling and inversion. Today MT
is used for scientific purposes as well as for industrial exploration. Industry seems to
have recognised the advantages of MT, which is useful in areas where seismics cannot be
practically or economically applied or where the target is characterised by an electrical
properties contrast, rather than a change in seismic velocity or a density contrast. The
environmental impact of MT is negligible and the costs are relative low when using the
method for exploration.

In the field, time variations of the electric and magnetic field components are recorded
simultaneously: this data set is called the time series, which is converted into the frequency
domain using, normally, Fourier-transformation, although some wavelet-based approaches
are appearing. The resulting frequency-dependent electric and magnetic field components
are used to calculate the complex 2x2 impedance matrix relating the two components.
Taking into account that the frequency dependence of the impedance matrix is related to an
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investigation distance (depth and length) variation, it is possible to derive the subsurface
conductivity distribution with depth and also sense laterally, which can provide informa-
tion about the electrical structure of the crust and lithosphere and even deep into the mantle.

This chapter will present the basic concepts of MT theory including the sources and the
relevant properties of the Earth’s materials as well as data processing and analysis schema,
distortion effects and strategies for dealing with them.

2.1 the magnetotelluric sources

Natural electromagnetic (EM) signals are generated from sources ranging from the core
of the Earth to distant galaxies and they are produced by an large number of different
processes. For MT signals the important source region is the ionosphere. The ionosphere
is the boundary between the neutral atmosphere and the magnetosphere and it contains
gases, especially oxygen and nitrogen, which are ionized by ultraviolet and other solar
radiation. The very complex system of the magnetosphere and ionosphere is constantly
buffeted by a solar wind of highly energetic ions, a plasma of electrons and protons, ejected
from the sun. Therefore the time behaviour of magnetic field pulsation is essentially chaotic,
but includes features localized in frequency and/or space and the Earth’s main magnetic
dipole field imposes a global pattern on the behaviour (Vozoff, 1991). The interaction of the
different processes described above provide the source of the long-periodic signal (>1 s),
which penetrates deep (100 km or more) into the Earth.

The short period signals (>8 Hz) have their origin in meteorological activity; thunderstorms
worldwide are associated with lightning discharges, which radiate EM fields propagating
to great distances. These signals are known as sferics and contain a broad range of
EM frequencies. The most significant lightning discharges are the ones from the highly
disturbed equatorial regions. These sferics propagate around the world within the wave
guide bounded by the ionosphere and the Earth’s surface (Garcia and Jones, 2002a; Simpson
and Bahr, 2005). If the sferics are in phase after surrounding the Earth, constructive interfer-
ence amplifies the signal, otherwise destructive interference will erase them. The resulting
resonance frequencies (7.8 Hz, 14.1 Hz, 20.3 Hz and higher orders) are called schumann

resonance (Garcia and Jones, 2002a). Local lightning discharges may saturate the instru-
mentation amplifiers and will appear as spikes in the data. In the transition between the
meteorological and the solar caused source processes (at about 1 Hz) the signal amplitude
is very low and is referred to as the mt dead-band.

For the interpretation of MT data the plane wave assumption can be considered valid
(e.g. Cagniard, 1953; Wait, 1954; Madden and Nelson, 1964), when the distance to the
source is much larger than the depth of interest and when the horizontal wavelength of
the source is much larger than the horizontal scale of the study region. The assumption of
uniform sources is most valid at mid-latitude sites distant from the equatorial and auroral
electrojets. At high and low latitude regions the complexities of the electro jet current
system cause instabilities in the forms of the source fields that do not fulfil the plane wave
assumption. Lezaeta et al. (2007) discuss the source field effects in the auroral zone using
an example data set from the Slave craton in north-western Canada. They discovered lateral
changes of source signal across the study area, as well as daily and seasonal variations,
which are different for different frequency ranges. They consider a complex system of
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various overlapping, non-homogeneous sources. Compared to shorter time windows, the
responses obtained from over eight month long recording periods seem to average out the
source-effect variability. Lezaeta et al. (2007) point out that it is impossible to be certain that
even the long time-period responses are equal to the hypothetical source-free values and
devoid of the relative seasonal bias.

Different papers describe ways of reducing or eliminating source-field disturbance in data
sets measured in the auroral zone using, e.g., a robust processing procedure (Garcia et al.,
1997) or the vertical magnetic field component (Jones and Spratt, 2002). Since only data from
mid-latitude sites (approx. 17°S - 33°S) are used in this research, the problems associated
with auroral and equatorial zone data will not be discussed further.

Vozoff (1991) mentioned that the dependence of the MT method on natural fields is both its
major attraction and its greatest weakness. In comparison with MT, a controlled source EM
method of the same investigation depth would required massive - probably truck-mounted
- installations, which restrict the access in many circumstances or cause undesirable en-
vironmental damage. Also the geometry of the source field in the controlled source case
makes the interpretation of the data more complicated (compared to MT), because in the
near field the plane wave assumption is not fulfilled in the near field. On the other hand,
natural sources do not provide equally strong signals at all the times, so that the signal to
noise ratio will not always be optimal, especially in the MT dead-band.

2.2 electromagnetic properties of earth materials

Since MT is an EM method, the rock properties of interest are the material specific electric
and magnetic properties describing the behaviour of a medium in relation to a penetrating
EM field.

2.2.1 Electrical properties of rocks and minerals

The electrical properties of a material are described by the conductivity σ - or the reciprocal
parameter resistivity ρ - and the electrical permittivity ε.

Electrical conductivity

The electrical conductivity σ measures the ability of a material to conduct an electrical
current. This parameter is a rock and mineral property, that - for common Earth’s materials
- spans many orders of magnitude (see Fig. 2.1). The variations in the observed conductivity
values are not only related to the different electrical conductivities of various rock types
and compositions, but also to the overall physical condition of the medium. An increase in
temperature will decrease the resistivity (laboratory studies on dry granites, basalts and
gabbros by Kariya and Shankland (1983) showed a decrease in resistivity by two orders of
magnitude for a temperature increase from 500° C to 1000° C), whereas a wet environment
is more likely to be more conductive than a dry environment. For example Karato’s (1990)
studies on dry olivine showed that implausibly high temperatures (over 1500°C) would be
required in the asthenosphere to explain the high conductivity observed. Therefore he takes
this result as indication of hydrogen (or water) incorporation into olivine, which would
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Figure 2.1: Ranges in electrical conductivity (and resistivity) of some common Earth materials.
Modified from Martí (2006) and Palacky (1987).

increase the conductivity. Table 2.1 shows the effects of water content on the bulk resistiv-
ity of rocks. Another factor is the connectivity of the minerals - strongly interconnected
minerals will enhance the conductivity when compared with the same minerals with poor
connectivity.

Ohm’s Law - the first constitutive equation - relates the electric current density j to the
electric field E by taking the material’s property - the conductivity σ - into account:

j = σE . (2.1)

Since both the electrical field E and the current density j are vectors, the quantity σ must be
a tensor. If two of the orthogonal coordinate directions of the tensor are selected to lie in
the direction of the maximum and minimum conductivities, all non-diagonal elements of
the tensor are zero. Considering isotropic (uniform in all directions) minerals or rocks, the
three principal values of the conductivity are the same and conductivity can be treated as
scalar.

Electrical permittivity

The permittivity ε describes how an electric field affects, and is affected by, a dielectric
medium, and is a measure of the material’s ability to become polarized by the external
electrical field, thereby reducing the total electric field inside the medium; it relates to the
material’s nature of transmitting or ’permitting’ an electric field.
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Table 2.1: Bulk resistivities of some selected rock types with different percentages of water content
(taken from Telford et al. (1990)). A higher water content results in a lower bulk resistivity.

rock type % h2o bulk resistivity (Ωm)

Siltstone 0.54 1.5 · 104

Siltstone 0.38 5.6 · 108

Coarse grain sandstone 0.39 9.6 · 105

Coarse grain sandstone 0.18 108

Medium grain sandstone 1.0 4.2 · 103

Medium grain sandstone 0.1 1.4 · 108

Graywacke sandstone 1.16 4.7 · 103

Graywacke sandstone 0.45 5.8 · 104

Peridotite 0.1 3 · 103

Peridotite 0 1.8 · 107

Granite 0.31 4.4 · 103

Granite 0.19 1.8 · 106

Basalt 0.95 4 · 104

Basalt 0.95 4 · 104

Olivine-pyrox. 0.028 2 · 104

Olivine-pyrox. 0 5.6 · 107

The second constitutive equation, which relates the electric field E to the electrical displace-
ment D, is given by:

D = εE , (2.2)

where ε is the electrical permittivity, which is given by the electrical permittivity of a
vacuum ε0 = 8.854 · 10−12 As/Vm and the unitless, relative electrical permittivity εr, which
is specific to the material:

ε = εr · ε0 . (2.3)

The relative electrical permittivity varies from εr = 1 for a vacuum to εr = 80.36 for water
(at 20° C (Telford et al., 1990)). Table 2.2 lists the relative electrical permittivities of some
common Earth materials.

The total current density j is given by the current density of the free charges j
f

plus the
displacement currents:

j = σE︸︷︷︸ +
∂D

∂t︸︷︷︸ .

j
f

(diffusion part) displacement currents
(2.4)

The EM induction process becomes diffusive if the second term on the right hand side of
Equation 2.4 (the displacement currents) is negligibly small compared to the first term.
Using the relations in Equations 2.1 and 2.2, as well as the fact that the period T = 2π

ω ,
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Table 2.2: Relative electrical permittivities of some common Earth materials. Most of these values
have been measured at 100 kHz and higher (taken from Telford et al. (1990) and Keller
(1987)), but permittivity tends to be about 30% higher for very low frequencies.

material relative permittivities εr

Vacuum 1

Air ' 1

Peridotite 8.6

Biotite 4.7 - 9.3

Muscovite 6.19 - 8.0

Quartz 4.2 - 5

Granite (dry) 4.8 - 18.9

Gabbro 8.5 - 40

Gneiss 8.5

Basalt 12

Dolomite 6.8 - 8.0

Sandstone (dry to moist) 4.7 - 12

Plagioclase feldspar 5.4 - 7.1

Water (20° C) 80.36

where ω is the oscillation frequency of the electric field, the limits of the assumption of
negligible displacement current become clear:

σE� ∂D

∂t
⇒ 1�

∂D
∂t

σE
=

ε
∂E
∂t

σE
' ε

σT
, (2.5)

and therefore the displacement current term becomes only small enough to be neglected, if

T � ε

σ
. (2.6)

Even at very high frequencies (optimistic frequency range for MT: 10−5 s - 105 s) and
in very resistive environments, the displacement currents are likely to be at least one
order of magnitude smaller than the diffusion term. As discussed above, the maximum
electrical permittivity is about 100 · ε0, which together with a minimal conductivity value
of 10−6 S/m (as for example picked by Price (1973)) makes the displacement currents
comparable with the conduction currents if the period of interest is about 10−4 s or less.
Taking into account that larger conductivity values are more likely (see Figure 2.1) and that
most MT measurements may not record data at 10−5 s, Equation 2.6 is valid for (almost) all
MT data. Therefore the displacement currents can be neglected and the EM induction in
the Earth may be treated as a pure diffusion process in what is called the quasi-static

approximation.

In the RadioMagnetoTelluric (RMT) case, where EM fields in the VLF (3 -3 kHz) and
LF (30-300 kHz) frequency ranges are used, the validity of the quasi-static assumption
is questionable. Kalscheuer et al. (2008) show that for frequencies between 10 - 300 kHz
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and a structure with resistivities greater than 1000 Ωm, the quasi-static approximation
causes increasingly inaccurate forward responses and leads to inverse models with artificial
structures.

2.2.2 Magnetic properties of rocks and minerals

The permeability µ is the degree of magnetization of a material that responds linearly to an
applied magnetic field. If the medium is isotropic, permeability is a scalar, whereas for an
anisotropic linear medium it becomes a second rank tensor.

The third constitutive equation describes the relation between the magnetic induction B,
the magnetic intensity H and the magnetic permeability µ:

B = µH . (2.7)

Magnetic permeability µ is a combination of the permeability of a vacuum µ0 = 4π ·
10−7 Vs/Am and the unitless relative permeability µr, which is specific to the material:

µ = µr · µ0 . (2.8)

For most Earth materials, permeability is very close to the free-space (vacuum) value, except
for those rocks containing a large quantity of iron. For example, the relative permeability
of basalt containing 2 vol % magnetite (Fe3O4) is µr = 1.08, and that of basalt with 5 vol %
magnetite is µr = 1.18. Gabbros and peridotites, with typical magnetite contents, have
similar relative permeability values (Carmichael, 1989). Kao and Orr (1982) showed that
the common assumption of µ = µ0 can cause misleading interpretation of MT data if a
layer of highly magnetized minerals is present. They demonstrated that a magnetized layer
could be misinterpreted as an unmagnetized layer, which is (µr-times) more resistive and
(µr-times) thicker than the magnetized one. This becomes a problem particularly when a
local area hosting a mineral deposit, that has a permeability many times higher than the
free-space value µ0, is studied using high frequencies.

2.3 the assumptions of the mt method

A number of simplifying assumptions (some have already been discussed in earlier sections)
apply when considering EM induction in the Earth for the MT case. These assumptions
have been discussed in several publications (e.g. Cagniard, 1953; Price, 1962, 1973; Vozoff,
1991; Simpson and Bahr, 2005) and are summarised here (modified from Simpson and Bahr,
2005):

i Maxwell’s equations (Equations 2.9, 2.10, 2.11, 2.12) are obeyed (see Section 2.4).

ii The Earth does not generate EM energy, but it only absorbs or dissipates it.

iii Away from their source, all fields can be presumed to be conservative and analytic,
i.e., they are differentiable at all points.

iv The EM source fields utilised by the MT method may be treated as being uniform,
plane-polarised EM waves, which are generated at a relatively distant (from the Earth
surface) source and have near-vertical angle of incidence to the Earth’s surface. This
plane-wave approximation may be violated if measurements were made in the polar
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or equatorial regions or, if for other reasons, the source is considered to be too close
(see Section 2.1).

v No accumulation of free charges is sustained in a 1D layered Earth. In a 2D or 3D
Earth, non-inductive static shift effects can be caused by charges that are accumulated
and dissipated along conductivity discontinuities.

vi The Earth acts as ohmic conductor and charges are conserved, i.e., j = σE and
∂ρ
∂t +∇ · j = 0, where j is the electric current density, ρ is the charge density, σ is the
conductivity of the medium and E is the electric field.

vii The quasi-static approximation: for the period range used in MT (approximately 10−5 s
- 105 s) the time-varying displacement currents (Maxwell’s term in Equation 2.12: ∂D

∂t )
are small compared to the time-varying conduction currents (j

f
in Equation 2.12) and

can be neglected (see Section 2.2).

viii Any variations in the electrical permittivities and magnetic permeabilities of rocks
and minerals are negligible compared with variations in the bulk rock conductivities
(see Section 2.2).

It is worth noting that there are no known cases where (i) and (iii) are invalid. With regards
to (viii), electrical permittivity ε and magnetic permeability µ can both be interpreted, but
unlike the permittivity ε, the permeability µ cannot be separated from the conductivity in
terms of the inductive (wavenumber) parameter (i.e., µ will always be part of the term iωµσ).
However, a localised surface zone of increased magnetic susceptibility would increase the
measured magnetic field independently of the conductivity and also galvanic distortion
depends primarily on conductivity and is approximately independent of the near-surface
magnetic susceptibility distribution, and therefore, at least in theory, permeability and
conductivity could be discriminated in some cases.

2.4 the fundamental equations of the mt method

The fundamental equations of EM theory are Maxwell’s equation that describe the behaviour
of both the electrical and magnetic fields and their interaction. Therefore, at any frequency,
the physical principles of the MT method are based on these four equations:

i Gauss’ Law for the electric field: The electric field (or the electric displacement
D = ε0E) is a field with the charge density as its source. The electric displacement
through a closed surface of a volume is equal to the electric charges inside the volume,

∇ · E =
q

ε0
. (2.9)

ii Faraday’s Law: Any time variation of the magnetic field causes an electric vortex
field. Or, in other words, time variations of the magnetic field induce corresponding
changes in the electric field flowing in a closed loop with the axis oriented in the
direction of the inducing field,

∇ × E = −
∂B

∂t
. (2.10)
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2.4 the fundamental equations of the mt method

iii Gauss’ Law for the magnetic field: The magnetic field is source free. There are no free
magnetic charges, i. e., magnetic monopoles do not exist,

∇ ·B = 0 . (2.11)

iv Ampère-Maxwell’s Law: The magnetic field depends on the electrical current density
of free charges and the time variation of the electric displacement. The magnetic field
along the edges of a surface is equal to the sum of the electric currents and the time
variations of the current displacement through the surface,

∇ × H = j
f
+

∂D

∂t
. (2.12)

In an EM problem, each of the fields must satisfy Maxwell’s Equations, and equations
derived therefrom. In addition, appropriate conditions need to be applied at boundaries
between the homogeneous regions involved in the problem, e.g., at the air-Earth interface.
Ward and Hohmann (1987) give an overview of the commonly-used boundary-value
problems. They show that the boundary conditions can be derived from the integral forms
of Maxwell’s Equation, which can be derived by applying Stokes’ theorem. It assumes that
the normal component of the curl of a vector, integrated over a surface, is equal to the
contour integral of the tangential component of the vector, i.e.,∫

S
(∇×A) ·nds =

∮
C

A · dl . (2.13)

Therefore, assuming that the surface S does not vary with time, Faraday’s Law (Equa-
tion 2.10) and Ampère’s Law (Equation 2.12) become∮

C
E · dl = −

∂

∂t

∫
S

B ·nds , (2.14)

and ∮
C

H · dl = I +
∂

∂t

∫
S

D ·nds , (2.15)

in which the current I is defined as I =
∫

s J ·nds. Using the divergence, or Gauss, theorem,∫
V
∇ ·Adv =

∮
S

A ·nds , (2.16)

where S denotes a closed surface enclosing the volume V and n is a unit outward oriented
normal, Gauss’ Laws (Equation 2.9 and 2.11) become∮

S
E ·nds =

q

ε0
(2.17)

and ∮
S

B ·nds = 0 . (2.18)

Therefore, the boundary conditions are the following (e.g., Stratton, 1941), given two regions,
medium 1 and medium 2:

15
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• The normal component Bn of the magnetic field B is continuous across an interface
separating medium 1 from medium 2, i.e.,

Bn1 = Bn2 . (2.19)

• Due to the accumulation of a surface-charge density, ρs, the normal component of
displacement current D, Dn, is discontinuous across an interface separating the two
media, i.e.,

Dn2 − Dn1 = ρs . (2.20)

• The tangential components of the electrical field E, Et, are continuous across an
interface, i.e.,

Et1 = Et2 . (2.21)

• If there is no surface current, the tangential components Ht of the magnetic field H

are continuous across an interface of two media, i.e.,

Ht1 = Ht2 . (2.22)

• If displacement currents may be neglected, the normal component jn of the current
density j is continuous across an interface, i.e.,

jn1 = jn2 . (2.23)

• The scalar potentials, appropriate to static fields only, V and U defined by: E = −∇V

and H = −∇U, are continuous across an interface, i.e.,

V1 = V2 and U1 = U2 . (2.24)

Taking all of these assumptions into account, Maxwell’s Equations can be simplified as
described in the following. Assuming a plane wave with an harmonic time dependence of
the form e+iωt results in

∂B

∂t
= iωB . (2.25)

Applying assumption vi from Section 2.3 and Ohm’s Law (Equation 2.1) to Ampère-
Maxwell’s Law (Eq. 2.12) and taking the divergence (making use of the vector identity
∇ · (∇×A) = 0 for any vector field A) gives

∇ · (∇×H)︸ ︷︷ ︸ = ∇ (σE)︸ ︷︷ ︸
0 = σ∇E + E∇σ .

(2.26)

Substituting with Gauss’ Law for the electrical field (Eq. 2.9) results in

0 = σ
q

ε0
+ E∇σ ⇒ q

ε0
= −E

∇σ

σ
= −E∇ ln σ . (2.27)
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2.4 the fundamental equations of the mt method

Using Equations 2.25 and 2.27, and applying Equations 2.2 and 2.7 and Ohm’s Law (Equa-
tion 2.1), the Maxwell equations can be written as:

∇ · E = −E∇ ln σ , (2.28)

∇ × E = −iωB , (2.29)

∇ ·B = 0 , (2.30)

and

∇ × B = µ0σE . (2.31)

To derive the diffusion equations in terms of the electrical and magnetic fields, the curl
needs to be taken of Equations 2.29 and 2.31 respectively. Therefore we can make use of the
following two proven vector identities:

∇ × (∇ × A) = ∇(∇ ·A) −∇2A , (2.32)

and

∇ × (ζA) = ζ∇ × A − A×∇ζ , (2.33)

where A is any vector field and ζ is any scalar field.
The diffusion equation of the electrical field is given by

∇ × (∇ × E) = ∇ × (−iωB)

⇒ ∇ ·∇ · E︸ ︷︷ ︸ − ∇2E = −iω∇ × B︸ ︷︷ ︸
= −E∇ ln σ = µ0σE

⇒ ∇2E = iωµ0σE −∇ (E∇ ln σ) , (2.34)

and the one for the magnetic field by

∇ × (∇ × B) = ∇ × (µ0ωE)

⇒ ∇ ·∇ ·B︸ ︷︷ ︸ − ∇2B = µ0∇ × (σE) = µ0σ∇ × E︸ ︷︷ ︸ − µ0E×∇σ

= 0 = −iωB

⇒ ∇2B = iωµ0σB + µ0E×∇σ . (2.35)

In the case of an isotropic and homogeneous space, the conductivity σ is constant (i.e.,
∇σ = 0), therefore the diffusion Equations 2.34 and 2.35 simplify to

∇2E = iωµ0σE (2.36)
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and

∇2B = iωµ0σB . (2.37)

These are second order differential equations with solutions that are valid for an vertical,
external source field (i.e., source geometry is a function of z only and ∂E

∂x = ∂E
∂y = 0 ) and of

the form

E = E1eiωt−qz + E2eiωt+qz and (2.38)

B = B1eiωt−qz + B2eiωt+qz . (2.39)

The second term on the right-hand side increases with depth z. Because the Earth does not
generate EM energy, but only dissipates or absorbs it (assumption (ii) in Section 2.3), the
amplitudes of these terms should be set to E2 = 0 and B2 = 0 respectively. In the case of
an homogeneous halfspace (where ∂E

∂x = ∂E
∂y = 0), applying the solution as described in

Equation 2.38 to the left side of Equation 2.36 yields

∇2E =
∂2E

∂z2
= q2E1eiωt−qz = q2E , (2.40)

therefore Equation 2.36 becomes

q2E = iωµ0σE (2.41)

⇒ q2 = iωµ0σ (2.42)

or

q =
√

iωµ0σ =
√

i
√

ωµ0σ =
±(1 + i)√

2

√
ωµ0σ = ±

(√
ωµ0σ

2
+ i

√
ωµ0σ

2

)
(2.43)

using

√
i =
±(1 + i)√

2
⇒ i =

(±(1 + i))2

2
=

1 + 2i + i2

2
=

1 + 2i − 1

2
. (2.44)

The inverse of the real part of q is known as the frequency-dependent, EM skin depth δ:

δ =
1

Re(q)
=

√
2

µ0σω
, (2.45)

and the inverse of q is referred to as the schmucker-weidelt transfer function

(Schmucker, 1970; Weidelt, 1972; Schmucker, 1973)

C =
1

q
. (2.46)

The Schmucker-Weidelt transfer function is complex and frequency dependent and has the
dimensions of length. Using the assumption of a homogeneous halfspace (∂E

∂x = ∂E
∂y = 0)

and Faraday’s law (Equation 2.10 and 2.29 respectively) we obtain relationships of q to the
different electric and magnetic field components

−
∂Ey

δz = −∂Bx
∂t ⇒ qEy = −iωBx ,

∂Ex
δz = −

∂By

∂t ⇒ qEx = iωBy .

(2.47)
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2.5 the magnetotelluric transfer functions

Therefore the Schmucker-Weidelt transfer function also can be expressed as a relationship
between the electric and magnetic field components

C =
1

q
=

Ex

iωBy
= −

Ey

iωBx
. (2.48)

Combining Equation 2.48 with the definition of q (Equation 2.43) yields,

ρ =
1

σ
=

1

|q|2(ω)
µ0ω = |C|2µ0ω , (2.49)

where ρ and σ are the resistivity and conductivity respectively of the homogeneous half-
space. Since C is complex, a phase φ can also be derived and written as

φ = tan−1

(
Im C

Re C

)
. (2.50)

2.5 the magnetotelluric transfer functions

A MT transfer function is defined as a function that relates the measured EM fields at
a given frequency. It depends only on the electrical properties of the material the EM
waves propagate through and not on the EM source. (Note, this definition is only true for
the narrower sense of MT transfer functions by the means of passive MT as used in the
presented work, but excluding, e.g., controlled source MT.) Beside the above mentioned
Schmucker-Weidelt transfer function, several others are also in use. The most common
MT transfer functions are represented by the impedance tensor or MT tensor and the
geomagnetic transfer function (also known as the tipper vector or the vertical magnetic
transfer function).

2.5.1 The impedance tensor and the magnetotelluric tensor

The impedance tensor Z is a complex second-rank, frequency-dependent matrix. It is a
phenomenological description of the relation of the orthogonal horizontal electric (Ex, Ey)
and magnetic field components (Hx, Hy or Bx/µ0, By/µ0 respectively) at a given frequency:

E = Z
B

µ0
or

(
Ex

Ey

)
=

(
Zxx Zxy

Zyx Zyy

) (
Bx
µ0
By

µ0

)
, (2.51)

or applying the relation of B = µ0 H (see Equation 2.7), results in the equivalent equation

E = Z H or

(
Ex

Ey

)
=

(
Zxx Zxy

Zyx Zyy

) (
Hx

Hy

)
. (2.52)

Weaver et al. (2000) introduced the term MT tensor (M), which is an identical description
of the transfer function, except that it uses the B instead of the H field:

E = M B or

(
Ex

Ey

)
=

(
Mxx Mxy

Myx Myy

) (
Bx

By

)
. (2.53)

Both tensors (Z and M) are complex, and thus each matrix element is a complex number
containing real and imaginary parts, i.e., each component not only has a magnitude, but
also a phase.
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2.5.2 The geomagnetic transfer function

The geomagnetic transfer function T describes the relationship between the horizontal and
the vertical magnetic field component as

Hz = (Tx, Ty)

(
Hx

Hy

)
. (2.54)

The geomagnetic transfer function is a complex, frequency-dependent vector. A commonly
used representation of this vector is the induction arrow, the concept of which goes back
to Parkinson (1959, 1962) and Wiese (1962). Induction arrows are two real, dimensionless
vectors

TRe = (Re Tx, Re Ty) , (2.55)

and

TIm = (Im Tx, Im Ty) , (2.56)

which represent the real and imaginary parts of the geomagnetic transfer function on
the xy plane. The induction arrows can be used to indicate the presence or absence of
lateral variations in conductivity, since the vertical magnetic fields are generated by lateral
conductivity gradients (Jones and Price, 1970; Jones, 1986; Simpson and Bahr, 2005). (Also
non-uniform sources affect the vertical magnetic fields; see Section 2.1 and Jones and Spratt
(2002).) There are two conventions used for plotting the induction arrows:

i The parkinson convention (Parkinson, 1959), where the vectors generally point
towards the anomalous current concentration (i.e., a good conductor). The real or
in-phase arrow is given by (−Re Txi − Re Tyj) and the imaginary or quadrature arrow
by (Im Txi + Im Tyj), where i, j are the Cartesian unit vectors towards magnetic north
and east, respectively (Jones, 1986).

ii The wiese convention (Wiese, 1962), where the vectors point away from the
anomalous current concentration.
The induction arrow of the real part is given by the magnitude of

√
Re T2

x + Re T2
y and

the angle arctan
(

Re Ty

Re Tx

)
, whereas the magnitude for the imaginary induction arrow

is given by
√

Im T2
x + Im T2

y and the angle by arctan
(

Im Ty

Im Tx

)
.

Although both conventions can be found in publications and presentations, the Parkinson
convention is the more commonly used (Jones, 1986; Simpson and Bahr, 2005).

2.6 dimensionality

The complexity of the impedance tensor depends on the dimensionality of the subsurface
medium. In the 1D and 2D case there are a few simplifications that become invalid once the
complexity of the structure increases. It is important to keep in mind that the dimensionality
always depends on the scale. A 3D body of conductivity σ2 embedded in a homogeneous
halfspace of conductivity σ1 will have a 1D response as long as the periods are sufficiently
short and their skin depths are small compared to the shortest dimension of the 3D body.
With increasing periods the skin depths increase and become comparable to at least one
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of the body’s dimensions, resulting in a multidimensional MT response. For very long
periods, where the skin depth is much larger than the dimensions of the body, the anomaly
caused by the body becomes weak, but the frequency independent, so-called galvanic

distortion (see Section 2.7), remains. Figure 2.2 shows a sketch of the dimensionality
change from a 1D Earth (see Section 2.6.1) to a 2D (see Section 2.6.2) and 3D Earth (see
Section 2.6.3) and finally to a distortion effect. It is worth noting, that depending on the
structure and its location, not all four stages of dimensionality will always occur (e.g., for a
sphere at a depth greater than its radius, the 2D effect will be absent in the sounding curve).

surface
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Figure 2.2: Sketch to illustrate the dependence of dimensionality on scale. The 3D body of σ2

is embedded in a homogeneous halfspace of σ1. Depending on the skin depth - and
therefore the period - compared to the dimensions of the body, the MT response will
be 1D, 2D or 3D and for very long periods only the galvanic distortion effects remain.
Redrawn from Simpson and Bahr (2005).

2.6.1 The 1D Earth

For the simple case of a 1D, isotropic layered Earth (i. e., the conductivity changes only with
depth) the diagonal components (Zxx and Zyy) of the impedance tensor, which are related
to the parallel electric and magnetic fields, are zero. Since there is no lateral conductivity
variation, the off-diagonal elements (Zxy and Zyx) have the same amplitude, but are of
different sign to preserve the right hand rule. Therefore the simplified impedance tensor
for the 1D Earth can be represented by:

Z
1D

=

(
Zxx Zxy

Zyx Zyy

)
=

(
0 Zxy

−Zxy 0

)
. (2.57)

Applying the 1D assumption of the impedance tensor to Equation 2.51 yields(
Ex

Ey

)
=

(
0 Zxy

−Zxy 0

) (
Bx
µ0
By

µ0

)
. (2.58)

or written as components

Ex =
1

µ0
Zxy By and Ey = −

1

µ0
Zxy Bx . (2.59)
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Solving these equations for Zxy gives

Zxy = µ0
Ex

By
= −µ0

Ey

Bx
. (2.60)

This result is analogous to the Schmucker-Weidelt transfer function in Equation 2.48 and
therefore can also be derived from Maxwell’s Equations for the 1D case (and also for 2D
along strike). The difference is only in the definition of the transfer function itself. In the
case of the Schmucker-Weidelt transfer function C = 1/q, whereas the impedance tensor is
Z = iωµ0/q. Therefore these two transfer functions are related by:

Z = iωµ0C . (2.61)

The apparent resistivity, analogous to Equation 2.49, can be written as

ρa =
1

µ0ω
|Z|2 , (2.62)

where ρa - the apparent resistivity - is defined as the average resistivity of an equivalent
homogeneous halfspace, and the impedance phase, analogous to Equation 2.50, is given by

φ = tan−1

(
Im Z

Re Z

)
. (2.63)

For an isotropic, homogeneous halfspace - a special case of the 1D Earth - the apparent
resistivity ρa is equal to the actual resistivity value of the halfspace:

ρa = 1
µ0ω |Z|2 = 1

µ0ω |
iωµ0

q |2 = ωµ0

q2 = ρ

⇑ ⇑
Z = iωµ0

q Eq. 2.49

. (2.64)

Equation 2.43 showed that for the special case of a homogeneous halfspace, the real and
imaginary parts of the impedance tensor elements will have the same magnitude. There-
fore the impedance phase is equal to 45°. MT phases that are greater than 45° indicate
a substratum in which the resistivity decreases with depth, whereas a phase of less than
45° is related to an increasing resistivity with depth. Figure 2.3 shows apparent resistivity
and phase curves for layered halfspace models (top: decreasing resistivities with depth;
middle: increasing resistivities; bottom: 3-layer model with a 10 km thick high conductivity
layer). The right column shows the 1D model as solid black line and the corresponding
resistivity and phase values for periods from 10−2 to 103 are plotted on the left next to each
model. Also included are two different depth and resistivity estimates, which are plotted as
dots within the resistivity-depth plot on the right hand side (Niblett-Bostick and ρ∗ − z∗

transform; for more details about these two approximations see the next subsection). All
three models have a 5 Ωm halfspace beneath 410 km and phases above 45° correspond
clearly with decreasing resistivity values, whereas increasing resistivities are found where
the phase is below 45°.

Tikhonov (1965) and Bailey (1970) proved that the solution of the inverse problem is
unique in the 1D case, assuming that the MT data are error- and noise-free and sampled
continuously at all frequencies.
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(b) 1D model B - increasing resistivity
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(c) 1D model C - 3 layer model
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Figure 2.3: The left column of the figure shows the resistivity and phases curves calculated from
the 1D models shown in the right column (solid black line). The symbols are the
resistivity and depth estimates calculated from the data curves shown on the left using
the Niblett-Bostick and the ρ∗ − z∗ transform approaches (see ’Resistivity and depth
approximations’). From top to bottom: (a) is a model where the resistivity decreases with
depth, (b) shows a model of increasing resistivity with depth and (c) is a 3 layer model.
All three models have a 5 Ωm halfspace as base model beneath 410 km. Modified from
Simpson and Bahr (2005)
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Resistivity and depth approximations

Often it is useful to determine a reasonable first-order approximation of the investigation
depth. These approximations are all based on the homogeneous halfspace approach. One
of these depth estimations is the skin depth δ (Eq. 2.45) introduced earlier

δ(T) =

√
2

µ0σ(T)ω(T)
≈ 503

√
ρa(T)T , (2.65)

where ρa = 1
σ is the apparent resistivity at the period T = 1

f with ω = 2πf. For each chosen
period Equation 2.65 will give the depth where the amplitude of the penetrating fields
would be attenuated to 1

e in a homogeneous halfspace of resistivity equal to the apparent
resistivity measured at that period. Instead of assuming the apparent resistivity of the
chosen period to be the resistivity value at the estimated depth, there is an estimation for
the apparent resistivity value at a certain depth, based on the Schmucker-Weidelt transfer
function; it is called ρ∗ − z∗ transform (Schmucker, 1987). The depth z∗ is defined by
the real part of the Schmucker-Weidelt transfer function (see Equation 2.45 and 2.46; z∗ = δ).
The estimated resistivity ρ∗ is given by

ρ∗ =

{
2ρa cos2 θ for θ > 45◦

ρa

2 sin2 θ
for θ < 45◦

. (2.66)

These resistivity estimates become ρ∗ = ρ for the homogeneous halfspace, where θ = 45°.

Niblett and Sayn-Wittgenstein (1960) and Bostick (1977) developed different penetration
depth estimates that imply an attenuation factor at each period of approximately 1

2 . Jones
(1983a) showed that these two approximations are equivalent and it is therefore called the
niblett-bostick depth approximation. For the Niblett-Bostick approximation the
penetration depth δNB is given by

δNB =

√
ρa(T)T

2πµ0
. (2.67)

The Niblett-Bostick resistivity at the depth δNB is estimated as

ρNB(δNB) = ρa(T)
1 + m(T)

1 − m(T)
, (2.68)

where m(T) is the gradient of the apparent resistivity curve on a log-log scale, i.e.

m(T) =
∂log(ρa(T)))

∂log(T)
=

T

ρa(T)

∂ρa(T)

∂T
. (2.69)

Jones (1983a) pointed out, that an alternative expression for the resistivity at depth δNB is
also in use, where

ρ̃NB(δNB) = ρa(T)

(
π

2φ(T)
− 1

)
(2.70)

using the phase information φ(T). The advantage of the approach using Equation 2.70

is that an estimate of the gradient m(T) is not required; but ρ̃NB(δNB) 6= ρNB(δNB).
For a homogeneous halfspace, both approximations of the resistivity value ρNB(δNB)

(Equation 2.68) and ρ̃NB(δNB) (Equation 2.70) become ρNB(δNB) = ρ and ρ̃NB(δNB) = ρ
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respectively, because for this special case the gradient m(T) = 0, the phase φ(T) = 45°
and the apparent resistivity ρa is equal to the resistivity ρ of the homogeneous halfspace,
as for the ρ∗ − z∗ transform. Figure 2.3 shows the resistivity-depth estimates of both
approximations for the different models in comparison to the true 1D models. In general
the Niblett-Bostick approach (using ρNB; Eq. 2.68) fits the real model better than the ρ∗ − z∗

transform. Although, for the 3-layer model (bottom model) the ρ∗ − z∗ transform gives the
correct resistivity value for the second layer at its lower boundary, whereas the Niblett-
Bostick approach seems to estimate the depth extent better, but does not estimate the correct
resistivity value. Keeping in mind that these are approximations based on a homogeneous
halfspace assumption, both approaches give very good estimates of the true structure.

2.6.2 The 2D Earth - along strike approach

Other than for the 1D case, in a 2D or 3D Earth the resistivity not only varies with depth
but also with lateral extent. Jones (1983b) explored the conditions under which structure
may be treated as 2D and when a 3D approach is required. When a 2D or 3D approach
might be required depends largely on the length extent of the body (L) and the skin depth
of the periods of interest in the host rock (δh). If the ratio L

δh
is far greater than 1, then a

2D interpretation of the structure for this period should give approximately the correct
conductivity structure. If the ratio is smaller than 1, i.e., either the body is too small (small
L) or the period is too long (large δh), then a 2D interpretation will not be valid and a 3D
interpretation becomes necessary. A geological setting where the 2D approach would be
appropriate could, for example, be a transect across a laterally long fault structure, that is
in a fairly conductive environment, where the skin depth of the period of interest δh is far
smaller than the extent of the fault (L).

In Section 2.4 the boundary conditions at a contact between two media of different con-
ductivity, as, for example, at a fault structure, were listed. Since one boundary condition
(Equation 2.23) requires that the current density j is continuous across the interface and the
two media have different conductivities σ1 and σ2, Ohm’s Law (Equation 2.1) implies that
the normal component of the electrical field is discontinuous, i.e.,

jn1 = jn2 ⇒ σ1En1 = σ2En2 with σ1 6= σ2 ⇒ En1 6= En2 . (2.71)

A discontinuous normal component of the electric field means it has different amplitudes
on either side of the boundary, and is achieved by charge build-up on the boundary surface,
which deflects or refracts the electric fields at the boundary (Jones and Price, 1970). The cur-
rent density decreases with the skin depth and therefore the amount of charge build-up at
the contact is larger in shallow regions. All magnetic field components of H are continuous
across the interface, but only the tangential components of the electric field E (Jones and
Price, 1970). Figure 2.4 sketches the effect of these boundary charges on the electric current.
Note also that the current flows closer to the surface on the more conductive side of the
discontinuity (σ1). Dawson et al. (1982) introduced ’adjustment distances’ or ’equilibrium
distances’ y1 and y2, which are the distances from the contact on either side, where the
current flow has adjusted to the one expected in a homogeneous halfspace of σ1 and σ2

respectively. Within the bounds −y1 < y < y2 the current flow is perturbed by the surface
charges at the boundary.

If the interface is the Earth’s surface (z=0), i.e., the boundary between the air and the Earth,
the normal electric field, Ez, becomes zero: because the air is a good insulator (i.e., very
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Figure 2.4: Current lines and surface charge distributions near a vertical conductivity discontinuity,
where σ1 > σ2. Redrawn from Price (1973) including modifications from Jones (1983b).

high resistivity⇒ conductivity σair ≈ 0), and Ohm’s Law and the continuity of the current
density apply, Equation 2.71 is only true if Ez inside the conductor, i.e., the Earth, is equal
to zero at the contact.

For a body of infinite (or significantly longer than the penetration depth) along-strike
extension, the fields do not vary along-strike (defined as the x-direction), i.e., ∂

∂x = 0 (see
Figure 2.5). Therefore Equations 2.29 and 2.31 become

∂
∂x
∂

∂y
∂
∂z

×
 Ex

Ey

Ez

 =


∂Ez
∂y −

∂Ey

∂z
∂Ex
∂z − 0

0 − ∂Ex
∂y

 = −iω

 Bx

By

Bz

 ,

⇑
∂
∂x = 0

(2.72)

and 
∂
∂x
∂

∂y
∂
∂z

×
 Bx

By

Bz

 =


∂Bz
∂y −

∂By

∂z
∂Bx
∂z − 0

0 − ∂Bx
∂y

 = µ0σ

 Ex

Ey

Ez

 .

⇑
∂
∂x = 0

(2.73)

In the ideal 2D case, as shown in Figure 2.5, the electric and magnetic fields are orthogonal
to each other, where an electric field parallel to strike (Ex) only induces magnetic fields in
the vertical plane perpendicular to strike (Hy,Hz or By,Bz), whilst a magnetic field parallel
to strike (Hx or Bx) only induces electrical fields in the vertical plane perpendicular to
strike (Ey,Ez). This decoupling into two independent modes also becomes obvious when
treating Equations 2.72 and 2.73 component by component. One mode, which describes
the currents flowing parallel to the strike direction (i.e., in the x-direction), is called the
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x

y

z EzHz

Ex

Ey

Hx

Hy

σ1 σ2

vertical conductivity contact

Ey discontinuous

jy = σ1E1 jy = σ2E2

Conservation of current

Figure 2.5: A simple 2D model composed of 2 quarterspaces with different conductivities σ1 and
σ2. Due to conservation of current across the vertical discontinuity, the y-component of
the electrical field Ey is discontinuous across the contact. For the ideal 2D case, the EM
fields can be decoupled into the two independent modes, known as TE and TM modes.
Redrawn and modified from Simpson and Bahr (2005).

transverse electric (te) mode or e-polarisation and is composed of Ex, By and
Bz:

∂Ex
∂y = iωBz

∂Ex
∂z = −iωBy

∂Bz
∂y −

∂By

∂z = µ0σEx

 TE mode/E − polarization (2.74)

The other mode, which describes currents flowing perpendicular to the strike direction,
is known as the transverse magnetic (tm) mode or b-polarisation and is com-
posed of Bx, Ey and Ez:

∂Bx
∂y = µ0σEz

−∂Bx
∂z = µ0σEy

∂Ez
∂y −

∂Ey

∂z = −iωBx

 TM mode/B − polarization (2.75)

In the ideal 2D case the along-strike impedance tensor (Equation 2.52) can be simplified,
because the diagonal elements are zero, since the electric components are related to orthog-
onal magnetic components only (and vice versa). The off-diagonal elements (Zxy and Zyx)
represent essentially the two modes: TE and TM respectively.

Z
2D

=

(
0 Zxy(ω)

Zyx(ω) 0

)
=

(
0 ZTE(ω)

ZTM(ω) 0

)
(2.76)

They are normally of opposite sign and have different magnitudes. The opposite sign
causes the phases of xy and yx to be in different quadrants (1st and 3rd, if a positive time
dependency e+iωt is used).

Since the electric field Ey is discontinuous across the contact, the impedances associated
with Ey are also discontinuous: Zyx =

Ey

Hx
(and Zyy =

Ey

Hy
, which is zero for the ideal 2D

case). From Ohm’s Law (Equation 2.1) the discontinuity of Ey, and therefore of Zyx, is equal
to the ratio of the two conductivity values of either side of the discontinuity σ2/σ1. There
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Figure 2.6: Resistivity and phase curves obtain over 2 quarterspaces. In the middle are the resistivity
and phase values across a contact between a 10 Ωm (left) and 1000 Ωm quarterspace
(right) shown for 1 s (top) and 10 s (bottom) periods. While the apparent resistivity
curve for the TE mode is continuous across the contact, the TM mode is discontinuous.
Sounding curves are plotted on either side of the quarterspace model and correspond
with sites located 0.2 km, 1 km, 5 km, 10 km and 20 km from the contact to either side
(left: 1 Ωm, right: 1000 Ωm, TE on top, TM in the bottom graph).
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will also be a discontinuity in the apparent resistivity perpendicular to the strike direction,
ρyx, of magnitude (σ2/σ1)2 (see Equation 2.62). Figure 2.6 shows apparent resistivity and
phase curves for a range of frequencies and distances from the conductivity contrast for a
2D model similar to Figure 2.4 and 2.5. As a consequence of the discontinuous behaviour of
ρyx across a vertical boundary, the TM mode tends to resolve lateral conductivity variations
better than the TE mode resistivities ρxy. The geomagnetic transfer function describes the
ratio of vertical to lateral magnetic fields, therefore it is only associated with the TE mode.
Since the geomagnetic transfer function is sensitive to lateral conductivity variations, it is
possible to identify lateral variation from the TE mode (see Figure 2.7).
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Figure 2.7: Real and imaginary tipper (Ty) curves obtain over 2 quarterspaces (same model as
in Figure 2.6: 10 Ωm (left) and 1000 Ωm (right)) shown for 1 s (top) and 10 s (bottom)
periods.

If the impedance tensor is not in the electrical strike coordinates, as it is the case for most
recorded data, the diagonal elements of the impedance matrix will not be zero, and the TE
and TM modes will be mixed in the tensor. For an ideal 2D structure and noise-free data
it is possible to rotate the impedance tensor by an angle θ around a vertical axis using a
Cartesian rotation matrix R

θ
until the diagonal components are zero. (The derivation of the

rotation for the impedance tensor and the geomagnetic transfer function can be found in
Appendix A.2.) A 2D impedance tensor Z

2D
, which has been rotated through an angle θ to

the strike coordinates, can be calculated as follows

Z
2D

= R
θ
Z

obs
RT

θ
, (2.77)

where

R
θ

=

(
cos θ sin θ

− sin θ cos θ

)
and RT

θ
=

(
cos θ − sin θ

sin θ cos θ

)
(2.78)
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are the rotation matrix R
θ

and its transpose RT
θ

, and Z
obs

is the recorded impedance tensor
in the observational reference frame. For a non-ideal 2D case and/or noisy data, it will
not be possible to find a rotation angle in which the diagonal elements are zero, and one
could try to minimize the values of the diagonal elements. However, such amplitude-based
methods are to be avoided, since the amplitude can be affected by galvanic distortion (see
Section 2.7).

2.6.3 The 3D Earth

If the conductivity distribution varies with depth and in both lateral directions, the problem
becomes 3D. In this case no rotation by any angle is able to result in an impedance tensor
where the diagonal elements approach zero. Also the decoupling into two separate modes,
discussed above, is no longer valid. The 3D Earth requires the determination of a full
impedance tensor with four complex elements for each frequency. But a disturbing near
surface 3D structure can produce modes that can be discerned in TE and TM modes using
the vertical magnetic transfer function on a dense and large grid (Becken et al., 2008).

2.6.4 The anisotropic Earth

Under a number of circumstances and for a number of reasons Earth materials can be
electrically anisotropic - i. e., the electrical properties of the material vary depending on
the direction in which the electric fields are propagating. In near-surface or upper crustal
regions, anisotropy can be caused by the preferential orientation of a mineral fabric, e.g.,
graphite in a shear zone (Ji et al., 1996), although anisotropy is also possible at greater
depths (Jones, 1992). It is necessary for a mineral phase to be well-interconnected to give
rise to electrical anisotropy, or at least be partially interconnected in a significant manner
over distances of the order of the inductive scale length (Everett, 2005). Graphite phases
can form along grain boundaries and therefore along foliations and lineations, which
causes a shape-preferred orientation (Jones, 1992; Mareschal et al., 1995). Other causes of
electrical anisotropy in a crustal environment are interconnected saline fluid-filled cracks
and geological structures such as dykes and sills.

Hydrogen diffusion in mantle minerals, such as olivine, has been proposed not only as a
mechanism for reducing the electrical resistivity (e.g., Karato, 1990; Hirth et al., 2000) but
also for causing electrical anisotropy because the rate of hydrogen diffusion is different
along one mineral axis than along the others (e.g., for olivine the a-axis [100] has the highest
rate of hydrogen diffusion (Schock et al., 1989; Mackwell and Kohlstedt, 1990)). Olivine
crystals align preferentially when under strain, and therefore many crystals with similar
alignment contribute to an overall anisotropic effect. Although the influence of hydrogen
in mantle minerals is qualitatively known, the debate about the quantitative effects is still
ongoing (e.g., Karato, 1990; Hirth et al., 2000; Hirth, 2006; Yoshino et al., 2006, 2008). Yoshino
et al. (2008) state that the conductivity-depth profiles of oceanic and continental mantle in
the mantle transition zone (from 410 km to 660 km) do not require any water in the mantle
minerals (but less than 0.1 wt% cannot be excluded); only if the water content is larger
0.1 wt% can electrical conductivity be used to estimate the water content. In contrast, Karato
(1990) states that amounts as low as 200 - 2000 ppm H/Si (i.e., 0.02 - 0.2 wt%) can increase
the conductivity significantly.
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The resistivity of an anisotropic body or layer cannot be specified by a scalar but by a full
3 x 3 tensor, such as

ρ(x, y, z) =

 ρxx ρxy ρxz

ρyx ρyy ρyz

ρzx ρzy ρzz

 , (2.79)

which is a symmetric (i.e., ρxy = ρyx, ρxz = ρzx and ρzy = ρyz) and positive-definite
tensor (Pek and Verner, 1997). The symmetric and positive-definite conditions allow the
matrix to be expressed by a diagonal matrix of the three principal resistivities (ρ1, ρ2 and
ρ3, all positive) and three rotation angles (Pek and Verner, 1997; Pek and Santos, 2002;
Heise et al., 2006). Pek and Verner (1997) (and also Pek and Santos, 2002) use three angles
in the Cartesian coordinate system (αS, αD and αL) to describe the anisotropic resistivity
by

ρ(x, y, z) = RT
z
(αS) RT

x ′(αD) RT
z ′(αL)

 ρ1 0 0

0 ρ2 0

0 0 ρ3

 R
z ′(αL) R

x ′(αD) R
z
(αS), (2.80)

where R is the Cartesian rotation matrix and RT its transpose. The subscript of the rotation
matrix and its transpose describes the respective rotation axis as sketched in Figure 2.8. The
matrix for a rotation around the z-axis is given by

R
z
(α) =

 cos α sin α 0

− sin α cos α 0

0 0 1

 , (2.81)

and around the x-axis by

R
x
(α) =

 1 0 0

0 cos α sin α

0 − sin α cos α

 . (2.82)

Figure 2.8 illustrates the rotation successively, which starts with a rotation around the z-axis
by the anisotropic strike angle αS, then a rotation around the new x-axis (x’), the anisotropic
dip angle αD, and finally a rotation by the anisotropic slant angle, αL, around the most
recent z-axis (z’) (Pek and Verner, 1997). The sequence of applying the anisotropy angles is
a non-cummutative mathematical construct without a physical meaning (unlike, e.g., the
twist, shear and anisotropy which have a physical meaning).

Under the plane wave assumption for MT sources, there is no vertical magnetic field for
induction in a 1D Earth. Because of the asymptotic limit of, e.g., infinite thin dykes, the
absence of the vertical magnetic field under the plane wave assumption is also valid for an
anisotropic 1D Earth. The horizontally varying magnetic fields diffusing downwards in the
Earth will induce horizontal electric fields at right angles, which drive the telluric currents.
Therefore, the primary current induced in a 1D Earth has only horizontal components.
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According to their physical relation to the anisotropy,

the angles aS ; aD; aL can be identified with the

anisotropy strike, dip, and slant, respectively (Fig. 1).

Considering the 1-D symmetry of the above MT

model, i.e., @=@x ¼ @=@y � 0; Maxwell’s equations in

each of the homogeneous layers of the model for a

frequency o reduce to

@Ex

@z
¼ iom0Hy;

@Hy

@z
¼ �sxxEx � sxyEy � sxzEz;

@Ey

@z
¼ �iom0Hx;

@Hx

@z
¼ syxEx þ syyEy þ syzEz: ð3Þ

The last pair of governing field equations degenerates to

Hz ¼ 0; szxEx þ szyEy þ szzEz ¼ 0 ð4Þ

expressing simply the absence of a vertical magnetic field

and of vertical electric currents anywhere in the

anisotropic layered medium.

Eliminating, e.g., the magnetic field components from

Eq. (3), we easily arrive at a system of coupled second-

order differential equations for the electric field

@2Ex

@z2
þ iom0ðAxxEx þ AxyEyÞ ¼ 0;

@2Ey

@z2
þ iom0ðAyxEx þ AyyEyÞ ¼ 0; ð5Þ

where

Axx ¼ sxx �
sxzszx

szz

; Axy ¼ sxy �
sxzszy

szz

; ð6aÞ

Ayx ¼ syx �
syzszx

szz

; Ayy ¼ syy �
syzszy

szz

ð6bÞ

with clearly Axy ¼ Ayx for a symmetric conductivity

tensor r:
From Eq. (3) and system (Eq. (5)) we can conclude

that the MT field in a layered anisotropic medium

depends on the elements of the conductivity tensor solely

through the aggregate conductivities Axx; Ayy; and Axy:
Whatever the particular form of the conductivity tensor

r; the electromagnetic field does not change if the

elements of the 2 � 2 matrix A remain unchanged.

Consequently, without any additional information

available, the MT field of a plane wave does not allow

us to reconstruct the full conductivity tensor in a 1-D

medium. Only the elements of A can be resolved, which

thus represents an equivalent effective conductivity

tensor attributed to the individual layers of the model.

It can be easily shown that detA ¼ det r=szz > 0:
Consequently, A is a symmetric and positive definite 2 �
2 matrix, which can be again factorized in terms of its

principal elements, say A1 and A2; and an elementary

rotation, by an effective strike angle bS ; around the z

coordinate axis,

Axx Axy

Ayx Ayy

 !
¼

cos bS � sin bS

sin bS cos bS

 !
A1 0

0 A2

 !

cos bS sin bS

� sin bS cos bS

 !
; ð7Þ

which gives

Axx ¼ A1 cos2 bS þ A2 sin2bS ;

Ayy ¼ A1 sin2bS þ A2 cos2 bS ;

Axy ¼ Ayx ¼ ðA1 � A2Þsin bS cos bS : ð8Þ

Summarizing the previous steps, we conclude that the

1-D MT problem for a generally anisotropic layered

medium can be always re-formulated as a simpler, but

equivalent problem for an azimuthally (horizontally)

anisotropic structure with the horizontal conductivity

tensor A defined above. Any changes in the full

conductivity tensor r that do not affect the elements

of A cannot be recognized by MT soundings with a

plane wave source field.

2.2. MT field in a 1-D anisotropic layered medium

System (Eq. (5)) has the form of coupled pendula

equations. Seeking the general solution to Eqs. (5) in the

form expð7kzÞ; we easily find that there are always two

solution modes in the anisotropic medium, correspond-

ing to two different wave numbers

k2
1;2 ¼ �

iom0

2
½Axx þ Ayy7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAxx � AyyÞ

2 þ 4AxyAyx

q
	:

ð9Þ

In terms of the principal effective conductivities, A1 and

A2; these wave numbers are expressed as

Fig. 1. Ilustration of basic anisotropy parameters: transformation of conductive dike into general position by successively applying

three elementary Euler’s rotations aS ; aD; and aL:

J. Pek, F. A.M. Santos / Computers & Geosciences 28 (2002) 939–950 941

Figure 2.8: Sketch to illustrate the basic anisotropy parameters. An x-directed dyke is transformed
into a more general position by successively applying the three elementary Cartesian
rotations by αS (anisotropic strike), αD (anisotropic dip) and αL (anisotropic slant).
Taken from Pek and Santos (2002).

Consequently, without any additional information available, the MT field of a plane wave
does not allow reconstruction of the full resistivity tensor in a 1D medium (Pek and Santos,
2002). That means, only the projection of the principal resistivities onto the horizontal plane
(Earth’s surface) can be resolved and therefore, if the principal axes of the resistivity tensor
are not parallel and perpendicular to the surface (i.e., the dip is non-zero) the MT response
cannot be distinguished from an equivalent laterally anisotropic resistivity (i.e., the dip and
slant are zero) (Heise et al., 2006). As MT is measuring a bulk resistivity, it is impossible to
resolve the scale of the anisotropic structure (microscopic or macroscopic) at great depth
(Wannamaker, 2005).

The descriptions of electrical anisotropy are generally based on a background resistiv-
ity and an anomalous resistivity of the mineral phase, dyke or sill. As the resistivity of
an anisotropic body is specified by the three principal resistivities, the background and
anomalous resistivities need to be transformed into the principal resistivities. Figure 2.9
(left) shows a sketch of a dyke-like anisotropic structure. Assuming that all three angles
(i.e., strike, dip and slant) of the anisotropy are zero, the principal resistivities are the
ones obtained for an x-, y- and z-directed current flow, respectively. Currents that flow in
x-direction or z-direction, i.e., parallel to the dyke direction, experience the anisotropic body
as a parallel connection of the background and the dyke resistivities (sketch in the middle
of Figure 2.9). For currents flowing in y-direction, i.e., perpendicular to the dyke direction,
the principal resistivity can be obtained from a serial connection of the background and the
dyke resistivities (sketch on the right-hand side in Figure 2.9).

If the anisotropic structure is more pipe-like, as sketched in Figure 2.10 (left), the currents
flowing in the x-direction are still parallel to the anomalous structure and therefore the
principal resistivity can be calculated by a parallel connection of background and pipe
resistivities (sketch in the middle of Figure 2.10). The other two principal resistivities cannot
be obtained that easily; for the y- and z-directions, the currents have to be treated as
being ’parallel or perpendicular’ to the structure depending on the location in the body.
One would have to treat the currents flowing in the y-direction first in parallel slices of
the model, separating the ones containing the anomalous structure and calculating the
serial connection resistivity for each of these slices. The individual slices of background
resistivity and serial connection resistivity then have to be treated as a parallel connection
to finally obtain the principal resistivity in the y-direction (sketch on the right-hand side
of Figure 2.10). By analogy, the z-directed principal resistivity, ρz, can also be calculated.
Note that ρy and ρz are only equal for the special case where the cumulative extent of
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Figure 2.9: Sketch of a dyke-like anisotropic structure and its equivalent schematic circuit diagrams.
The left-hand side figure shows an anisotropic body that has vertical, x-directed dykes.
For currents flowing in x- and z-direction the anisotropic body acts as a parallel connec-
tion as shown in the middle figure. In this case the equivalent resistivities ρx and ρz can
be calculated by applying Kirchhoff’s Law for parallel connection to ρ1 and ρ2. (Note,
ρx is equal to ρz.) Currents flowing in the y-direction experience the anisotropic body
as a serial connection, as shown in the right-hand side figure, and therefore Kirchhoff’s
Law for serial connections can be used to calculate an equivalent resistivity ρy from ρ1

and ρ2.
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Figure 2.10: Sketch of a pipe-like anisotropic structure and its equivalent schematic circuit diagrams.
The left-hand side figure shows an anisotropic body which contains serial pipe-like
structures (note that the shape of the pipes can be different, the identical round shape of
the cross-sectional areas was only chosen to simplify the sketch). For currents flowing
in x-direction the anisotropic body acts as a parallel connection as shown in the middle
figure. In this case an equivalent resistivity ρx can be calculated by applying Kirchhoff’s
Law for parallel connection to ρ1 and ρ2. Currents flowing in the y- and z-directions
experience the anisotropic body as a parallel-serial connection, as shown on the right-
hand side, and therefore a combination of Kirchhoff’s Laws for serial and parallel
connections can be used to calculate the equivalent resistivities ρy and ρz from ρ1 and
ρ2. (Note, ρy is not necessarily equal to ρz.)

33



2 mt theory

the pipes is equal in the y- and z-directions. (Note that Schön (2004) gives a similar and
useful review of sheet, channel and film resistivity models (without transverse resistivity
of channel models) based on one conductive component (pore water) and the empirical
Archie equation.)

The equivalent parallel and serial resistivities can be calculated based on Kirchhoff’s Laws.
The conductance, G, is given by

G =
σA

l
=

A

ρl
, (2.83)

where l is the length of the object, A is its cross-sectional area and σ is the conductivity of
the object (or ρ its resistivity). For a parallel connection, the equivalent conductance Gp is
given by

Gp = G1 + G2 →
Ap

ρplp
=

A1

ρ1l1
+

A2

ρ2l2
, (2.84)

where the equivalent length of the body, lp, is equal to the lengths, l1 and l2, of the two
individual objects, and the equivalent cross-sectional area is the sum of the two individual
cross-sectional areas (Ap = A1 + A2). Therefore

A1 + A2

ρplp
=

1

lp

(
A1

ρ1
+

A2

ρ2

)
→ A1 + A2

ρp
=

A1

ρ1
+

A2

ρ2
, (2.85)

which yields

ρp =
A1 + A2
A1
ρ1

+ A2
ρ2

=
A1 + A2

A1ρ2
ρ1ρ2

+ A2ρ1
ρ1ρ2

=
(A1 + A2)ρ1ρ2

A1ρ2 + A2ρ1
. (2.86)

In the case of Kirchhoff’s Law for serial connection, the equivalent conductance, Gs, is
given by

1

Gs
=

1

G1
+

1

G2
→ ρsls

As
=

ρ1l1

A1
+

ρ2l2

A2
, (2.87)

where this time the cross-sectional areas are equal (As = A1 = A2) and the equivalent
length is the sum of the lengths of the two bodies (ls = l1 + l2). Using these relations yields

ρs(l1 + l2) = ρ1l1 + ρ2l2 (2.88)

and therefore

ρs =
ρ1l1 + ρ2l2

(l1 + l2)
. (2.89)

Although MT deals with AC problems, the DC approach to calculate the principal anisotropic
resistivities in all the directions, based on Kirchhoff’s Laws, will be used as an approxima-
tion of appropriate principal resistivities based on known background and dyke resistivities
(see e.g., Section 4.3). As a dyke swarm has an increased surface area to volume ratio
compared to a simple single contact the charge dissipation and accumulation time probably
gives arise to the complex conductivity responses if this time is comparable to the signal
period.
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2.7 distortion effects

Distortion comprises all the small-scale, near-surface conductivity inhomogeneities that
cannot be resolved within the conductivity model of the subsurface, but still affect the
MT responses, i.e., distort them. The complex process of distortion has been classified by
Berdichevsky et al. (1973) into two major effects: the galvanic and the inductive effects.
The galvanic effect is caused by primary electric fields that produce electrical charges
where conductivity variations occur, i.e., at distinct boundaries (similar to that described in
Section 2.6.2) or at continuous transitions. The primary electric field is distorted because
the excess charges result in secondary electric fields that add vectorially to the primary
field. The inductive effects are related to time-varying magnetic fields inducing currents
that flow in closed loops. These vortex currents produce secondary magnetic fields that
also add vectorially to the primary magnetic field (Jiracek, 1990). The galvanic distortion
affects not only the electric field, but also the magnetic fields. Although these effects on the
electric and magnetic fields are not entirely separate, they are often considered as different
and are called galvanic electric and galvanic magnetic distortion (e.g. Garcia and Jones,
2002b; Chave and Smith, 1994; Chave and Jones, 1997; Smith, 1997). Galvanic distortion is
also known as current gathering, current deflection, current leakage, current concentration
or current channelling (Jones, 1983b). For a conductive inclusion, the boundary charges
cause a secondary field, that is antiparallel to the primary along the sides of the body and
over it, so that the total field is reduced, whereas off the ends of the body the total field
is enhanced. The resistive case is exactly the opposite: the total field is enhanced over the
body and along its sides, and reduced off the end of the body. Figure 2.11 shows a sketch of
this behaviour (Jiracek, 1990). The galvanic electric field effectively channels the current into
conductive inhomogeneities and around resistive inhomogeneities (Smith, 1997). Therefore
the apparent resistivities recorded in MT soundings directly above a surficial resistive
body (current deflection) are shifted upwards, whereas they are shifted downwards
over a conductive patch (current channelling). This upward or downward shift is
asymptotically a constant - or static - shift of the MT log-log apparent resistivity versus
period curve. Therefore these effects are known as static shift. No distortion occurs in
the impedance phase.

Jiracek (1990) showed that these galvanic effects are not only produced by resistive or
conductive inclusions but also by 2D topography that can cause the so-called galvanic
topographic effect. The topographic galvanic effect occurs when the primary electric field
is perpendicular to the trend of the topography, which is the case for the TM mode, that
is therefore associated with these effects. There are no surface charges at the top of a hill
nor at the bottom of a valley; the maximum charge concentration can be found where
the topography is steepest. The total electric field causes a current flow tangential to the
topography beneath the surface . The electric fields are reduced at the top of a hill and
increased in a valley, and therefore the apparent resistivity values are highest in valleys and
lowest on topographic peaks. Unlike the ’normal’ galvanic distortion effects, the galvanic
topographic effects do not require a conductivity inhomogeneity to be present.

The inductive distortion effects are dependent on frequency, the electrical properties and
the geometry of the subsurface. Unlike the galvanic effect, where the secondary field is
in phase with the causative primary electric field, for the inductive case the phase of the
secondary magnetic field varies between 0 (the resistive limit) and π

2 (the inductive limit)
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Figure 2.11: Galvanic effects for a conductive (left) and a resistive inclusion (right). Charge build-up

on the surface of the body causes secondary electric fields Es, which add vectorially to
the primary electric field Ep (bottom) resulting in current channelling (top, left) and
current deflection (top, right). Redrawn from Jiracek (1990).

relative to the primary magnetic field. The major difference between inductive and galvanic
effects is that the former increases to saturation as frequency increases and the magnetic
field has the leading role, whereas the electric field is the more important one for the
latter, which increases towards saturation with decreasing frequency (Jiracek, 1990). For the
quasi-stationary approximation (σ = ε/T ), which is one of the assumptions in MT, inductive
distortion can be ignored (Berdichevsky and Dmitriev, 1976a).

Chave and Smith (1994) and Smith (1997) explain how the galvanic distortion can be
described mathematically. The measured electric field E

obs
is proportional to the regional,

2D electric field E
2D

E
obs

= C E
2D

, (2.90)

where the matrix C is the electric galvanic distortion matrix. Since the magnetic field of
the galvanic distorted currents B

dist
are proportional to, and in phase with, the currents,

which are proportional and in phase with the regional electric field, they can be written as

B
dist

= D E
2D

, (2.91)

where the matrix D is the magnetic galvanic distortion matrix. Both the electric and the
magnetic distortion matrix are real and frequency independent. They can be written as

C =

(
C11 C12

C21 C22

)
and D =

(
D11 D12

D21 D22

)
. (2.92)

The observed magnetic field B
obs

itself is the sum of the regional magnetic field B
2D

and
the galvanic distorted magnetic field B

dist
, i.e.,

B
obs

= B
2D

+ B
dist

= B
2D

+ D E
2D

. (2.93)

The measured impedance Z
obs

is related to the observed electric E
obs

and magnetic fields
B

obs
:

E
obs

= Z
obs

B
obs

. (2.94)
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By analogy, the regional impedance Z
2D

is given by

E
2D

= Z
2D

B
2D

. (2.95)

In Equation 2.94, replacing E
obs

, B
obs

and E
2D

with Equations 2.90, 2.93 and 2.95 yields

C Z
2D

B
2D

= Z
obs

B
2D

+ Z
obs

D Z
2D

B
2D

. (2.96)

This holds for all polarizations of the regional magnetic field B
2D

, therefore

C Z
2D

= Z
obs

+ Z
obs

D Z
2D

= Z
obs

(
I + D Z

2D

)
(2.97)

⇒ Z
obs

= C Z
2D

(
I + D Z

2D

)−1
, (2.98)

where I is the identity matrix. Assuming that the observation coordinate system is not
identical to the strike or 2D regional reference frame, a rotation by an angle θ needs to be
applied (similar to Equation 2.77), i.e.

Z
obs

(θ) = R(θ)C Z
2D

(
I + D Z

2D

)−1
RT (θ) . (2.99)

The galvanic magnetic distortion is given by the frequency dependent (due to the frequency
dependence of Z

2D
) product of D Z

2D
and vanishes for low frequencies (long periods).

Therefore the magnetic galvanic distortion is usually neglected for the MT case (Garcia and
Jones, 2002b) and Equation 2.99 simplifies to

Z
obs

(θ) = R(θ) C Z
2D

RT (θ) . (2.100)

The assumption that magnetic galvanic distortion is negligible is not always correct, as
Chave and Smith (1994) demonstrated using two different examples. The first one is data
from a site in Carty Lake (electrodes at the bottom of the lake, magnetometer on the
shore of the lake) in central Ontario, Canada. In this case the electric galvanic distortion
decomposition was not sufficient to describe the distortion of the MT response at higher
frequencies (shorter periods). Only taking both the electric and magnetic galvanic distortion
effect into account allowed them to adequately describe the distortion affecting the response.
Their second example shows that the magnetic field galvanic distortion is significant for
seafloor MT data, probably because of the relatively resistive rocks immediately beneath
the oceanic crust causing a strong electric current concentration and channelling within the
highly conductive ocean (Chave and Smith, 1994). Note that the seafloor case is different
from the land case as the measurement site for the magnetic field is beneath the distorting
current sheet, which causes significantly modifications of the fields even in absence of any
distortion compared to the surface (background) values. Galvanic distortion reduces the
amount of this attenuation.

Several distortion correction techniques have been proposed to deal with or to remove
the unwanted galvanic distortion due to near-surface inhomogeneities and topography:
mathematically, statistically or physically based approaches have been used (for more
details on the different approach see e.g., Groom and Bahr (1992), Jiracek (1990)). Some of
these approaches will be discussed in a later section (Section 2.9.2).

In the 3D case, the same distortion effects can also be observed. Furthermore, several
additional galvanic distortion effects appear, as result of field curvature, that can be reduced
to two types: flow-around (the current flows around resistive structures) and concentration
(the current concentrates in conductive structure). (Berdichevsky and Dmitriev, 1976b)
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2.8 data acquisition

The acquisition of MT data involves the recording of the time variations of the natural
electric and magnetic fields simultaneously. In the logistically ideal case, both horizontal
and the vertical magnetic fields are recorded, but if necessary one can omit the vertical
component. For the electric field only the two horizontal components are recorded. In the
first place, setting up a 100 m vertical electrical dipole is logistically very expensive (or
impossible), but the main reason is that the vertical electric field at the air-Earth interface is
(per boundary condition) zero (see Section 2.6.2).

There are various types of instruments used to measure MT data. The equipment used for
the broad-band sites within the SAMTEX project was a system from Phoenix Geophysics.
The receivers, MTU5s and MTU5As, are able to record data in the MT range (0.001 s - 50

000 s) and the AMT-MT range (0.0001 s - 50 000 s) respectively. The MTU5s/MTU5As record
up to two electric and three magnetic channels simultaneously. A GPS antenna provides the
geographic coordinates and the elevation of the site, and - more importantly - a continuous
time signal, that allows accurate recording of the time series to allow synchronization
with remote reference stations. The broad-band magnetotelluric (BBMT) magnetic field
sensors used were the 1,41 m long MTC-50 induction coils. According to the manufacturer’s
specifications, these coils provide data in the range 0.0025 s to 50 000 s. However, the longest
usable periods recorded in the SAMTEX project are ’only’ a few 1000 s, because of the
short acquisition time of 2-3 days at each site, relative low signal due to a minimum in
the solar cycle and cultural noise. The sensors used for measuring the electric field were
non-polarising lead, lead-chloride (Pb − PbCl) electrodes.

A number of long period MT (LMT) sites were also installed during the SAMTEX project. So-
called LIMS instruments developed by, and borrowed from, the Geological Survey Canada
as well as Ukrainian instruments called LEMIs and copper, copper-sulphate (Cu − CuSO4)
electrodes were used to record the long period data. Since the work for this thesis is only
based on BBMT data, the LMT equipment will not be discussed further (more details about
the LEMIs can be found on the manufacturer’s webpage http://www.isr.lviv.ua/lemi417.htm).

The ideal location for recording MT data is far from human interference, far from electrical
noise (e.g., DC train lines, electric fences, power lines and mining activity) and in an area
with minimal topography, that allows equipment protection (i.e., soft soil that allows the
burying of all sensors and cables, but also has a shady spot for the recording unit to protect
it from the sun and overheating). Figure 2.12 shows a typical setup used for the sites in the
SAMTEX project. The recording unit and a ground electrode were at the centre of the layout.
Four other electrodes were located in geographical orientation with respect to magnetic
north - typically 50 m each - north, south, east and west of the ground electrode. To lower
the contact resistance with the ground and to keep the electrodes moist for longer in the
hot and dry climate, they were put into buckets filled with mud made from local soil and
salt water. This electrode-bucket set was buried in the ground. The magnetic sensors were
also buried in the ground once they were aligned north-south or east-west (horizontal coils)
and levelled (all coils). The sensors were buried to protect them against human and animal
interference, avoid movement caused by wind or animals dragging on the cables and to
minimize temperature effects. Daily temperatures in the field area varied from above 40°C
during the day to several degrees below zero during the night. The temperature changes
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Figure 2.12: Sketch of a broad-band MT site layout including photos of the instrument components
in the field. In the centre of the layout is the recording unit, which consists of a MTU5A
powered by car batteries protected in a blue metal box. Four electrodes, to record
the variation of horizontal electric fields, are orientated N-S and E-W and are buried
typically 50 m away from the ground electrode (photo: electrode in mud, ready to be
buried). The fluctuations of the magnetic field components are recorded by two N-S and
E-W oriented horizontal coils (photo: levelled and aligned coil, ready to be buried) and
one vertical broad-band coil (photo: levelled coil, ready to be covered by a protective
bin). The GPS antenna provides the MTU5A with the site geographic coordinates and
more importantly with a continuous time signal, which is essential for recording the
times series and later for remote reference processing with other sites (photo: GPS
antenna, not yet buried).
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are damped beneath the ground surface: at only a few decimetres depth below the surface
the variation is less than 1°C in the daily cycle.

2.9 data processing, analysis, modelling and inversion

A typical workflow for 2D data processing, analysis, decomposition and modelling is
described by Spratt et al. (2009) using the example of data from the Wopmay orogen,
Northwest Territories, Canada. First the time series data were inspected and bad or null
data removed. Next, a robust, remote-reference code is used to convert the time series into
MT response estimates. If broadband and long periodic data were available at the same site,
they were merged to produce a single response curve per site. An analysis for distortion
effects resulting from auroral and equatorial electrojets followed, if the data were recorded
at high or low latitudes respectively.

Jones (2006) showed that 1D depth estimates are valid in the 2D case if the two 2D modes,
TE and TM, are totally decoupled. Therefore, they can be used to derive a first order estimate
of the maximum investigation depth at each site. The next important step is to analyse the
MT responses for galvanic distortion and to determine the most consistent geoelectric strike
direction. With the results of the distortion analysis, a single site, frequency independent
decomposition can be applied to derive the most accurate regional 2D impedances. D+ or
ρ+ (more details in Subsection 2.9.3) approaches can then be used to support the selection
and removal of unreliable data points that have larger scatter and large error bars. The data
set can then be inverted for subsurface electrical resistivity structure. For the inversion,
different parameters (e.g., regularization and smoothing factors) have to be chosen carefully
and separate inversions of different parts of the data set may be required as well.

In the following sections, most of these processing and analysis steps are described in more
detail, expect for the depth approximations (see earlier section), the merging of broad-band
and long period data (the data set used for this thesis contains broad-band data only)
and the correction for distortion due to source effects related to high or low latitudes
(as mentioned earlier, the data were recorded in mid-latitudes and do not require this
treatment).

2.9.1 Time series to transfer functions

The MT transfer functions are obtain by processing the time series of the acquired data.
Jones et al. (1989) describe several methods of deriving transfer function estimates. All these
processing schemes involve the following steps (in one way or another): preconditioning
of the data, conversion from the time to frequency domain and estimation of the transfer
functions.

Pre-conditioning is done to reduce the effects of trends and to remove severe noise (spikes).
Also part of pre-conditioning is the splitting of the time series into segments of different
length, depending on the period being calculated. The statistical result will be the better
the more segments are used. Since the segments are of finite length, a Fourier Transform
would cause spectral distortion by permitting ’leakage’ of power (Jones, 1977). To avoid
spectral distortion, a window function (such as e.g., Parzen window or Hamming window)
is generally applied to the time segments.
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Once pre-conditioned, the windowed time series segments are converted into the frequency
domain using a (Discrete or Fast) Fourier Transform or a wavelet transform. Each of the
measured field components must be calibrated with respect to the particular instrument’s
sensitivity. Calibration is achieved by applying the instrument calibration functions that are
either frequency dependent (e.g., induction coil) or frequency independent (e.g., fluxgate
magnetometer). Because the dispersion relation of Weidelt (1972) predicts that neighbouring
frequencies provide similar transfer functions, evaluating about six to ten frequencies per
decade will give reasonable result, but less could lead to aliasing effects in the frequency
domain (Simpson and Bahr, 2005). One should keep in mind that the more frequency
estimates that are available, the higher the resolution of the resulting transfer function at
the expense of increasing variance.

Once in the frequency domain, the raw power spectra for each time segment for each
channel are used to calculate the auto and cross spectra, which are the products of the
field components and their complex conjugates. These spectra are stored in the so-called
spectral matrix:

Bx By Bz Ex Ey

Bx ·B∗
x By ·B∗

x Bz ·B∗
x Ex ·B∗

x Ey ·B∗
x Bx

By ·B∗
y Bz ·B∗

y Ex ·B∗
y Ey ·B∗

y By

Bz ·B∗
z Bz

Ex · E∗x Ey · E∗x Ex

Ey · E∗y Ey

For the same evaluation frequency, several spectral matrices will be stacked and potentially
manually edited or weighted using statistical techniques.

The next step is the estimation of the transfer functions - the impedance tensor and tipper
vector:

Ex(ω) = Zxx(ω) ·Hx(ω) + Zxy(ω) ·Hy(ω) + δZ(ω) , (2.101)

Ey(ω) = Zyx(ω) ·Hx(ω) + Zyy(ω) ·Hy(ω) + δZ(ω) , (2.102)

Hz(ω) = Tx(ω) ·Hx(ω) + Ty(ω) ·Hy(ω) + δT(ω) , (2.103)

where δZ(ω) and δT(ω) represent uncorrelated noise (in this case electrical noise), that is
required because measurement errors make the transfer function equations inexact (Simp-
son and Bahr, 2005).

Jones et al. (1989) state that there are two types of error estimates in the estimation of trans-
fer functions: statistical and biased errors. The statistical error estimate gives a quantitative
measure of precision of an estimate and generally will be reduced by analysing more data
or by using robust methods, which eliminate errors due to Gaussian residuals. Sims et al.
(1971) discuss the biased error. They state that there are six possible ways to estimate each
impedance element: two of them turn out to be unstable for the 1D case, whereas the other
four are quite stable. Two of the four stable estimates are biased down by random noise in
the magnetic field H but are not affected by noise in the electric field E, whereas the other
two are biased up by noise in E, but are unaffected by noise in H. Goubau et al. (1978) and
Gamble et al. (1979) introduced remote reference processing to avoid these biased errors
due to noise. They measure two extra channels (electric and/or magnetic) at a site remote
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from the local MT site to use as references. Often several MT sites, that were recording
simultaneously, are used as remote references for each other.

Correlated noise components between the local and remote fields are not removed by the
remote reference processing approach and can cause bias effects. Remote reference results
always have larger associated statistical noise than the standard single station methods
(Jones et al., 1989).

Commonly used least-squares and robust processing techniques are based on statistical
processing methods, which solve Equations 2.101, 2.102 and 2.103 as a bivariate linear
regression problem, to remove noise from MT data (Simpson and Bahr, 2005). Therefore
the impedance elements can be estimated as

Zxx =
〈ExR∗x〉

〈
HyR∗y

〉
−
〈
ExR∗y

〉
〈HyR∗x〉

DET
, (2.104)

Zxy =

〈
ExR∗y

〉
〈HxR∗x〉− 〈ExR∗x〉

〈
HxR∗y

〉
DET

, (2.105)

Zyx =
〈EyR∗x〉

〈
HyR∗y

〉
−
〈
EyR∗y

〉
〈HyR∗x〉

DET
, (2.106)

Zyy =

〈
EyR∗y

〉
〈HxR∗x〉− 〈EyR∗x〉

〈
HxR∗y

〉
DET

, (2.107)

and the tipper elements are given by

Tx =
〈HzR∗x〉

〈
HyR∗y

〉
−
〈
HzR∗y

〉
〈HyR∗x〉

DET
, (2.108)

Ty =

〈
HzR∗y

〉
〈HxR∗x〉− 〈HzR∗x〉

〈
HxR∗y

〉
DET

, (2.109)

where

DET = 〈HxR∗x〉
〈
HyR∗y

〉
−
〈
HxR∗y

〉
〈HyR∗x〉 . (2.110)

The complex conjugate quantities R∗x and R∗y theoretically represent any reference field,
either local or remote, but also either of the electric or magnetic field components. In
practise, the most commonly used reference fields are the horizontal magnetic fields from a
remote site (often called remote H). Remote H is the generally preferred choice because the
magnetic field is usually less affected by noise than the electric field (except for frequencies
within the MT dead-band). Therefore a remote H estimate is usually the least biased and
statistically the best.

There are several commercial as well as free processing codes available (e.g., Egbert and
Booker (1986), Egbert (1997), Chave and Thomson (2004). Phoenix commercial software is
based on Jones and Jödicke (1984)/method 6 in Jones et al. (1989)). These various different
codes perform with varying degrees of success depending on the nature and quantity of
the noise contained within the recorded signal and the chosen parameter settings (e.g.,
coherence threshold) in the code. Therefore, it is sometimes useful to apply different
processing codes (or the same code with different parameters) to the same data, or only
use parts of the data, because the noise contamination might vary during the recording
time window (often the night-time is quieter/less noisy - especially at high frequencies).
Deriving a final set of transfer functions for modelling and inversion is a time consuming
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procedure that requires much trial-and-error. In the end it is also a relatively subjective
decision as to whether the final transfer function is acceptable or whether more work is
needed.

2.9.2 Distortion analysis and removal

The distortion problem was described in Section 2.7. In order to remove the distortion
effects, different approaches of distortion analysis and decomposition or correction can
be applied to the data. For example Sternberg et al. (1988), Pellerin and Hohmann (1990)
and Sternberg (1993) proposed using transient electromagnetic (TEM) data to correct for
static shifts in MT responses, either by joint inversion allowing vertical shifts in the MT
apparent resistivity curves or by using a correction scheme that is based on 1D inversion of
TEM soundings. From the estimated 1D structure, a synthetic MT response is computed
for short periods (6 1s). The observed MT curves are then shifted to match the computed
curves in order to eliminate static shifts. This strategy is only accurate if the overlapping
region between MT and TEM is 1D; for multidimensional environments the approach
might provide a useful indication of a static shift problem, but often there are no TEM
data available at MT sites. A different approach is described by de Groot-Hedlin (1991) and
de Groot-Hedlin (1995), where she tries to invert for the static shift (de Groot-Hedlin, 1991)
or the full electric galvanic distortion matrix (de Groot-Hedlin, 1995) and the resistivities
(in 2D) simultaneously to find the smoothest model.

One of the most commonly used decomposition technique to obtain the regional 2D strike
direction, a measure of the anisotropy, a measure and description of the galvanic distortion
effects from distorted, measured data is the one by Groom and Bailey (1989) (see below). But
there are also several other techniques available, e.g., Swift (1967), Bahr (1988), Weaver et al.
(2000) and Martí et al. (2005), which will not be discussed in more detail. Unlike previous
approaches, where a 2D regional structure is assumed, Utada and Munekane (2000), Garcia
and Jones (2002b) and Becken et al. (2008) tried to solve the problem of distortion removal
for a 3D environment. Another approach allowing for a 3D background structure is the
phase tensor proposed by Caldwell et al. (2004), which is not a decomposition technique
but a diagnostic and characterisation procedure that will be described later in this section.

Groom-Bailey decomposition

Bailey and Groom (1987), Groom (1988) and Groom and Bailey (1989) were the first to
propose a distortion tensor decomposition that is based on a physical model of distortion
for a 2D regional impedance (based on Larsen’s (1977) decomposition for model consisting
of a local, small-scale 3D anomaly over a layered Earth). The approach neglects the magnetic
galvanic distortion and only deals with the real and frequency independent electric galvanic
distortion matrix. The aim of the Groom-Bailey decomposition is to factorise the measured
impedance Z

obs
into a rotation matrix R, the distortion matrix C and a scaled regional 2D

impedance tensor Z
2D

, as given by Equation 2.100, and therefore to separate the local 3D
distortion from the regional 1D or 2D response.

Groom (1988) and Groom and Bailey (1989) use a parametrisation of the distortion matrix
that has a physical meaning, but also separates determinable and indeterminable parts. The

43



2 mt theory

parametrisation is a product of a scaling or gain factor, g, and three tensors: twist, T ,
shear, S and local anisotropy, A :

C = g T S A . (2.111)

These matrices are given by modified Pauli spin matrices, which have been normalised to
ensure that the elements of T , S and A remain bounded during computations (Groom and
Bailey, 1989).

Figure 2.13 illustrates the effects of twist, shear and distortion by the delocation and/or
deformation of a group of unity vectors, if these effects are applied. The anisotropy tensor
(or splitting tensor) stretches the two field components by different factors:

A =
1√

1 + a2

(
1 + a 0

0 1 − a

)
. (2.112)

The shear tensor is given by

S =
1√

1 + s2

(
1 s

s 1

)
, where s = tan φs , (2.113)

twist shear anisotropy

Figure 2.13: Sketch to illustrate the effects of twist, shear and anisotropy. On the top is a group of
unity vectors with 2 reference vectors in red and blue. On the bottom are the groups of
vectors after application of (from left to right) twist (Eq. 2.114), shear (Eq. 2.113) and
anisotropy (Eq. 2.112). The black dashed lines indicate the original position and length
of the two reference vectors (red and blue), which are now delocated and/or deformed.
Redrawn from Groom (1988) and Groom and Bailey (1989).
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and imposes an anisotropy on the axes that bisects the principle axes of the regional
induction. In Figure 2.13 the sketch of the shear effect shows that the red vector is deflected
clockwise by an angle φs, whereas the blue one experience a counter-clockwise deflection
by the same angle. Therefore the shear s is characterised by the shear angle φs. Note that
shear results in non-orthogonal axes. The twist tensor

T =
1√

1 + t2

(
1 −t

t 1

)
, where t = tan φt , (2.114)

simply rotates the electric field through a clockwise angle φt. The gain g finally performs
an overall scaling of the electric field. Neither the gain nor the anisotropy can be determined
separately from Z

2D
, i.e., Z

′

2D
= gA Z

2D
both look like equally valid ideal 2D impedance

tensors. The fact that gain and anisotropy cannot be separated results in apparent resistivity
curves that are shifted by an unknown scaling factor, while the shapes of the apparent
resistivity and impedance phase curves remain unchanged. These are the so-called static

shifts.

The factorisation of the distortion matrix can be stated explicitly as

C =
g√

(1 + t2)(1 + s2)(1 + a2)

(
1 −t

t 1

)(
1 s

s 1

)(
1 + a 0

0 1 − a

)
(2.115)

=
g√

(1 + t2)(1 + s2)(1 + a2)

(
(1 + a)(1 − ts) (1 − a)(s − t)

(1 + a)(s + t) (1 − a)(1 + ts)

)
. (2.116)

Groom and Bailey (1989) approximate the case of ’weak’ distortion, where t, s and a are all
much less than unity and therefore all the second and third order terms of t, s and a can
be neglected, as

C ≈ g

(
1 + a s − t

s + t 1 − a

)
. (2.117)

Groom and Bailey (1989) showed that in general two solutions exist, but only one is mean-
ingful. One solution results in |s| < 1 and the other in |s| > 1. An intuitive consideration
of the effect of the shear operator (Equation 2.113) indicates that a shear angle larger than
45° is not meaningful (because it implies a reversal of the current flow direction), and it is
therefore reasonable to require, for a physically meaningful solution, that |s| 6 1.

Jones and Groom (1993) demonstrated that the determination of strike angle from MT data
has to be treated with care if both noise and local galvanic distortion are present. They
stated that twist and shear are more stable over a wide period band than the regional
strike direction, as distortion, caused by charge effects, dominates over induction, caused by
currents. They warn that the choice of distortion parameters imposes a coordinate system
on the MT data, which leads to erroneous strike determination. Therefore they iterated
between constraining the distortion parameters and the strike until a self-consistent result
was obtained. High twist and shear indicate strong distortion; if the shear is unity, the local
current channelling is so severe that the MT data only contain information from a single
electric field direction, and no method will ever be able to extract the regional impedances
from both modes (Jones and Groom, 1993).
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McNeice and Jones (2001) proposed an extension to the Groom-Bailey decomposition
method in which a global minimum is sought to determine the most appropriate strike
direction and distortion parameters for a range of frequencies and a set of MT sites. This
multisite, multifrequency analysis is useful to find an appropriate strike direction over the
whole profile length (or segments of it) and at all frequencies to allow modelling the data
in 2D. McNeice and Jones (2001) developed a freely available computer program called
strike that decomposes data using this extended Groom-Bailey approach. The most recent
version of strike also allows an analysis of a depth band (using the Niblett-Bostick depth
approximation) to accommodate the fact that in certain areas the penetration depth of
neighbouring sites may be very different. The same period might sense completely different
depths, e.g., in trying to find a common strike angle, a 10 s period might investigate crustal
depths at one site, whereas at the next site 10 s might have a lithospheric mantle investiga-
tion depth. In such cases it is very useful to define a depth range instead of a frequency
range for the analysis.

It is worth noting that decomposition to strike is not equivalent to a simple rotation into
that direction. When applying a decomposition, the impedance elements are recalculated,
most distortion effects are removed and only static shifts remain. Spratt et al. (2009) use the
maximum phase difference in decomposed data as an indication of dimensionality, saying
they can treat their data as 1D if the maximum phase difference is well below 10° over a
broad period band.

Phase tensor analysis

The MT phase tensor approach was first published by Caldwell et al. (2004). It is based on
the fact that only the amplitudes of the observed electric field are distorted by near-surface
heterogeneities and that the phase relationship between the horizontal electric and magnetic
field vectors will be virtually unaffected if the distortion is purely galvanic. In contrast to
other MT distortion analysis approaches, the phase tensor method also allows both the
heterogeneity and regional conductivity structure to be 3D. Caldwell et al. (2004) prove that
the phase tensor is independent of the galvanic distortion as follows:
The real, second-rank phase tensor Φ is defined as the ratio of the real X and imaginary
parts Y of the complex impedance Z = X + i Y, i.e.,

Φ = X−1Y . (2.118)

In the presence of galvanic distortion, the observed impedance Z = C Z
R

, where Z
R

=

X
R

+ i Y
R

is the regional impedance and C is the distortion tensor. Therefore the distorted
real part may be written as X = C X

R
, and the distorted imaginary part as Y = C Y

R
. Based

on these relations, it is obvious that the observed and regional phase tensor are identical
and independent of the galvanic distortion tensor:

Φ = X−1 Y

=
(
C X

R

)−1 (
C Y

R

)
= X−1

R
C−1C Y

R

= X−1
R

Y
R

= Φ
R

.

(2.119)
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In a Cartesian coordinate system (x1,x2) the phase tensor may be written in terms of the
real and imaginary parts of the impedance tensor Z(

Φ11 Φ12

Φ21 Φ22

)
=

1

det(X)

(
XyyYxx − XxyYyx XyyYxy − XxyYyy

XxxYyx − XyxYxx XxxYyy − XyxYxy

)
, (2.120)

where det(X) = XxxXyy − XyxXxy is the determinant of X.

Like a vector which is characterized by its direction and magnitude, a real second-rank
tensor is characterized by a direction and three coordinate invariants, which are scalar
quantities that are independent of the coordinate system. Caldwell et al. (2004) define the
three invariants of the phase tensor as maximum (Φmax) and minimum (Φmin) tensor
values and the skew angle β. The direction is given by the angle α, which expresses the
tensor’s dependence on the coordinate system (x1, x2). Figure 2.14 shows a sketch of the
graphical representation - an ellipse - defined by these four quantities. The major and minor
axes of the ellipse represent the principal values of the tensor (Φmax and Φmin) with the
orientation of the major axis specified by the angle α − β.

α

β

Φmax

Φmin

X 1

X 2

Figure 2.14: Graphical representation of the phase tensor. The lengths of the ellipse axes, which
represent the principle axes of the tensor, are proportional to the principle values of
the tensor: Φmax and Φmin. If the phase tensor is non-symmetric, a third coordinate
invariant is needed to characterize the tensor: the skew angle β. The direction of the
major axis of the ellipse is given by α − β and defines the relationship between the
tensor and the observational reference frame (x1, x2). Redrawn from Caldwell et al.
(2004).

The phase tensor can be written in terms of its invariants Φmax, Φmin and β and the angle
α:

Φ = RT (α − β)

(
Φmax 0

0 Φmin

)
R(α + β) , (2.121)
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where RT is the transpose or inverse of the rotation matrix, i.e., RT (θ) = R−1(θ) = R(−θ),
and the rotation matrix R(α + β) is given by

R(α + β) =

(
cos(α + β) sin(α + β)

− sin(α + β) cos(α + β)

)
. (2.122)

The two angles α and β can be expressed by

α =
1

2
tan−1

(
Φ12 + Φ21

Φ11 − Φ22

)
, (2.123)

and

β =
1

2
tan−1

(
Φ12 − Φ21

Φ11 + Φ22

)
. (2.124)

The principals Φmax and Φmin of the tensor are given by

Φmax =
(
Φ2

1 + Φ2
3

)1/2
+
(
Φ2

1 + Φ2
3 − Φ2

2

)1/2
, (2.125)

Φmin =
(
Φ2

1 + Φ2
3

)1/2
−
(
Φ2

1 + Φ2
3 − Φ2

2

)1/2
, (2.126)

where Φ1, Φ2 and Φ3 are related to the trace (tr(Φ)), the determinant (det(Φ)) and the
skew (sk(Φ)) of the tensor respectively,

Φ1 =
tr(Φ)

2
=

Φ11 + Φ22

2
,

Φ2 =
(
det(Φ)

)1/2
= (Φ11Φ22 − Φ12Φ21)1/2 and

Φ3 =
sk(Φ)

2
=

Φ12 − Φ21

2
.

In the simplest case of a uniform conductivity halfspace, a circle of unit radius represents
the phase tensor at all periods. For the more general case of an isotropic, 1D structure,
Φmax − Φmin still should be zero, and the tensor will be represented by circles in which
the radius will vary with period. For example, the radius will increase, if the conductivity
increases with depth (Caldwell et al., 2004). In the 2D case, Φmax − Φmin will not be zero,
and the phase tensor will be represented by an ellipse. A necessary, but not significant,
condition for a 2D regional conductivity structure is that β = 0, i.e., the phase tensor is
symmetric. For the 3D case the phase tensor is not symmetric and accordingly the skew
angle β will be non-zero. Figure 2.15 shows phase tensor maps at three different periods
(0.0316 s, 0.316 s and 3.16 s) with the colour representing the skew angle β. The model used
is Caldwell et al.’s (2004) 3D structure of a small 10 Ωm, near-surface cube and a much
larger (regional) 1 Ωm body at depth, both embedded in a 100 Ωm halfspace. Although the
resistivity structure is clearly 3D, most of the skew angles are relatively small. Caldwell et al.
(2004) state that while a large value of the skew angle necessarily implies a 3D regional
conductivity structure (assuming perfect, noise-free data), a small value of the skew angle
is not necessarily a good indication of the closeness of the conductivity structure to 2D.
They recommend that the constancy of the direction of the principle axes of the phase
tensor with period and with location along strike is a much more reliable indicator of
two-dimensionality.
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Figure 2. Graphical representation of the tensors involved in the galvanic distortion of a 2-D impedance tensor. The coordinate axes shown are aligned parallel
and perpendicular to the strike of the 2-D conductivity structure. The phase tensor, represented by the ellipse shown in (a), is derived from the real (solid line)
and imaginary (dotted line) parts of the distorted impedance tensor shown in (b). These ellipses (b) represent the distortion of the 2-D regional impedance
tensor (d), characterized by a single set of principal axes aligned with conductivity structure, by the distortion tensor represented by the ellipse shown in (c).

either in the neighbourhood of the measurement site or regionally.
Only where further analysis shows that the phase tensor skew an-
gle (β) is insignificant for all periods greater than some minimum
value can we infer that the regional conductivity structure is 2-D,
and thus that the observed response has been distorted by a localized
conductivity heterogeneity.

Properties in 3-D

We will demonstrate the properties of the phase tensor in 3-D us-
ing synthetic data calculated with the modelling code described in
Xiong (1992) and Xiong & Tripp (1995). The model used for this
demonstration (Fig. 3) consists of a small conductive (10 � m) cube
situated near the surface and a much larger (regional) conductive
(1 � m) body at depth both embedded in a 100 � m half-space. The
cube is situated near the corner of the rectangular body in the area
where 3-D effects are expected to be large. Maps of the phase tensor
ellipses at three different periods (0.0316, 0.316 and 3.16 s) with
contours showing the direction of the major axes and skew angle
(β) are shown in Figs 4 and 5, respectively.

Where the difference in the lengths of ellipse axes (�max and�min)
is less than 2 per cent of their corresponding geometric mean (i.e. of
the radius of a circle with the same area as the ellipse), the ellipses
in Fig. 4 have been left unfilled. At these locations, where the phase
tensor is indistinguishable from a circle, the azimuth calculation is
potentially unreliable (unstable) because of the limitations in the
accuracy of the forward modelling code.

At short periods the MT response will be unaffected by the deep
conductor and the observed response will reflect the influence of
the near-surface body alone. This can be seen in the phase tensor
response (Fig. 4a) as a radial alignment of the major axes around
the conductive cube. If the cube is resistive (not shown) rather than
conductive the phase tensor ellipses are oriented tangentially. This
change in the orientation of the principal axes suggests that the
direction of the major axes indicates the preferred flow direction of
the induction current.

Support for this interpretation is provided by the induction arrows
(Parkinson 1962) also shown in Fig. 4. These arrows are graphical
representations of the real part of the vertical magnetic field transfer
function or tipper vector (K) defined by the equation

Hz = −K·H, (27)

where Hz is the vertical component of the total magnetic field and
H is the horizontal magnetic field vector. In situations where the
conductivity distribution varies laterally, the real part of the tipper
vector will point towards the region of highest conductance. At

10 Ωm

1 Ωm

100 Ωm

Figure 3. Map view of the conductivity model used to illustrate the prop-
erties of the phase tensor in a 3-D situation. The model consists of a small
conductive (10 � m) cube, sides 0.250 km, with its top 50 m below the sur-
face and a much larger rectangular 1 � m body (7 × 3 × 3 km3) buried 1.5
km below the surface. Both bodies are embedded in a 100 � m half-space.
The grey area shows the region covered by the tensor ellipse maps in Figs 4
and 5.

short periods (Fig. 4a), outside the immediate vicinity of the cube,
where the conductance sensed by the EM field will be approximately
cylindrically symmetric, the induction arrows and major axes of the
phase tensor are parallel, consistent with the interpretation of the
principal axes of the phase tensor suggested above.

At intermediate periods (Fig. 4b) the alignments of the major axes
reflect a mixture of the effects of both the near-surface and deep
conductors. At long periods (Fig. 4c), inductive effects produced
by the cube are insignificant and the deep conductor dominates
the phase response, the alignment of the major axes indicating the

C© 2004 RAS, GJI, 158, 457–469

(a) Sketch of the 3D model, taken from
Caldwell et al. (2004)
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(b) Phase tensor map at 0.0316 s
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(c) Phase tensor map at 0.316 s
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(d) Phase tensor map at 3.16 s

Figure 2.15: Example phase tensor maps after Caldwell et al. (2004). Panel (a) shows a plan view of
the 3D resistivity structure that consists of a small (250 m x 250 m x 250 m) 10 Ωm cube
with its top 50 m below the surface and a larger (7 km x 3 km x 3 km) rectangular 1 Ωm
body buried 1.5 km below the surface. Both bodies are embedded in a 100 Ωm halfspace.
The grey area (in (a)) indicates the region covered by phase tensor ellipse maps in (b) to
(d) for three different periods (0.0316 s in (b), 0.316 s in (c) and 3.16 s in (d)). The colour
filling of the phase tensor ellipses (normalised by Φmax) in (b) to (d) show the skew
angle β. The lateral extent of the two bodies is indicated by grey lines.
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Heise et al. (2006) and Caldwell et al. (2004) showed that the presence of anisotropy does
not cause a phase split, it only affects the amplitudes of the MT responses. The observation
of a phase split between the principle phase values indicates only that a conductivity
gradient (lateral or vertical) exists. Phase splits that are coincident with an anisotropic layer
are produced by the interface between the overlying isotropic and the deeper anisotropic
material.

Although the phase tensor method cannot be used to recover an undistorted impedance
tensor, it has potential as a data imaging and modelling tool, since the principle axes of the
phase tensor ellipse (Φmax, Φmin) indicate the horizontal directions of the maximum and
minimum induction current, which reflects lateral variations in the conductivity structure
(Caldwell et al., 2004). The phase tensor skew angle (β), and the variation of the direction of
the major axis of the phase tensor ellipse can help in determining the dimensionality of the
structure. Heise et al. (2006) successfully used the phase tensor approach for a trial-and-error
forward modelling of a data set from the Taupo Volcanic Zone, New Zealand.

2.9.3 D+ and ρ+

The D+ approach is work published by Parker (1980), Parker and Whaler (1981) and
Parker (1982). The D+ method is based on the fact that the discrete MT response of any
one-dimensional conductivity profile can be matched arbitrarily well at a finite number
of frequencies by the response of a finite system of delta functions. They perform 1D
modelling of the admittance c. In a further development of the approach, called ρ+, Parker
and Booker (1996) use the logarithm of the admittance, log(c), rather than the admittance
itself. The admittance is related to the apparent resistivity ρa and the impedance phase Φ

by

ρa = µ0ω|c|2 (2.127)

and

c = |c|ei(Φ−π/2) . (2.128)

Therefore the 1D code by Parker and Booker (1996) is able to calculate a model from
either apparent resistivities or phases or both. This can be used for a consistency check
of measured data and give helpful guidance for the selection - or rejection - of apparent
resistivity and/or phase values at certain frequencies. An example is given in Spratt et al.
(2005).

2.9.4 Forward modelling and inversion

Once the MT data are processed, analysed, decomposed (removal of distortion effects and
rotation into strike direction) and the D+ or ρ+ consistency check has been performed (to
reject bad data points), the data set is ready for the modelling process. Forward modelling
and inversion are used to produce a 1D, 2D or 3D model based on the measured data to
determine the subsurface conductivity structure. These models help to relate the resistivity
structure to geology and other geophysical models to define the current state of the subsur-
face and potentially provide an indication of Earth processes and Earth history.
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The procedure of generating synthetic data responses for a given conductivity structure
is called forward modelling. The conductivity model (in 1D, 2D or 3D) will be dis-
cretised into cells that form the model mesh. Based on this discretised form of the model,
the basic equations of MT (including appropriate boundary conditions) will be solved. The
exact formulation of the equation system depends on the approximation used (e.g., finite
difference (FD), finite element (FE) and integral equation (IE) methods), but generally the
equation system is solved for one of the fields (electric or magnetic) everywhere in the mesh.
Since the electric and the magnetic fields are related to each other by Maxwell’s Equations,
the calculated field can be used to determine the other one (also everywhere in the mesh).
Knowing the electric and magnetic fields, it is easy to estimate the impedance (or resistivity
and phase or tipper) values at the observation locations. The derived synthetic response
will be compared with the measured data, and their difference is usually presented by an
RMS misfit. Finding a model representing the observed data reasonably well by forward
modelling is a time consuming trial-and-error process, where the input model has to be
changed continuously by hand. The automatic optimisation of the model between the
different forward solutions is known as the inversion process. The applied changes to
the forward models are driven by the minimisation of the misfit between the observed data
and that predicted from the model.

Forward modelling codes for MT data are available for 1D, 2D and 3D cases, whereas
in the inversion case mainly 1D and 2D codes are available for standard applications
(e.g., REBOCC, Siripunvaraporn and Egbert (2000); OCCAM 1D and 2D, Constable et al.
(1987); RLM2DI, Rodi and Mackie (2001), of which an updated version is implemented
in Geosystem’s commercial software WinGLink®). Although the number of 3D inversion
codes has grown in recent years, only one code (Siripunvaraporn et al., 2005) has become
freely available. However, Siripunvaraporn et al.’s (2005) inversion requires a huge amount
of computer memory, so that an application to a larger data set on a normal PC is impossible.

The 2D code used within this thesis is the one by Rodi and Mackie (2001) implemented
in WinGLink® from Geosystem. The forward part of the code is described by Mackie
et al. (1988). It is based on a finite difference approximation of the Maxwell Equations and
uses a rectangular mesh to discretise the model. The inversion part of the code (Rodi and
Mackie, 2001) is based on a nonlinear conjugate gradients scheme to minimise a regularised
objective function (Tikhonov regularisation (Tikhonov and Arsenin, 1977)).

The 3D forward modelling and inversion approach - as well as more details on inversion
schema - will be discussed in Part III of this thesis.

2D modelling and inversion of 3D structures

Although real MT data are often measured over more or less dominant 3D structures,
the standard analysis and modelling approach is still to work in 2D. When using such a
questionable approach, one should be aware of the problems and limitations. Therefore a
few studies dealing with the use of 2D approaches in the presence of 3D geology are briefly
mentioned here.

For example de Lugão and Kriegshäuser (1997) calculated synthetic 2D and 3D data for two
different 3D structures - first a resistive pipe (mineral deposit) and then a conductive struc-
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ture (geothermal target). The comparison of these responses showed that for the resistive
feature the TE responses of the 2D and 3D data agree better, whereas for the conductive case
the TM responses match better. They also used the 3D responses for separate 2D inversion
of the TE and TM modes. The result of the comparison of the responses was confirmed; for
the resistive target the 2D inversion of the 3D TE mode yielded models closer to the original
model, with better agreement between the synthetic input and the modelled MT data, but
in the conductive case the TM model gave the better 2D model. Therefore de Lugão and
Kriegshäuser (1997) concluded that in a case of a resistive, 3D target a 2D TE inversion is
more suitable and TM should be chosen for a conductive target.

Other authors (e.g., Garcia et al. (1999), Ledo et al. (2002) and Ledo (2005)) also point out
the problems and limitations of using 2D approaches, modelling and inversion for 3D data.
Garcia et al. (1999) inverted the Kayabe dataset (a geothermal target in Hokkaido, Japan)
and found that the resulting 2D model contains questionable conductivity structures that
might be artefacts resulting from the 2D algorithm trying to match 3D effects.

Ledo et al. (2002) designed a synthetic model that contains the two major problems asso-
ciated with 2D interpretation of 3D data: the presence of structures with different strike
directions and the effects of a finite body length. In addition to these 3D effects, they applied
galvanic distortion to their synthetic data as well. They found that it is important to always
remove the small-scale galvanic distortion, no matter if the regional structure is 2D or 3D,
before applying 2D modelling. Although the data were 3D, they were able to retrieve the
first-order structure with 2D techniques. Ledo et al. (2002) conclude that the effects of finite
strike are not significant if the profile crosses a 3D conductive structure that has a strike
extent larger than about half a skin depth. In this case, both a TM-only and a combined
TE and TM mode 2D inversion image the conductive structure reasonably well, although
the TM-only inversion does not resolve the 2D structure below the conductor well. In the
case where the conductor is laterally off the profile, it is possible that ’phantom’ structures
will be imaged, if the end of the structure is not more than a skin depth away (Jones, 1983b;
Wannamaker et al., 1984).

One should always keep in mind that a 2D interpretation of 3D data is only an approx-
imation, of which the validity is not always obvious. In complex geological regimes, 3D
modelling and interpretation of MT data cannot be avoided.
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3
S O U T H E R N A F R I C A

This chapter provides an overview and background information about the area of interest -
southern Africa. The magnetotelluric experiment (SAMTEX) is briefly described as well
as previous geophysical work, together with an overview of the geology. This knowledge
will be of interest for the chapters dealing with the interpretation of the SAMTEX data (see
Chapter 4 and Chapter 5).

3.1 geology of southern africa

The geological structures and tectonic processes which formed southern Africa are dis-
cussed briefly, but the geological features of interest for this thesis will be discussed in more
detail: namely the Limpopo belt, the Zimbabwe Craton, the Magondi belt, the Ghanzi-Chobe
belt, the Okavango giant mafic dyke swarm and the Makgadikgadi Pans. Figure 3.1 shows
a chart of the geological time scales including the regional, southern African nomenclature
for certain eras.

Continental fragments formed before 2.5 Ga ago are known as Archaean cratons. These
cratons can be found world wide (Kusky and Polat (1999) categorised 35 cratons on all
continents, e.g., in Canada, USA, Scandinavia, Australia and southern Africa) and two of
them - the Kaapvaal craton (formed and stabilised between 3.7 and 2.7 Ga (de Wit et al.,
1992)) and the Zimbabwe craton (3.5 Ga to 2.6 Ga (Kusky, 1998; Horstwood et al., 1999)) -
form the core of the southern African continent and are known together as the Kalahari
craton. The crust of these earliest continental fragments in southern Africa is predominantly
a variable mixture of plutonic rocks with calcalkaline-like chemistry and supracrustal rocks,
such as sediments and volcanic rocks, which are often overprinted by greenschist facies
metamorphism. These granites and greenstones make up the granite-greenstone terrains of
the southern African Archaean cratons (de Wit et al., 1992). Figure 3.2 shows a rough outline
of the Kaapvaal and the Zimbabwe cratons including their surrounding mobile belts and
the granite-greenstone belts of the Kaapvaal craton (digital terrane boundaries courtesy of
Susan J. Webb, University of the Witwatersrand, Johannesburg, South Africa, and based on
known geology in South Africa and Zimbabwe, and primarily on interpretation of potential
field data in Namibia and Botswana, where thick Kalahari sands cover basement; Webb,
2009).

Since the Kaapvaal craton is known for its enormous concentration of accessible minerals,
this region has probably been more extensively investigated than any other Archaean craton.
The at least one billion year accretionary period of the Kaapvaal craton is subdivided by
de Wit et al. (1992) into two periods. The first period is the initial separation of the continen-
tal lithosphere of the craton from the mantle, which took place through plate-tectonic-like
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Eon Era Period Epoch Age (Ma) Regional
Holocene 0.0117 - 0

Pleistocene 1.81 - 0.0117

Pliocene 5.33 - 1.81 

Miocene 23.0 - 5.33 

Oligoncene 33.9 - 23.0 

Eocene 55.8 - 33.9

Palaeocene 65.5 - 55.8 

Upper 99.6 - 65.5 

Lower 146 - 99.6 

Upper 161 - 146 

Middle 176 - 161 

Lower 200 - 176 

Upper 229 - 200

Middle 246 - 229

Lower 251 - 246

Lopingian 260 - 251 

Guadalupian 271 - 260

Cisuralian 299 - 271

Pennsylvanian 318 - 299

Mississippian 359 - 318

Upper 385 -359

Middle 398 - 385

Lower 416 -398

Pridoli 419 - 416 

Ludlow 423 - 419

Wenlock 429 - 423

Llandovery 444 - 429

Upper 461 - 444

Middle 472 - 461

Lower 488 - 472 

Furongian 499 - 488

Series 3 510 - 499

Series 2 521 - 510

Terreneuvian 542 -521

Ediacaran 635 - 542 

Cryogenian 850 - 635

Stebian 1200 - 1000

Ectasian 1400 - 1200

Calymmian 1600 - 1400

Stratherian 1800 - 1600

Ososirian 2050 - 1800

Rhyacian 2300 - 2050

Siderian 2500 - 2300
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Figure 3.1: Geological time scale and regional southern African stratigraphy based on the interna-
tional commission on stratigraphy (ICS)’s international stratigraphic chart and time scale
generator (www.stratigraphy.org).
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Figure 3.2: Rough outline of the geological provinces and main structures of southern Africa
(digital terrane boundaries courtesy of Susan J. Webb, University of the Witwatersrand,
Johannesburg, South Africa, and based on known geology in South Africa and Zimbabwe,
and primarily on interpretation of potential field data in Namibia and Botswana, where
thick Kalahari sands cover basement; Webb, 2009). The Ghanzi-Chobe belt and the
Damara orogenic belt are not differentiated and are only outlined as one belt (Damara
mobile belt).

processes that are interpreted to be comparable to those forming modern-day ocean basins,
but in the mid-Archaean most likely occurred in shallower water depths (de Wit et al., 1992).
The second period was dominated by intra-continental and continental-margin processes,
where continental growth occurred mainly through a combination of tectonic accretion of
crustal fragments and subduction-related igneous processes (similar to that found today
along the margin of the Pacific). Evidence for the intra-continental and continental-margin
processes is the continental-shelf terrane of the central Limpopo belt that is located between
the granite-greenstone terranes of the Kaapvaal and the Zimbabwe cratons (de Wit et al.,
1992). Note that the accretionary scenario involving plate-tectonic-like processes is disputed,
e.g., Hamilton (1998) and Bleeker (2003) are in favour of sagduction and mantle plumes
being the dominant processes during the Archaean.
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3 southern africa

The Kaapvaal and the Zimbabwe cratons collided at about 2.7 - 2.6 Ga, and the collision
formed the Limpopo belt in between (van Reenen et al., 1987). These three Archaean regions
are often referred to together as the Kalahari craton (or Proto-Kalahari craton as proposed
by Jacobs et al. (2008), who define the Kalahari craton as the Archaean Proto-Kalahari craton
plus the Palaeoproterozoic Magondi belt, Rehoboth and Okwa terranes), which is bounded
to the northwest by the Palaeoproterozoic Kheis belt, Okwa terrane and the Magondi
belt. To the northwest of these belts are the Ghanzi-Chobe belt (northeast Botswana) and
the Damara belt (Namibia and northwest Botswana). The latter belt stabilised after the
Damara orogen, that records the Gondwanan assembly of the Congo-Kalahari-Rio de la
Plata cratons. First, at about 750 - 600 Ma, the Congo craton and the Rio de la Plata craton
(today in South America) collided and accreted, and later (about 550 Ma) suturing of the
Congo and the Kalahari cratons completed the Gondwanan assembly of southern Africa
(Prave, 1996).

The Laurentia-Kalahari collision that began at about 1.15 Ga will not be discussed here be-
cause it involved mainly the Namaqua-Natal belt and the southern margin of the Kaapvaal
craton (in South Africa) which are not related to the area of interest in this thesis.

Figure 3.3 shows a more detailed map of the subsurface Precambrian geology of Botswana,
including the location of some drill sites where rock samples were taken for age determina-
tion. The MT data discussed later are from the northeastern part of Botswana, crossing the
Limpopo belt and the Zimbabwe craton in Botswana, as well as the Magondi and Ghanzi-
Chobe belts. Other features that are important in the area of interest are the Okavango dyke
swarm (about 179 Ma, but also a few Proterozoic dykes; see Jourdan et al., 2004) which cuts
across the craton and the belts in a 110° E of N angle, and the area of today’s Makgadikgadi
salt pans in east Botswana that are correlated with a near-surface brine aquifer.

More detailed descriptions of the geological structures and the tectonic framework in
southern Africa can be found in many publications, e.g., van Reenen et al. (1987), Roering
et al. (1992), van Reenen et al. (1992), de Wit et al. (1992), Singletary et al. (2003) and
McCourt et al. (2004).

3.1.1 The Limpopo Belt

The Limpopo belt is a zone of Archaean high-grade metamorphic and igneous rocks situated
between the Kaapvaal and the Zimbabwe cratons, where a major tectonic-metamorphic
event occurred at about 2.7 Ga (van Reenen et al., 1987). The Limpopo belt is subdivided
into several zones, each of which has a distinctive geological signature and that can be
considered as individual terranes in a tectonic sense (van Reenen et al., 1992). Figure 3.4
shows the subdivision of the belt into the Northern Marginal Zone, the Central Zone and
the Southern Marginal Zone. Major shear zones separate these zones from each other and
from the surrounding cratons.

The Northern Marginal Zone, a high-grade granite-greenstone terrane, is separated from
the low-grade granite-greenstone terrane of the Zimbabwe craton by a southwards-dipping
shear zone (van Reenen et al., 1992; Roering et al., 1992; de Wit et al., 1992). On the south-
ern boundary a southerly-dipping shear zone (Tuli-Sabi/Triangle shear zone) divides the
Northern Marginal Zone from the shelf-type supracrustal sequence of the Central Zone.
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3.1 geology of southern africa

Figure 3.3: Subsurface Precambrian geology of Botswana. Taken from Singletary et al. (2003) (based
on Carney et al., 1994; Key and Mothibi, 1999; Key and Ayres, 2000). The red dots indicate
the MT site locations in Botswana.

The Palala shear zone separates the Central Zone from the shield-type granite-greenstone
terrane of the Southern Marginal Zone (van Reenen et al., 1992; de Wit et al., 1992). The
northwards-dipping, ductile Hout River shear zone is the terrane boundary between the
Southern Marginal Zone and the granite-greenstone terrane of the Kaapvaal craton (van
Reenen et al., 1992). The Northern Marginal Zone appears to have been thrust northwards
onto the Zimbabwe craton (Stuart and Zengeni, 1987), while the Southern Marginal Zone
was thrust southwards onto the Kaapvaal craton (van Reenen et al., 1987).

Barton and van Reenen (1992) found that geochronology data sets (Rb-Sr, Pb-Pb and U-Pb
isotopic ages) from the Limpopo belt suggest that high-grade metamorphism and tectonism
in the Northern Marginal Zone and the Zimbabwe craton (2.6 - 2.55 Ga) occurred about
100 million years more recently than in the Central and Southern Marginal Zones and
the adjacent Kaapvaal craton (2.7 - 2.65 Ga). The term limpopo orogeny refers to the
older high-grade metamorphic and tectonic events affecting the Archaean rocks of the
Central and South Marginal Zones and its influence on the Kaapvaal craton (Barton and
van Reenen, 1992).
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Figure 3.4: The Limpopo belt is subdivided into the Northern Marginal Zone (NMZ), the Central
Zone (CZ) and the Southern Marginal Zone (SMZ). These zones are separated from each
other and from the adjacent cratons by major shear zones. Redrawn and modified from
van Reenen et al. (1987). The green dots indicate the MT sites in that area.

The evolution of the Limpopo belt is described by van Reenen et al. (1987) as follows. The
granite-greenstone terrane and the Southern Marginal Zone remained relatively stable in
a low heat-flow regime from 3.5 Ga until about 2.7 Ga. Then the tectonic setting of the
Archaean crust changed abruptly, crustal thickening occurred as direct result of a continent
collision in a similar manner to that of the Himalaya. A crustal thickness of at least 65 km
in the high-grade area at about 2.7 Ga was estimated by van Reenen et al. (1987). Isotherms
and isograds in the area of crustal thickening were initially disrupted, but readjusted with
time. High-grade metamorphism was distributed over larger areas in the Limpopo belt and
the thickened crust responded by uplift, as evident from the presence of shear zones and
thrusting and associated decompression textures. The granulitic terrane exposed today was
driven upward from deeper crustal levels and spread out radially over the nonthickened
crust adjacent to the suture (van Reenen et al., 1987). At 2.675 ± 0.05 Ga, an east-west
transcurrent shearing, that displaced the Central Zone ∼ 100 km westwards relative to the
Marginal Zones (Roering et al., 1992) and a southward thrusting documents the final
collision of the Zimbabwe craton with the Kaapvaal craton causing backthrusting along the
southern edge of the Limpopo belt (de Wit et al., 1992).
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3.1 geology of southern africa

3.1.2 The Zimbabwe Craton

The Zimbabwe craton is mainly located in Zimbabwe, but, as Figures 3.3 and 3.5 show, the
southwestern part of the craton extends into Botswana. The full extent of the Zimbabwe
craton in Botswana is unknown, as the western boundary is obscured beneath Phanerozoic
cover rocks and the southern boundary is ill defined (McCourt et al., 2004).

Fig. 8. Precambrian tectonic framework of southern Africa, showing inferred subsurface extents of Proterozoic belts. Approximate extent
of Neoproterozoic–Early Paleozoic overprinting in the buried Mesoproterozoic orogen in Botswana is based on deformation recorded in
the Northwest Botswana rift. Locations of Gweta (G), NG, and CKP 10, 10A, and 11 boreholes are also shown. CKB, Choma-Kalomo
block; K, Kubu Island; MA, Matchless Amphibolite and its inferred subsurface extension (dashed) in northwestern Botswana; O, Okwa
inlier; Q, Quangwadum Valley; R, Rehoboth inlier in Damara belt; S, Sinclair Sequence.

D

Figure 3.5: Precambrian tectonic framework of southern Africa, showing inferred subsurface extents
of Proterozoic belts. Approximate extent of Neoproterozoic - Early Paleozoic overprinting
in the buried Mesoproterozoic (1.35 - 1.0 Ga) orogen in Botswana is based on deformation
recorded in the Northwest Botswana rift. Locations of the boreholes Gweta (G), NG and
CKP 10, 10A and 11 are also shown. CKB - Choma-Kalomo block, D - Dete Inlier, K -
Kubu Island, MA - Matchless Amphibolite and its inferred subsurface extent (dashed) in
northwestern Botswana, O - Okwa Inlier, Q - Quangwadum Valley, R - Rehoboth Inlier
in Damara belt, S - Sinclair Sequence. Taken from Singletary et al. (2003).

The Zimbabwe (formerly Rhodesian) craton is composed of a number of distinct terranes
(Figure 3.6). The oldest rocks in the Zimbabwe craton include tonalitic to granodioritic,
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of volcanic and sedimentary rocks known region-
ally as the Lower Greenstones (Wilson, 1979) or
Lower Bulawayan Group (Blenkinsop et al.,
1997). In the Belingwe greenstone belt this assem-
blage is comprised of mafic, ultramafic, inter-
mediate, and felsic volcanic rocks, pyroclastic
deposits, and a wide variety of sedimentary rocks
(Bickle and Nisbet, 1993). Wilson et al. (1995) re-
ported U-Pb ages of 2904 ± 9 Ma and 2831 ± 6 Ma
on felsic and intermediate clasts from volcanic
breccias of the Lower Greenstones assemblage in
the Belingwe belt. An upper age limit is provided
by the 2833 ± 43 Ma (Pb-Pb) intrusive Chingezi
tonalite (Taylor et al., 1991). Circa 2.81–2.79 Ga
(see footnote 1) rocks of the Lower Bulawayan
Group are also well developed in the Midlands, Fi-
labusi,Antelope–Lower Gwanda, Shangani, Bubi,
and Gweru-Mvuma greenstone belts (Fig. 1).

The Buhwa and Mweza greenstone belts (17,
16, Fig. 1) contain up to 4 km thick sequences of

distinctive post-3.09 Ga, pre-2.86 Ga (see foot-
note 1) shelf-facies shallow-water sedimentary
rocks. The Buhwa belt contains a western shelf
succession and an eastern deeper-water basinal
facies association (Fedo and Eriksson, 1996).
The shelf sequence includes quartz-rich sand-
stone, shale, and iron formation, whereas the
eastern deeper water association consists of
strongly deformed shale, mafic-ultramafic lava,
chert, iron formation, and possible metacarbon-
ate rocks (Fedo and Eriksson, 1996). Remnants
of similar shelf facies rocks extend along the
southeastern margin of the Tokwe terrane into
Botswana.. The Matsitama belt (13, Fig. 1) in-
cludes interlayered quartzite, iron formation,
marble, metacarbonate, and quartzofeldspathic
gneisses in a 10–20-km-thick structurally imbri-
cated succession (Aldiss, 1991). Aldiss (1991)
proposed that the Matsitama belt is separated
from the Tati belt to the east by an accretionary

gneiss terrane that formed during convergence of
the two crustal fragments.

A third sequence of sedimentary rocks un-
conformably overlies the Lower Greenstones
assemblage and basement gneiss in several
greenstone belts, most notably in the Belingwe
belt, where the younger sequence is known as the
Manjeri Formation (Bickle and Nisbet, 1993).
The Manjeri Formation is as thick as 600 m and
contains conglomerates and shallow-water sand-
stone and locally carbonate at the base, and
grades stratigraphically upwards into chert,
argillite, graywacke, and iron formation. The top
of the Manjeri Formation is marked by a regional
fault (Kusky and Winsky, 1995). The age of the
Manjeri Formation is poorly constrained and
may be diachronous across strike. However, it is
younger than the unconformably underlying
2831 ± 6 Ma (U-Pb, Wilson et al., 1995) Lower
Greenstones assemblage, and must be older than
or in part contemporaneous with, the thrusting
event that emplaced the ca. 2.7 Ga Upper Green-
stones assemblage over the Manjeri Formation.
The Manjeri Formation overlaps onto gneissic
basement of the Tokwe terrane on the eastern
side of the Belingwe belt and at Masvingo
(Bickle and Nisbet, 1993), and rests on older
(3.5 Ga Sebakwian Group) greenstones at
Shurugwi (Tsomondo et al., 1992).

2.7 Ga MAGMATIC BELTS
The Upper Greenstones assemblage (Upper

Bulawayan Group) is here divided into two sepa-
rate belts, including the northern and the southern
magmatic belts. These belts have similar ages,
but different suites of rocks, geochemical signa-
tures, and relationships to surrounding units, and
thus formed in different petrotectonic settings.

Northern Magmatic Belt
The northern magmatic belt occurs on the

northwestern margin of the Tokwe terrane and
includes the Bulawayan, Harare-Shamva, and
many smaller greenstone belts (Fig.1). These
contain a lower volcanic series overlain by a calc-
alkaline suite of basalt, andesite, dacite, and
rhyolite (Wilson, 1979), all intruded by syn-
volcanic plutons. Pyroclastic and volcaniclastic
horizons are common, as are iron formation and
other sedimentary rocks, including slate, phyllite,
and conglomerate. Wilson et al. (1995) reported
U-Pb ages from felsic volcanics of the northern
magmatic belt ranging from 2.68–2.70 Ga (see
footnote 1). Jelsma et al. (1996) presented U-Pb,
Pb-Pb, and Sm-Nd isotopic data from the Harare-
Shamva belt and surrounding granitoids, and
suggested that the volcanic rocks were built on
and contaminated by older continental crust
between 2.67 and 2.72 Ga (see footnote 1). They
have constrained the age of deformation by circa
2.66 Ga syntectonic intrusions and shear-zone-
related gold mineralization, and posttectonic
granitoids which yielded U-Pb zircon ages of
2.65–2.60 Ga (see footnote 1).

164 GEOLOGY, February 1998

Figure 1. Map of Zimbabwe craton showing distribution of old gneissic Tokwe terrane, northern
and southern magmatic belts, and shelf type associations. Numbers correspond to individual
greenstone belts: 1—Mount Darwin, 2—Chipuriro, 3—Harare, 4—Chegutu, 5—Midlands, 6—
Gweru-Mvuma, 7—Shurugwi, 8—Bubi, 9—Bulawayo, 10—Filabusi, 11—Gwanda, 12—Antelope–
Lower Gwanda, 13—Matsitama, 14—Tati, 15—Vumba, 16—Mweza, 17—Buhwa, 18—Belingwe,
19—Masvingo, 20—Mutare.

Figure 3.6: Map of the Zimbabwe craton showing the distribution of the old gneissic Tokwe terrane,
northern and southern magmatic belts and shelf type associations. Numbers correspond
with individual greenstone belts: 1 - Mount Darwin, 2 - Chipuriro, 3 - Harare, 4 - Chegutu,
5 - Midlands, 6 - Gweru-Mvuma, 7 - Shurugwi, 8 - Bubi, 9 - Bulawayo, 10 - Filabusi,
11 - Gwanda, 12 - Antelope-Lower Gwanda, 13 - Matsitama, 14 - Tati, 15 - Vumba, 16 -
Mweza, 17 - Buhwa, 18 - Belingwe, 19 - Masvingo, 20 - Mutare. Taken from Kusky (1998).

locally migmatitic, gneissic rocks with U-Pb and Pb-Pb ages between 3.5 Ga and 2.95 Ga
(Kusky, 1998; Horstwood et al., 1999). The ancient core of the Zimbabwe craton, which was
established as a coherent block by 2.95 Ga and consists of greenstone belts and older gneissic
rocks, is called the Tokwe terrane. At many places the Tokwe terrane is unconformably
overlain by a heterogeneous mix of volcanic and sedimentary rocks regionally known as
Lower Greenstones or Lower Bulawayan Group (Wilson, 1979; Kusky, 1998). The Belingwe
belt consists of mafic, ultramafic, intermediate and felsic volcanic rocks (the later two have
U-Pb ages of 2.8 - 2.9 Ga), pyroclastic deposits and a wide variety of sedimentary rocks
(Bickle and Nisbet, 1993; Wilson et al., 1995; Kusky, 1998). The Lower Bulawayan Group
rocks (2.79 - 2.81 Ga) are also well developed in the Midlands, Filabusi, Antelope-Lower
Gwanda, Shangani, Bubi and Gweru-Mvuma greenstone belts (Kusky, 1998). On the south-
ern boundary of the Zimbabwe craton the Buhwa and Mweza greenstone belts contain up
to 4 km thick sequences of shelf-facies shallow-water sedimentary rocks, which include
quartz-rich sandstone, shale and iron formation in the western shelf succession, whereas the
eastern deeper-water basinal facies consist of strongly deformed shale, mafic-ultramafic lava,
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chert, iron formation and possible metacarbonate rocks (Fedo and Eriksson, 1996; Kusky,
1998). Similar shelf facies rocks extend along the southeastern margin of the Tokwe terrane
into Botswana. Aldiss (1991) found a 10 - 20 km thick structurally imbricated succession of
interlayered quartzite, iron formation, marble, metacarbonate and quartzfeldspathic gneiss
in the Matsitama belt (Number 13 in Figure 3.6).

Kusky (1998) describes the accretion of the Zimbabwe craton as follows. From 3.6 - 2.95 Ga
a series of tectonomagmatic events formed the Tokwe terrane, a result of complex defor-
mation of the 3.5 Ga Sebakwian greenstone belts and intervening gneissic rocks. Several
smaller terranes, perhaps arcs or microcontinents, were joined and acting as a coherent
unit by 2.95 Ga. Younger volcanic and sedimentary rocks were deposited on the Tokwe
terrane at 2.9 Ga and show large lateral variations in stratigraphic thickness and volcanic
and sedimentary rock types, which suggest that the Tokwe terrane formed a widespread
graben at 2.9 Ga in which the Lower Greenstones were deposited. At the same time several
kilometres of shallow water sandstone, shale and carbonate were deposited in the passive
margin sequences along the southeastern margin of Tokwe terrane. Rifting occurred along
the line from the Mutare belt through the Buhwa-Mweza greenstone belts to the Matsitama
belt in Botswana forming an ocean basin called the sea of umtali. This ocean closed at
2.7 Ga forming the southern greenstone belts which exhibit stratigraphic, structural and
geochemical characteristics consistent with thick oceanic crust. The last Archaean tectonic
event affecting the Zimbabwe craton is related to the collision of the Zimbabwe craton at
2.58 Ga with and during the assembly of the Limpopo belt and the Kaapvaal craton (Kusky,
1998).

The tectonic model outlined by Kusky (1998) describes the stabilization of the craton and
the formation of the continental lithospheric mantle roots. Dirks and Jelsma (1998) state
that the rapid, efficient cooling, and thus the stabilization of the craton, is a result of the
establishment of an equilibrium geotherm in the continental crust that originated from
stacking hot and relatively thick crustal fragments up to an isostatically stable thickness of
∼ 35 km, and the formation of large volumes of crustally derived granitic melts. The tectonic
mechanism of outward growth and accretion provides a framework for the successive
underplating of depleted slabs of oceanic lithosphere. These underplated slabs of depleted
oceanic lithosphere would be cold and compositionally buoyant compared to the formation
of the cratonic lithospheric mantle roots (Kusky, 1998).

3.1.3 The Magondi Belt

In Botswana the 2.0 - 1.8 Ga old Magondi orogenic belt lies completely beneath Phanerozoic
cover. Due to the Karoo (300 - 100 Ma) and younger deposits in the Kalahari, the western
margin of the Zimbabwe craton, as well as the interpretation of the nature and boundaries
of the Proterozoic terranes west of the craton, are obscure (Majaule et al., 2001). In western
Zimbabwe, the Zimbabwe craton is bordered to the northwest by the Palaeoproterozoic
Magondi belt (Majaule et al., 2001; Leyshon and Tennick, 1988; Treloar, 1988), as one can see
on Figure 3.5. A second outcrop of the Magondi mobile belt (the Dete Inlier, D in Figure 3.5)
dating 2.1 - 1.8 Ga can be found further southeast close to political border of Botswana
and Zimbabwe, on the Zimbabwean side. Treloar (1988) describes the Magondi belt in
Zimbabwe as a product of early Proterozoic basinal sedimentation followed by deformation
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and associated metamorphism on the northwestern margin of the Zimbabwe craton. The
deformation and metamorphism is of early to mid-Proterozoic age, and the rocks are
essentially unaffected by the subsequent Pan-African deformation and metamorphism
(Treloar, 1988; Treloar and Kramers, 1989).

The north-trending, Palaeoproterozoic Kheis Belt adjoins the Kaapvaal craton to its west.
These two Palaeoproterozoic terranes, i.e., the Magondi and Kheis belts, exposed on either
side of the Archaean Kalahari craton (i.e., consisting of the Limpopo belt and the Zimbabwe
and Kaapvaal cratons), might be part of a single, major Palaeoproterozoic orogenic belt
present along the western margin of the Archaean Kalahari craton (e.g. Aldiss and Carney,
1992; Carney et al., 1994; Majaule et al., 2001). The northwestern and southern extent of the
Kheis-Magondi belt is delimited by Mesoproterozoic terranes: the Choma-Kalomo block
(Hanson et al., 1988, location: CKB in Figure 3.5) in southern Zambia and the Namaqua belt
in South Africa and Namibia (e.g., Thomas et al., 1994). The Okwa Inlier (O in Figure 3.5)
appears to expose a part of the central segment of the Kheis-Magondi belt and therefore
helps to constrain the overall form and extent of this partly buried orogen (Aldiss and
Carney, 1992; Carney et al., 1994; Majaule et al., 2001). On the other hand McCourt et al.
(2001) state that the minimum age of the Magondi orogen, from new U-Pb (SHRIMP -
Sensitive High Resolution Ion MircoProbe) data, is 70 million years older than the maximum
age of deformation and metamorphism in the Kheis Belt. Therefore McCourt et al. (2001)
suggest that models linking the two fold and thrust belts as coeval components of the same
Palaeoproterozoic orogen are no longer valid.

Majaule et al. (2001) state that the inferred pre-Karoo geology under the ubiquitous cover in
northeast Botswana primarily relies on air photography, satellite imagery and regional aero-
magnetic and gravity surveys, which all indicate a northeast-trending structure. Prominent
brittle fractures trending northeast occur within the cover rocks, as well as northeast-
trending structures in the underlying basement. These structures are considered to reflect
the subsurface continuation of the Magondi belt from Zambia/Zimbabwe into Botswana
(Majaule et al., 2001).

On the southwestern edge of Sua Pan, the easternmost of the Makgadikgadi Pans (near
Gweta, Figures 3.3 and 3.5, more details below), isolated basement exposures form islands.
The main exposures are at Kubu (K in Figure 3.5) and Khumkago (20 km south of Kubu)
Islands. Majaule et al. (2001) dated the exposed granites at Kubu Island mainly at about
2.0 Ga, but one zircon grain was dated at 2.68 Ga. They interpreted their results as an indi-
cation that Kubu Island lies within the region affected by Palaeoproterozoic orogenesis in
the Magondi belt, and that Archaean crustal components were involved in the petrogenesis.
Similar granites were found at Khumkago island, therefore Majaule et al. (2001) suggest that
the Zimbabwe craton margin and/or the Archaean elements of the western Limpopo belt
extend this far west in the subsurface and were overprinted in the region by the Magondi
orogenesis. The SADC (Southern Africa Development Community) published a map in 1997

of regional areomagnetic data that clearly shows that the Magondi anomalies bend to the
south (see Figure 3.10), defining an arcuate trend that joins with the Limpopo belt. Together
with the similarity in timing of the Palaeoproterozoic orogensis in the Kheis-Magondi belt
and parts of the Limpopo belt, the spatial trend of the Kheis-Magondi and Limpopo belts
suggests that a buried triple junction exists between the Kheis-Magondi and Limpopo belts.
The location and geometry of the triple junction depend, in part, on the age and the extent

62



3.1 geology of southern africa

of the Limpopo belt, both of which remain unclear, but Kubu island is likely to be located
near the buried triple junction. (Majaule et al., 2001)

3.1.4 The Ghanzi-Chobe Belt

Knowledge of the Ghanzi-Chobe belt is very limited, due to the lack of exposure caused
by a cover of Cenozoic superficial deposits, called the Kalahari group, which overlie more
than 90% of the Ghanzi-Chobe belt (Modie, 1996). The Ghanzi-Chobe belt is Meso- to
Neoproterozoic in age and is a northeast-trending, approximately 500 km long by 100 km
wide, elongated volcano-sedimentary basin in northern Botswana (its extent deduced
from regional areomagnetic and gravimetric surveys (Reeves, 1985)). To the northwest it
is bounded by the complex Damara orogenic belt, that is widely developed in Namibia,
and to the southeast by the Magondi belt. Unfortunately, most of the work done on the
Ghanzi-Chobe belt is documented in unpublished reports and theses (e.g., US Steel, Anglo
American Botswana, Geological Survey Botswana), but Modie (1996) summarises them as
follows. There are great similarities between the sequences in the Ghanzi-Chobe belt and
its correlatives in Namibia, which implies that these volcano-sedimentary basins developed
along the entire length of the northwest margin of the Kalahari craton, thus forming a
basement to the rocks of the Damara orogen. The Ghanzi-Chobe belt has undergone a
two-phase mode of sedimentary basin development represented by the Kgwebe Formation
(see Figure 3.3; start of the accumulation of the sequence dated at 1106±2 Ma) and the
Ghanzi Group (see Figure 3.3). The Kgwebe Formation - the first phase - was initiated
by extensional tectonics and rifting with subsequent bimodal volcanism and clastic sedi-
mentation in small lake environments. The second phase - the Ghanzi Group - indicates a
major basin development stage with renewed extension resulting in an expansion of the
depositional zone. A marine basin evolved with a shallow shelf environment dominated
by storm and fair-weather conditions. A mix of clastic-carbonate lagoons and possible
progradational deltas is indicated within the intermediate sequence. The final development
of the sedimentary succession was marked by increased sediment supply and the deposition
of a progradational shoreline facies, implying a major period of uplift in the source area,
presumably related to the initial stage of the Damaran deformation. Finally, Modie (1996)
suggests that the Ghanzi-Chobe belt represents a failed intra-continental rift basin that
developed as part of an extensive, but segmented, linear rift system extending from south
central Namibia.

Samples taken from research drill cores at CKP 4 and CKP 11 (see Figure 3.3 for locations)
were dated at about 1.1 Ga and are therefore considered to belong to the Ghanzi-Chobe belt
(Kampunzu et al., 2000; Singletary et al., 2003).

3.1.5 The Okavango giant mafic dyke swarm

The Okavango giant dyke swarm is part of the large scale Karoo tectonomagmatic frame-
work in southern Africa (Figure 3.7). The focus of the description here is on the Okavango
dyke swarm, but nevertheless some of the other magmatic features, of which the locations
can be found in Figure 3.7, will be described in course of the explanation as well.

Continental flood basalts consist of vast quantities of lava, sills and giant dyke swarms
that are associated with continental break-up. The commonly radiating geometry of dyke

63



3 southern africa

Dewey, 1972; WhiteandMcKenz ie, 1989). Particularly, the
large-scale radiatingdyke systems centredin the Nuanetsi
area (Fig. 1b) are regardedas convincing evidence for a
mantle plume beneath the K aroo L IP (Campbell and
Grif�ths, 1990; Cox, 1992). However, detailedgeochrono-
logical, petrological, and structural data on the Lebombo
(NS), Olifants R iver (N20E8), L impopo (N70E8) and
Okavango (N110E 8) dyke swarms forming the Nuanetsi
triple junction-like pattern are lacking in their ability to
�rmly establish their synchronous and cogeneticemplace-
mentas expected in the ‘mantle plume’ model.

This paper presents the �rst detailed quantitative
structural study of two arms of the Nuanetsi triple

system, i.e. the N1108E -trending Okavango swarm
(N1108/ODS) and part of the N708E -trending L impopo
swarm (N708/LDS), as exposed in NE Botswana. The
main results are based on structural �eld measurements,
integrated with ground and aeromagnetic data, from a
80-km-long section across the highest dyke density zone
of the N1108/ODS. Compiling these data allows us to
unravel the anatomy of a giant ma�c dyke swarm and
to investigate speci�c problems related to: (1) individual
dyke geometry; (2) dyke opening directions; (3) dyke
spatial distribution and frequency; and (4) geometrical
and chronological relations of fracture networks and
dyke swarms. Some new insights into the role of

Fig. 1. (a) Distributionof continental�oodbasalt and relatedintrusive rocks of theKaroo–Ferrar/AntarcticaLIP in a predrift Gondwana reconstruction: (1)
exposedcomplexes; (2) extrapolated magmatic rocks; (3) inferred magmaticunits beneathice cover in westernAntarctica. (b) Karoo tectono-magmatic
framework of southernAfrica. Inset shows the studiedarea in NE Botswana: (1) magmaticcomplexeswith (1a) �oodbasalt, (1b) dykes and sills, and (1c)
eruptivecentres; (2) sedimentarybasins. L, Lesotho; N, Nuanetsi; LDS, ODS, ORDS, SBDS, SLDS, SLeDS, SMDS, Lebombo,Okavango, Olifants River,
SouthBotswana, Sabi-Limpopo, SouthLesotho; SouthMalawi, dyke swarms, respectively. (c) Trace of theN1108/ODS on the low-resolution aeromagnetic
mapof NE Botswana (modi�ed from Tshoso, 2003).

B. Le Gall et al. / Journal of Structural Geology 27 (2005) 2234–2255 2235

Figure 3.7: Karoo tectonomagmatic framework of southern Africa, showing (1) magmatic complexes
with (1a) flood basalt, (1b) dykes and sills, and (1c) eruptive centres and (2) Karoo
sedimentary basins in southern Africa. L, Lesotho; N, Nuanetsi; LDS, ODS, ORDS,
SBDS, SLDS, SLeDS, SMDS, Lebombo, Okavango, Olifants River, South Botswana, Sabi-
Limpopo, South Lesotho, South Malawi, dyke swarms, respectively. Taken from Le Gall
et al. (2005).

swarms in these provinces is interpreted to be the result of the stress regime that affected
the lithosphere during the initial stage of continental break-up or as the result of plume
impact at the base of the lithosphere (Jourdan et al., 2006). Structures in the basement may
also control dyke orientation (Jourdan et al., 2006). The Okavango dyke swarm, together
with the Save-Limpopo and the Olifants River dyke swarms, form the so-called nuanetsi

triple junction that is not a structure of Jurassic origin alone, but reflects weakened
lithospheric pathways (pre-existing ancient basement structures) that have controlled the
dyke orientation over hundreds of millions of years. (Jourdan et al., 2006)

The 110°-trending (Jourdan et al. (2006): 109°±12° E of N) giant Okavango dyke swarm (also
called the northern Botswana dyke swarm) extends over a 1500 km strike length through
Archaean basement terranes and Permo-Jurassic sedimentary sequences. The dykes are
mainly coarse-grained dolerites (Elburg and Goldberg, 2000; Aubourg et al., 2008), which
are hosted by granites, gneiss and amphibolites in the Francistown area (Aubourg et al.,
2008). 40Ar/39Ar age determinations by Elburg and Goldberg (2000) and Le Gall et al.
(2002) show that the dykes are about 178.4± 1.1 Ma to 179.3± 1.2 Ma in age, but they also
identify one dyke in the swarm as Proterozoic in age. Jourdan et al. (2004) broadened the
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range of emplacement ages of the Karoo dykes to between 178.4± 1.1 Ma to 180.9± 1.3 Ma,
with a probability peak at 179 Ma. They also identified eight Proterozoic dykes and three
Proterozoic sills with ages of 850 − 1700 Ma. Jourdan et al. (2004) suggest, based on the
relationships between the age and geochemical composition, that the Okavango dyke
swarm includes at least 10% of Proterozoic dykes located in the central part of the Jurassic
swarm. Therefore they conclude that the Nuanesti triple junction is an inherited Proterozoic
structure that was reactivated during Jurassic times.

Le Gall et al. (2005) studied the dyke swarm and the geometry and distribution of individ-
ual dykes within the swarm in more detail. They mapped the dyke swarm in detail along
the river bed of the Shashe River near Francistown, which cuts at a high angle through
the densest zone of the Okavango dyke swarm and also considered maps from aerial
photographs. Although the latter maps do not distinguish between the two chronologically
unrelated dyke populations (Proterozoic and Karoo in age), Le Gall et al. (2005) assume that
the statistical analysis is not biased, because of the estimated high percentage of about 87%
Karoo dykes in the Okavango swarm. They found that about 70% of the dykes are within
10° of parallelism with the 110° E of N trend of the swarm envelop. The Karoo dyke length
ranges from 1 to 18 km, and about 91% of the dykes are vertical, the other 9% are within
30°of vertical. Le Gall et al. (2005) constrained the width of the dykes by accurate, but
incomplete, field measurements and by ground magnetic records, which supply a complete
spatial data set but no certainties on the age of the mapped dykes. They estimate the accu-
racy of the field measurements to be with in 0.5 m, and note that the sampling interval of the
ground magnetic signal is 5 - 10 m and therefore that dykes narrower than 5 m are likely to
not be detected, which also might cause an error of several metres in estimating dyke width.
The resulting range of dyke widths is from 0.2 to 69 m based on the field measurements,
and 11 to 69 m from the magnetic data. The arithmetic mean dyke width is about 17 m
based on the magnetic measurements and about 16 m from the field measurements. The
low frequency of narrow dykes (< 0.5 m) compared to the thickest dykes (16 - 70 m) is a
real geological feature, which still remains to be explained in terms of either mechanical
conditions of emplacement, pre-dyke fracture work or nature of magma (Le Gall et al., 2005).

Le Gall et al. (2005) also investigated the gradual westerly narrowing of the high density
zone of the Okavango dyke swarm from 60 km in the Francistown area to 53 km and 45 km
in the Maun (about 400 km northwest) and Ngami (about 200 km further northwest) areas
respectively. Table 3.1 summarises the total width of the swarm, the number of aeromagnetic
anomalies, the dyke spacing, the cumulative dyke width and the crustal dilatation for these
three areas. It is suggested that the dyke-driven extension decreases abruptly westwards
from 12.2% in the Francistown area to 2.6% in the Maun and Ngamiland areas, based
on the assumption that the parameters measured at the Shashe river bed, e.g., the ratio
of Proterozoic/Karoo dykes (∼ 1/6) and the average Karoo dyke thickness (17 m), remain
constant along-strike. Le Gall et al. (2005) suggest that such a change in lateral distribution
of dykes, coupled with the lack of map-scaled deflection of the swarm trend around magma
chambers at depth, can be explained by the Karoo mafic dykes propagating laterally
westwards, away from the Nuanetsi source region, instead of being injected vertically
from deep-seated linear magmatic ridges. The model of lateral flow of Karoo magma is
also supported by the anisotropy of magnetic susceptibility data that show a transition
from predominantly vertical (near the Nuametsi source region) to horizontal magma flow
with increasing distance from the Nuanetsi focal point (Tshoso, 2003; Le Gall et al., 2005;
Aubourg et al., 2008).
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Table 3.1: Along-strike variations of the width and dyke-induced extension in the high dyke den-
sity zone of the ∼ 1500 km long Okavango dyke swarm. Measurement sections are at
Francistown, about 400 km northwest at Maun and another 200 km further northwest at
Ngamiland. Numbers for Francistown are for the Shashe transect with the extrapolated
values for the entire swarm in brackets. Taken from Le Gall et al. (2005).

ngamiland maun francistown

Total width of the swarm (km) 45 53 52 (60)

Number of anomalies in (high resolution)

aeromagnetic data (Tshoso, 2003)
31 37 162 (195)

Dyke spacing (km) 1.5 1.5 0.3 (0.3)

Cumulative dyke width (m) 1160 1384 6315 (7295)

Crustal dilatation (%) 2.6 2.6 12.2 (12.2)

Similar anisotropy of magnetic susceptibility (AMS) was found at the Mackenzie dyke
swarm of the Canadian Shield (Ernst and Baragar, 1992). Unlike the Okavango dyke swarm,
the Mackenzie swarm is fan-shaped and a plume model is used to explain the observed
magnetic susceptibility and other petrological data for the latter (Ernst and Baragar, 1992;
Baragar et al., 1996).

3.1.6 The Makgadikgadi Pans Complex

The Makgadikgadi Pans Complex is a large and unusual surface feature (> 8 400 km2) in
northeastern Botswana (Figure 3.8). It occupies a basin that is the lowest point in a drainage
system extending from Botswana into Namibia, Angola and Zimbabwe. The pans are the
remnants of a once-great Pleistocene lake that is estimated to have covered 34 000 km2 at
its maximum extent, with a water volume of 500 to 1 000 km3(Grove, 1969). Such a lake
would have required a substantial inflow, but also an evaporation rate considerably less
than today’s. The major source of water for the lake was probably the Okavango River prior
to its division into a series of swamps (i.e., Okavango delta). Other potential sources of
inflow might have been the westward flowing rivers that currently feed the Sua Pan and the
now-dry Okwa River that once flowed northwards from the central Kalahari. Since there is
no identified outlet for Lake Makgadikgadi, it is assumed that a static state was reached
where the inflow balanced the evaporation. Thus the lake became increasingly saline with
time, providing a source for the extensive brine aquifer beneath that area and today’s salt
pans. Figure 3.8 shows the present day extent of the Makgadikgadi Pan Complex, as well
as the Okavango Swamps and the major river systems in Botswana (Baillieul, 1979).

3.2 the samtex project

The Southern African MagnetoTelluric EXperiment (SAMTEX) was established in 2003 to
understand the early Earth tectonic evolution of South Africa and to compare it with other
Archaean regions of the world, for example, the Slave and Superior cratons in Canada. The
project consortium is a multi-national, multi-institutional academic-government-industry
collaboration.
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Figure 3.8: Map showing the location of the Makgadikgadi Pan Complex in relation to the Okavango
Swamps and the major river systems in Botswana. Taken from Baillieul (1979).

The scientific interest in the tectonic processes taking place during the earliest stages of Earth
evolution is founded in the question as to whether the modern plate tectonic paradigm is
valid for the Archaean era or not. There is much debate as to how far back the plate tectonic
paradigm can be extrapolated in the interpretation of the cryptic rock records. Some argue
that it can validly be applied early in Earth’s history (e.g., de Wit et al., 1992), whereas
others think that processes such as sagduction and mantle plumes dominated during the
Archaean (Hamilton, 1998; Bleeker, 2003). Allied to this question is the uncertainty about the
formation process of the cratonic lithosphere (Archaean-age) and the limited fundamental
information (e.g., geochemical, petrological and geophysical, as the methodologies are
limited themselves but also not all Archaean craton areas have been studied in the same
detail, using all available methodologies) about the sub-continental lithospheric mantle.
Geophysical imaging can provide physical and geometrical information about the current
state of fossil lithospheric structures to address this knowledge gap. Primarily only passive
seismology has been used over Archaean cratonic areas. However the work done on the
Slave craton (Jones et al., 2001; Jones and Ferguson, 2001; Jones et al., 2003; Davis et al., 2003)
has demonstrated that MT measurements can provide significant additional constrains on
lithospheric formation processes.
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As part of the Kaapvaal project, the South African Seismic Experiment (SASE) recorded
broadband seismic data at 82 sites. These sites were located in a NNE-SSW area about
1800 km long by 600 km wide. This array covers the Cape Fold Belt, the Namaqua-Natal
mobile belt and the centre of the Kaapvaal craton in South Africa, across the Limpopo
Belt and onto the Zimbabwe craton in Zimbabwe and Botswana (see Figure 3.9 for site
locations, grey stars). The original SAMTEX proposal was to collect MT data along four
profiles that were coincident with the SASE coverage to allow for comparison and possibly
joint interpretation (or even joint inversion) of the two data sets. In reality, MT data were
collected in South Africa in 2003/2004 (SAMTEX phase I) along the ’main profile’ (KAP03

in Figure 3.9) that extends along the long axis of the SASE array and on additional crossing
profiles. In 2004/2005 more MT data acquisition was undertaken and the area of coverage
was expanded outwards into Namibia and Botswana. After two additional field seasons in
2005/2006 (phase III) and 2008 (phase IV), the coverage of Botswana and northern Namibia
is now very good, but is a little bit more sparse in southern Namibia and South Africa.
There was no data acquisition in Zimbabwe due to political/safety issues. There is now a
total of 679 occupied sites on 31 profiles (& 2 mini-arrays) (see Figure 3.9 for site locations).
Broadband MT (BBMT) data were recorded at 662 of these sites and long-periodic data at
109 sites. The sites are roughly at 20 km intervals and cover about 14 000 profile-km. There
are also 22 audio-magnetotelluric (AMT) sites in northern Namibia, which were recorded
in two mini-arrays. Hence, SAMTEX is probably the world’s largest-ever land-based MT
project.

To date, three papers have been published and one PhD thesis written on the SAMTEX
project. Jones et al. (2009) provides an overview of the SAMTEX project, from the original
idea to what SAMTEX finally became, including a comparison of the spatial distribution
of resistivity and velocity anomalies across southern Africa. A correlation between high
velocity regions and resistive areas can be found, whereas low velocity regions are related
to more conductive areas. Hamilton et al. (2006) studied the electrical anisotropy of the
South African lithosphere in comparison with the published (Silver et al., 2001) seismic
anisotropy determined from shear-wave splitting analysis (using the SASE data set). The
work is more extensively discussed in Hamilton (2008). A relationship between seismic
and electrical anisotropy was only found for asthenospheric depths. They suggest that
the source regions of the anisotropy are different and therefore they proposed a model
which explains both the shear wave splitting and the MT results. Their model has an
anisotropic, heterogeneous lithosphere in the cratonic region and more coherent structure
and anisotropy in the lithosphere of the mobile belts. The asthenosphere is anisotropic,
with a very strong anisotropic region below the thicker cratonic keel, which explains the
correlation between the shear wave splitting direction in the seismic data and the plate
motion direction.

Muller et al. (2009) found significant lateral heterogeneity in the electrical resistivity struc-
ture of the lithosphere along a 2D profile from the western Kaapvaal Craton across the
Rehoboth Terrane and the Ghanzi-Chobe/Damara-Belts (KIM03 and KIM04 in Figure 3.9).
The latter two terranes are areas where the lithosphere has not been imaged previously.
They determine the most resistive (i.e., coldest) lithospheric thickness of the Eastern Kim-
berley Block of the Kaapvaal Craton to be 220± 20 km. The lower resistivity portions of
the profile across the Western Kimberley Block, the Rehoboth Terrane and the Ghanzi-
Chobe/Damara Belts correspond with, on average, ∼ 30 km, ∼ 40 km and ∼ 60 km thinner
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Figure 3.9: Overview of all SAMTEX site locations (coloured dots - colour coding for different
profiles) in comparison to the SASE seismic stations (grey stars). (Digital terrane bound-
aries courtesy of Susan J. Webb, University of the Witwatersrand, Johannesburg, South
Africa, and based on known geology in South Africa and Zimbabwe, and primarily on
interpretation of potential field data in Namibia and Botswana, where thick Kalahari
sands cover basement; Webb, 2009)
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lithosphere, respectively. Muller et al. (2009) argue that a limited lithospheric depth extent
into the diamond stability field is able to explain the absence of diamondiferous kimberlites
in the Rehoboth Terrane and the Western Kimberley Block.

3.3 previous geophysical work in southern africa

Several deep structural studies in the Karoo basin using Schlumberger soundings, were
carried out in the period 1966 to 1980 (van Zijl, 2006). For most of these soundings with a
maximum current electrode separation of 40 km, the very conductive carbon and pyrite-rich
Whitehill Formation acted as an electrical basement. In 1967, a deep Schlumberger electrical
sounding, with centre point being close to the town of Pofadder and a maximum current
electrode separation of 270 km, was used to investigate the Namaqualand Granite-Gneiss
Complex, a structure of about 500 km by 150 km in extent (van Zijl, 1969). A second ultra-
deep Schlumberger sounding was undertaken in 1969 with a maximum current electrode
spacing of 600 km, located mainly on the Kaapvaal craton with the centre located near the
village of Dealesville (van Zijl et al., 1970). The main results of the comparison of these two
deep soundings are, first, both support a dehydrated lower crust and second, the trans-
verse resistance (product of resistivity and layer thickness) of the lowermost crust is about
100% larger at Pofadder compared to Deaesville, probably due to a second period of meta-
morphism in the Namaqualand Granite-Gneiss Complex (van Zijl, 1969; van Zijl et al., 1970).

The 100% difference in conductivity of the lower crust of the Archaean Kaapvaal craton
and the 1 Ga old Namaqualand Granite-Gneiss Complex aroused interest. In 1971 Gough
(1973) investigated the contrast in electrical conductivity in the crust and upper mantle
between the Kaapvaal craton and the Namaqualand Metamorphic mobile belt using an
array of 24 three-component magnetometers to record the variation of the horizontal and
vertical magnetic fields. He discovered an east-west elongated conductive body beneath
the Cape-Karoo basin, which was thought to be located in the lower crust or upper mantle.
In 1977 de Beer and Gough (1980) deployed a second array with 53 magnetometers as a
southern extension to the earlier survey (south of 30° S) with the aim of locating the edge
of the conductive region. They identified three anomalies related to currents flowing in
conductive structures: two continental edge structures off the south-east and west coasts
and an intra-continental conductive strip in lower crustal or uppermost mantle depth, which
runs east-west from coast to coast - the Southern Cape Conductive Belt. Surface heat flow
measurements above the Conductive Belt and the Namaqua-Natal Belt exclude a thermal
source for the high conductivity anomaly. Furthermore, the high electrical conductivity
zone and a static magnetic anomaly - the Beattie anomaly - are spatially correlated, and
both were explained by an accumulation of oceanic lithospheric rocks outside the cratonic
margin (de Beer and Gough, 1980).

Figure 3.10 shows a regional magnetic anomaly map of southern Africa. The Beattie anomaly
is the extensive red, long wavelength feature within the Namaqua-Natal belt (NN) and on
the geolocial boundary between this belt and the Cape fold belt (CFB).

In 1971/1972 another magnetometer array study discovered a zone of concentrated induced
electric currents at crustal depths crossing Namibia, Botswana and Zimbabwe (de Beer
et al., 1975, 1976). The results of electrical sounding studies by van Zijl and de Beer (1983)
confirmed the existence of a prominent conductive structure. Figure 3.11 shows the maps
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Figure 3.10: Regional magnetic anomaly map of southern Africa with the rough outline of the
geological provinces shown (digital terrane boundaries courtesy of Susan J. Webb,
University of the Witwatersrand, Johannesburg, South Africa, and based on known
geology in South Africa and Zimbabwe, and primarily on interpretation of potential
field data in Namibia and Botswana, where thick Kalahari sands cover basement; Webb,
2009): CC - Congo craton, DMB - Damara mobile belt (representing the Ghanzi-Chobe
belt and the Damara orogenic belt as one), MMB: Magondi mobile belt, ZC: Zimbabwe
craton, LB: Limpopo belt, OT: Okwa terrane, RT: Rehoboth terrane, GB: Gariep belt,
NN: Namaqua-Natal belt, KB: Kheis belt, KC: Kaapvaal craton, CFB: Cape fold belt
(see Figure 3.2). Magnetic data courtesy of the Council for Geoscience, Pretoria, South
Africa.
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(a) The conductor in relation to seismicity and tectonics of south-
ern central Africa (small dots, 2 6 m 6 4; large dots m > 4,
small squares, intensity 6 3, large squares > 3). Faults are
indicated by lines. Map taken from de Beer et al. (1975).

M
agnetom

eter array study in South-w
est A

frica 
3 (b) The main tectonic features of the area are shown, as well as

approximate axial line of the conductivity anomaly. Map taken
from de Beer et al. (1976).

(c) Outline of conductive zone deduced from magnetovariational
studies and Schlumberger soundings in relation to a simplified
Bourguer anomaly map of southern Africa. Map taken from
van Zijl and de Beer (1983).

Figure 3.11: These maps show the location of a crustal conductor found by magnetovariational
studies and Schlumberger soundings.
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from de Beer et al. (1975, 1976) and van Zijl and de Beer (1983), in which they indicated the
location of the conductive zone.

An MT study over the Kheis-Namaqua front boundary was undertaken in combination
with the recording of reflection seismic, gravity and magnetic data, in order to gain a
better understanding of the crustal structure and history of the Namaqua metamorphic
province in South Africa. The work was a very limited crustal study with only seven MT
sites recorded in 1994 and 1995. Full results of the combined data sets can be found in
Stettler et al. (1998) and Stettler et al. (1999), but the main findings are that the Kheis terrane
possesses a resistive basement, which is overlied by the Namaqua Foreland and Front Zone
that probably have been placed there by intrusion and thrusting, whereas the Kheis terrane
itself was emplaced onto the Kaapvaal craton by continent collision.

In 1998 and 1999 MT data at 107 sites were collected across the Damara Belt in Namibia by
staff of the GeoForschungsZentrum (GFZ) in Potsdam, Germany. The data set consists of
an approximately 200 km long profile with a site spacing of 4 to 12 km and a local 3D array
of 60 sites with a site spacing of 500 m to 2 km. The work was a crustal study of two parts:
1. the regional scale results show three distinctive zones in the Damara belt: very resistive
upper crust, which is typical for the granites and metasediments in the Damara belt, two
subvertical conductors in upper to mid-crustal levels, which correlate with major tectonic
zone boundaries and a highly conductive middle to lower crust in the southern part of the
profile (Ritter et al., 2003); 2. a focused study of the Waterberg Fault/Omaruru Lineament,
which showed great complexity in the shear zone and as such is comparable with models
from other fault zones (e.g., San Andreas Fault): a conductive ring structure in the shallow
crust, crustal-scale electric anisotropy and an elongated conductor running subparallel to
the Waterberg Fault/Omaruru Lineament (Weckmann et al., 2003). More details can be
found in Weckmann (2002), Ritter et al. (2003) and Weckmann et al. (2003).

The most recent MT work done in South Africa outside the SAMTEX project forms part of
the Inkaba yeAfrica project. This 5-year project started in 2004 and is a joint German and
South African research initiative, which aims at surveying a cone-shaped sector of the Earth
from core to space (Bohannon, 2004; de Wit and Horsfield, 2006). In 2004, high-resolution
MT data were recorded at 82 sites on a profile across the Beattie magnetic anomaly onto
the Cape fold belt with an average site spacing of 2 km, as part of the Inkaba yeAfrica
theme margins of africa. In 2005 the profile was extended southwards to the coast.
Weckmann et al. (2007) present the results of the first part of this data set. The 2D con-
ductivity model at the scale of the whole crust shows a highly conductive anomaly in the
5 - 10 km depth range, which correlates with the Beattie magnetic anomaly, although it
remains unclear if both anomalies have the same source. Another highly conductive feature
is a shallow, regionally continuous subhorizontal band, that correlates with the Whitehill
Formation, a 50 - 70 m thick pyritic-carbonaceous marker horizon found in nearby deep
boreholes (Branch et al., 2007; Weckmann et al., 2007).

Numerous papers present the results of the South African Seismic Experiment (SASE).
For example, crustal studies using receiver function analysis show that the crust of the
Kaapvaal and the Zimbabwe cratons is typically 35 - 40 km thick and is characterized by a
strong velocity contrast across a relatively sharp Moho, i.e., a Moho transition zone of less
than 2 km (Nguuri et al., 2001; James et al., 2003; Nair et al., 2006). Deep-seismic reflection
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profiles across the central Kaapvaal craton confirm a Moho depth of 36 - 41 km (de Wit and
Tinker, 2001). The post-Archaean terranes and underlying Archaean regions affected by
large-scale Proterozoic events (Bushveld complex and Magondi belt) have relatively thick
crust of 45 - 50 km and a complex Moho (Nguuri et al., 2001; Nair et al., 2006).

Lithospheric studies using the SASE data suggest that the lithosphere beneath the cratonic
regions of southern Africa is about 150 - 200 km thick (e.g., Priestley et al. (2006): 175± 25 km,
Li and Burke (2006): 180 - 200 km in the central and northern Kaapvaal craton, James et al.
(2001): 250 - 300 km in the southern Kaapvaal and parts of the Zimbabwe cratons, Saltzer
(2002): 150 - 200 km), in comparison with, e.g., the Namaqua-Natal mobile belt which has a
lithospheric thickness of only about 80 km (Li and Burke, 2006).

Saltzer (2002) found that the surface wave velocities in the upper mantle beneath southern
Africa are faster than the global average, and that the mantle anisotropy is slightly greater
than the global average anisotropy, whereas the shear wave splitting results (Vinnik et al.,
1995; Silver et al., 2001) suggest less anisotropy than determined from surface wave analysis.
Saltzer (2002) explains these differences with a model in which the local anisotropy axis
remains close to horizontal, but varies in azimuth as a function of depth. Fouch et al.
(2004) and Silver et al. (2004) interpret the lateral changes of the mantle anisotropy as
evidence of lithospheric mantle deformational events. They state that the seismic anisotropy
beneath the Archaean continental regions was not created during the initial continental
formation, but instead during subsequent significant mantle-deformation events that record
the Precambrian history of compression of orogens and collisions.

As mentioned earlier, most of Botswana’s geology is unknown due to the Quaternary
Kalahari sand cover. The little that is known is based on isolated exposures, borehole
information and interpolation between the exposed geology of eastern Botswana, Namibia,
South Africa and Zimbabwe. From the 1950’s onwards, geophysical exploration in Botswana
was directed towards the discovery of groundwater, using mostly electrical resistivity tech-
niques (Hutchins and Reeves, 1980). During the late 1960’s other geophysical methods
were introduced for mineral exploration, first by the government and later by exploration
companies. The first geophysical studies of regional significance were a seismic and gravity
survey in the central Kalahari and a subsequent airborne magnetic survey in southern
Botswana. In 1970 the Botswana Geological Survey commenced a regional geophysical pro-
gramme. Hutchins and Reeves (1980) provide an overview of this program which included
a seismicity study, gravity, seismic and areomagnetic surveys.

Reeves (1972) studied the earthquake epicentres in Botswana (September 1955 to August
1971) and recognised two distinct spatial populations, one is clustered in the Okavango
Delta in northwest Botswana and assigned to tectonic activity along a northeast trending
fault, and the second is broadly scattered over the central Kalahari and was found to
parallel closely the linear features of the Makgadikgadi Salt pans, the Okavango linea-
ments and the Ghanzi Ridge (Hutchins and Reeves, 1980). Microseismic activity of the
Okavango Delta was monitored for three month in 1974 and found to be greatest along
the southeastern margin of the delta (associated with fault structures), relatively low in
the centre of the delta and non-existent in the region of the Okavango River to the northwest.
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A gravity survey surround the Ngamiland district followed in 1970 - 1971, as well as a
seismic refraction survey in 1972 - 1973 to support the postulated existence of faults around
the delta, which are associated with the seismic activity, and to determine the depth to
bedrock (between 140 m to 300 m within the delta) from the seismic lines (Hutchins and
Reeves, 1980). In 1972 and 1973 the gravity survey was extended to nationwide coverage
consisting of 1854 gravity stations - mainly observations at 10 km intervals along roads,
tracks and exploration cut-lines, except for 300 stations that were established by helicopter
in the otherwise inaccessible central and southwestern region of Botswana. In 1998 - 1999

another gravity survey was undertaken to fill existing gaps in the earlier survey in northern
Botswana (Yawsangratt, 2002). Figure 3.12 shows a regional Bourguer gravity map of
southern Africa.

In October 1975 an aeromagnetic survey with 150 000 profile-km was flown in Botswana.
Two major features were discovered by this aeromagnetic survey: the magnetically promi-
nent Okavango dyke swarm and the Zoetfontein fault, which Hutchins and Reeves (1980)
consider delimits the Kaapvaal craton’s northern edge (see also Figure 3.10, the Zoetfontein
fault (the extension of the Palala Shear Zone, see Figure 3.4) is indicated by the red magnetic
anomaly coincident with the straight boundary between the Kaapvaal craton and the Okwa
terrane).

One can be certain that a lot more unpublished geophysical work has been done in south-
ern Africa for mineral exploration. These data are filed away by the mining industry and
might never be made available for scientific research. But all geophysical investigations in
Botswana to date haven been limited to crustal depths and the SAMTEX results, therefore,
add new information about deeper structures and the unknown lithospheric extents of the
geological terranes.

Other useful information can be obtained from geochemical, petrological and geothermal
data. Figure 3.13 shows the locations of kimberlites and whether they are diamondiferous
(red), non-diamondiferous (green) or unspecified (yellow). Clifford (1966) was the first
to propose a relationship between old cratonic areas, which remained stable through
younger periods of tectonism, and the presence of diamonds. Clifford’s (1966) rule was
revised by Griffin et al. (2004), who studied the kimberlite distribution of the North
American Plate. They found the thinner edges of cratons to be more prospective than the
thicker centres. Therefore diamondiferous kimberlites can be used as an indication of the
thinner lithospheric edges of cratons. Note that the anomalous diamondiferous kimberlite
(Figure 3.13 at 20.008 E / -26.746 S) in the Rietfontein cluster, in the southern part of the
Rehoboth terrane, is now known to be a bicycle diamond, i.e., the diamond(s) did not
originate from that kimberlite pipe.

Kimberlites and other rock samples are studied in laboratories to gain information of the
age and the temperature-pressure conditions of the source region and to derive chemical
tomography sections which contain information about the mantle composition versus
depth. Chemical tomographic sections beneath Archaean cratons show typically depleted,
variably metasomatized lithospheric mantle extending to depths of between 150 - 250 km
(Begg et al., 2009). Beneath this depleted layer, a zone of intense, melt-related metasomatism
follows, which is defined as the lithosphere-asthenosphere boundary (O’Reilly and Griffin,
2006, and references therein). It remains unclear if that interpretation is appropriate, since
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Figure 3.12: Bourguer gravity map of southern Africa, in mGal, with the rough outline of the
geological provinces (digital terrane boundaries courtesy of Susan J. Webb, University of
the Witwatersrand, Johannesburg, South Africa, and based on known geology in South
Africa and Zimbabwe, and primarily on interpretation of potential field data in Namibia
and Botswana, where thick Kalahari sands cover basement; Webb, 2009): CC - Congo
craton, DMB - Damara mobile belt (presenting the Ghanzi-Chobe belt and the Damara
orogenic belt as one), MMB: Magondi mobile belt, ZC: Zimbabwe craton, LB: Limpopo
belt, OT: Okwa terrane, RT: Rehoboth terrane, GB: Gariep belt, NN: Namaqua-Natal
belt, KB: Kheis belt, KC: Kaapvaal craton, CFB: Cape fold belt (see Figure 3.2). Gravity
data courtesy of the Council for Geoscience, Pretoria, South Africa.

76



3.3 previous geophysical work in southern africa

12˚ 16˚ 20˚ 24˚ 28˚ 32˚

−32˚

−28˚

−24˚

−20˚

12˚ 16˚ 20˚ 24˚ 28˚ 32˚

−32˚

−28˚

−24˚

−20˚

−180 −73 0 73 180

nT

ZC

LB

KC

NN

KB

CFB

RT

OT

M
M
B

G
B

DM
B

CC

Kimberlite classification

diamondiferous
non−diamondiferous
unknown/unspecified

Figure 3.13: The regional magnetic map from Figure 3.10 in greyscale provides the background
map for the Kimberlite database (South African Council for Geoscience unpublished
numerical database, Jelsma et al. (2004), Faure (2006)). (Geological provinces (digital
terrane boundaries courtesy of Susan J. Webb, University of the Witwatersrand, Johan-
nesburg, South Africa, and based on known geology in South Africa and Zimbabwe,
and primarily on interpretation of potential field data in Namibia and Botswana, where
thick Kalahari sands cover basement; Webb, 2009): CC - Congo craton, DMB - Damara
mobile belt (presenting the Ghanzi-Chobe belt and the Damara orogenic belt as one),
MMB: Magondi mobile belt, ZC: Zimbabwe craton, LB: Limpopo belt, OT: Okwa ter-
rane, RT: Rehoboth terrane, GB: Gariep belt, NN: Namaqua-Natal belt, KB: Kheis belt,
KC: Kaapvaal craton, CFB: Cape fold belt. (Magnetic data courtesy of the Council for
Geoscience, Pretoria, South Africa.)
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there is no evidence from xenolith or geophysical data of a fertile, convecting mantle,
i.e., the asthenosphere below the melt-metasomatized zone. It is also possible that simply
a depth level is present where mantle-derived melts have accumulated, metasomatizing
the surrounding lithospheric mantle. Therefore the lithosphere-asthenosphere boundary
based on chemical tomography sections should be understood as minimum thickness
of the depleted lithospheric mantle at the time of the kimberlite eruption, without any
constraint on the maximum thickness (Begg et al., 2009). Griffin et al. (2004) and Begg et al.
(2009) show chemical tomography sections for some southern African areas. Their base
of the depleted lithospheric mantle beneath the Namaqua-Natal Belt is at least at 150 km
depth. Sections from southern and central Botswana show slightly deeper bases of the
depleted lithosphere (about 180 - 200 km). Another interesting finding is that kimberlites of
different ages (Group II 143 - 117 Ma and Group I 108 - 74 Ma) that were intruded across the
southwestern boundary of the Kaapvaal craton, sampling the same volume of lithosphere
during two different time windows, showed very different depths to the base of the de-
pleted lithospheric mantle (> 200 km and 160 - 170 km respectively). Heating and chemical
refertilisation by the infiltration of asthenosphere-derived melts is assumed to be the cause
of the thinning of the depleted lithosphere by about 40 km (Griffin et al., 2004; Kobussen
et al., 2008).

Geothermal studies show that the Kaapvaal craton is characterized by a low surface heat
flow (∼ 45 mW/m2) and the occurrence of diamondiferous kimberlites, whereas the younger
surrounding mobile belts have relatively high heat flow values (∼ 80 mW/m2) and barren
kimberlites (for more heat flow information see Jones, 1998). Geotherms calculated from
heat flow data (reflecting the current present-day geotherm) yield similar information as
that provided by thermobarometry of the upper-mantle obtained from kimberlite xenoliths
(recording the mantle geotherm and lithospheric thickness at the time of kimberlite erup-
tion): the cratons have deep, cool and chemically reduced lithospheric roots (de Wit et al.,
1992).

Tsunogae et al. (1992) calculated crustal, metamorphic pressure-temperature (P - T) profiles
in the eastern and western parts of the Limpopo Belt. They found very similar P - T profiles
for the northern marginal zone and the southern marginal zone, which implies that both
zones may have shared a similar metamorphic evolution, whereas the central zone indicated
higher P - T conditions (i.e., higher pressure and higher temperature). The difference in
the P - T profiles can possibly be related to differential movement along the triangle shear
zone, so that the northern marginal zone may have slipped along the shear zone against
the central zone during uplift. The P - T conditions of the central zone also suggest that it is
of deeper crustal origin than the northern marginal zone. (Tsunogae et al., 1992)
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4
D ATA I M A G I N G A N D A N A LY S I S

This chapter discusses and illustrates many of the data imaging, analysis and preliminary
interpretation approaches that can be used before any forward modelling or inversion tool
is applied. Looking at the raw data can provide information about the structures that might
be expected from subsequent modelling and inversion.

The methods used to derive preliminary information are: estimation of the maximum
investigation depths for both modes (TE and TM) independently; plotting of the raw data
in the form of Niblett-Bostick resistivity maps; and phase tensor maps for selected depths.
Strike analysis is a further procedure that aims to determine a common strike direction for
the whole profile (at all frequencies and at all sites) to facilitate 2D modelling and inversion.
In general, the strike angle can vary with depth and/or along the profile. If it is not possible
to find a common strike angle within acceptable error bounds for the whole data set, the
profile should be divided into parts and each part should be modelled/inverted separately.

Finally, the special case of two areas of sites located above the Okavango dyke swarm
will be discussed. Both groups of sites indicate a strike angle similar to the dyke swarm
orientation, but they present a very different appearance in the Niblett-Bostick resistivity
maps. A quantitative comparison of the sounding curves is useful to examine whether
possible static shifts might be a plausible reason for the differences in resistivity and 1D
anisotropy forward modelling is also applied to fit the data of an example site.

The area of interest is located in northeastern Botswana. The major geological structures
situated in that region have been discussed in detail in the previous chapter (see Section 3.1).
Figure 4.1 (a) shows a map of the topography and bathymetry of southern Africa including
all SAMTEX site locations. Highlighted in red are the sites of the so-call ZIM-line, which
will be the subject of the 2D modelling and inversion of Chapter 5. The blue dots indicate
the sites of other profiles which will be included in the imaging and analysis presented
in this chapter. The topography in the area of interest is very flat and therefore can be
neglected in further analysis and modelling. Figure 4.1 (b) shows an enlarged map of the
sites in the area of interest including their names for further reference.

4.1 data imaging

Apparent resistivity and phase values are calculated after processing the data and estimat-
ing the impedance tensor for each frequency. Pseudo sections are plotted to gain a first
impression of the frequency-dependent data set of resistivity and phase values; the investi-
gation depth can be estimated using, e.g., the Niblett-Bostick approach (see Equation 2.67

in Section 2.6.1) and phase tensor (see Section 2.9.2) maps can be drawn. Vertical magnetic
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(b) Map of site names and locations

Figure 4.1: Topography and bathymetry map of southern Africa and a map of site lo-
cations and their names. (a) The ETOPO1 data set - freely available at:
www.ngdc.noaa.gov/mgg/global/global.html - was used to produce the elevation back-
ground map. The MT site locations of the ZIM line are highlighted with red dots, and
blue dots indicate other sites of interest. All the other SAMTEX sites are represented
by black dots. (b) Map of site names and locations of the focused area. Each profile is
represented by a different colour (colour coding identical to Figure 3.9) and the three-
letter-profilename is given in the same colour. Each site name is composed of the profile
name followed by the three digit site number (e.g., ZIM103, SAN009)
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4.1 data imaging

transfer function data were not available for the ZIM line and most of the other MT sites in
northeastern Botswana for logistical reasons (solid surface rocks not enable burying the
vertical coils and also some faulty coils reduced the number of available coils to less than
required for recording all three magnetic field components at all sites).

4.1.1 Pseudo sections

Pseudo sections are interpolated and contoured images of apparent resistivity or phase
values versus period, with period increasing downwards as a proxy for depth. Figure 4.2
shows one apparent resistivity and one phase pseudo section each for the TE and TM mode
data of the ZIM line. High resistivity values are represented by blue (cold) colours, whereas
red (warm) colours indicate low resistivity values. Since phase values smaller than 45°
correspond with increasing resistivity values, these are represented by blue colours and the
red colours are chosen for phase values larger than 45° (decreasing resistivities). The black
inverted triangles indicate the site locations of the ZIM line. Although these images might
be distorted due to the representation of distances versus period instead of true depth, some
major features can already be recognised. There are two large resistors and one near surface
conductor. The resistor on the south shows relatively sharp vertical boundaries, which are
roughly located at site ZIM106 and between sites ZIM114 and ZIM115. The other resistor
is located beneath sites ZIM124 to ZIM131 (and might continue northwards in extension
of the profile), but its boundaries are not as sharp as for the first resistor. A near surface
conductor is located in between these two resistors (roughly from ZIM115 to ZIM121) and is
related to periods shorter than 1 s, but the phase values at about 100 - 1000 s of both modes
indicate that there might be a second conductor beneath. In the TE mode the conductor
is located beneath ZIM122/ZIM123, whereas in the TM mode the conductor is a bit more
fuzzy and is located further south (beneath ZIM121/ZIM122). It is also worth noting that
the data set contains changes of resistivity values of at least three orders of magnitude over
very short (lateral) distances (see Figure 4.3). The effect of the rapid changes in resistivity
on the investigation depths at neighbouring sites will be shown in the next section.

4.1.2 Niblett-Bostick investigation depths and resistivity maps

The Niblett-Bostick approach to estimate penetration depths and the related resistivity
values at this depth was described in Section 2.6.1. Since the investigation depth is frequency-
dependent but also related to the apparent resistivity, which varies strongly in the ZIM
line data set as shown in the pseudo sections, the maximum investigation depths will vary
along the profile. Figure 4.4 shows the depth estimates for all frequencies at all sites for
both modes. Each dot represents a data point and the colour gives an idea of the frequency
it is related to (red - short periods, blue - long periods). Beneath each site two of these
columns of dots are plotted: the one on the left is for the TE mode data and the one on
the right (with a grey bar in the background) is for the TM mode. The plot of Figure 4.4
illustrates how variable the maximum penetration depths are; the data from some sites
cannot be associated with depths greater than the base of the crust, whereas data at other
sites seem to have penetration depths deep into the upper mantle. One can also see that at
neighbouring sites up to two orders of magnitude difference in period is required for the
same penetration depth, and for some sites (e.g., ZIM106, ZIM121) a difference is apparent
between the penetration depths of the two modes. The penetration depth plot also makes
obvious how skewed the pseudo section must be in some parts of the profile. Therefore
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Figure 4.2: Pseudo sections of the ZIM line: TE mode (a) and TM mode (b). Pseudo sections are
shown for apparent resistivity (top) and phase (bottom). The inverse triangles indicate
the site locations. (The grid was generated using WinGlink® software from Geosystem
applying the following settings: grid increment in the x-driection of 10 km, number of
period intervals per decade 10, interpolation radius 3, spline weight 0 and smoothing
factor 4.)
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Figure 4.3: Sketch illustrating the strong lateral resistivity contrasts found in the ZIM line data. A
conductor is located between two very resistive areas causing resistivity changes of at
least three orders of magnitude over very short lateral distances.
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Figure 4.4: Niblett-Bostick penetration depths for all sites on the ZIM line. Each coloured circle
represents a measurement at a certain period and depth with the colour indicating the
period. The penetration depths are plotted separately for TE mode (left column of dots
beneath each site) and TM mode (right column with grey bar in the background). The
upper figure examines the depth range 0 - 40 km and the lower figure the range 0 - 400 km.
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viewing resistivities at a certain depth is more appropriate than using plots versus frequency.
Niblett-Bostick resistivity maps show (Niblett-Bostick estimated) resistivity values for a
chosen depth. Figures 4.5 and 4.6 show maps for crustal (10 km) and lithospheric mantle
(70 km) depths. Each circle shows a site that has data associated with the chosen depth. The
colour of the symbol shows the resistivity value and its size is related to the period that is
required to penetrate to the respective depth. As Figure 4.4 shows, there are differences in
penetration depths between the two modes. Therefore two maps, one for each mode, are
plotted in Figures 4.5 and 4.6.
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Figure 4.5: Niblett-Bostick resistivities (a) ρxy and (b) ρyx at 10 km depth. While the colour of the
circles represents the Niblett-Bostick resistivity value at that depth, the size of the symbol
indicates the period that is required to penetrate to this depth.

Again it is clear that very different periods are required at different sites to obtain the same
penetration depth (different sizes of circles in Figures 4.5 and 4.6 are related to the period).
Shorter periods are coincident with higher resistivities, expected from the definition of the
depth estimation. In addition to the two sets of Niblett-Bostick resistivity maps presented
here, more maps for different crustal and lithospheric depths can be found in Appendix B.1.

For crustal depths, four different zones can be identified (see Figure 4.7). There is a resistive
area of about 1000 Ωm at the northern end of the ZIM line which seems to coincide with
the Ghanzi-Chobe belt as outlined in magnetic field data. A second resistive area (1000 Ωm
and more) can be found in the middle to southern part of the ZIM line and on the eastern
part of the MOF line. These sites associated with the second resistive area are located on
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Figure 4.6: Niblett-Bostick resistivities (a) ρxy and (b) ρyx at 70 km depth. While the colour of the
circles represents the Niblett-Bostick resistivity value at that depth, the size of the symbol
indicates the period that is required to penetrate to this depth.
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Figure 4.7: Sketch in plan view outlining four distinct areas found in the crustal resistivity distri-
bution of Figure 4.5. There is a resistive area in the north that is coincident with the
Ghanzi-Chobe belt, the boundary of which is defined in magnetic field data. A second
very resistive area is located further to the southeast. In between these two resistive areas
is located a conductor that extends to the west. The other areas are characterised by
medium resistivity values.
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top of the Okavango dyke swarm, which can be clearly seen on the grey scale magnetic
map shown in the background. Between these two resistors is located a conductor that
extends to the west. The sites to the west and southwest of the very high resistive area show
intermediate resistivity values of about 100 Ωm to 500 Ωm. It is worth noting that, although
the one highly resistive area in the southeast coincides well with the location of the dyke
swarm, none of the sites above the swarm in the west show such high resistivity values
(they are about two to three orders of magnitude smaller).

With increasing depth, nearly all sites show intermediate resistivity values (Figure 4.6)
except for the few sites located on top of the crustal conductor, which still appear conductive
(known as ’bleeding down’ of the conductive layer, see e.g., Jones, 1999). For greater
depths, not all sites contribute resistivity information, especially the ones located above the
conductor (see Figure 4.4).

4.1.3 Phase tensor profile and maps

The phase tensor was introduced in Section 2.9.2 and its parameters are graphically illus-
trated by an ellipse (see Figure 2.14). It is a data imaging tool that does not suffer from
electric field galvanic distortion. Figures 4.8 and 4.9 show phase tensor profiles of the ZIM
line data, where the axes of the ellipses are normalised by Φmax and the colour represents
Φmin (Figure 4.8) and the skew angle β (Figure 4.9) respectively. For each frequency, a
phase tensor ellipse is plotted at the estimated Niblett-Bostick depth (average depth of the
two modes). The top graph shows the depths range from surface to 40 km to account for the
higher frequency density and therefore higher phase tensor density, at shallower depths,
whereas the bottom graph covers the depth range from 40 km to 250 km. Once again the
different penetration depths of the sites is clear.

The shapes of the ellipses give an idea of the dimensionality of the subsurface. A 1D
structure can be assumed when the phase tensor is circular, as is nearly the case for some
of the phase tensors, e.g., from sites ZIM108, ZIM110 and ZIM111. The orientation of the
major axis of the ellipse in the non-1D case represents the strike direction (with a 90°
ambiguity applicable). In the case of these section views, the angle shown with respect to
the vertical direction represents the strike angle with respect to north in the horizontal plane.

The colour coding of Figure 4.8 represents the values of the minor axis Φmin of the el-
lipses. Analogous to the pseudo sections, the red/warm colours are related to high phase
values and therefore to decreasing resistivity. Low Φmin values, represented by blue/cold
colours, indicate an increasing resistivity. The dominant features of the frequency based
pseudo sections (Figure 4.2) appear very different when compared to the phase tensor
representation in depth. The near surface conductor, which was a major feature in the
pseudo sections and showed large phase values for the first one to one and a half decades,
does not appear similarly in the phase tensor profile. The large Φmin values still exist in
the phase tensor data set, but they are all related to very shallow depths so that they are not
visible when plotted using a crustal depth scale. Figure 4.8 (b) shows an inset figure for the
top 200 m for sites ZIM119 to ZIM122, in which these large Φmin values are clear. At the
same time the near-surface low-phase-value areas in the pseudo sections, that extend over
nearly the same period range to the left and right of the high-phase anomaly and seem to
bend around it, are seen to correspond with an upper- to mid-crustal layer of more or less
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Figure 4.8: ZIM line phase tensor sections for depths ranges (a) 0 - 40 km and (b) 40 - 250 km with an
inset figure showing the phase tensors for the top 200 m for sites ZIM119 to ZIM122. The
axes of the ellipses are normalised by Φmax and the colours represent Φmin. Vertical
ellipse orientation represents the phase tensor direction with respect to north. The depth
estimates are calculated using the Niblett-Bostick approach (average depth of the two
modes).
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Figure 4.9: ZIM line phase tensor profiles of depths ranges (a) 0 - 40 km and (b) 40 - 250 km. The
axes of the ellipses are normalised by Φmax and the colours represent the skew angle β.
Vertical ellipse orientation represents the phase tensor direction with respect to north.
The depth estimates are calculated by the Niblett-Bostick approach (average depth of the
two modes).
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constant thickness of a few kilometres in the phase tensor plot. Beneath sites ZIM120 to
ZIM129, a decrease in resistivity in the mid- to lower-crust is apparent, while some of these
sites indicate an increase of resistivity or a constant resistivity for the upper lithosphere.
Another decrease in resistivity apparent in the pseudo section data below sites ZIM108

to ZIM114 also starts in the mid- to lower-crust, but remains present for more or less the
whole lithosphere.

In Figure 4.9, the colour of the phase tensor ellipses is related to the skew angle β, which
provides some information about the possible dimensionality of the data set. In an ideal,
noise-free, 1D or isotropic 2D case, the phase tensor is symmetric and the skew angle is
equal to zero (β = 0). Since the skew angle is a measure of the phase tensor’s asymmetry
produced by 3D structure, a large skew angle indicates a 3D resistivity distribution. It is
worth remembering that a small skew angle of only a few degrees is a necessary but not
sufficient requirement for a 1D or 2D structure (see Section 2.9.2 and references therein). For
the phase tensor profile of the ZIM line one can see that most of the sites and frequencies
have a very small skew angle (light red to white to light blue colours indicate a skew angle
of a maximum ± 2°). Phase tensor ellipses with a skew angle of ± 5° or more are seldom.
ZIM121 is the only site that shows large β values for nearly all depths. Some other sites
(ZIM116 to ZIM119 and ZIM123 to ZIM 131) have large skew angles for greater depths
(lower crust and lithosphere respectively). For these areas a 3D resistivity distribution
should be expected. Since the majority of the phase tensor ellipses are potentially 1D or 2D,
a 2D modelling and inversion approach is valid for this profile.

Analogous to the Niblett-Bostick resistivity maps, phase tensor maps can also be plotted.
Figures 4.10 and 4.11 show two representative depths, one for the crust (10 km) and one for
the lithospheric mantle (70 km). More phase tensor maps at various crustal and lithospheric
mantle depths can be found in Appendix B.2.

For each depth there are two maps where the phase tensor is coloured by (a) the skew angle
β and (b) Φmin respectively. At crustal depths, nearly all phase tensors have a small skew
angle (smaller than ± 2°), which indicates a potential 2D environment. Also for greater
depths the majority of the sites show a small increase in skew angle. Some areas with
high β values, indicating a 3D structure, are near proposed boundaries of geological units,
in vicinity of the dykes and, as mentioned earlier, at lithospheric depths at the northern
end of the ZIM line. The Φmin values are very low for the very shallow crust, indicating
increasing resistivities especially in areas that are coincident with the cover of Kalahari
sands and, further to the west, where the sands are thicker, the low Φmin values can be
seen to greater depth, before they reach a level of about 45° at most of the sites. It also
becomes obvious that the most eastern profile, the ZIM line, is quite different from the rest
of the sites. Whereas all the other sites show a smooth, gradual change in Φmin values
from site to site, there are many abrupt changes between neighbouring sites along the ZIM
line.

Continuous indications of decreasing resistivities from the mid- to lower-crust downwards
though the whole lithosphere (as seen for sites ZIM108 to ZIM114 in Figure 4.8) can be
found on the depths maps in the area around the dyke swarm. The other zone of low Φmin

values that is located in the mid- to lower-crust seems to be coincident with the proposed
boundary between the Magondi and Ghanzi-Chobe mobile belts.
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Figure 4.10: Phase tensor maps at 10 km depth. The phase tensors are represented by ellipses (axes
normalised by Φmax) at each site. The colour of the ellipses indicates (a) the skew angle
β and (b) Φmin respectively.
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Figure 4.11: Phase tensor maps at 70 km depth. The phase tensors are represented by ellipses (axes
normalised by Φmax) at each site. The colour of the ellipses indicates (a) the skew angle
β and (b) Φmin respectively.
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4.2 strike angle analysis

Defining a common strike direction for all sites and frequencies is essential for 2D modelling
and inversion. The program strike by McNeice and Jones (2001) based on the Groom-
Bailey decomposition (Bailey and Groom, 1987; Groom, 1988; Groom and Bailey, 1989) was
introduced in Section 2.9.2. strike facilitates the finding of a strike angle and decomposes
the data to 2D responses. One can choose the number of sites and a frequency bandwidth
(together with a maximum and minimum frequency) to select the data that are decomposed
and fitted to Groom and Bailey distortion models jointly. The latest version of strike (v6.0)
has a new option that allows selection of the frequencies by defining the minimum and
maximum depths of interest and a depth bandwidth. The Niblett-Bostick depth estimation
(based on the average depths of both modes) is used to find the frequencies that fall into
the requested depth range. The approach allows, even for data sets such as the ZIM line,
a multi-site strike analysis to be performed without the risk of trying to match data from
completely different depths. Figure 4.12 shows the results of a single-site strike analysis for
(c) a crustal depth range of 5 - 35 km and (d) a lithospheric depth range of 50 - 150 km. The
orientation of the arrows represents the strike direction (with a 90° ambiguity applicable),
the colour of the arrows indicates the average phase difference and its length is a measure
of the RMS misfit of the distortion model to the data (the longer the arrow, the smaller the
average RMS value and therefore the better the goodness-of-fit). The histograms above for
(a) crustal and (b) lithospheric depths show that the majority of sites have an average RMS
misfit below 1.5 with a peak at about 0.7 for the crust. No clear peak can be found for the
lithosphere. A phase difference of less than 10° (blue to turquoise colours) indicates a 1D
structure. Large phase differences (> 35°) mean that a strongly 2D (or 3D) environment is
present (orange to red colours). The intermediate values represented by green to yellow
colours indicate weak two-dimensionality. Very short arrows are observed where no ade-
quate distortion model was found to decompose the data to a 2D response. Therefore these
sites are most likely associated with a 3D structure or optimistically small error estimates
(Chave and Jones, 1997). For crustal depths (Figure 4.12 (c)) such high-RMS-error sites are
mainly located where the dyke swarm and the boundary between the Zimbabwe craton
and the Magondi mobile belt converge as well as the southern half of the Magondi mobile
belt (possible lateral correlation with the extent of the Makgadikgadi salt pan complex).
Another point to notice at crustal depths is the coincidence of the orientation of the dyke
swarm with the strike direction (or its 90° ambiguity) at the sites located above.

At lithospheric depths (Figure 4.12 (d)) for nearly all ZIM line sites north of the dyke
swarm the preferred strike direction is very consistent, although the average RMS values
are increased compared to the crust. The higher RMS values at lithospheric depths north of
the dyke swarm are the main cause of the change in the RMS distribution from (a) crustal
to (b) lithospheric depth.

Figure 4.13 shows a comparison of the average RMS misfit and the average of the absolute
phase difference (see Figure 4.12) to the average of the absolute phase tensor skew angle β

(see Figures 4.10 and 4.11) for all sites and both (a) crustal (5 - 35 km) and (b) lithospheric
mantle (50 - 150 km) depths ranges. All three parameters are indicators for dimensionality
as described above. For crustal depth (a), there is a good correlation between the small RMS
misfit values (i.e., good fit to the distortion model), the small phase differences (i.e., 1D or
2D structure) and the small phase tensor skew angles (potentially 1D or 2D structure).
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Figure 4.12: Figure showing on top histograms of the average RMS misfit and on the bottom the
single site strike directions over (a and c) crustal (5 - 35 km) and (b and d) lithospheric
(50 - 150 km) depths ranges. The colour coding indicates the average of the absolute
phase difference in the two orthogonal directions, whereas the length of the arrows is
related to the average RMS misfit (the longer the arrow the smaller the average RMS
value and therefore the better the goodness-of-fit). Note that the strike directions plotted
are the directions resulting from the program strike, but there is a 90° ambiguity in
strike direction.

Only a few sites show large phase tensor skew angles indicating a 3D environment. These
sites also have larger RMS misfit values and tend to larger phase differences. Therefore
these sites are probably sensing 3D structures. At lithospheric mantle depths (b) a similar
distribution can be found with an additional group of sites that show large phase ten-
sor skew angles and mainly large phase differences but small RMS misfit values. These
sites are probably above a 3D structure that can be compensated by a distortion model
that leads to a good fit to the data and therefore to a small RSM misfit value. All three
criteria for both depths ranges support the assumption of a 2D structure beneath the major-
ity of sites and therefore justify a 2D modelling and inversion approach to interpret the data.
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Figure 4.13: Figure showing a comparison of the average RMS misfit, the average of the absolute
phase difference and the average of the absolute phase tensor skew angel β over (a)
crustal (5 - 35 km) and (b) lithospheric (50 - 150 km) depths ranges. The colour coding
indicates the average of the absolute phase difference in the two orthogonal directions.
A small phase difference indicates a possible 1D or 2D environment, whereas large
phase tensor skew angles represent a 3D structure. The smaller the RMS misfit the
better the goodness-of-if of the distortion model to the data. Each symbol represents
one site and the shape of the symbol indicates to which profile the site belongs.

The RMS values and strike directions for the individual sites shown in Figure 4.12 are
not only based on a simple rotation of the data but also on the decomposition of the
data set with the aim of removing possible galvanic distortion effects. The Groom-Bailey
decomposition is based on determining the twist and shear angle for the chosen data band
(and the anisotropy factor for each individual frequency) to generate the distortion matrix.
Figures 4.14 and 4.15 show these two variables representing (parts of) the distortion models
for the individual sites at crustal and lithospheric depths.

The observed twist angles fall mostly within the range of ± 10° for crustal (Figure 4.14

(a)) and ± 15° for lithospheric depths (Figure 4.14 (b)). The majority of the sites have a
consistently low twist value for the crust (c) as well as for the lithosphere (d), and the few
sites with higher angles are scattered. High twist angles are absent in the areas of uniform,
conductive Kalahari sand cover.

The shear angles shown in Figure 4.15 predominantly are within the range of ± 10° for
crustal depths (a). For the lithosphere (b) the shear angles are spread out over the physically
possible range of ± 45°. As the map of the crustal shear shows (c), high shear angles are
absent in the western part coincident with the Kalahari sand cover. The distribution of
sites with high shear is scattered for the crust, but for the lithosphere clusters of similar
high shear are suggested. In general the majority of the high shear angles are located on
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the Zimbabwe craton or close to terrane boundaries. North of the dyke swarm at both
lithospheric mantle and crustal depths, high positive shear values are dominant, whereas
sites at the boundary between the Ghanzi-Chobe and Magondi mobile belts have moderate
to high negative shear value. Another reason why the lithospheric shear angles near the
dyke swarm are relatively high is that for longer periods the dykes become small compared
to the skin depths and will act as additional galvanic scatterer. It is worth noting that these
distortion models are based on twist and shear, but neglect any static shifts (the gain and
anisotropy terms in the distortion matrix, see Section 2.9.2).
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Figure 4.14: Figure showing on top histograms of the twist angles over (a) crustal (5 - 35 km) and (b)
lithospheric (50 - 150 km) depths ranges. Below are maps representing the twist angles
for the individual sites for (c) crustal and (d) lithospheric depths.

Figure 4.16 shows plots of the most conductive direction for the crust (a) and lithospheric
mantle (b), which is a way of avoiding the 90° ambiguity in the strike direction. As it was
shown in Figure 2.6 for a simple fault structure, on the side of the resistive quarter space
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Figure 4.15: Figure showing on top histograms of the shear angles over (a) crustal (5 - 35 km) and (b)
lithospheric (50 - 150 km) depths ranges. Below are maps representing the shear angles
for the individual sites for (c) crustal and (d) lithospheric depths.

the TE mode is more conductive than the TM mode, whereas on the conductive side of the
fault the TM mode is more conductive than the TE. Therefore plotting the most conductive
direction will result in plotting the TE mode on the resistive side of a fault or a terrane
boundary and the TM mode on the conductive side. Since the TE mode is defined as having
the electric field parallel to the strike direction of the fault, the most conductive direction
on the resistive side will be parallel to it. On the other hand, the TM mode is defined as
having the electric field direction perpendicular to the fault direction and therefore the
most conductive direction on the conductive side is also perpendicular to it. Hence at a
fault or a terrane boundary a 90° flip in the most conductive direction will occur. Since the
resistivity values could be affected by static shifts, the most conductive direction of the true
structure based on the apparent resistivity curves could be misleading. As the phases are
unaffected by static shift, it is preferred to use the maximum phase instead of the minimum
resistivity to define the most conductive direction. Maximum phases are used to determine
the most conductive directions plotted in Figure 4.16.
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Figure 4.16 shows some of these 90° flips in most conductive direction in the crust (a)
as well as in the lithosphere (b). Since these directions represent a band of frequencies,
phase cross-overs within the band cannot be excluded, and therefore the colour of the
arrow at each site indicates the percentage of the frequencies in the band that show the
plotted direction as most conductive. A blue arrow (100%) means all frequencies have
a consistent most conductive direction, whereas red (50%) indicates sites where half of
the frequencies have a most conductive direction in the plotted orientation, but the other
half is in favour of the perpendicular direction as the most conductive. Most of these
undecided cases are located at places where the 90° flip occurs. Looking at the northern
end of the ZIM line, the sites inside the Ghanzi-Chobe belt seem to be more or less parallel
to the proposed terrane boundary with the Magondi belt, whereas sites on the Magondi
belt show a perpendicular most conductive direction. If the flip is related to the terrane
boundary between these two belts, two things can be stated. First, the Magondi mobile belt
is more conductive than the Ghanzi-Chobe mobile belt (which agrees with, e.g., the pseudo
sections (Figures 4.2) and Niblett-Bostick resistivity maps (Figures 4.5 and 4.6)) and second,
the proposed terrane boundary is probably drawn too far south since the flip happens
somewhere around ZIM128 (and not ZIM124) at crustal as well as lithospheric depths.
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Figure 4.16: Figure showing the most conductive directions (defined using maximum phase) over
(a) crustal (5 - 35 km) and (b) lithospheric (50 - 150 km) depths ranges. The colour coding
indicates the percentage of the frequencies in the depth range on which this direction is
based for each individual site. Blue (100%) means all frequencies in this depths range
show the same most conductive direction whereas red (50%) represents sites where
the direction plotted is only based on half of the frequencies, while the other half is in
favour of the perpendicular direction as most conductive.
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Another eye-catching flip in the crust can be seen at the western sites above, and south
of, the dyke swarm. All sites above the dyke swarm show a most conductive direction
perpendicular to the dyke orientation, whereas all the sites south of the swarm have most
conductive directions parallel to it. Although it is not as sharp as for the crust, the flip still
is present in the lithosphere. The sites above the dyke swarm in the east indicate also a most
conductive direction perpendicular to the dyke swarm orientations, but this orientations is
not as dominant as for the western sites.

While no flip can be identified at the terrane boundary between the Zimbabwe craton
and the Magondi mobile belt on the ZIM line, there are two 90° changes in the most
conductive direction in the south which could indicate the southwestern boundary of the
Zimbabwe craton. One is located at the proposed boundary of the Zimbabwe craton, where
the most conductive direction at the sites of the KAL line is oriented parallel to the outlined
boundary and the SSO line sites show directions perpendicular to it. If that is the correct
terrane boundary for the craton, then the most conductive direction would suggest that the
craton would be more conductive than the neighbouring mobile belt. The other location is
a little further to the westsouthwest, just east of the crossing of the SAN and KAL lines.
The sites of the SAN line (sites SAN003 to SAN008) indicate being on the more conductive
site, whereas the KAL sites (sites KAL017/018/019 to KAL024) show a most conductive
direction that would place them on the more resistive side of the boundary. If the Zimbabwe
craton would extend that far, (as far as KAL017/018/019) the KAL sites would be located
on the craton and the shift in terrane boundary would agree with the expectation of a
resistive craton. Another supportive argument for the shifted boundary is the fact that in
Gope (near KAL018/019) diamondiferous kimberlites were found (mining is supposed to
start in 2012 (Read and Janse, 2009)), and diamondiferous kimberlites are known to appear
on the edges of cratons (Jones et al., 2009).

Although the results shown represent the most preferred distortion model and strike
direction for each site, that does not imply that any other strike direction will cause an
unacceptably high RMS value. Therefore the decomposition was run for fixed strike angles
from 0° to 90° in 1° intervals to see the effect on the resulting RMS misfit. Table 4.1 shows
a list of strike angles that provide a good fit of the distortion model to the data (RMS < 1.0)
and acceptable fits (RMS < 2.0) for all ZIM line sites. Three different frequency ranges were
used to analyse the RMS values for all strike angles; one each related to crustal (5 - 35 km)
and lithospheric depths (50 - 150 km) and one containing all available frequencies for each
site. At some sites, the strike angle ranges are different for the crust, the lithosphere and
the whole frequency range, which indicates that while a strike analysis simply carried out
over all frequencies might give a good RMS fit, the determined strike direction does not
necessarily conform with either the crustal or the lithospheric directions. The problem of
the variation in preferred strike direction for different depth bands becomes more obvious
looking at Figure 4.17, which illustrates the RMS misfit versus strike angle for all three
depth ranges for two sites. The dots represent the individual RMS values at each frequency
(in the chosen range) for all strike angles, whereas the colour of the symbol indicates, which
period it is related to (hotter colours = higher frequencies/shorter periods). Site ZIM107

shows a clear minimum in RMS for all frequencies in the crustal depths band and in the
band over all frequencies, whereas for lithospheric depths all strike angles have low RMS
values. The vertical red line indicates the strike direction one would obtain performing a
normal strike analysis for the same frequency range (the exact value is given in the top
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Table 4.1: For all ZIM line sites the ranges of strike angles that provide a good fit of the distortion
model to the data, i.e., average RMS misfit < 1.0 (or an acceptable fit, i.e., average RMS
misfit < 2.0) were determined for crustal depths (5 km - 35 km), lithospheric depths (50 km -
150 km) and the whole frequency range using an error floor for 3.5%. (∗ indicates that no
strike angles are found with an average RMS < 1.0 (< 2.0). ‡ indicates that no frequencies
are available in this depths range.)

strike ranges of average rms misfit < 1.0 (< 2.0)

site crust lithosphere all frequencies

101 38° - 50° (0° - 90°) -25° - 30° (0° - 90°) ∗ (2° - 45°)

102 27° - 32° (0° - 90°) ‡ ∗ (0° - 90°)

103 0° - 90° -53° - 21° (0° - 90°) 27° - 42° (0° - 90°)

104 0° - 90° 0° - 90° ∗ (18° - 37°)

105 0° - 90° 0° - 90° ∗ (-6° - 31°)

106 ∗ (56° - 71°) 0° - 90° ∗ (∗)
107 ∗ (43° - 61°) 0° - 90° ∗ (45° - 57°)

108 8° - 54° (0° - 90°) 0° - 90° ∗ (0° - 90°)

109 -2° - 33° (0° - 90°) -14° - 17° (0° - 90°) ∗ (0° - 90°)

110 -9° - 39° (0° - 90°) 23° - 66° (0° - 90°) ∗ (0° - 90°)

111 0° - 90° 0° - 90° 0° - 90°

112 0° - 90° -46° - 24° (0° - 90°) ∗ (0° - 90°)

113 0° - 90° 0° - 90° 15° - 42° (0° - 90°)

114 -10° - 3° (-27° - 20°) 3° - 24° (0° - 90°) ∗ (-9° - 20°)

115 ∗ (47° - 62°) -2° - 36° (0° - 90°) ∗ (∗)
116 ∗ (26° - 64°) 0° - 90° ∗ (50° - 65°)

117 ∗ (43° - 69°) 76° - 90° (62° - 96°) ∗ (69° - 78°)

118 ∗ (-11° - 17°) 16° - 48° (0° - 90°) ∗ (∗)
119 ∗ (-37° - 14°) -7° - 52° (0° - 90°) ∗ (0° - 90°)

120 -16° - 39° (0° - 90°) ‡ 0° - 90°

121 ∗ (∗) ∗ (∗) ∗ (∗)
122 ∗ (43° - 78°) ‡ ∗ (58° - 99°)

123 56° - 75° (-61° - 10°) ∗ (∗) ∗ (65° - 72°)

124 0° - 90° ∗ (-67° - 15°) 0° - 90°

125 44° - 72° (0° - 90°) ∗ (36° - 83°) ∗ (30° - 85°)

126 3° - 57° (0° - 90°) 61° - 92° (0° - 90°) ∗ (0° - 90°)

127 13° - 60° (0° - 90°) ∗ (0° - 90°) 29° - 42° (0° - 90°)

128 59° - 64° (-58° - 5°) ∗ (0° - 90°) ∗ (45° - 86°)

129 -7° - 46° (0° - 90°) ∗ (24° - 62°) ∗ (23° - 50°)

130 13° - 45° (0° - 90°) ∗ (0° - 90°) ∗ (20° - 56°)

131 0° - 90° ∗ (23° - 38°) ∗ (33° - 43°)
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Figure 4.17: Figure showing the different RMS values for strike angles from 0° - 90° for the sites
ZIM107 and ZIM126. The RMS values for the whole azimuth range are plotted for
three different depth/frequency ranges: crustal depth (5-35 km), lithospheric depth
(50-150 km) and over the whole frequency range. The colour coding is related to the
frequencies. The red line indicates the strike direction one would obtain performing a
normal strike analysis for the same frequency/depth range.

right corner as average azimuth). In the case of ZIM107 all three average azimuth values
agree reasonably well, but that is not always the case, as ZIM126 shows. Unlike ZIM107,
there is no clear RMS minimum apparent in any of the depth/frequency bands and all
strike angles result in acceptably small RMS values. The individual strike analysis for each
frequency band shows a huge difference between the average crustal angle of about 22°
and the lithospheric angle of about 70°. The strike direction obtained for all frequencies
is about 86° , again different, and roughly an average or mix of crustal and lithospheric
azimuths (taking into account the 90° ambiguity). Therefore one should be careful with
just applying one overall strike analysis, because it could be misleading. Similar plots for
all ZIM line sites are compiled in Appendix B.3.

Multi-site, multi-frequency strike analysis was undertaken for numerous groups of different
sites and period (or depth) bands. The sketch in Figure 4.18 (a) summarises the resulting
strike directions for different groups of sites for the crust and lithospheric mantle. The
group of sites (ZIM107 to ZIM114) above the dyke swarm shows a strike direction of about
20° E of N, but since there is the 90° ambiguity and the dyke swarm orientation is about
110° E of N the latter direction was chosen. Both groups of sites to the north and to the
south of the dyke swarm showed varying strike direction (the range is given in parenthesis).
Nevertheless an overall crustal strike direction of 55° E of N was chosen because it was a
dominant direction for the crustal depths at all sites (except for the dyke swarm sites) and
it is also the direction of the terrane boundary of the Ghanzi-Chobe and Magondi mobile
belts based on the magnetic data. Figure 4.18 (b) shows the chosen strike directions for the
crust, where the length of the arrow is related to the RMS misfit (the longer the better the
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Figure 4.18: Figure showing (a) a sketch of the different strike angles for different depths and areas
of the ZIM profile. The values in parenthesis are the ranges of possible strike directions
depending on the grouping of sites and frequencies, whereas the angle before is the one
chosen as the final strike angle for that part of the profile. Below are the chosen strike
directions plotted for (b) crustal (5 - 35 km) and (c) lithospheric (50 - 150 km) depths
ranges. The colour coding indicates the average of the absolute phase difference in the
two orthogonal directions, whereas the length of the arrows is related to the average
RMS misfits (the larger the arrow the smaller the average RMS value and therefore the
better the goodness-of-fit).
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goodness-of-fit) for that site, having enforced the chosen strike direction, and the colour
represents the phase difference.

As the sketch (a) shows, there is an area with a lack of information in the lithospheric mantle
between ZIM119 and ZIM126 due to the small maximum penetration depth at these sites.
For the sites north and south of the dyke swarm a strike direction of 35° E of N dominates,
whereas the dyke swarm sites prefer a strike angle close to 10° E of N (and deeper again of
20° E of N), that may or may not be related to the dyke swarm direction. Including the dyke
sites in a large group of sites for the strike analysis, the 35° E of N remains the dominant
angle. Figure 4.18 (c) shows the chosen strike direction for the lithospheric mantle with its
RMS values (arrow length) and phase differences (colour) for each site. None of the dyke
sites indicates a poor fit to the enforced strike direction of 35° E of N.

Since 2D modelling requires one single strike direction, the lithospheric mantle direction
(35° E of N) was chosen for the inversion of the whole data set. Firstly, because the major
interest lies in the lithospheric structures and the depth to the electrical lithosphere-
asthenosphere boundary and secondly, because the data set has an approximately 20 km
site spacing and is undersampled with respect to providing a detailed image of the crust.
While for the results shown in Figure 4.18, where each depth band was decomposed and
rotated separately, for the inversion, a consistent data set is required with one distortion
model suitable for all frequencies of each site. Table 4.2 lists the results of a single-site strike
analysis using one band over all frequencies and an enforced strike direction of 35° E of N.
For each site the twist and shear angles of the distortion model are listed as well as the
overall, the crustal and the lithospheric average, minimum and maximum phase differences.
The last column gives the average RMS values for the crust, lithospheric mantle and all
frequencies. The information in Table 4.2 allows one to distinguish if a large overall value
(in twist, shear, phase difference and/or RMS) is representative for the whole site or only
for crustal or lithospheric mantle depths. Note that the crustal depth range (5 - 35 km) does
not start at the surface and there is also a gap between the crustal and the lithospheric
depth range (50 - 150 km).

Only a few sites indicate strong distortion effects: ZIM105, ZIM108, ZIM113 and ZIM114,
which are all very close to the dyke swarm, and ZIM124. Figure 4.19 shows a comparison of
the true north data from site ZIM114 (a) with the responses obtained after a simple rotation
into strike direction (b) and after decomposition into strike direction (c). The original and
the rotated data show very large diagonal element resistivity values, which may indicate a
3D environment. The decomposition procedure tries to fit the data to a distortion model
that results in the required zero-value diagonal elements (10−11 Ωm to 10−14 Ωm can be
considered as zero, and the phase values become meaningless) to make it suitable for a
2D inversion. ZIM114 shows clearly the need for decomposition, rather than rotation, to
prepare data for 2D inversion and interpretation.

Also several very large phase differences are listed in Table 4.2; e.g., ZIM101, ZIM102 and
ZIM116 have a large overall maximum phase difference whereas neither the crustal nor
the lithospheric values are of similar size. At site ZIM101, the TE phases for periods < 0.9 s
(not deep enough to fall into the crustal depth range) are out of quadrant. For ZIM102

a large scatter of phase values can be found for periods > 800 s (below the crustal depth
range). For ZIM116 the period range of 1 - 4 s (between the crustal and lithospheric depth
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Table 4.2: Table listing the constrained distortion decomposition values for a geological strike
direction of 35° E of N. Shear and twist angles are a measure of the strength of galvanic
distortion, whereas the phase difference can be used as an indicator of dimensionality.
The goodness-of-fit of the distortion model to the observed data is related to a low
average RMS misfit. The distortion models were estimated for each individual site over
a single frequency band containing all frequencies available. The average, minimum
and maximum phase difference values as well as the average RMS misfit are given for
the whole frequency band, but also values for parts of the frequency band related to
crustal (5 - 35 km) and lithospheric (50 - 150 km) depths ranges (all frequencies/crustal
depths/lithospheric depths). (‡ indicates that no frequencies are available in this depth
range.)

absolute phase difference average

site shear twist average minimum maximum rms misfit

101 -5.9 -6.4 18.2 / 9.1 / 16.9 0.1 / 2.7 / 0.1 110.7 / 15.4 / 24.6 1.56 / 1.09 / 1.70

102 11.8 5.7 11.9 / 10.8 / ‡ 0.6 / 6.3 / ‡ 106.7 / 19.6 / ‡ 1.18 / 1.08 / ‡

103 3.6 -6.7 11.2 / 5.7 / 7.3 2.7 / 3.0 / 2.7 21.4 / 8.3 / 12.6 0.88 / 0.64 / 0.97

104 5.2 -0.1 23.6 / 21.9 / 20.5 5.2 / 12.3 / 7.8 50.8 / 48.2 / 31.6 1.68 / 2.28 / 1.32

105 24.2 4.4 10.1 / 2.3 / 15.1 0.1 / 0.2 / 4.4 37.7 / 6.6 / 20.9 2.09 / 1.77 / 1.74

106 -8.3 5.8 71.7 / 57.3 / 190.1 1.0 / 41.1 / 96.3 242.8 / 92.9 / 242.8 5.01 / 5.92 / 6.78

107 -9.8 -7.4 17.8 / 23.5 / 21.8 0.3 / 3.3 / 0.6 42.9 / 40.1 / 41.3 2.58 / 2.59 / 2.53

108 -18.3 -8.7 9.6 / 8.7 / 7.6 0.7 / 1.0 / 0.9 21.8 / 16.1 / 14.4 1.04 / 0.91 / 0.91

109 -9.1 2.0 8.3 / 6.6 / 6.4 0.0 / 0.2 / 0.3 15.7 / 11.6 / 10.7 1.41 / 1.34 / 1.52

110 -12.3 14.9 6.1 / 6.8 / 7.4 0.1 / 0.2 / 2.6 11.2 / 11.2 / 9.9 1.15 / 1.17 / 1.04

111 -9.5 0.7 4.5 / 1.0 / 4.7 0.0 / 0.0 / 0.6 17.1 / 2.2 / 8.2 0.79 / 0.55 / 0.84

112 -2.6 1.9 3.7 / 4.4 / 2.1 0.1 / 0.2 / 0.1 10.5 / 9.7 / 5.7 1.40 / 0.81 / 1.27

113 -27.8 12.9 9.5 / 11.1 / 11.2 0.0 / 9.1 / 0.1 19.3 / 15.2 / 18.3 0.91 / 0.49 / 0.42

114 -24.9 -28.2 16.8 / 23.9 / 11.2 4.2 / 18.5 / 6.5 34.6 / 32.7 / 16.9 2.93 / 3.68 / 1.21

115 9.4 11.9 18.6 / 22.0 / 22.7 0.1 / 5.6 / 12.7 38.6 / 29.6 / 31.2 2.48 / 2.52 / 1.88

116 11.7 3.9 16.7 / 17.1 / 37.2 0.0 / 10.5 / 26.2 82.4 / 28.2 / 43.1 3.21 / 3.46 / 3.68

117 10.2 4.5 10.8 / 14.3 / 26.1 0.0 / 3.8 / 6.3 46.2 / 31.4 / 38.2 3.63 / 3.66 / 5.57

118 6.3 6.3 8.8 / 8.8 / 20.8 0.0 / 1.3 / 4.6 44.8 / 15.5 / 41.1 3.19 / 2.97 / 5.53

119 3.8 1.1 5.7 / 9.6 / 23.7 0.0 / 0.9 / 21.2 26.1 / 20.6 / 26.1 1.79 / 2.56 / 4.21

120 1.2 0.2 4.6 / 9.7 / ‡ 0.0 / 0.6 / ‡ 36.8 / 36.8 / ‡ 0.95 / 1.31 / ‡

121 13.6 18.2 14.9 / 30.1 / 13.9 0.1 / 1.3 / 3.5 43.1 / 43.1 / 22.0 5.12 / 4.51 / 5.36

122 8.8 2.4 4.3 / 8.7 / ‡ 0.0 / 2.2 / ‡ 11.7 / 11.7 / ‡ 2.71 / 3.62 / ‡

123 -8.2 -0.6 9.7 / 6.1 / 33.9 0.1 / 3.8 / 15.8 56.7 / 7.8 / 56.7 3.20 / 2.32 / 7.07

124 -36.9 39.8 21.0 / 10.1 / 38.2 0.5 / 1.3 / 19.7 72.9 / 18.6 / 72.9 0.57 / 0.43 / 2.04

125 -1.5 3.6 8.4 / 7.3 / 7.8 0.3 / 0.6 / 0.3 47.2 / 14.8 / 16.9 1.79 / 1.59 / 2.83

126 -1.4 3.9 5.0 / 5.4 / 5.3 0.1 / 0.1 / 1.6 16.1 / 10.1 / 16.1 1.46 / 0.92 / 2.43

127 2.7 3.4 8.1 / 9.1 / 5.8 0.1 / 1.3 / 2.8 20.2 / 16.3 / 11.6 0.95 / 0.54 / 1.51

128 4.0 -1.6 5.5 / 8.3 / 6.0 0.0 / 0.9 / 1.8 17.6 / 15.0 / 14.3 2.16 / 2.13 / 1.91

129 -1.3 6.5 9.3 / 7.4 / 15.0 0.6 / 5.5 / 8.2 22.1 / 17.3 / 22.0 1.54 / 1.03 / 2.04

130 5.6 1.9 8.3 / 9.1 / 11.8 0.1 / 0.2 / 6.2 23.2 / 22.8 / 20.7 1.38 / 1.39 / 1.80

131 -7.5 9.8 13.3 / 6.0 / 32.9 0.9 / 0.9 / 29.8 35.2 / 14.6 / 35.2 1.92 / 1.37 / 1.86
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4.2 strike angle analysis

ranges) contains TE phases out of quadrant. ZIM123 and ZIM124 have large overall, but also
lithospheric, maximum phase differences as well, which are related to TE phase and TM
phase respectively being out of quadrant at long periods (> 300 s and > 100 s respectively).
One relatively extreme site is ZIM106 where the TM mode is out of quadrant over decades
> 2 s. Although a large maximum phase difference seems to be a good indication of data
with phases out of quadrant, one should be aware that if both modes are out of quadrant
and close to each other the phase difference will remain small although both are out of
quadrant. All data points with phases out of quadrant have to be removed before the 2D
inversion, e.g., using a D+ consistency scheme for guidance.
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(a) Original ZIM114 data (true north)
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(b) ZIM114 data rotated into strike direction
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(c) ZIM114 data decomposed into strike direction

Figure 4.19: Figure (a) shows the original data of ZIM114 orientated in the direction of true north,
while (b) shows the same data rotated and (c) decomposed (using the program strike)
into the strike direction of 35° E of N. Note the different scale of the y-axis of the
resistivity plot of the diagonal elements in (c) (compared to the same panel in (a) and
(b)).
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4 data imaging and analysis

4.3 sites above the okavango dyke swarm

Two groups of MT sites are located above the Okavango dyke swarm. The eastern area is
around Francistown and includes sites of the ZIM line and of the MOF line; the western
group is located southeast of the Okavango delta and is close to Maun consisting of sites
from the MAK and MOF profiles. These two towns are used as names for the groups of
sites and Table 4.3 lists the names of all sites included in each group. Figure 4.20 (a) shows
a map of these sites and areas.

Although strike analysis of sites from both areas indicates a dominant direction parallel (or
perpendicular) to the dyke orientation, the Niblett-Bostick resistivity maps (Figures 4.5 and
4.6) showed very different resistivity values for these two groups of sites. The difference in

Table 4.3: Table listing the names of the sites associated with either the Maun area or the Francistown
area. See Figure 4.20 for a location map of these areas.

maun area francistown area

MAK008 MAK009 MAK010 MOF123 MOF124 MOF125 MOF126

MOF103 MOF104 MOF105 MOF127 ZIM107 ZIM108 ZIM109

MOF106 MOF107 MOF108 ZIM110 ZIM111 ZIM112 ZIM113

MOF109 ZIM114

resistivity values between the two groups seems to be a regional effect, and therefore static
shifts are not a very likely cause. Static shift is rather a local-effect that causes the up or
down shifting of the resistivity curve at individual sites. Since static shifts only affect the
level of the resistivity curve, but not its shape nor the phase curve, it is easy to test the static
shift hypothesis. Figure 4.20 shows the XY (b) and YX (c) resistivity and phase curves for
the data decomposed into the strike direction of the dyke swarm (110° E of N). All curves
for the sites from the Francistown area are quite similar, whereas the cluster of curves from
the Maun area is also consistent but significantly different from the Francistown group.
The shapes of these two clusters of resistivity curves are very different, as the shapes of
the phase curves are also not matching. Therefore a simple static shift cannot account for
the different resistivity values shown in the Niblett-Bostick resistivity maps of the two
areas. The Francistown sites are characterised by at least two decades wide envelopes of
the XY and YX resistivity curve clusters and the phase curves are only broadly similar. The
Francistown sites are clearly affected by intra- and inter-site static effects. Figure 4.21 shows
the response curves of each individual site of both groups. Whereas the Maun sites (a) are
1D for the first decades and all have a similar shape across the entire frequency band, there
is a lot scatter in the resistivity level of the Francistown sites (b) between neighbouring sites
as well as between the two modes for each site. Figure 4.22 shows phase difference curves
of the D+ smoothed data for both groups of sites. It shows clearly that the Maun sites have
phase differences far below 10° at periods < 10 s (or rather depths < approx. 5 km) and
therefore are 1D in this part of the data. The Francistown sites on the other hand show
no period ranges where phase differences are less than 10° for more than a quarter of a
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(c) Resistivity and phase curves -
YX component

Figure 4.20: Resistivity and phase curves of sites from two different areas above the Okavango dyke
swarm. On the left (a) is a map of the site locations relative to the dyke swarm and the
ellipses indicate which sites are includes in which area: Maun area or Francistown area.
(The names of the sites included in each area can be found in Table 4.3). The towns of
Maun and Francistown are represented by the black diamonds labelled with M and F,
respectively. The same colour coding by area is used in the two adjacent figures, where
the resistivity (top) and phase (bottom) curves are plotted for all selected sites. The XY
components are shown in (b) and the YX components in (c) (after decomposition into
the common strike direction of 110° E of N, which is the orientation of the Okavango
dyke swarm).

decade in period, if at all (expect MOF126 and ZIM111). Most of the time the phase split is
between 10° and 20° (sometimes even higher) and reduces where phase crossings appear
(see Figures 4.21 and 4.22). Whereas none of Maun area sites exhibit D+ inconsistencies,
several sites of the Francistown area do (MOF123: in the YX mode for periods < 0.01 s and
in the XY mode at about 10 s, MOF124: XY for > 0.3 s, MOF125: YX for 0.025 - 1 s and 3 - 30 s,
ZIM108: YX for < 0.01 s, ZIM109: YX for < 0.1 s, ZIM113: XY for 0.2 - 18 s).

Figure 4.19 showed the original data for ZIM114, which is an example of the high diagonal
element resistivity values of the Francistown area that indicates a 3D environment. Although
the values are related to a different strike direction, the distortion model values for twist
and shear in Table 4.2 are relatively high for some of the Francistown sites (ZIM108, ZIM110,
ZIM113 and ZIM114) compared to the rest of the ZIM line sites, which also suggests a more
complicated near-surface structure than a simple 1D or 2D case.

The Okavango dyke swarm consists of Karoo-aged dolerite dykes (Elburg and Goldberg,
2000; Aubourg et al., 2008). Based on deep electrical soundings investigating the Karoo
Supergroup in South Africa, van Zijl (2006) estimates that the dolerites have an average
resistivity of 30000 Ωm, as determined exclusively from soundings close to or at the sites of
deep boreholes, where the distribution and thickness of the dolerites and hosting sediments
were known. The dyke swarm is therefore a resistive structure that should enhance the
resistivities observed in that area. Hence, the conductive Maun area is the anomalous region
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(a) Resistivity and phase curves - Maun sites
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(b) Resistivity and phase curves - Francistown sites

Figure 4.21: Resistivity and phase curves for the Maun (a) and Francistown (b) sites. The Maun sites
show 1D responses for the first decades, whereas the Francistown sites obviously suffer
from static shifts.
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Figure 4.22: Phase difference curves of the D+ smoothed data versus periods (a) and depth (b),
decomposed to 110° , for the Maun and Francistown sites. The black dashed line
indicates a phase difference of 10°, which is assumed to be the maximum difference for
a largely 1D environment.

of the two and the open question is why is a resistive structure missing in the Maun area?
In the following, the Maun area data are investigated further to address this question.

Taking into account that the individual dykes are on average about 17 m wide (see Sec-
tion 3.1.5), they are more of an anisotropic feature than a 2D structure on the scale of the
MT soundings. Therefore the 1D anisotropic forward modelling code by Pek and Santos
(2002) was used to fit the data of one example site (MOF107) of the Maun group. Since
the data were decomposed into the dyke swarm direction, the x-axis of the coordinate
system of the site (and therefore the XY mode data) is parallel to the dyke direction and
the y-axis (and YX mode data) is perpendicular to it. Figure 4.23 shows a sketch of the
dyke direction and the orientation of the XY and YX modes for the decomposed data. If
the anisotropic direction (i.e., the orientation of the foliation strike) is parallel to the dyke
swarm, and therefore also parallel to the XY mode, then the XY mode data should be more
conductive than the YX mode data (a). If, on the other hand, the anisotropy is perpendicular
to the dyke swarm, then the YX mode becomes the more conductive mode (b). The sketch
already gives the suggestion that the structure causing the split in the data of site MOF107

cannot be the dyke swarm, as the more conductive mode in the observed data is the YX
mode (suggesting an anisotropic direction perpendicular to the dyke swarm direction, see
Figure 4.24).

For a single site investigation 1D anisotropic modelling is more flexible than a 2D isotropic
approach as it allows anisotropy and/or fault-like structures of different layers to be
orientated in more than just one direction. Therefore Pek and Santos’ (2002) code is used to
fit the data of MOF 107. Figure 4.24 shows a sketch (a) of the 1D anisotropic model that fits
the data of this site. The model is an isotropic layered Earth with an anisotropic layer from
about 10 km to about 125 km. The anisotropic strike direction was assumed to be parallel
(b) and perpendicular (c) to the dyke swarm. As expected, an anisotropic strike angle of
110° E of N fits the data but the modes are flipped, whereas the anisotropic strike direction
of 20° E of N matches the data correctly. The depth extent of the anisotropic layer, but even
more the anisotropic strike direction, exclude the dyke swarm as the possible cause of the
mode split.
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Figure 4.23: Sketch in plan view of structure or anisotropy (a) parallel and (b) perpendicular to the
orientation of the dyke swarm. As the data are decomposed into the direction of the
dyke swarm, the XY mode data are parallel and the YX mode data are perpendicular
(red arrows) to the dyke swarm direction (110° E of N). The grey dashed lines indicate
the orientation of the structure or anisotropy and the green arrows indicated the more
conductive and more resistive directions. For the structure/anisotropy parallel to the
dyke swarm orientation, the XY mode is the more conductive direction (a), whereas for
the perpendicular direction the YX mode data are more conductive (b).
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(b) Anisotropic strike direc-
tion: 110° E of N

0

45

90

P
h

a
s
e
 (

˚)

10
−2

10
−1

10
0

10
1

10
2

10
3

Periods (s)

XY

YX

10
0

10
1

10
2

10
3

R
e
s
is

ti
v
it

y
 (

Ω
m

)

10
−2

10
−1

10
0

10
1

10
2

10
3

XY

YX

(c) Anisotropic strike direc-
tion: 20° E of N

Figure 4.24: Forward 1D anisotropic modelling of site MOF107 using Pek and Santos’ (2002) code.
The decomposed (to 110° E of N) data of MOF107 are represented by the symbols, the
solid lines are the 1D forward modelling results. The model that fits the data is shown
in (a). It is a 1D layered earth, where the third layer is anisotropic. If the anisotropic
strike direction is set to be 110° E of N (along the dyke swarm direction) the modes
between observed and modelled data are flipped (b). An anisotropic strike direction
of 20° E of N (perpendicular to the dyke swarm direction) fits the data well (with the
correct mode modelled to be the more conductive).
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(a) Anisotropic strike di-
rection: 0° E of N
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(b) Anisotropic strike di-
rection: 10° E of N
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(c) Anisotropic strike di-
rection: 15° E of N
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(d) Anisotropic strike
direction: 20° E of N
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(e) Anisotropic strike di-
rection: 25° E of N
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(f) Anisotropic strike di-
rection: 30° E of N
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(g) Anisotropic strike di-
rection: 35° E of N
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(h) Anisotropic strike di-
rection: 40° E of N

Figure 4.25: Forward 1D anisotropic modelling using Pek and Santos’ (2002) code to constrain
the anisotropic strike direction. The decomposed (to 110° E of N ) data of MOF107 are
represented by the symbols. The solid lines show the synthetic 1D anisotropic data
obtained from the model sketched in Figure 4.24 (a) by choosing different anisotropic
strike directions (specified beneath each plot).

Figure 4.25 shows various models testing anisotropic strike angles for the model shown in
Figure 4.24 to estimate a range of acceptable strike directions. Anisotropic strike angles of
0° E of N and 40° E of N already show recognisable deviations from the observed data. An
angle of 35° E of N, which is the angle identified for the Magondi Mobile Belt on the ZIM
line (at lithospheric depth), also does not fit the data as well as angles of 10° - 30° E of N. The
location of the Maun area is in a part of the Magondi Mobile Belt where the orientation of
the belt rotates to a more north-south direction than observed in the vicinity of the ZIM line,
which conforms with the orientation of the large negative magnetic anomaly found in that
region (see Figure 3.10). Therefore, an angle of slightly less then 35° E of N seems reasonable.

To obtain constraints on the depth to the top of the anisotropic layer, the thickness of the
third layer (just above the anisotropic layer) is varied, and the resistivity is changed to
conserve the conductance of that layer. Figure 4.26 shows the results of the 1D forward
modelling for layer thicknesses of 1 km (10000 Ωm), 2 km (5000 Ωm), 5 km (2000 Ωm), 10 km
(1000 Ωm), 15 km (666.67 Ωm), 20 km (500 Ωm), 50 km (200 Ωm) and 100 km (100 Ωm),
keeping all the other model parameters unchanged (anisotropic strike direction is 20° E of N).
The period of the mode split, especially, gives a strong indication that the top of the
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(a) Third layer: 1 km
thick and 10000 Ωm
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(b) Third layer: 2 km
thick and 5000 Ωm
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(c) Third layer: 5 km
thick and 2000 Ωm
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(d) Third layer: 10 km
thick and 1000 Ωm
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(e) Third layer: 15 km
thick and 666.67 Ωm
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(f) Third layer: 20 km
thick and 500 Ωm
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(g) Third layer: 50 km
thick and 200 Ωm
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(h) Third layer: 100 km
thick and 100 Ωm

Figure 4.26: Forward 1D anisotropic modelling using Pek and Santos’ (2002) code to constrain
the top of the anisotropic layer. The decomposed (to 110° E of N) data of MOF107 are
represented by the symbols. The solid lines show the synthetic 1D anisotropic data
obtained from the model sketched in Figure 4.24 (a) by variation of the thickness and
resistivity (equivalent conductances) of the layer above the anisotropic layer (thickness
and resistivity of third layer are specified beneath each plot).

anisotropic layer is at about 10 - 15 km. An estimation the thickness of the anisotropic layer
is more difficult. Assuming that in the anisotropic layer the background resistivity and
the anomalous resistivity contribute equally to the principal anisotropic resistivities, then
the background resistivity of the anisotropic layer is equal to the resistivity of the layer
beneath (the fifth layer). Modifying the thicknesses of both the anisotropic layer and the
layer beneath it (keeping their combined thickness the same) gives a suggestion of the
minimum depth extent of the anisotropy. Figure 4.27 shows the results of the thickness test.
Whereas the minimum thickness of the anisotropic layer seems to be about 100-115 km, a
maximum thickness cannot be identified. Even extending the anisotropic layer to 215 km
(the combined thickness of layers four and five) does not show a significant mismatch
between observed and modelled data (Figure 4.27 (h)).

As a final test, the third layer, which has an isotropic resistivity of 1000 Ωm and a depth
extent from 250 m to about 10 km (Figure 4.28 (a)), is replaced by an anisotropic layer to
investigate whether the dykes have any effect on the data ((b) and (c)). The anisotropic
strike direction has been set to 110° E of N and the anisotropic dip angle and slant an-
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(c) 70 km (4th layer) &
145 km (5th layer)
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(d) 85 km (4th layer) &
130 km (5th layer)
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(e) 100 km (4th layer) &
115 km (5th layer)
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(f) 115 km (4th layer) &
100 km (5th layer)
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(g) 130 km (4th layer) &
85 km (5th layer)
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Figure 4.27: Forward 1D anisotropic modelling using Pek and Santos’ (2002) code to constrain the
thickness of the anisotropic layer. The decomposed (to 110° E of N) data of MOF107 are
represented by the symbols. The solid lines show the synthetic 1D anisotropic data
obtained from the model sketched in Figure 4.24 (a) by variation of the thicknesses of
the anisotropic layer and the layer below it (thicknesses of fourth and fifth layers are
specified beneath each plot).

gle were set to zero as the dykes are described by Le Gall et al. (2005) as vertical (see
Section 3.1.5). The principal anisotropic resistivities have been calculated using Equa-
tions 2.86 and 2.89 based on a 1000 Ωm background resistivity and 30000 Ωm resistivity
for the dykes. Assuming a 2.6% spatial dilatation of the dykes yields principal resis-
tivities of 1025.8 Ωm/1754 Ωm/1025.8 Ωm for the anisotropic layer. Such an anisotropic
layer causes a nearly unrecognisable change to the response curves (b). As such a small
number of dykes only enhances the anisotropic resistivities by a small amount, the
number of dykes was increased to the 12.2% dilatation found in the Francistown area
(1133.7 Ωm/4538 Ωm/1133.7 Ωm, (b)). Even if the number of dykes is comparable to the
Francistown area, the dyke signature still cannot be identified in the MT data. The small
number of dykes in the Maun area is therefore not the only reason why the dykes do not
appear in the Maun data set. The screening effect of the very conductive near-surface layers
also contributes to hiding the signal of the dykes.

As the 1D anisotropic model is fit by using one single anisotropic layer, the data can be
equally well fit by a 2D model. Figure 4.29 (a) shows a sketch of the 2D model, which has a
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(1133.7 Ωm/4538 Ωm/1133.7 Ωm)

Figure 4.28: Forward 1D anisotropic modelling using Pek and Santos’ (2002) code to try to identify
a response of the dyke swarm in the data. The decomposed (to 110° E of N) data of
MOF107 are represented by the symbols, the solid lines are the 1D forward modelling
results. The isotropic third layer (a) has been replaced by an anisotropic layer with strike
direction of 110° E of N. Based on a 1000 Ωm background resistivity and 30000 Ωm for
the dykes the anisotropic principal resistivities have been calculated (see Equations 2.86

and 2.89) to simulate the 2.6% dilatation of dykes as observed for the Maun area (b)
and 12.2% dilatation as present in the Francistown area (c).

fault-like structure to replace the anisotropic layer. The 2D forward modelling responses
have been calculated using WinGLink® from Geosystem (Mackie et al., 1988; Rodi and
Mackie, 2001). Unfortunately the minimum resistivity value that one can specify in the code
is 1 Ωm and therefore the resistivity of the second layer (0.8 Ωm) cannot be set accurately.
The solid line in Figure 4.29 (b) shows the responses obtained from WinGLink®. The phase
curves fit well and the shape of the resistivity curves is very similar to the curves in the
observed data. To compensate for the upwards static shift of the resistivity curves caused by
using the wrong resistivity value for the second layer, both resistivity curves are multiplied
by a factor 0.8 (dashed lines in (b)). For a two quarterspace model one would expect a
change in most conductive direction above the contact. Due to the covering layers in this
model such a change in most conductive direction is shifted several tens of kilometres to
the conductive side of the contact (where no data is available). The 2D fault model must
therefore be considered as an equivalent model to the 1D anisotropic model. Without any
additional information one cannot distinguish between them.

It also was made a effort to trial and error model the Francistown sites, but none of these
sites could be fitted by 1D anisotropic forward modelling with a similar simple model.
(Even no model was found that only fits the phase curves.) The Francistown sites are proba-
bly distorted or affected by 3D structures and require a 1D anisotropic model consisting
of different anisotropic layers with different anisotropic directions (and maybe dip and
slant), which requires a large number of parameter settings and therefore the trial and error
approach to find a model becomes an unreasonable time effort.
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4.3 sites above the okavango dyke swarm
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Figure 4.29: Forward 2D modelling of site MOF107 using the isotropic code of Rodi and Mackie
(2001) as implemented in WinGLink® from Geosystem (forward routine from Mackie
et al. (1988)). The decomposed (to 110° E of N) data of MOF107 are represented by the
symbols, the solid lines are the 2D forward modelling results. The model that fits the
data is shown in (a), where the strike direction of the fault structure in the third layer is
20° E of N. The minimum resistivity one can specify within WinGLink® is 1 Ωm (and
therefore larger than the required 0.8 Ωm). Using 1 Ωm results in response curves that
are shown as solid lines in (b). The phase curves match the data well, but the resistivity
curves are shifted upwards. The dashed lines show the resistivity curves multiplied by
0.8 to account for the shift due to the wrong resistivity value of the second layer.

In conclusion, the Maun sites show a 1D background model with an anisotropic or a
fault-like structure perpendicular to the dyke swarm direction, and therefore excludes the
dykes as the cause of the mode splitting observed in the data. The depth to the top of
anisotropic layer (or the fault structure) is about 10 - 15 km. The orientation of the Magondi
Belt on geological maps (e.g., Figure 3.5) and the regional magnetic map (Figure 3.10)
is consistent with the acceptable range of the anisotropic (or fault) strike direction (10° -
30° E of N). The minimum thickness of the anisotropic (or fault-structure) layer is about
100 - 115 km, a maximum thickness cannot be estimated. Therefore the layer is clearly a mid-
to lower-crustal structure that extends into the lithospheric mantle (at least down to about
120 - 125 km depth). Such a depth extent suggests a crust-mantle coupling and anisotropy
due to, e.g., graphite rather than hydrogen diffusion. (Although one cannot exclude that
the anisotropy has two different causes for the crustal and lithospheric mantle depths.) The
resistive dykes are not resolved in the MT data at the Maun sites, firstly because the 2.6%
dilatation of the dykes enhances the resistivity of that layer by an insignificant amount and
secondly, the very conductive near-surface layers have a screening effect.
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5
2 D I N V E R S I O N O F T H E Z I M L I N E

This chapter describes the 2D inversion of the ZIM line data and shows resistivity models
obtained from the inversions using different parameter settings and data subsets. The
results are compared to other available information in the area (see Chapter 3, where the
geology and previous geophysical work are reviewed) and a geological interpretation of
the modelled resistivity structures is discussed.

The 2D inversion code applied to the data is the smooth model inversion routine of the
software package WinGLink® by Geosystem, which assumes isotropic resistivity cells
in the mesh. This routine was developed by Rodi and Mackie (2001) and is based on a
finite difference formulation to compute the regularised solution of the 2D MT inverse
problem. The inverse algorithm employs a nonlinear conjugate gradient (NLCG) scheme to
minimise an objective function that penalises data residuals and second spatial derivatives
with respect to the resistivity structure (Rodi and Mackie, 2001). The different inversion
parameters used for the inversions are given in the first section, followed by the 2D inversion
results and interpretation of a crustal data subset from the northern part of the profile, and
finally of the whole data set.

5.1 inversion parameters

Many different parameters need to be defined in the inversion code. All inversion results
shown in the sections below are based on the following settings (unless stated differently):

• data range: minimum period 0.001 s and seven decades

• invert for observed station data

• using data errors, if available, otherwise the errors of the resistivity values were set to
10% and the errors in the phases to 5%

• error floor: 5% for TM phase, 25% for TE phase and 50% for the resistivities of both
modes for the first inversion run. Successively the error floors of the TE phase, of the
TM resistivity and finally of the TE resistivity were reduced: error floor of the final
inversion run: 5% for phases and 10% for apparent resistivity values

• vertical magnetic transfer function data were not available for the ZIM line

All the starting models for all the inversion results shown were 100 Ωm for the crustal data
subset of the northern part of the profile (see Section 5.2) and for the whole data set (see
Section 5.3) were 100 Ωm for the top ∼400 km with a fixed bottom halfspace of 10 Ωm below
(clamping τ of 1010). The inversion scheme of the standard Laplacian regularisation and
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Figure 5.1: RMS versus τ trade-off curves for the whole data set with a strike angle of 35° E of N and
for the crustal data set on the northern part of the profile with a strike angle of 55° E of N,
using standard settings for the weighting parameters (a) and for the crustal data set
using different weighting parameters (b). The marked τ value of 6 for the whole data
set and 1 for the crustal data set, are chosen for the 2D inversion of the profile and its
subset. In addition to the standard settings of the weighting parameters (red line in (b)),
the crustal subset was also inverted using two other settings (blue and green lines in (b)).

minimising the gradient of the model were used to calculated the models. The regularisation
parameter τ (also called smoothing operator) controls the trade-off between fitting the data
and the model smoothness. A larger τ causes a smoother model at the expense of a higher
RMS misfit. Therefore a few inversion runs were necessary to determine the optimal
regularisation parameter for the chosen mesh and the data set (or subset). Since the
resistivity data can be affected by static shift, which would enhance the RMS value, test
runs were set up to fit the phases only. Figure 5.1 (a) shows the resulting trade-off curves of
RMS versus τ values for the inversion of the whole data set (red) and for a data subset at
crust levels at the northern end of the profile (blue). For the crustal data subset different
weighting parameters (α, β and H/V) were also tested and the resulting trade-off curves are
shown in Figure 5.1 (b). The parameter α is the factor to multiply the horizontal derivatives
(default is α = 1, larger values increase the horizontal smoothness), β is the exponent
in the weighting function (default is β = 0, which means no weighting is applied to the
regularisation term). Additional parameter H and V specify the minimum block dimension
in the horizontal and vertical directions to be used in computing the weighting function
(see WinGLink® manual for more details). For the whole data set with a strike angle of
35° E of N τ = 6 and for the crustal, northern part of the profile with a strike direction of
55° E of N τ = 1 are the chosen regularisation parameters for all subsequent inversions. (See
Section 4.2 for more details about the chosen strike directions.) The weighting function
parameters used for inversion of the crustal data set are α = 1, β = 0 and H/V =0/0 (red
line), α = 1, β = 0.3 and H/V =500/500 (blue line) and α = 3, β = 0 and H/V =500/500

(green line).
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5.2 crustal, northern part of the zim line - crustal strike direction

5.2.1 2D inversion results

A separate 2D inversion of a data subset from the northern part of the ZIM profile was
undertaken to investigate the crustal structures imaged when using the appropriate strike
direction (i.e., 55° E of N), in order to subsequently differentiate between true crustal struc-
tures and artificial structures in the inversion model of the whole profile (see Section 5.3)
caused by enforcing the lithospheric strike direction of 35° E of N to the crustal, northern
part of the data.

The data of sites ZIM118 to ZIM131 were decomposed according to a fixed strike direction
of 55° E of N using strike (McNeice and Jones, 2001). The Niblett-Bostick penetration
depths were estimated for both modes independently and all data points with penetration
depths greater than 40 km were rejected (Figures C.1 and C.2 in Appendix C.1 show the
response curves). The data set obtained was imported into WinGLink® and where neces-
sary a D+ consistency assessment was used to eliminate inconsistent data points before
the inversion. The inversion strategy described in Section 5.1 was used (i.e., TM phase first,
then TE phase, TM resistivity and finally TE resistivity). Inversions of the individual modes
only, starting with inverting for phase only and then adding the resistivity values, were
also undertaken. Figure 5.2 shows the inversion results of (a) TE only, (b) TM only and (c)
joint TE and TM inversions using three different parameter settings, namely the settings
that relate to the three lowest RMS vs. τ trade-off curves shown in Figure 5.1 (i.e., the red,
blue and green curves; the colour coding is the same in Figures 5.1 and 5.2).

Comparing the inversion results using the three different weighting function settings shows
that the final average RMS of the inversions is similar for all three models and also the
RMS values for individual sites, plotted on top of the models in Figure 5.2, show hardly
any differences for the three settings. The resistivity structures obtained from TE only, TM
only and joint TE and TM inversion, however, clearly exhibit differences, which is a well
known issue (e.g., Unsworth et al., 1999; Ritter et al., 2003) that is caused by the different
sensitivities of the two modes. While the TM mode is sensitive to charges at boundaries,
the anomalies in the TE mode are inductive in nature, i.e., it is sensitive to the current flows
(e.g., Wannamaker et al., 1984; Berdichevsky et al., 1998). Wannamaker et al. (1984) state
that the apparent resistivity identified as TE by conventional means over and around a
confined 3D conductive body suffers a widespread depression (due to current gathering)
that is increasingly pronounced towards longer periods. The interpretation of such a 3D
response using 1D or 2D TE modelling routines would infer erroneously low resistivities at
depths below the true inhomogeneity (Wannamaker et al., 1984). Such an effect is apparent
in the TE mode inversion results in Figure 5.2 (a), which show a mid- to lower-crustal
conductor that extends clearly deeper than it does for the TM mode inversion (b) or the joint
TE/TM inversion (c). Berdichevsky et al. (1998) studied the advantages and disadvantages
of the individual modes using synthetic data generated for different geological scenarios.
They found the TM mode to be more sensitive to the near-surface structures, while the TE
mode may be more sensitive to deeper structures. They also noticed that the TM mode is
more accurate if a conductive 3D structure is interpreted by a 2D approximation (similar to
the observations of Jones (1983b) and Wannamaker et al. (1984)), whereas in the case of a
resistive 3D body, the TE mode may be more accurate. Therefore the information that can
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(c) Joint TE and TM inversion (vertical exaggeration = 1.0)

Figure 5.2: Figures showing the inversion results of the crustal, northern part of the ZIM line. Panel
(a) shows the results if only the TE mode data are used for the inversion, whereas in
(b) only the TM mode data are taken into account during the inversion. The results of a
joint TE and TM mode data inversion are shown in (c). For each of these inversions three
models resulting from the use of different weighting function parameters are shown,
where the colour coding of the border of each model is identical to the one used for the
crustal trade-off curves in Figure 5.1 (b).
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be obtained from the individual TE and TM modes seem to complement one another, and,
as expected, the joint TE/TM inversion Figure 5.2 (c) exhibits some features from each of
the inversions of the individual modes ((a) and (b)).

To test if some of the key structures are supported by the data, the joint TE and TM
inversion model was manually edited and used as starting model for a new inversion
sequence using the option to find the model closest to the starting model. Figures C.3 to
C.7 in Appendix C.1 show five different manually edited starting models and the final
inversion results obtained for the joint TE and TM mode inversion using the three different
weighting function settings. The different starting models are (i) a model where all the
conductive structures have been removed (see Figure C.3), (ii) a model containing only the
main conductive features and all resistive structures have been removed (see Figure C.4),
(iii) a model with smoothed shapes of the main conductive and resistive structures and
where smaller features as well as deeper structures have been removed (see Figure C.5) and
(iv) finally two models with the main conductive and resistive structures defined by tear
zones with slightly different shapes of the tear zones (see Figures C.6 and C.7).

All the inversion results of the different manually edited starting models suggest that the
northwards dipping resistor beneath sites ZIM125 to ZIM131 is a data-supported structure,
including the upwelling at the base of the resistor beneath site ZIM130. Although the
shape of the conductors beneath sites ZIM121 to ZIM123 and beneath site ZIM125 varies
from model to model, the existence of these conductors is a persistent feature. The two
upper crustal resistors beneath sites ZIM121/ZIM122 and ZIM123 remain disconnected and
the vertical resistive structure beneath ZIM119/ZIM120 is a distinctive block with sharp
boundaries in the resistivity model. Finally, a thin near-surface conductor can be found
beneath ZIM118 to ZIM122 which appears discontinuous due to the sparse lateral sampling
provided by a site spacing of about 20 km, but imposing the conductor in the model as
a continuous feature is accepted by the inversion as well (see e.g., the enlarged parts in
Figure C.4). These tests suggest that the inversion results shown in Figure 5.2 represent the
data well (Figures C.1 and C.2 show the synthetic data of the three inversion models in
comparison to the observed data). Inversions allowing for static shifts were tested as well,
but did not produce any significant changes in the models.

As the differences between the three results obtained using different weighting function
settings is small, the top model (i.e., the one with the standard settings marked by the red
border) is taken for interpretation in Section 5.2.2 below.

5.2.2 Interpretation

The known geology and results from previous geophysical investigations of the ZIM line
area were discussed in Chapter 3, but the relevant constraints for the interpretation of the
crustal northern part of the profile are summarised in the following: The Makgadikgadi
Pans (see Section 3.1.6) are associated with a near-surface brine aquifer and Figure 5.3
shows the locations of the ZIM line sites with respect to the surface extent of the salt
pans on a satellite image from Google Earth. It is very likely that the data of sites ZIM118

to ZIM120/ZIM121 are affected by the brine aquifer, which causes the low resistivities
observed. Figure 5.4 (a) shows a sketch of the a priori information with respect to the site
locations. The possible extent of the brine aquifer is indicated by the orange line. The black
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5 2d inversion of the zim line

(a) Google Earth image of the Makgadikgadi Pans

(b) Enlarged Google Earth image of the northeastern part of the
Makgadikgadi Pans

Figure 5.3: Google Earth images of site locations with respect to the Makgadikgadi Pan Complex.
The ZIM line (red) and its neighbouring profiles (blue) are shown in (a), where the white
lake-like area surrounded by the profiles ZIM, MAK and MOF is the surface extent of
the salt pan complex. The enlarged image (b) shows the proximity of the ZIM sites to the
pan complex. The northeast-trending riverbed-like extension suggests that a near-surface
brine aquifer in this area could affect the MT data at sites as far north as ZIM120/ZIM121.
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Figure 5.4: Figure showing the a priori information (a) and a possible subsurface resistivity structure
based on them (b). In orange is the possible extent of the brine aquifer, which is related
to the Makgadikgadi salt pan complex (see Figure 5.3). The black arrows indicate the
location of the crustal conductor (20 - 45 km depth) mapped by de Beer et al. (1975, 1976,
1982) and van Zijl and de Beer (1983) using electrical sounding and magnetometer array
data (see Figure 3.11). The location of the geological terranes as they are proposed on the
geological map of Singletary et al. (2003, and references therein, also see Figure 3.3) are
indicated in red and based on the aeromagnetic data in blue. In green is shown the zone
of transition in the most conductive strike direction, which indicates a dipping resistor at
the northern end of the profile (see Section 4.2 and Figure 4.16).

arrows outline the locations of the crustal conductor mapped by de Beer et al. (1975, 1976,
1982) and van Zijl and de Beer (1983) using electrical sounding and magnetometer array
data (see Figure 3.11). Originally the conductor was thought to be a upper lithospheric
mantle feature (de Beer et al., 1975, 1976), but de Beer et al. (1982) and van Zijl and de Beer
(1983) revised the depth extent to the mid- to lower-crust (20 - 45 km depth). The locations
of the boundary between the Magondi Belt and the Ghanzi-Chobe Zone, as proposed on
the geological map of Singletary et al. (2003, and references therein, also see Figure 3.3), is
sketched in red, whereas the blue geological terrane outline is based on the aeromagnetic
data (see e.g., Figure 3.10). Finally, the transition in the most conductive strike direction,
which indicates a resistor at the northern end of the profile (as discussed in Section 4.2, see
also Figure 4.16) is represented in green. As the flip in the most conductive direction is a
rather smooth transition (where not all frequencies in the crustal depth band agree in the
most conductive direction) than an abrupt change from one site to the next, an increasing
thickness of the resistor towards the north and therefore a dipping interface could be
expected. Figure 5.4 (b) shows a sketch of the probable resistivity structure based on the a
priori information shown in (a). The Ghanzi-Chobe belt is expected to be a resistive feature
and the boundary to the Magondi Belt is most likely dipping northwards with increasing
thickness of the Ghanzi-Chobe belt from ZIM124/ZIM125 to about ZIM128/ZIM129. The
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Figure 5.5: This figure shows the ’red’ 2D inversion model (vertical exaggeration = 1.0) from Fig-
ure 5.2 (c) with geological interpretation. The black dashed line indicates the northward
dipping boundary between the resistive Ghanzi-Chobe Belt to the north and the Magondi
Belt to the south. Two major mid- to lower-crustal conductors are identified. The brine
aquifer is indicated by the approximately 600 m thick conductive (about 1 - 5 Ωm) layer
beneath the southern sites (white dashed line).

brine aquifer causes a thin near-surface conductor beneath sites ZIM118 to ZIM120 (maybe
as far as ZIM121/ZIM122) and there is possibly an interface between the Zimbabwe Craton
and the Magondi Belt somewhere between ZIM119 and ZIM120. Finally, there are (one or
maybe several) mid- to lower-crustal conductors likely, the exact locations in lateral position
of which are unclear. Comparing the sketch of the possible subsurface resistivity structure
with the 2D inversion result for the MT data of the crustal northern part of the ZIM line (see
Figure 5.5), a good agreement is found. The northwards dipping very resistive structure is
identified as the Ghanzi-Chobe belt, with the Magondi Belt to its south. A clear boundary
between the Magondi Belt and the Zimbabwe Craton cannot be identified in the model.
The thin (about 600 m thick) conductive (about 1 - 5 Ωm) near-surface layer is related to
the brine aquifer, and the two mid- to lower-crustal conductors have been found in the
lateral range suggested by de Beer et al. (1975, 1976) and van Zijl and de Beer (1983). The
depth of the conductor beneath sites ZIM121/122 in the 2D inversion model (see Figure 5.5)
matches the depth of 20 - 45 km proposed by de Beer et al. (1982) and van Zijl and de Beer
(1983) for their conductor. They associated the conductor with a zone of crustal weakness
and a serpentinised lower crust. Ritter et al. (2003) studied the conductive zone using MT
data from a cross-section in Namibia. They argue that the improved knowledge and theory
about crustal conductivity suggests that shear zones are a more plausible explanation,
as they often have anomalous conductivity due to higher contents of fluid, fault gouge,
sulphide or graphite. In the case of the ZIM line, no additional information about the
presence of fluids, sulphides or graphites is available, but if de Beer et al. (1975, 1976,
1982) and van Zijl and de Beer (1983) are correct in their mapping of the conductor, then
the conductor investigated by Ritter et al. (2003) and the one found in the ZIM data are
connected (or at least associated). Therefore it seems reasonable to follow Ritter et al.’s
(2003) arguments about the cause of the conductor. Ritter et al. (2003) cannot exclude
fluids as a cause of the conductive anomaly because no supporting field evidence for
hydrothermal alteration is available, whereas graphite-bearing marble units are present in
the area. Laboratory measurements show that interconnected graphite flakes or graphite
grain boundary coatings can significantly enhance electrical conductivity (e.g., Nover et al.,
1998). Ritter et al. (2003) suggest that regardless of what the conductive material in the rocks
is, it must be reasonably well-interconnected over a distance of kilometres to cause the
observed anomalies, and that interconnectivity is best accomplished by movement along
discrete fault zones. Sulphides must also be considered as a possible cause as base metal
sulphide ores are known in the Damara Belt (e.g., Kamona et al., 1999; Chetty and Frimmel,
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2000). In summary, the origin of the lower-crustal conductor found in the ZIM data remains
uncertain, but a graphite and/or sulphide origin is favoured.

5.3 whole zim line - lithospheric strike direction

5.3.1 2D inversion results

The complete ZIM line data set was decomposed according to a fixed strike direction
of 35° E of N using strike (McNeice and Jones, 2001) and afterwards it was imported
into WinGLink® and, where necessary, D+ consistency checks were used as guidance
to manually eliminate inconsistent data points before inversion. Figures C.8 and C.9 in
Appendix C.2 show the full data set and indicate which data points of each response curve
are used for the inversion. During the inversion process sites ZIM102, ZIM103, ZIM104,
ZIM107, ZIM113 and ZIM115 were excluded as they could not be fit well by the model
responses and their individual site RMS values were greater than 15. As the testing of
different weighting function parameters (α, β, H/V) for the inversion of the crustal part of
the ZIM line showed no major differences in the resulting inversion model, default values
(i.e., α = 1, β = 0, H = 0 and V = 0) are used to inverted the whole data set. The same
inversion strategy as for the crustal part in Section 5.2 and as described in Section 5.1 was
applied (i.e., TM phase first, then TE phase, TM resistivity and finally TE resistivity).

Figure 5.6 shows the final 2D isotropic smooth inversion model for the whole ZIM line.
For each site the individual TE only, TM only and joint TE/TM RMS values are plotted on
top of the model, clearly showing that for nearly all sites it is more difficult to fit the TE
mode data than the TM mode data. It is also apparent that the data of the northern sites
are better fit than the data of the southern sites. In addition to the quality of data fit, the
model constraints depend also on the data distribution with respect to the 2D section. As
discussed in Section 4.1.2 and shown in Figure 4.4, the penetration depth varies not only
from site to site but also between the two modes. The vertical lines beneath each site in
Figure 5.6 indicate the maximum Niblett-Bostick penetration depth of the TE (black) and
TM (white) modes, respectively. Unfortunately the area inbetween the two deeper resistors
in the north (R4 in Figure 5.6) and south (R5) of the profile is not sensed by the sites above
it, but only by those sites to the side, and therefore raises the question if they are connected
or not. Another interesting question is whether the upper resistors and the lower resistors
are connected or not, and if the connection that is apparent beneath ZIM131 is real or an
artefact. (The existence of the two conductors beneath ZIM121-123 and ZIM125 are not
questioned as they conform with the conductors found in the focused inversion of the
northern crustal part of the profile, see Section 5.2).

To test the presence of the (relatively more) conductive zones between the resistors, in a
lateral but also vertical direction, the final 2D inversion model was manipulated by drawing
resistive connections between them. Four different manipulated models were designed
(see Appendix C.2): (i) the two deeper resistors (R4 and R5 in Figure 5.6) are drawn to
be one continuous resistor with a connection to the shallower resistor (R2 in Figure 5.6)
beneath ZIM117 to ZIM120 (the model is called connected1, see Figure C.10 (a)), (ii)
the two deeper resistors (R4 and R5) are continuous but are separated from the shallower
(R2) one (called connected2, see Figure C.10 (b)), (iii) the upper and lower resistors in
the south (R1-R4) and the north (R3-R5) are connected but there is no lateral connection
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Figure 5.6: Final 2D smooth inversion model of the ZIM line (vertical exaggeration = 1.0). The
triangles indicate the locations of the sites used and the black and white lines beneath
each site represent the Niblett-Bostick penetration depths of the TE (black) and TM
(white) mode data, respectively. The RMS values of the TE, the TM and joint TE/TM
modes with respect to the final model at each individual site is shown on top.

between northern and southern ones (called connected3, see Figure C.11 (a)) and (iv) the
connection between the upper (R3) and lower (R5) resistors beneath ZIM131 is disconnected
(called disconnected, see Figure C.11 (b)). For these four scenarios, forward responses
were calculated and compared to the observed data and the responses of the final 2D
inversion model in Figure 5.6 (Figures C.12 to C.14 in Appendix C.2 show the comparison
of the response curves). The responses of two example sites, ZIM118 and ZIM131, are
shown in Figure 5.7. The black symbols represent the observed data and the red line is the
model response of the final 2D inversion result shown in Figure 5.6. In Figure 5.7 (a) and
(b) are the responses of the models connected1 (blue dashed lines) and connected2

(green dashed lines). One cannot distinguish between the red and the green lines, which
both fit the observed data equally well, i.e., the enforced changed of connecting the resistors
R4 and R5 can neither be verified nor falsified by the observed data. At longer periods the
blue curves differ from the red and green curves and also from the observed data. Therefore
the additional connection to the shallower resistor (R2) beneath ZIM118 to ZIM120 is not
consistent with the observed data. (The conclusion that the shallower resistor R2 must be
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Figure 5.7: Figure showing example response curves from the forward modelling tests using mod-
ified versions of the 2D inversion model of Figure 5.6. The black dots represent the
observed data, the red line is the response curve of the final 2D inversion model and
the other coloured curves are the forward responses of the different modified models
shown in Appendix C.2 (con1 - connected1, Figure C.10 (a); con2 - connected2,
Figure C.10 (b); con3 - connected3, Figure C.11 (a) and discon - disconnected,
Figure C.11 (b)).

separate from the deeper ones (R4 and R5), but that no statement can be made about the
connectivity between the resistors R4 and R5, is also supported by the responses of the
other sites in that area; see Figures C.12 to C.14). Figure 5.7 (c) and (d) show the response
curves of ZIM131, where the response curves of models connected3 (turquoise lines)
and disconnected (pink lines) are shown. Although the XY resistivity data are not
well fit by any of the curves, the phases and the YX resistivity show clearly that neither
the complete connection of the upper (R3) and lower (R5) resistors, nor their absolute
disconnection, are consistent with the observed data at ZIM131. The other northern sites
confirm the findings at ZIM131, and in addition the southern sites of the profile also show
that the connection of the upper (R1) and lower (R4) resistors in the south are not consistent
with the observed data (see Figures C.12 to C.14). Therefore the vertical connectivity (or
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5 2d inversion of the zim line

the lack of it) of the different resistors in the final inversion model are constrained by and
consistent with the observed data, but in the area of very limited penetration depth beneath
sites ZIM118 to ZIM123, the data do not provide any constraints on the lateral connectivity
of the resistors in the south (R4) and north (R5).

Different approaches allowing for static shift estimation, or using a limited resistivity
range, during the inversion were also applied to the data set, but could not contribute any
additional (or different) information.

5.3.2 Interpretation

Figure 5.8 shows the 2D resistivity model of the ZIM profile with respect to the surface
extent of the geological terranes, the magnetic anomaly due the Okavango Dyke Swarm
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Figure 5.8: The 2D smooth inversion model (vertical exaggeration = 1.0) from Figure 5.6 in relation
to the known surface extent of geological terranes. The arrows above the image of the
resistivity structure show the crustal extents of the Limpopo Belt, Zimbabwe Craton,
Magondi Mobile Belt and Ghanzi-Chobe Belt (GCB) with respect to MT sites of the ZIM
line, adapted from the geological terrane boundaries drawn based on potential field
data (see e.g., Figure 3.9). The extent of the Okavango Dyke Swarm (ODS), known from
magnetic data, is indicated, as well as an estimated extent of the brine aquifer related to
the Makgadikgadi salt pan complex. The dominant resistivity features related to the main
geological terranes are labelled and the question mark indicates the area of missing data
coverage. Two dominant mid- to lower-crustal conductors are also apparent (compare
with inversion results from the northern crustal part of the profile, Figure 5.5).
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5.3 whole zim line - lithospheric strike direction

water-based fluids will not be connected until the pressure is
in excess of 2 GPa, i.e., about 60 km depth [Mibe et al.,
1998], whereas we observe enhanced conductivity directly
below the Moho to about 80 km depth. Also, fluids will not
stay resident in the lithosphere since Precambrian times.
Partial melts in an elevated lithosphere-asthenosphere
boundary can be excluded as there is no other supporting
evidence for this, including the only heat flow value on the
Wopmay orogen at the Muskox intrusion exhibiting only a
mildly increased value of 54 mWm"2 [Beck and Sass, 1966]
compared to the Slave cratonic average of 46 mW m"2

[Mareschal et al., 2004]. (Even though this difference is
small, it is consistent with petrological analyses of Slave
craton mantle xenoliths that show the Slave craton to be
cooler than other Archean cratons [Kopylova et al., 1999].)
Carbon will be conductive in the upper lithosphere, but below
the graphite-diamond stability field (~150 km depth) it will

be in the form of highly resistive diamond. Sulfides are
possible; Alard et al. [2000] show evidence that sulfide is
mobile in the lithosphere and can concentrate upward to
crystallize and concentrate at shallow depths. Enclosed
sulfides will not enhance conductivity, but interstitial sulfides
precipitated from metasomatic fluids may form a connected
electrical pathway. There is no supporting evidence for this
conjecture, however Pearson et al. [1999] note that the
mantle of the Slave craton is far less metasomatized than
that of the Kaapvaal craton, for which the sulfide data exist.
The presence of hydrous minerals, such as phlogopite
[Boerner et al., 1999] is highly unlikely to enhance conduc-
tivity, as they are not interconnected when in xenolith
samples. This is also excluded on the basis of lack of
evidence of metasomatism, as is hydrogen diffusion [Karato,
1990] on the same grounds. Ironically, the most metasomat-
ized lithosphere in the whole of Canada exists beneath the

Figure 10. Interpretations of the conductivity structure revealed in the two-dimensional model shown in
Figure 6. The red star marks the approximate location of Gameti. The yellow line marks the crust mantle
boundary and the white dashed lines indicate the cratonic roots beneath both the Slave and the Bear
provinces.

B01101 SPRATT ET AL.: WOPMAY OROGEN LITHOSPHERIC GEOMETRY

13 of 18

B01101

Figure 5.9: 2D inversion model of the Wopmay lithospheric mantle in the Northwest Territories,
Canada (taken from Spratt et al. (2009)). The yellow line marks the crust-mantle boundary
and the white dashed lines indicate the cratonic roots beneath both the Slave and the
Bear provinces. (WFZ - Wopmay fault zone.)

and the estimated extent of the brine aquifer related to the Makgadikgadi salt pan complex.
The crustal structures of the northern end of the model show a very strong correlation with
the models obtained in Section 5.2, where this area was inverted separately using its appro-
priate strike direction of 55° E of N. Therefore, enforcing the lithospheric strike direction of
35° E of N for the whole data set has not caused any artefacts in the resistivity structure of
the crust in the northern part of the profile. The mid- to lower-crustal conductors, and the
dipping crustal resistor of the Ghanzi-Chobe Belt (GCB, in Figure 5.8), remain dominant
crustal features in the model of the whole ZIM profile. Another dominant crustal feature is
the extremely high resistivity area that has a lateral extent that matches the location of the
Okavango Dyke Swarm (ODS, in Figure 5.8).

Most parts of the lithospheric mantle are resistive, but its thickness and resistivity vary
along the profile. The Zimbabwe Craton (on the southern end of the profile) is charac-
terised by very thick and very resistive lithosphere, whereas the lithosphere beneath the
Ghanzi-Chobe Belt is significantly thinner and less resistive. The more conductive part
of the lithospheric mantle, beneath the Magondi Mobile Belt (sites ZIM117 to ZIM123),
is unfortunately located in an area of poor data coverage. The higher conductivities of
the Magondi Belt could nevertheless represent a real structure similar to that found by
Spratt et al. (2009) in the upper Wopmay lithospheric mantle in the Northwest Territories,
Canada (see Figure 5.9). They find very high resistivities down to about 210 km depth that
shallow to about 150 km depth beneath the western edge of the Slave craton (similar to
the southern part of the ZIM profile where the western edge of the Zimbabwe craton is
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5 2d inversion of the zim line

imaged). At depths of about 100 km in the Northwest Territories data there is a distinct
decrease in the overall present resistivity located between the Great Bear magmatic zone
and the Phanerozoic platform compared to the neighbouring resistive mantle (Spratt et al.,
2009). Such a lower resistivity lithospheric mantle might be apparent beneath the Magondi
Mobile Belt surrounded by the resistive Archaean Zimbabwe Craton and the Meso- to
Neoproterozoic Ghanzi-Chobe Belt. Interpretation of moderately resistive (some hundreds
of Ωm) mantle is fraught with difficulty. None of the proposed mechanisms for reducing
resistivity is without serious problems. In the case of the Wopmay lithospheric mantle,
Spratt et al. (2009) suggest an explanation based on ten Grotenhuis et al.’s (2004) work
predicting that upper mantle shear zones have a 1.5 - 2 orders of magnitude higher conduc-
tivity than less-deformed regions in the lithosphere. ten Grotenhuis et al. (2004) found a
systematic, inverse linear relationship between the electrical conductivity of mantle olivine
and its grain size on a micrometer scale. Whereas a change of size for grains larger 1 cm
has no effect on the electrical conductivity, a significant increase in grain size (for grains
smaller than 1 cm) is predicted to lower the conductivity by up to two orders of magnitude.
Assuming a stable mantle grain size of > 1 cm (Spratt et al., 2009, and references therein)
a reduction of grain size to 100 µm would be required to obtain resistivity changes of the
order found beneath the Wopmay orogen (Spratt et al., 2009) (and maybe also beneath the
Magondi belt), possibly suggesting the presence of a mantle shear zone in this region.

The 2D forward model of site MOF107 (see Figure 4.29) shows a strike direction consistent
with the orientation of the Magondi Mobile Belt in that area. The top of the fault structure
in this 2D model is located at 10 - 15 km depth and it extends at least down to 120 - 125 km
depth (see Section 4.3). The resistivity on one side of the fault is about 50 Ωm and 3000 Ωm
on the other side. This scenario is similar to the resistivities of the Magondi Mobile Belt and
Ghanzi-Chobe Belt as shown in the 2D inversion model of the ZIM line (Figure 5.8). The
Ghanzi-Chobe Belt (a few 1000 Ωm) is more resistive than the Magondi Mobile Belt (about
100 Ωm). If the 2D forward model of site MOF107 represents the same terrane boundary
(but a few hundred kilometres further southwest), this is supporting the suggestion of a
conductive lithospheric mantle beneath the Magondi Mobile Belt. Also the depths extent of
the resistivity contrast is similar in both models. While the 2D inversion model of the ZIM
line shows a conductive layer beneath, the 2D forward model of MOF107 requires a layer
of a similar resistivity as the resistive side of the boundary (the Ghanzi-Chobe Belt). The
location of MOF107 is in a geological very complex area and it is possible that a resistive,
cratonic root of the Zimbabwe craton is underlying the mobile belts in that region. The
bottom of the resistive layer in the 2D forward model is at about 220 km depth, which
seems to match the thickness of the resistive lithospheric mantle of the Zimbabwe craton.

Figure 5.10 shows a comparison of the geological map by Singletary et al. (2003) (left
column) and the regional magnetic field anomaly map (right column) with the resistivities
of the 2D inversion model. The average resistivity values (calculated as mean of the logarith-
mic resistivity values) beneath each ZIM site were extracted from the 2D inversion model at
three depth ranges: near-surface (0 - 1 km), crustal depths (5 - 35 km) and lithospheric depths
(50 - 150 km). The near-surface resistivities exhibit the conductor that is associated with
the brine aquifer of the Makgadikgadi Pan Complex. The conductor is spatially located
in the Gweta and Kubu Island area on the geological map (a). No correlation between
the magnetic anomaly map and the near-surface resistivities is apparent (b). At crustal
depths (5 - 35 km), the high resistivities found at the southern end of the ZIM line fall
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Figure 5.10: Figures showing the average resistivity values of the 2D inversion model beneath each
site of the ZIM line for three different depth ranges, namely 0 - 1 km, 5 - 35 km and
50 - 150 km. Background map on the left is the subsurface Precambrian geology map
(see Figure 3.3, taken from Singletary et al. (2003)) and the regional magnetic anomaly
map on the right (see Figure 3.10, magnetic data courtesy of the Council for Geoscience,
Pretoria, South Africa). Note the colour scale of the circles indicating the resistivity
values at each site is the same for all six panels.
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5 2d inversion of the zim line

into the Archaean Zimbabwe Craton and the Limpopo Belt on the geological map (c),
whereas the extremely resistive part (purple colour) matches the magnetic anomaly of the
Okavango dyke swarm (d). The resistive northern end is located in the Ghanzi-Chobe Belt
(c), but not all sites in the belt at crustal depths are highly resistive. At lithospheric mantle
depths (50 - 150 km) the resistive northern and southern ends of the profile correlate with
the Ghanzi-Chobe Belt and the Zimbabwe Craton (and Limpopo Belt), respectively (e).
The more conductive zone (green) matches the lateral extent of the Magondi Mobile Belt
(although, the resistivity values are not very well constrained due to the lack of penetration
depth in that area). No correlation between the magnetic anomalies and the resistivity
structure at lithospheric depths can be found (f), which is not surprising as the magnetics
are sampling shallower targets at temperatures above the Curie isotherm. Figure 5.11 shows
a similar comparison of the resistivity values with the Bouguer gravity map. No correlation
can be identified for these two data sets.
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150 km

Figure 5.11: Figures showing the average resistivity values of the 2D inversion model beneath each
site of the ZIM line for three different depth ranges, namely 0 - 1 km, 5 - 35 km and
50 - 150 km. The background map is the Bouguer gravity map (see Figure 3.12, gravity
data courtesy of the Council for Geoscience, Pretoria, South Africa).

As the MT method is able to constrain the thickness of resistive features well, due to its
sensitivity to the onset of high conductivities below, (Jones, 1999), a reliable estimate of
the lithospheric thickness can be made. Curves of average (i.e., mean logarithmic) and
maximum resistivity versus depth for each terrane (shown in Figure 5.12 (c)), calculated
within areas defined in Figure 5.12 (a) and (b), illustrate differences in the bulk or average
resistivity characteristics for each terrane traversed on the ZIM and the KIM-NAM profiles.
Muller et al. (2009) published the model (a) of the KIM-NAM profile (the straight profile
with NW-SE orientation traversing the Damara and Ghanzi-Chobe belts, the Rehoboth Ter-
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(a) KIM-NAM resistivity model taken from Muller et al. (2009).
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(b) ZIM line resistivity model using the same colour
scale as Muller et al. (2009) for the KIM-NAM
model in (a).
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Figure 5.12: Electrical resistivity models for (a) the profile KIM-NAM (taken from Muller et al., 2009)
and (b) the ZIM line using the same resistivity colour scale as for the KIM-NAM profile
in (a). Representative resistivity-depth profiles for the different geological terranes are
shown in (c). In (a) the estimation of the depth of penetration (Niblett-Bostick) achieved
at each individual site for both the TE (red) and the TM (blue) modes are overlain on the
model obtained for 25° E of N strike azimuth, the surface extent of the geological terranes
is shown above and the solid vertical yellow lines define the zones used in each terrane
to compute the average resistivity profiles presented in (c). The dotted yellow lines
indicate the position of the ’maximum’ resistivity profiles in (c). The white solid and
dotted lines in (b) define the zones used to compute the average resistivity profiles and
the position of the ’maximum’ resistivity profiles for the three terranes transversed by
the ZIM profile. In (c) profiles of average resistivity, variance and ’maximum’ resistivity
are shown as indicated by the key. The profiles published by Muller et al. (2009) are
shown in grey and are overlain by the coloured ones from the ZIM model in (b). The
average (and variance) profiles are computed from the 2D sections within the spatial
areas defined in (a) and (b). Predicted resistivity-depth profiles for hypothetical mantle
geotherms for different lithosphere thicknesses are shown (black dotted and dashed
lines), based on laboratory electrical conductivity versus temperature and pressure
measurements for dry olivine and pyroxene (Constable et al., 1992; Xu and Shankland,
1999; Xu et al., 2000). The inflection point in the theoretical curves corresponds with
the intersection of the conductive mantle geotherm with the adiabat. (Abbreviations
used are as follows: Damara/Ghanzi-Chobe (DMB, for the KIM-NAM line), Rehoboth
(RBT), Western Kimberley Block (KBW), Eastern Kimberley Block (KBE), Zimbabwe
Craton (ZIM), Magondi (MMB) (profile unconstrained below 80 - 100 km due to limited
penetration depth in this area) and Ghanzi-Chobe (GCB, for ZIM line).)
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rane and the Kaapvaal Craton, see Figure 3.9) and determined the lithospheric thicknesses
of the Kaapvaal Craton (Eastern Block ∼ 220 km, KBE, Western Block ∼ 190 km, KBW), the
Rehoboth Terrane (∼ 180 km, RBT) and the Damara/Ghanzi-Chobe Belt (∼ 160 km, DMB) us-
ing the resistivity versus depth profiles shown in grey in Figure 5.12 (c) and constraints from
xenolith data. In comparison the resistivity curves of the three ZIM line terranes (defined
in (b)), namely Zimbabwe Craton (ZIM), Magondi Mobile Belt (MMB) and Ghanzi-Chobe
Belt (GCB), are plotted as coloured curves. (Note that the resistivity curve of the Magondi
Mobile Belt (MMB, green) is unconstrained below 80 - 100 km due to the limited penetration
depth in that area.) None of the three ZIM line resistivity curves match any of the KIM-
NAM resistivity versus depth profiles. Unfortunately, the KIM-NAM and ZIM profiles do
not intersect, therefore a static shift of absolute resistivity values between the two models
cannot be excluded. However, the average resistivities for the ZIM line terranes show clear
relative differences between one another, e.g., at about 100 km depth the Zimbabwe Craton
is, at ∼ 3000 Ωm, nearly one order of magnitude more resistive than the Ghanzi-Chobe Belt
which has an average resistivity of ∼ 500 Ωm. As the electrical resistivity of mantle minerals
decreases strongly with increasing temperature (Constable et al., 1992; Xu and Shankland,
1999; Xu et al., 2000), hotter geotherms, which are associated with thinner lithosphere,
result in lower bulk resistivities (see Figure 5.12 (c) where hypothetical mantle geotherms
for several different lithospheric thicknesses are shown). Electrical resistivity is significantly
more sensitive to temperature than it is to compositional variation in the mantle (Maumus
et al., 2005; Jones et al., 2009), and therefore the observed differences in the bulk resistivities
of each terrane are more readily accounted for by variations in the temperature of the
lithosphere, i.e., the lithospheric geotherm. On both the KIM-NAM and the ZIM profile, the
cratons, namely the Eastern Kimberley Block of the Kaapvaal Craton and the Zimbabwe
Craton, are associated with the coolest geotherm and therefore the thickest lithosphere.
Hotter geotherms (and thinner lithosphere) are associated with the mobile belts (GCB,
MMB (no constraints below 80 - 100 km), DMB). All resistivity versus depth profiles fail
systematically to match the very high resistivities predicted in the upper mantle for dry
cratonic lithosphere above 120 km depth. The failure could be caused by different reasons:
(i) the MT method is sensitive to the thickness of resistive layers but has a relative low
sensitivity to their absolute resistivity, particularly when a more conductive layer such as
the crust is located above (see, e. g., Jones, 1999), (ii) the regularisation (smoothing) inherent
in the 2D smooth inversion algorithm used and the averaging to compute the depth profiles
(although the variance, which is affected by the regularization, at lithospheric depths is very
small), and (iii) the temperature-based model used does not account for possible properties
that systematically affect the electric conductivity, for example the presence of hydrogen in
the mantle (Karato, 1990, 2006), partial melts or enhanced conductivities due to very small
grain sizes in shear zones (ten Grotenhuis et al., 2004).

As the 2D inversion model and the resistivity-depth profiles derived from them are smooth,
the transition from the lithosphere into the more conductive mantle asthenosphere below is
not sharply defined. Relative lithosphere thickness variations between each terrane of the
same profile can be determined from the observed systematic changes in bulk resistivity.
The theoretical curves in Figure 5.12 (c) provide a useful reference frame and indicate that
an order of magnitude difference in electrical resistivity in the depth range of 100 - 150 km
can be accounted for by a ∼ 40 km lithospheric thickness change. Based on that observation
Muller et al. (2009) conclude that with respect to the Eastern Kimberley Block, the Western
Kimberley Block is associated with ∼ 30 km thinner lithosphere, the Rehoboth Terrane with
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∼ 40 km thinner lithosphere, and the Damara/Ghanzi-Chobe Belt with ∼ 60 km thinner
lithosphere. Similar relative differences for the lithospheric thickness can be defined for the
Ghanzi-Chobe Belt with respect to the Zimbabwe Craton (about one order of magnitude
change in bulk resistivity) which indicates that the Ghanzi-Chobe Belt has a lithosphere
about ∼ 40 km thinner than that of the Zimbabwe Craton. The vague indication that the
lithosphere beneath the Magondi Mobile Belt might be about ∼ 60 km thinner has to be
treated with caution as there is no data resolution for depths below 80 - 100 km at the sites
directly above it, and poor resolution from neighbouring sites. (Muller et al. (2009) suggest
that the absolute depth to the base of the lithosphere can most reasonably be estimated as
close to ∼ 220 km for the Eastern Kimberley Block, which results in absolute depths to the
lithosphere of 190 km, 180 km and 160 km for the Western Kimberley Block, the Rehoboth
Terrane and the Damara/Ghanzi-Chobe Belt respectively.) In the case of the Ghanzi-Chobe
Belt (GCB) resistivity-depth profile presented here, an inflection point at about 180 km
most likely marks the intersection of the conductive geotherm with the mantle adiabat,
which, by definition, represents the thermal thickness of the lithosphere. The inflection
point indicates that the lithosphere of the Ghanzi-Chobe Belt is possibly 20 km thicker than
about 1000 km further southwest (160 km by Muller et al. (2009)). Therefore the absolute
thickness of the lithosphere beneath the western extent of the Zimbabwe Craton is deduced
to be about 220 km and hence is of similar thickness as the Eastern Kimberley Block of the
Kaapvaal Craton in the study by Muller et al. (2009). Note that both 2D inversion models
of the KIM-NAM and the ZIM profile have vertical cell dimensions of about 20 km at a
depth of 200 km. Therefore the depth of the lithosphere-asthenosphere boundary cannot be
identified to a precision of better than about ± 20 km.

Despite the very large distance between the KIM-NAM and the ZIM profiles there are
similarities between the GCB (this study) and the Damara/Ghanzi-Chobe Belt by Muller
et al. (2009). Both profiles show a very resistive crust and, although the Ghanzi-Chobe
Belt is Meso- to Neoproterozoic and not Archaean, the lithospheric mantle resistivity is en-
hance compared to the neighbouring belts. Resistive lithospheric mantle was also observed
beneath the Proterozioc Nipigon Embayment in Canada, which has been interpreted as
a failed rift (Ian Ferguson, University Manitoba, Canada, pers. com.). Modie (1996) also
suggests that the Ghanzi-Chobe belt represents a failed intra-continental rift basin, which
could be the reason for the enhanced lithospheric mantle resistivities.

The resistivity-depth profiles of the Zimbabwe Craton and the unconstrained Magondi Mo-
bile Belt show a strong decrease in bulk resistivity at depths of about 60 - 100(120) km, which
is not apparent in any of the resistivity versus depth profiles of the KIM-NAM terranes nor
the Ghanzi-Chobe Belt. Inspecting the KIM-NAM and ZIM models in Figure 5.12 (a) and
(b), respectively, such a conductive zone does seem to exist in the Damara/Ghanzi-Chobe
(DMB) and the Ghanzi-Chobe Belt (GCB) in lower crustal/upper mantle depths above 50 km
(and therefore is cut-off in the resistivity versus depth profiles in Figure 5.12 (c)). Figure 5.13

shows the average resistivity-depth profiles of Figure 5.12 (c) including the crustal depth
range. The full depth range reveals a conductive zone in nearly all the resistivity-depth
profiles in mid- to lower-crustal depths that is already indicated in the 2D inversion models
in Figure 5.12. Ignoring the poorly constrained lithospheric mantle part of the Magondi
resistivity-depth curve, the only resistivity-depth profile that shows the conductor below
50 km is the ZIM profile. That raises the question, what is different about the Zimbabwe
Craton relative to all the other terranes? The most obvious difference is the Okavango dyke
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Figure 5.13: Average resistivity-depth profiles from SAMTEX data. This figure shows the average
resistivity-depth curves from Figure 5.12 but also includes the crustal depths.

Table 5.1: Table listing the resistivity values of the top layer and the related principal resistivities
of the anisotropic block of the models shown in Figure 5.14. Based on the background
resistivity of the top layer, ρb, and the assumption that the dykes have a dilatation of
12.2% and a resistivity of about 30000 Ωm, the principal resistivities, ρx, ρy and ρz, of the
anisotropic block are calculated using Equations 2.86 and 2.89.

model ρb ρx/ρy/ρz

A 100 Ωm 113.8 Ωm / 3747.8 Ωm / 113.8 Ωm

B 200 Ωm 227.6 Ωm / 3835.6 Ωm / 227.6 Ωm

C 500 Ωm 568.2 Ωm / 4099 Ωm / 568.2 Ωm

D 1000 Ωm 1133.7 Ωm / 4538 Ωm / 1133.7 Ωm

E 2000 Ωm 2257 Ωm / 5416 Ωm / 2257 Ωm

F 5000 Ωm 5565.9 Ωm / 8050 Ωm / 5565.9 Ωm

swarm at crustal depths. To examine the possible effect of the dyke swarm, synthetic data,
accounting for the dyke swarm by using an anisotropic layer, were generated and then
inverted isotropically. As discussed in Section 4.3, the very limited width of the dykes
makes them more of an anisotropic feature than a normal 2D structure at the MT scale. The
Karoo-aged dolerites of the dyke swarm are assumed to have a resistivity of 30000 Ωm (van
Zijl, 2006), the dilatation of the dykes in that area is estimated to be 12.2% (Le Gall et al.,
2005) and Equations 2.86 and 2.89 are used to calculate the principal anisotropic resistivities
for various background resistivities, which are listed in Table 5.1. Figure 5.14 shows three
classes of models used to calculate forward responses: a reference model, which contains
only the layered background model but no dykes ((a), the model is called nodykes), a
model where an anisotropic block in the top layer simulates the dykes ((b), toplayer) and
a model where the anisotropic dykes extend through both crustal layers ((c), crust). The
2D forward anisotropy code by Pek and Verner (1997) was used to calculated the synthetic
data sets, which were then decomposed using strike (McNeice and Jones, 2001) and
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Figure 5.14: Figure showing sketches of the three model classes tested: nodykes (a), which is the
background model of the two other classes, toplayer (b), where dykes, and therefore
anisotropy, are only present in the top layer, and crust (c), where the anisotropic
dykes extend through both crustal layers. Different resistivity settings for the top layer
of the three model classes are listed in Table 5.1.

finally inverted using the same inversion strategy as for the ZIM line data using WinGLink®
(Rodi and Mackie, 2001).

The WinGlink® 2D inversion results are shown for 3 example models in Figure 5.15 (and
for all models in Figures C.15 to C.17 in Appendix C.2). It is obvious that the presence of
the dykes (or an anisotropic layer) causes the lower crustal conductor to deflect downward,
when an isotropic inversion is applied, and allows it to appear as an upper lithospheric
mantle structure. Although the meshing is relatively coarse at depths close to 200 km,
and therefore an accurate estimate in kilometres cannot be made, it is apparent that the
lithosphere-asthenosphere boundary might also be affected by the presence of the dyke
swarm. The boundary seems to be slightly deeper than the case without the dykes and the
resistivity of the lithospheric mantle seems slightly enhanced. The models with the dykes
in the top layer only exhibit a ’drop-like’ or undulating resistivity structure at the bound-
ary between the anisotropic layer and the mid- to lower-crustal conductor. The smoother
downwards deflection that appears if the dykes are present in both crustal layers is more
similar to the 2D inversion result of the ZIM line and might therefore be an indication
that the dykes extend into the mid- to lower-crust. Introducing a tear zone into the model,
where the anisotropic block is located, does not improve the inversion result (see Fig-
ure C.18 in Appendix C.2). Resistivity-depth profiles have been extracted from all models,
averaging over the lateral extent of the anisotropic block, and are plotted in Figure 5.16

sorted by model classes (nodykes (a), toplayer (b) and crust (c)). In the absence of the
anisotropic layer, the conductor appears as mid- to lower-crustal structure (a) as it does for
all SAMTEX resistivity-depth profiles in Figure 5.13, except for the ZIM profile. Although
none of these simple synthetic models is able to reproduce the exact shape of the ZIM line
resistivity-depth profile, the downward shift of the conductor due to the dykes is obvious.
Also, changes in the depth of the inflection point of the resistivity-depth profiles associated
with the thermal thickness of the lithosphere, towards greater depths, can be identified.
The test of 2D isotropic inversion of the anisotropic dyke model data strongly suggests that
the appearance of the conductor below 50 km in the ZIM resistivity-depth profile and the
deflected conductor in the 2D inversion model are artefacts, and that the conductor is in
reality located in the mid- to lower-crust, as is observed in all other resistivity-depth profiles.
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Figure 5.15: Figures showing the 2D isotropic inversion results of synthetic 2D anisotropic data
(generated using Pek and Verner’s (1997) code) simulating dykes of 30000 Ωm in the
crust. The white dashed line outlines the area of the anisotropic block representing
the dykes and the layered background is illustrated by black dashed lines (for more
details on the exact models see Figure 5.14 and Table 5.1). Panel (a) shows, as reference,
the nodykes d model (1000 Ωm top layer). In (b) the example of model toplayer d

is shown and in (c) model crust d. Figures C.15 to C.17 in Appendix C.2 show the
results of all 18 test models.

Schwarz (1990) reviewed the nature of lower-crustal conductors. As the porosity in rocks de-
creases with increasing depth, the hydrostatic pore volume should be reduced exponentially,
leaving a residual isolated pore volume of highly saline fluids (Schwarz, 1990). Therefore a
continuously increasing electrical resistivity with depth, with a change from electrolytic
conduction in pore space to solid state electrical conduction in minerals, is expected, but
MT studies showed more conductive resistivities than expected (e.g., Shankland and Ander,
1983). Candidates for lowering the electrical resistivity of the continental crust are fluids
(free water with a high ionic content), free carbon (graphite) and other conducting minerals,
such as magnetic oxides or sulphides, or partial melting (Schwarz, 1990). If a zone of high
electrical conductivity correlates with high seismic reflectivity in the lower-crust, then the
existence of fluids (especially in the deep, ductile crust) is the most likely cause (e.g., Jones,
1987). However, there are no seismic reflection constraints available in the ZIM line area.
Shankland and Ander (1983) found that free water of 0.01 - 0.1 vol% kept in fracture porosity
would be sufficient to account for the observed lower resistivities. Schwarz (1990) notes
that large interconnected fluid systems are required, and an effective pore pressure near
zero is demanded over a geological time scale (at least several millions of years), which is
highly unlikely as such a lithostatic fluid system would have unrealistically small hydraulic
permeabilities.

If interconnected graphite flakes or graphite grain coatings are present, the electrical
resistivity decreases by several orders of magnitude (Nover et al., 1998), which accounts
for large-scale resistivity anomalies in the continental crust in some settings (Duba and
Shankland, 1982). Other conducting minerals such as found in hydrothermal ore deposits
originate in the uppermost crust at temperatures below 400°C and pressures of less than
2 kbar (Schwarz, 1990), and therefore are not very likely to be the cause of a lower crustal
conductor of such a large spatial scale (other than the more localised conductors within the
Magondi Mobile Belt).
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Figure 5.16: Resistivity-depth profiles through the inversion models in Figure 5.15 (and Figures C.15

to C.17 in Appendix C.2), averaged over the lateral extent of the anisotropic block
simulating the dykes. Panel (a) shows the resistivity-depth profiles of the nodykes A -
F models, while (b) shows the profiles of the toplayer A - F models and (c) of the
crust A - F models. The models, described in Figure 5.14 and Table 5.1, were used to
generate synthetic anisotropic data sets using Pek and Verner’s (1997) code and these
data were then decomposed and modelled using 2D isotropic inversion (results are
shown Figures 5.15, C.15 to C.17).

Melt or partial melt also can reduce the electrical resistivities, but for melt to occur in crustal
depths, very high temperatures of above 700°C are required, which may only be found in
tectonically active zones (Schwarz, 1990). To account for large scale conductors the melts
must also be connected over large distances, which seems very unlikely for the Archaean
and Proterozoic terranes of and around the Zimbabwe Craton.

No final conclusion regarding the cause of such a lower crustal conductor can be made in
the case of the ZIM line, as additional information is required to support or rule out the
different hypotheses, but graphite might be the explanation to favour.

In conclusion, the lithospheric mantle of the Ghanzi-Chobe Belt and the Zimbabwe Craton
is highly resistive, but due to a lack of data coverage at depth, no information is avail-
able to constrain whether these resistors are connected or not. The inflection point of the
Ghanzi-Chobe Belt resistivity-depth profile suggests a depth of about 180 km to the thermal
lithosphere-astenosphere boundary. A lithospheric thickness of about 220 km is therefore
estimated for the Zimbabwe Craton based on a 40 km relative difference in thickness be-
tween the Ghanzi-Chobe Belt and the Zimbabwe Craton. The synthetic model study has
shown that the 220 km thickness might be overestimated, as the isotropic inversion in the
presence of the anisotropic dyke swarm not only images the mid- to lower-crustal conduc-
tor at greater depths, but might also increase the thickness of the resistor related to the
lithospheric mantle of the Zimbabwe Craton. The Letlhakane and Orapa kimberlite pipes
are about 150 - 200 km to the west of the ZIM line. Stiefenhofer et al. (1997) and Griffin et al.
(2003) found that the pressure-temperature data of the kimberlite xenoliths from these pipes
show a ∼41 mW/m2 lithospheric geotherm at the time of pipe emplacement (at about 93 Ma,
Stiefenhofer et al. (1997)), which is similar to the geotherm found at the Eastern Kimberley

139



5 2d inversion of the zim line

Block and corresponds to a thermal thickness of the lithosphere (defined by the intersect of
the geotherm with the mantle adiabat) of about 220 km (Muller et al., 2009, and references
therein). Xenoliths are only available from a maximum depth of about 200 - 205 km. Fer-
tile lherzolites dominate in abundance above 120 km depth. Between 120 - 190 km depth,
depleted harzburgites, with evidence of metasomatism, increase in abundance and below
a very sharp transition at 190 km depth, sheared melt-metasomatised xenoliths dominate,
with abundances of 80 - 100% (Griffin et al., 2003). Sheared melt-metasomatism is often
taken as indication of proximity to the base of the lithosphere. Kennedy et al. (2002) propose
that sheared melt-metasomatised xenoliths are a result of transitory, high-strain-rate defor-
mation in a zone of noncoaxial strain localised at the base of the lithosphere. As it remains
unclear as to which geological terrane the pipes of Orapa and Letlhakane are associate with
(the Zimbabwe Craton or the Magondi Mobile Belt), it may not be appropriate to use the
geothermal information from the Letlhakane and Orapa pipes to support the lithospheric
thickness of about 220 km suggested by the MT 2D inversion result for the Zimbabwe
Craton.

Using 2D modelling of magnetic data, Dailey et al. (2009) estimated the depth extent of the
Okavango Dyke Swarm in the ZIM line area. They derived a broad range for the maximum
possible extent - between 4 - 30 km - but favour an extent of about 14 - 18 km. The synthetic
2D anisotropy test described above supports a depth extent through most of the crust,
which is not inconsistent with the maximum depth range estimated from the magnetic
data.
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T H E F O RWA R D S O LV E R

This chapter discusses the 3D finite-element forward solver, which is the driving engine of
the inversion algorithm (Chapter 8). The basics of the forward code will be explained in de-
tail to provide the background knowledge needed when discussing the inversion program
later. Although the forward solver does not take full advantage of the flexibility and power
of the finite-element method (i.e., it only uses rectilinear meshes and not unstructured ones),
the code is an appropriate choice: the forward solver provides good results (see Chapter 7)
and was selected for this thesis work because of the full access to the source code and to
the support of Colin Farquharson (MUN, St. John’s, Newfoundland, Canada), who is the
programmer of the forward solver.

Three-dimensional forward modelling of MT data is essential for understanding the physics
of the MT problem, inverting MT data (since each inversion code is based on a forward
algorithm), verification of hypothetical 3D resistivity models and for feasibility studies.
In the 1970’s, several methods for computing the fields of 3D resistivity models (or con-
ductivity models) of the subsurface were developed (e.g., Jones and Pascoe (1972), Raiche
(1974), Hohmann (1975), Weidelt (1975)). Since then, these methods have been improved
and refined (see Avdeev (2005) for a recent review) and the recent advances in computing
facilities and iterative solvers allow the computation of larger and more complicated nu-
merical problems.

There are three categories of methods for solving the 3D numerical problem: integral
equation (e.g., Wannamaker (1991), Xiong (1992), Avdeev et al. (2002)), finite difference (e.g.,
Mackie et al. (1994), Sasaki (1999), Siripunvaraporn et al. (2005)) and finite element (e.g.,
Mitsuhata and Uchida (2004), Nam et al. (2007)). Integral-equation methods are appropriate
for models with a localised, anomalous region (such as mineral deposits) embedded in a
simple background. Only the anomalous region requires discretisation, and therefore fewer
unknowns are involved and smaller systems of equations must be solved than required
for the other methods. In earlier years, with limited computer resources, integral-equation
methods were the most practical option, but increasing computer speed and memory have
promoted the use of finite-difference methods. These finite-difference methods have the
advantage that they are more suitable for more complicated and generalised models. Due
to the requirement of discretisation of the whole 3D mesh, however, many more unknowns
are involved than for the integral-equation methods, and therefore a much larger system of
equations must be solved. Finite-difference methods, compared to finite-element methods,
are relatively straight-forward to implement on a rectilinear grid, which is the simplest
3D mesh. Recently the interest in finite-element methods has increased because they are
better suited to unstructured meshes than the finite-difference methods. Unstructured grids
allow a better representation of surface topography and realistic subsurface interfaces than
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6 the forward solver

do rectilinear grids. Finite-element methods also allow a transition to larger cells in the
padding/boundary regions of the mesh without significant increase in aspect ratios of the
cells, and therefore enable an efficient discretisation of a volume without the numerical
solution problems that can be caused by large aspect ratios.

First applications of the finite-element method to the 3D EM problem are described by
Reddy et al. (1977), Pridmore et al. (1981), Livelybrooks (1993) and Mogi (1996). They
all used a rectilinear mesh and nodal elements, i.e., the electric field is expressed as a
linear combination of scalar basis functions, which are each associated with a particular
cell vertex. By construction, nodal basis functions automatically satisfy the requirement
of continuity of the tangential electric field between cells of different conductivities, but
violates the boundary condition of continuity of normal current density and divergence-free
electric fields within each cell (see Section 6.1 for more details). To avoid the problems
with nodal elements, vector finite elements, or edge elements, were developed (see e.g., Jin
(2002), and references therein, for more details). For the edge-element approach the electric
field is approximated by a linear combination of vector basis functions, which are each
associated with a particular edge and, by construction, the approximate electric field is
divergence-free within a cell (i.e., a cell does not contain a source of current or charge) and
its tangential component is continuous from one cell to the next (see Section 6.1 for more
details). Vector basis functions with these properties (i.e., divergence-free within a cell and
continuity of tangential component between cells) can be constructed for general hexahedral
and tetrahedral meshes (e.g., Jin, 2002). In 3D EM modelling, edge elements are used for
rectilinear meshes (Sugeng, 1998), structured meshes of hexahedral (i.e., distorted brick)
elements (Nam et al., 2007) and unstructured grids of tetrahedral elements (Börner et al.,
2008; Liu et al., 2008). Lee et al. (1991) and Zyserman and Santos (2000) used higher-order
vector elements on tetrahedral elements and rectilinear meshes, respectively, where the
variation in perpendicular direction to the edge is controlled by the higher-order function.
Some authors also decompose the electric field into vector and scalar potentials: Everett
and Schultz (1996), Badea et al. (2001) and Stalnaker et al. (2006) use nodal elements to
approximate both potentials, whereas Yoshimura and Oshiman (2002) neglect the scalar
potential as a gauge condition (after Hano, 1991) and use edge elements to approximate the
vector potential. Mitsuhata and Uchida (2004) use edge and nodal elements to approximate
the vector and scalar potentials, respectively, of the decomposed magnetic field.

The edge finite element code presented here uses a standard edge-element electric field
approach including the application of the divergence correction after Smith (1996) and is
described by Farquharson and Miensopust (subm).

6.1 nodal- and edge-element basis functions

Both the nodal- and the edge-element formulations have been introduced above and since
both will be used in the forward code, their basis functions will be discussed in more detail.
Figure 6.1 shows sketches for (a) the nodal-element approach and (b) the edge-element
formulation. The grey surface in the mesh sketch shows the spatial location of the faces with
the basis function arrows. One can see the decrease in all directions from unity at the shared
vertex to zero at all other vertices for the nodal element (Figure 6.1 (a)). By construction,
every component is continuous from one cell to the next, but there are not necessarily
divergence-free conditions within the cell. In the case of the edge-element formulation, the
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3-D EM finite-element modelling with divergence correction15

xzy

xzy

Figure 1. Blurb.

(a) Basis functions of nodal elements

3-D EM finite-element modelling with divergence correction15

xzy

xzy

Figure 1. Blurb.
(b) Basis functions of edge elements

Figure 6.1: Sketch of (a) nodal- and (b) edge-element basis functions. The nodal-element basis
functions are equal to unity at the shared vertex, decrease linearly in each direction and
are zero at all other vertices, whereas the edge-element basis functions are equal to unity
along the shared edge, are invariant in the direction of the shared edge and decrease
linearly in the two directions perpendicular to the shared edge. (Taken from Farquharson
and Miensopust (subm).)

basis functions are equal to unity along the shared edge and consistent in the direction of
the edge, while in the two perpendicular directions to the shared edge, the linear decrease
to zero at all the other edges is clear (Figure 6.1 (b)). For the edge-element formulation, both
the conditions of the continuity of the tangential component from one cell to the next and
zero divergence within the cells are fulfilled by construction. Therefore, the edge elements
are used for the determination of the approximate electric field (see Section 6.2), whereas
the nodal elements are applied to the divergence correction (see Section 6.3).

As an example, for the edge-element formulation, the basis function vj of the jth edge is the
one shared by the four cells as sketched in Figure 6.2. Assuming that this edge is orientated
in x-direction, the associated basis function is given by

vj =



Cm−1,n−1(y − ym−1)(z − zn−1) x̂, y ∈ Ym, z ∈ Zn,

Cm,n−1(ym+1 − y)(z − zn−1) x̂, y ∈ Ym+1, z ∈ Zn,

Cm−1,n(y − ym−1)(zn+1 − z) x̂, y ∈ Ym, z ∈ Zn+1,

Cm,n(ym+1 − y)(zn+1 − z) x̂, y ∈ Ym+1, z ∈ Zn+1,

0, otherwise,

(6.1)

where Ym = [ym−1, ym[ , Zm = [zm−1, zm[ , Cm,n = 1/[(ym+1 − ym)(zn+1 − zn)] , and
x̂ is the unit vector in x-direction. Equation 6.1 is only valid for xl 6 x < xl+1, and for
all other values of x this particular basis function is zero. Basis functions for the y- and
z-directed edges are defined in a similar manner. For an example cell, all edge basis func-
tions, their curl operations and the multiplication of the curl basis functions (as required
for the determination of the approximate electric field; see Equation 6.10) are formulated as
shown in Appendix D.1.

A nodal-element basis functions uk associated with the kth node that has coordinates
(xl, ym, zn) is given by
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16 C.G. Farquharson and M.P. Miensopust

xzy

xl
xl+ 1

zn−1

zn

zn+1
ym−1

ym
ym+1

Figure 2. Blurb.Figure 6.2: Sketch of the jth edge shared by four cells. The x-directed edge (xl 6 x < xl+1) at ym

and zn is shared by four cells and the coordinate labels are those used in Equations 6.1.
(Taken from Farquharson and Miensopust (subm).)

uk =



Cl−1,m−1,n−1(x − xl−1)(y − ym−1)(z − zn−1) , x ∈ Xl, y ∈ Ym, z ∈ Zn,

Cl,m−1,n−1(xl+1 − x)(y − ym−1)(z − zn−1) , x ∈ Xl+1, y ∈ Ym, z ∈ Zn,

Cl−1,m,n−1(x − xl−1)(ym+1 − y)(z − zn−1) , x ∈ Xl, y ∈ Ym+1, z ∈ Zn,

Cl,m,n−1(xl+1 − x)(ym+1 − y)(z − zn−1) , x ∈ Xl+1, y ∈ Ym+1, z ∈ Zn,

Cl−1,m−1,n(x − xl−1)(y − ym−1)(zn+1 − z) , x ∈ Xl, y ∈ Ym, z ∈ Zn+1,

Cl,m−1,n(xl+1 − x)(y − ym−1)(zn+1 − z) , x ∈ Xl+1, y ∈ Ym, z ∈ Zn+1,

Cl−1,m,n(x − xl−1)(ym+1 − y)(zn+1 − z) , x ∈ Xl, y ∈ Ym+1, z ∈ Zn+1,

Cl,m,n(xl+1 − x)(ym+1 − y)(zn+1 − z) , x ∈ Xl+1, y ∈ Ym+1, z ∈ Zn+1,

0, otherwise,

(6.2)

where Xl = [xl−1, xl[ , Ym = [ym−1, ym[ , Zm = [zm−1, zm[ and Cl,m,n = 1/[(xl+1 −

xl)(ym+1 − ym)(zn+1 − zn)] . All nodal basis functions and their gradients for an example
cell (as required to determine the correction potential; see Equation 6.24) can be found in
Appendix D.2.

Several publications deal with the advantages and disadvantages of nodal- versus edge-
element formulations (e.g.,Mur (1993) ,Webb (1993), Mur (1994, 1998)). The major points
are:

• For nodal elements all components are automatically continuous, which is a disad-
vantage because in electromagnetism often the discontinuity of a field component is
needed (e.g., the normal component of the electric field changes abruptly across an
interface between two media of different resistivity). Edge elements on the other hand
ensure continuity of tangential field components across an interface between different
media, but at the same time allow jumps of the normal field components across such
interfaces.

• Boundary conditions in EM have often the form of a specification of the tangential
components only. Implementation of this kind of boundary conditions is straight-
forward with edge elements, but requires a transformation into a linear relationship
between the Cartesian coordinates for nodal elements.

• Most types of edge elements have zero divergence and therefore can only be applied
to solve problems where the solution is a priori known to be divergence-free. For the
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6.2 the edge finite-element forward problem

MT case (unlike e.g., controlled-source EM) the source-free assumption is valid and
therefore edge elements can be applied.

• Edge elements are computationally much more expensive (e.g., in storage require-
ments and computation time) than nodal elements because they involve many more
unknowns (e.g., for a rectilinear mesh with 10 x 10 x 10 cells there are 11 x 11 x 11 = 1331

nodes but 3 x (10 x 11 x 11) = 3630 edges).

6.2 the edge finite-element forward problem

The forward code that will be used as engine for the inversion code (Chapter 8) is an edge
finite element code by Colin Farquharson (pers. com.). It is implemented for an e−iωt time
dependence and a simple rectilinear mesh. The partial differential equation to be solved is
(analogous to Equation 2.34) given by

∇ × ∇ × E = ∇ × iωB = iωµ0σE

⇒ ∇ × ∇ × E − iωµ0σE = 0 , (6.3)

where E is the electric field, ω is the angular frequency, µ0 is the free space magnetic
permeability and σ is the electric conductivity. (Note that σ is used in the equations to
simplify matters, but the numerical formulation uses log(σ) instead, as it offers a more
linearised solution and automatic positivity constraints on the conductivity for the inversion
part of the code.) There is no explicit source term in Equation 6.3 as boundary conditions
are used to implement the effects of the plane-wave source, which is generally assumed
as the source for modelling MT data. Inhomogeneous Dirichlet boundary conditions are
used, i.e., specifically, the tangential component of the electric field on the boundary of the
solution domain is set up equal to the MT electric field in a homogeneous halfspace.

A rectilinear mesh and a Cartesian coordinate system with axes normal to the planes of the
cells are used to discretise and describe the Earth’s subsurface and the air above. Based on
the assumption of uniform conductivity within each cell, the approximate electric field Ẽ

throughout the mesh is explicitly specified for a particular frequency as

Ẽ =

N∑
j=1

Ẽjvj , (6.4)

where vj is the edge-element vector basis function (see Equation 6.1) associated with the
jth cell edge in a mesh containing a total number of N edges. The complex coefficient Ẽj

corresponds to the component of the approximate electric field on and aligned with the
jth edge. Substituting the electric field in Equation 6.3 with the approximate electric field
(Equation 6.4) yields

N∑
j=1

Ẽj

{
∇ × ∇ × vj − iωµ0σ vj

}
− R = 0 , (6.5)

where the error, or residual, of using an approximate electric field is represented by R.
The Galerkin method is used to derive an edge finite-element solution to Equation 6.5.

147



6 the forward solver

Galerkin’s method belongs to the family of weighted residual methods, which seek the
solution by weighting the residual of the differential equation (Jin, 2002). Therefore a set
of weighting functions wi (i = 1, ..., M) are considered. Taking the scalar product of the
weighting functions with Equation 6.5 and integrating over the whole 3D volume V gives

N∑
j=1

Ẽj

{∫
V

wi · ∇ × ∇ × vj dv − iωµ0

∫
V

σ wi · vj dv

}
−

∫
V

wi · R dv = 0 . (6.6)

The best approximation for a solution will be the one that reduces the average (over all
points of V) of the weighted residual to the least value. Therefore Galerkin’s method
enforces the condition

Ri =

∫
V

wi · R dv = 0 , (6.7)

where Ri is the weighted residual integral corresponding to the chosen weighting function
wi. In Galerkin’s method, the weighting functions are selected to be the same as those used
for the expansion of the approximate solution (Jin, 2002), i.e., the basis functions are used
as weighting functions. Therefore the system of equations to solve is given by

N∑
j=1

Ẽj

{∫
V

vi · ∇ × ∇ × vj dv − iωµ0

∫
V

σ vi · vj dv

}
= 0 , i = 1, ..., N. (6.8)

Because of the linear spatial dependence of the edge-element basis functions, the first
integral on the left-hand side of Equation 6.8 is zero. Considering the real electric field
rather than the basis function vj, the integral would not necessary be zero because of the
deficiency of such a linear dependence for the electric field (Jin, 2002). Therefore integration
by parts is applied to the first integral considering only the pth cell (where the basis
functions are non-zero)

∫
Vp

vi · ∇ × ∇ × vj dv =

∫
Vp

(∇ × vi) · (∇ × vi) dv −

∫
Sp

(vi ×∇ × vj) · n̂ ds , (6.9)

where Sp is the whole surface of the pth cell and n̂ is the unit outward normal to the
surface. The first integral on the right-hand side of Equations 6.9 involves only first-order
derivatives and is therefore non-zero. The contribution to the second integral is zero if the
basis function vi is normal to the face, and therefore vi ×∇ × vj is purely tangential. For
the other cases, where the vi is tangential to the face, the normal component of vi×∇ × vj

depends on vi and the tangential component ∇ × vj. By construction, vi is continuous
from one cell to its neighbour and, thinking in terms of electric fields rather than basis
functions, the integrand would involve ∇ × E = iωµ0H instead of ∇ × vj. Therefore the
tangential component of H would be continuous from cell p to its neighbour, and for this
face, the normal component of vi ×H would be continuous from cell p to its neighbour too.
Hence, the contribution to the surface integral from this face of cell p would be cancelled
by the contribution of the same face for the neighbouring cell to the corresponding surface
integral. Based on this argument the surface integral can be neglected and Equation 6.8 can
be written as
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N∑
j=1

Ẽj

{∫
V

(∇ × vi) · (∇ × vj) dv − iωµ0

∫
V

σ vi · vj dv

}
= 0 , i = 1, ..., N. (6.10)

Since the boundary conditions are such that the tangential component of the electric field is
specified on the boundaries of the mesh, the weighting functions with non-zero tangential
components on the boundary need not be included. This means that the contributions to
the surface integral in Equation 6.9 vanish for cell faces on the boundaries of the mesh.

The system of equations in Equation 6.10 can be expressed as a matrix equation of the form
A x = b, separating real Ẽ

R and imaginary Ẽ
I parts of the electric field

(
C S

−S C

)(
Ẽ

R

Ẽ
I

)
=

(
0

0

)
, (6.11)

where Cij =
∫

V (∇ × vi) · (∇ × vj) dv and Sij = ωµ0

∫
V σ vi · vj dv for i, j = 1, ..., N. The

integration for Cij and Sij can be performed to give formulae that depend only on i, j,
and the dimensions and conductivities of the cells for the given form of basis functions
(Equation 6.1).

The matrix equation is manipulated in the following way to accommodate the Dirichlet
boundary conditions for the electric field. All elements on a row of the matrix in Equa-
tion 6.11 that correspond to a weighting function associated with an edge located at the
boundary of the mesh are set to zero, except for the main diagonal element, which is set to
one. The related element of the right-hand side vector (Equation 6.11) is set equal to the
value of the relevant component of the electric field on the boundary of the mesh. Homoge-
neous halfspace conditions are assumed for the Earth surrounding the discretised model
domain, and therefore the values of the tangential electric field on the boundary of the mesh
are those of the electric field generated in a homogeneous halfspace for the plane-wave
source of MT. Iterative solvers in sparskit (Saad, 1990) - such as bcgstab (stabilised
bi-conjugate gradient), gmres (generalised minimum residual), tfqmr (transpose-free
quasi-minimum residual) and dqgmres (direct versions of quasi generalised minimum
residual) - with incomplete lu decomposition as preconditioner are applied to solve the
matrix equation system (Equation 6.11). gmres is the preferred choice, as it gives steady,
reliable convergence (see Chapter 7). Throughout the iterative solution of Equation 6.11, a
divergence correction, which is described below (Section 6.3), is applied at regular intervals.
Once the approximate electric field is determined, the magnetic field can be obtained by
applying Faraday’s Law (Equation 2.10: ∇ × E = iωµ0H) to Equation 6.4

H̃ = −
i

ωµ0

N∑
j=1

Ẽj∇ × vj , (6.12)

where ∇ × vj are straight-forward to determine for the given spatial distribution of vj

(Equation 6.1). The MT transfer functions are calculated from the electric and magnetic field
approximations, for the two different polarisations, by
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(
Zxx Zxy

Zyx Zyy

)
=

(
Ex1 Ex2

Ey1 Ey2

) (
Hx1 Hx2

Hy1 Hy2

)−1

, (6.13)

where the indices 1 and 2 indicate the two polarisations. For one polarisation, the magnetic
field at the top of the mesh is pointing in the x-direction and for the other polarisation the
magnetic field is pointing in the y-direction.

6.3 divergence correction

For a standard edge-element electric field solution for the MT case using a rectilinear mesh,
the iterative solution of the system of equations was found to converge slowly. The normal
component of the current density across interfaces between cells of different conductivi-
ties, and across interfaces between cells which are of the same conductivity but in close
proximity to conductivity changes, are definitely not continuous for early iterations and
improve only slowly (Farquharson and Miensopust, subm). This observation is similar to
that shown by Smith (1996) for a staggered-grid finite-difference solution to the electric
field equation for plane-wave sources of the MT case. He found the convergence rate of the
iterative solver slowed considerably at low frequencies and ascribed this to the decreasing
significance of the conductivity term in the electric field equation (Equation 6.3) as frequen-
cies decrease. The decreasing significance of the conductivity term implicitly diminishes
the divergence-free current density requirement of the finite-difference approximation
of the electric field and therefore Smith (1996) introduced a divergence correction term
that significantly improved the convergence rate of his finite-difference solution. Similar
correction terms are also used by Mackie et al. (1994), Sasaki (2001) and Siripunvaraporn
et al. (2002) in their finite-difference algorithms for modelling MT data, and Uyeshima and
Schultz (2000) for computing the response of a spherical Earth model.

In terms of the edge finite-element implementation presented here, the conductivity terms
of the electric field equation are the elements of the submatrix S in Equation 6.11. If the
significance of S is small, Ẽ +∇φ, for any scalar function of position φ, can provide
an adequate solution of the matrix equation, and therefore an approximate solution of
the partial differential equation. However, such an electric field would not satisfy the
conservation of charges

∇ · J = 0 . (6.14)

Equation 6.14 requires within a cell, in which the conductivity is constant,

∇ · E = 0 , (6.15)

whereas on an interface between cells, Equation 6.14 explicitly requires that the normal
component of the current density be continuous

n̂ · (σpEp)|Spq = n̂ · (σqEq)|Spq , (6.16)
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where σp and σq are the conductivities in cell p and q respectively, Ep and Eq are the
electric fields in those cells and Spq is the interface between cells p and q. Equation 6.16

specifies by how much the normal electric field should be discontinuous between regions
of different conductivities. The electric-field partial differential equation, and therefore the
matrix equation (Equation 6.11), contains the information about the discontinuity in the
normal electric field, but only implicitly and via the conductivity term. Iterative solution
procedures struggle due to the disappearance, numerically, of the normal electric field
discontinuity information from the matrix equation.

In general, edge elements are capable of modelling appropriate discontinuity in the normal
electric field component between two cells of different conductivities, but there is no explicit
information about the necessary jump built into the edge elements (unlike the continuity of
the tangential field). The information about the discontinuity in the normal electric field
would come from the differential equation, but at the low frequencies of the MT method
this information (the conductivity term) vanishes from the discretised partial differential
equations, and it is beneficial if the information about the discontinuity in the normal
electric field comes from elsewhere. Following Smith’s (1996) correction procedure, an
approximate electric field that exists at some point in the iterative solution of Equation 6.11

and the divergence of the corresponding current density (∇ · J̃, where J̃ is the current
density corresponding to the approximate electric field) are considered. The divergence
of the current density will be non-zero where the jump in the normal component of the
approximate electric field between cells of different conductivities is incorrect, or where
there is a discontinuity between cells of the same conductivity. Physically, these erroneous
jumps can be thought of as excessive (or deficient) charge densities on the cell faces. Calcu-
lating the static potential arising from these spurious charges and subtracting its gradient
from the approximate electric field removes (to some extent) the part causing the violation
of the charge conservation. As demonstrated by Smith (1996), applying such a correction
at various points during the iterative solution of a finite-difference approximation to the
electric field partial differential equation significantly improved the convergence rate.

The implementation of the static divergence correction requires the solution of the inhomo-
geneous partial differential equation for the static potential φ

∇ · (σ∇φ) = −∇ · J̃ , (6.17)

where J̃ is the current density of the approximate electric field Ẽ. Within each cell the
right-hand side of Equation 6.17 is zero, because the basis functions are divergence-free and
the conductivity is constant within a cell. However, the approximate current density may
be discontinuous across interfaces between cells. Therefore the term on the right-hand side
of Equation 6.17 is non-zero on cell faces. The preceding inhomogeneous partial differential
equation (see Equation 6.17) for the static potential is therefore replaced with the system

∇ · (σ∇φ) = 0 , (6.18)

within cell p and

n̂ · (σp∇φp − σq∇φq)|Spq = n̂ · (σpẼp − σqẼq)|Spq , (6.19)

151



6 the forward solver

at the interface between cells p and q. The boundary condition is that the potential, φ, is
zero on the boundaries of the mesh.

The standard nodal-element approach is used here to solve Equation 6.18 with the mod-
ifications necessary to incorporate Equation 6.19. The approximate potential, φ̃, is given
by

φ̃ =

Nn∑
k=1

φ̃k uk , (6.20)

where uk is the nodal element basis function (see Equation 6.2) associated with the kth
node, Nn is the total number of nodes in the mesh and φ̃k is the approximate potential at
the kth node. As for the electric field equation, the Galerkin method is applied to obtain the
approximate potentials by substituting Equation 6.20 into Equation 6.18 and multiplying by
the basis function uh as a weighting function. Integration over the whole domain, requiring
that the residual is orthogonal to the basis functions, yields

Nn∑
k=1

φ̃k

∫
V

uh∇ · (σ∇uk) dv = 0 , h = 1, ..., Nn . (6.21)

The integral on the left-hand side is zero for the given linear spatial dependence of the
basis functions, but it would be non-zero if the potentials were used rather than the basis
function uk. Therefore integration by parts over the pth cell is applied

∫
Vp

uh∇ · (σp∇uk) dv = −

∫
Vp

σp∇uh · ∇uk dv +

∫
Sp

σp uh∇uk · n̂ ds , (6.22)

where σp is the conductivity of the pth cell. For typical occurrences of potential differential
equations, for example in DC resistivity, the contribution from the surface integral in
Equation 6.22 will be cancelled by the contribution for the same face coming from the cell
that shares the face. However in the situation here, Equation 6.19 means that there will be a
non-zero difference between the contributions coming from the two cells that share a face,
and that the difference will depend on the discontinuity of the approximate current density.
The surface integral in Equation 6.22 can therefore be replaced by

∫
Sp

σp uh∇uk · n̂ ds =

∫
Sp

σp uh Ẽk vk · n̂ ds , (6.23)

where vk is the basis function with the same spatial variation as ∇ uk. Using Equations 6.22

and 6.23, Equation 6.21 becomes

Nn∑
k=1

φ̃k

∫
V

σ∇uh · ∇uk dv =

N∑
j=1

Ẽj

∫
S

σ uh vj · n̂ ds , h = 1, ..., Nn , (6.24)

or in matrix form
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6.3 divergence correction

D p = t , (6.25)

where Dhk =
∫

V σ∇uh · ∇uk dv, pk = φ̃k and th =
∑N

j=1 Ẽj

∫
S σ uh vj · n̂ ds for h, k =

1, ..., Nn and S indicates all cell surfaces. Given the specific form of the basis functions
(Equation 6.2), the formulae for Dhk and th can readily be derived in dependence of h,
k, and the cell dimension and conductivity. Homogeneous Dirichlet boundary conditions
are assumed for the potential, which are implemented in the same way as the electric field
boundary conditions. That is, the elements on each row of the matrix for a weighting func-
tion corresponding to a node on the mesh boundary are set to zero, except for the diagonal
element, which is set to one and the corresponding element of the right-hand side vector t

is set to zero. Equation 6.25 is solved using the bi-conjugate gradient routine (bcgstab)
from sparskit (Saad, 1990) with incomplete lu decomposition as the preconditioner
using lfil = 10 and a maximum of 1000 iterations. Since the coefficients of the approximate
electric field, Ẽj, are complex valued, the above matrix equation (see Equation 6.25) is
solved twice, once using the real part of Ẽj in t and once using the imaginary part, while
the matrix D remains the same for both cases. The gradient of the computed approximate
potential is added to the current approximated electric field

Ẽ← Ẽ +∇ φ̃ . (6.26)

After applying the correction to the approximate electric field, the corrected field is fed
back into the iterative solution of the electric field system of equations (Equation 6.11). This
correction process is repeated frequently during the solution of the electric field system.
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Since there is no useful 3D analytic solution as reference to determine if a 3D forward
algorithm is working properly, comparative studies are essential. (Groom and Bailey (1991)
describe a partially analytic solution for a small hemisphere embedded in an otherwise
1D or 2D structure, but it is impractical to design a hemisphere using a rectilinear mesh.)
Zhdanov et al. (1997) compared modelling results from various 3D forward codes as part
of the comparison of modelling methods for electromagnetic induction

(COMMEMI) project. Siripunvaraporn et al. (2002) investigated the accuracy of 3D MT
finite-difference modelling in dependence on an E- or H-field formulation of the governing
equations. A review of modelling and inversion schemes based on integral equation (IE),
finite differences (FD) and finite elements (FE) was given by Avdeev (2005) and recently
Han et al. (2009) compared the FE code by Nam et al. (2007) with the three widely used FD
codes by Mackie et al. (1994), Sasaki (1999) and Siripunvaraporn et al. (2005).

The forward algorithm is the engine of an inversion code. Therefore it is necessary to
investigate the reliability of the used forward code (described in Chapter 6). There are
different strategies to test the forward algorithm, the ones being presented in this chapter
are the comparison with 2D results as well as with 3D responses calculated by other people
and/or codes.

To calculate the responses of the different 3D models various 3D meshes are set up. The
number of unknowns in the electric-field and correction-potential computations are equal
to the number of edges and nodes, respectively, in the mesh. All meshes include layers
in the air, where the conductivity of the cells is set to 10−8S/m (i.e., a non-zero value
small enough to be considered as approximately zero). The number of airlayers varies from
mesh to mesh and depends on the longest period used and on the trade-off between an
adequately small increasing factor of the airlayers’ thicknesses and the minimum number
of airlayers required to ensure a sufficient distance between the top boundary of the mesh,
where the magnetic dipole sources are located, and the air-Earth interface. In the ideal case
the top boundary of the mesh should be at infinity because a plane wave source is assumed.
As this cannot be implemented, the top boundary should at least be far enough away from
the air-Earth interface that any magnetic field generated by induced currents in the ground
has decayed to zero at the top boundary of the mesh. This is to enforce that the magnetic
field on this boundary is equal to only the plane wave source field without any contribution
from a secondary magnetic field, and therefore one would like the top boundary to be at
least one skin depth away from the Earth’s surface at the longest period, but even that is
hard to attain given the resistivity of the air. Increasing the thickness of the airlayers with
increasing distance above the Earth’s surface avoids having to use a large number of layers
to provide an adequate distance between the top boundary of the mesh and the Earth’s
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7 how to prove the 3d forward solver?

surface. On the other hand, the ratios by which the airlayer thicknesses increase should not
be too large (less than a factor of two increase would be adequate), otherwise the numerical
solution is slowed down. Finally the increase between the thicknesses of the top layer in
the Earth (which depends on the shortest period used and the resistivities in the ground)
and the first airlayer should not be too abrupt (preferentially they have the same thickness).
Taking all the points above into consideration, one ends up with slightly different numbers
of airlayers for different examples.

7.1 2d versus 3d

7.1.1 Extension of a 3D body to approach a 2D structure

Jones (1983b) showed that the difference between data from a profile over a 3D structure
(e.g., a dyke of finite length l) and the 2D response across the same dyke, but of infinite
length, is dependent on the dimensionless ratio of length l to skin depth δ, where δ is the
skin depth at a specific frequency in the host medium. If this ratio is far greater than 1, then
the 2D and 3D results should show approximately the same TM response curves (TM mode
data is sensitive to charges at boundaries, whereas TE is not), whereas if l/δ is smaller than
1, i.e., either the length l is too short or the frequency is too low, this assumption will not
be valid. Therefore a 2D versus 3D comparison will give a good correlation for a certain
range of high frequencies, whereas at lower frequencies this conformity cannot be expected.
Note that the dimensionless ratio l/δ depends on the resistivity of the host medium but
not on the resistivity of the 3D structure (e.g., the dyke resistivity). Table 7.1 shows the
l/δ ratios related to a body with length l = 50 km for different periods (0.1 s to 1000 s) and
different host medium resistivities (1 Ωm to 1000 Ωm) as well as ratios for a 100 Ωm host
medium but different body length (l = 10 km to 100 km). These values suggest for a 50 km
body that the 2D and 3D responses would be identical (within acceptable bounds) down to
100 s, possibly even down to 1000 s, for a 1 Ωm host medium, whereas in a 1000 Ωm host
a correlation could only be expected for periods shorter than 1 s (possibly 10 s). One can
also see that for the 100 Ωm host medium the shorter the body the smaller the period up
to which the 3D response would be identical to the 2D solution. In the case of the 100 Ωm
host, the 10 km body might result in 3D responses equal to the 2D results for periods 6 1 s,
whereas for a 100 km body length periods 6 100 s result in comparable 2D and 3D responses.

Table 7.1: Ratios l/δ for different periods (0.1 s to 1000 s) and host medium resistivities (1 Ωm to
1000 Ωm) calculated for an assumed body length l = 50 km (left) as well as for different
body length (l = 10 km to 100 km) in a 100 Ωm host medium (right).

length l = 50 km 100 Ωm host medium

1 Ωm 10 Ωm 100 Ωm 1000 Ωm 10 km 20 km 50 km 100 km

0.1 s 316 100 31.6 10 6.32 12.6 31.6 63.2

1 s 100 31.6 10 3.16 2 4 10 20

10 s 31.6 10 3.16 1 0.63 1.26 3.16 6.32

100 s 10 3.16 1 0.32 0.2 0.4 1 2

1000 s 3.16 1 0.32 0.1 0.06 0.13 0.32 0.63
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Figure 7.1: Sketch of the dyke model. The dyke is 5 km wide and 20 km thick. Its length extent (in
x-direction) varies from 10 km, 20 km, 50 km to 100 km for the 3D model (and is infinite
for the 2D model). Responses were calculated for a dyke resistivity of 1000 Ωm and a
host medium resistivity of 100 Ωm.

The chosen model for this comparison is a dyke structure along the x-axis (see Figure 7.1).
The dyke is located 5 km below the surface and is embedded in a homogeneous halfspace
of 100 Ωm. The width of the dyke structure is 5 km and its thickness is 20 km. For the 3D
modelling the length of the dyke was varied from 10 km, 20 km, 50 km to 100 km and its
resistivity is 1000 Ωm. To calculate the 2D reference data set, which was assumed to be
absolute correct, the 2D code from Rodi and Mackie (2001) (implemented in Geosystem’s
software WinGLink®) was used. Figure 7.2 shows the mesh, which was used to calculate
the 3D responses for all four different dyke lengths at a site located directly in the mesh
centre (at x = 0 km, y = 0 km). The total number of mesh cells is 71 x 71 x 47 (including 15

airlayers) and the mesh extent is 300 km x 300 km x 200 km. The numbers of edges and nodes,
and hence the unknowns in the electric-field and correction-potential computations, are
734 400 and 248 832, respectively. Figure 7.3 shows the comparison of the 3D responses of
the different dyke lengths (coloured symbols) and the 2D curves (solid black line) for (a)
the xy and (b) the yx components. The results are obtained after 5000 iterations applying
the divergence correction after Smith (1996) (see Section 6.3) every 50 iterations. The solver
for these runs was the GMRES routine from sparskit (Saad, 1990) with the size of the
Krylov subspace set to 40 (just less than the number of iterations between each divergence
correction to avoid the subspace acquiring and storing information from both, before and
after a correction, which would happen if the subspace were larger than the number of
iterations between the corrections). As expected the 3D response of the 100 km dyke
matches the 2D curves well. The 3D responses of the other dyke lengths only agree with
the 2D results for shorter periods. The shorter the dyke the shorter the periods where the
3D response starts to differ from the 2D curves. In general the effect on the yx (quasi-TM)
component is stronger as expected but it is also visible in the xy (quasi-TE) component. As
predicted from the table, the 10 km dyke shows a good agreement only up to 6 1 s, for the
20 km dyke up to about 1 s and for 50 km up to 6 10 s. The disadvantage of this comparison
is that there is only a good constraint on the off-diagonal components (xy and yx), but no
comparison for the diagonal values (xx and yy) is possible.

7.1.2 Rotate 2D data to gain 3D responses

Another approach to compare 2D and 3D results is taking advantage of the inverse of
a standard procedure known from strike analysis; rotating the data into strike direction.
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Figure 7.2: Figures showing the 3D mesh design for the 2D versus 3D extended dyke model in plan
view ((a) and (b)) and in section view ((c) and (d)). The mesh consists of 71 x 71 x 47

cells with a centre cell width of 200 m. The coloured rectangulars show the different
extensions of the 1000 Ωm dyke (red - 10 km, turquoise - 20 km, blue - 50 km and green -
100 km) and the lightblue layer indicates the airlayers.

Instead of rotating (or decomposing) a 3D impedance tensor into the strike direction to
gain a 2D response, for this approach a originally 2D response will be rotated out of strike
direction to make it a tensor with non-zero diagonal elements. This allows, unlike the
comparison described above, to gain constraints on the off-diagonal and diagonal elements.

Figure 7.4 shows the 3D model and mesh used for this comparison. The mesh consists of
70 x 70 x 43 cells (including 13 airlayers; number of edges is 654 123 and number of nodes
is 221 804), has an extent of 300 km x 300 km x 200 km and the lateral centre cell size is
750 m x 750 m. The red polygon shows the dyke-like structure with a strike direction of 45°
west of north and the blue circles in Figure 7.4 (b) indicate the site locations. The 1 Ωm,
900 m wide dyke is embedded in a 100 Ωm homogeneous halfspace and its depth extent is
from 250 - 1400 m below surface. The 3D responses are calculated using the forward code
described in Chapter 6 with the GMRES solver set up for a total number of iterations of 5000,
where the divergence correction (Smith, 1996, see Section 6.3) is applied every 50 iterations
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Figure 7.3: Resistivity and phase curves of the extended dyke model. The solid black line represents
the 2D solution, whereas the coloured symbols show the 3D responses for different dyke
lengths (turquoise - 10 km, blue - 20 km, green - 50 km, red - 100 km) for the xy/quasi-TE
(a) and the yx/quasi-TM (b) component. Please note that the resistivity axis in panel (a)
is enlarged compared to panel (b), and therefore the mismatch at short periods looks
worse than it actually is (e.g., the resistivity value at 0.1 s of the 2D solution is 101.01 Ωm
compared to 99.85 Ωm for the 10 km dyke, 99.86 Ωm for the 20 km dyke, 99.88 Ωm for
the 50 km and the 100 km dykes).

and the Krylov subspace size is 40. To simulate the same structure using a 2D forward
algorithm, the code of Rodi and Mackie (2001) (implemented in Geosystem’s software
WinGLink®) was used to calculated the 2D responses, which afterwards were rotated by 45°.

Figure 7.5 shows all four components of the 3D (red stars) and rotated 2D (blue squares)
responses at site 1 (a), site 3 (b) and site 5 (c) (responses curves and comparison for all seven
sites can be found in Appendix E.1). The 3D and rotated 2D resistivity and phase curves
match very well, not only for the off-diagonal (xy and yx) but also for the diagonal elements
(xx and yy). Small differences at site 1 (and 2, see Figure E.2) are most likely related to the
rather blocky realisation of the 45° dyke in the 3D model. In general the results show clearly
that all four components are determined correctly using the forward solver described in
Chapter 6.

7.2 comparison of responses from different 3d codes

To investigate the accuracy of the 3D forward solver the retrieved responses can also
be compared to results calculated by other 3D codes. In the following the comparison
with the published results of two commonly used COMMEMI models by Zhdanov et al.
(1997) will first be shown - namely the results of the 3D-1A and the 3D-2A models -
and then the results of the Dublin Test Model 1 (DTM1), which is available on MTnet
(http://www.dias.ie/mtnet/dublin_intro.html).
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Figure 7.4: Figures showing the 3D mesh design for the 2D rotated versus 3D dyke model in plan
view (a) and (b) and in section view (c) and (d). The mesh consists of 70 x 70 x 43 cells
with a centre cell width of 750 m. The red area shows the location of the 1 Ωm dyke
embedded in a 100 Ωm homogeneous halfspace, the lightblue layer indicates the airlayers
and the blue circles in (b) show the site locations.

7.2.1 COMMEMI models

The comparison of modelling methods for electromagnetic induction

(COMMEMI) project was initiated in 1983 by a working group of the International Associa-
tion of Geomagnetism and Aeronomy (IAGA) and coordinated by the IZMIRAN, Russia.
Zhdanov et al. (1997) summarized the results of intensive 2D and 3D code testing and
comparison of results. The 3D models known as COMMEMI 3D-1A and 3D-2A will be
described in the following and the forward results from the code introduced in Chapter 6

will be compared to the COMMEMI responses. Results of COMMEMI 3D-2A were also
published by Wannamaker (1991), Mackie et al. (1993), Mackie et al. (1994), Siripunvaraporn
et al. (2002) and Nam et al. (2007).
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Figure 7.5: Resistivity and phase curves for all four components calculated at sites 1 (a), 3 (b) and
5 (c). The blue squares represent the rotated 2D responses and the red stars are the 3D
responses. (Similar plots for all seven sites can be found in Appendix E.1.)
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COMMEMI 3D-1A

The COMMEMI 3D-1A model is a geometrically simple model with a relative high resistivity
contrast: a 0.5 Ωm cube embedded in a 100 Ωm homogeneous halfspace. Figure 7.6 shows
the specifications of COMMEMI 3D-1A: a cube with a 1:2 lateral edge ratio (plan view:
Figure 7.6 (a) and section view: Figure 7.6 (b)). The COMMEMI data set for this model
consists of resistivity values (ρxy and ρyx only) for 2 periods (0.1 s and 10 s) at 13 sites. The
different site locations are listed in Table 7.2.

x

y

-1 km

1 km

0 km 0.5 km-0.5 km

100 Ωm 0.5 Ωm0 km

(a) COMMEMI 3D-1A - plan view

x

z

0.25 km

2.25 km

0 km 0.5 km-0.5 km

100 Ωm 0.5 Ωm

(b) COMMEMI 3D-1A - section view

Figure 7.6: Sketch of the COMMEMI 3D-1A model: (a) shows a plan view and (b) the section view.

Table 7.2: Table of the different site locations of the COMMEMI 3D-1A model.

x (km) 0 0 0 0 0 0 0 0.25 0.5 0.75 1 1.5 2

y (km) 0 0.5 0.75 1 1.25 1.5 2 0 0 0 0 0 0

The responses for the COMMEMI 3D-1A model were calculated using three different
meshes. The cells’ thicknesses remained unchanged whereas the lateral widths were var-
ied from 250 m x 250 m (coarse mesh) to 100 m x 100 m (fine mesh) to 50 m x 50 m (very
fine mesh). The mesh dimensions are 46 x 46 x 39 cells (259 111 edges and 88 360 nodes),
70 x 70 x 39 cells (594 199 edges and 201 640 nodes) and 96 x 96 x 39 cells (1 111 911 edges and
376 360 nodes) for the coarse, the fine and the very fine mesh, respectively (9 airlayers are
included), whereas all three meshes have the same extent of about 65 km x 65 km x 60 km.
Figures E.4, E.5 and E.6 in Appendix E.2 show the different mesh layouts as plan and
section views. Beside different meshes also different settings for the divergence correction
were tested. Figure 7.7 (and 7.11) show some results for the fine mesh but the same plots
for the coarse and very fine meshes can be found in the Appendix E.2. Each of these figures
shows the results at 0.1 s in the top four graphs and at 10 s in the bottom four. Within the
block of four the two on the left show the resistivity curves for ρxy and on the right for ρyx.
The top two graphs are the results from the profile along the y axis and on the bottom for
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Figure 7.7: Figure showing the response curves at 0.1 s (a) and 10 s (b) obtained from the COMMEMI
3D-1A model using a fine mesh (70 x 70 x 39 cells) and applying the divergence correction
every 10, 20, 50 and 100 iterations. The black line shows the response curve calculated
without the divergence correction and the symbols with error bars represent the mean
value and the standard deviation of the published results from Zhdanov et al. (1997).
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the profile along the x axis. The black symbols with error bars represent the mean value and
the standard deviation of the range of values that comprised the COMMEMI comparison
and that are published by Zhdanov et al. (1997).

Figure 7.7 shows the comparison of applying the divergence correction every 10 (turquoise),
20 (blue), 50 (green) or 100 (red) iterations or not at all (black). The size of the Krylov
subspace was set to be just less than the number of iterations between each divergence
correction (i.e., 8, 16, 40 and 80, respectively) and for the run without correction the sub-
space had a size of 100. The improvement of the results (here after a total of 1000 iterations)
can be seen, once the correction is applied. While the results with correction cannot be
distinguished at 10 s, at 0.1 s there is a difference between the individual curves. This
behaviour is apparent for all three meshes (see Appendix E.2). Figure 7.8 shows the con-
vergence curves for the polarisation with y-directed source magnetic field of those runs
whose results are shown in Figure 7.7 (fine mesh). Plotted is the preconditioned residual
norm (ILU-preconditioning with zero fill-in of the sparse matrix), which is a measure of the
convergence provided during the iterative procedure by the sparskit solver (Saad, 1990).
(Convergence curves for all three meshes are shown in Figure E.10 in Appendix E.2.) These
curves show that the convergence is significantly quicker when the divergence correction is
applied, and that the convergence tends to be somewhat quicker if the divergence correction
is applied more frequently. It was found that a relative tolerance of the residual norm
of 10−15 or less could easily be reached in 1000 iterations, if the divergence correction
is applied. The run without divergence correction has not really reached a sufficiently
small tolerance after 1000 iterations, which is consistent with the poor match between the
corresponding apparent resistivities and the COMMEMI values (Figure 7.7).
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Figure 7.8: Figure showing the convergence curves for the fine mesh. These curves belong to the
calculation of responses curves at (a) 0.1 s and (b) 10 s for the COMMEMI 3D-1A model.

The effect of the divergence correction on the electric field is illustrated in Figure 7.9 (for
0.1 s and a y-directed source magnetic field). All panels show the horizontal component of
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7.2 comparison of responses from different 3d codes

the electric field in the upper-most horizontal plane of cells that has cells in the conductive
body. The horizontal field component is plotted at each cell centre, therefore the displayed
electric field is at 275 m depth, which is 25 m beneath the top of the conductive prism.
Panels (a) to (f) show the real ((a) to (c)) and imaginary parts ((d) to (f)) of the horizontal
electric field for the run without divergence correction, whereas (g) to (l) correspond to the
run where the divergence correction was applied every 20 iterations (real part (g) to (i) and
imaginary part (j) to (l)). The left column shows the field after 40 iterations (one correction
has occurred in generation of the field in (g) and (j)), the middle column after 500 iterations
and the right one shows the final field after 1000 iterations. Considering the fields after 40

iterations, there is a hint of decreased strength in the conductive body of the imaginary
part (Figure 7.9 (a)) of the run without correction, but not in the corresponding real part
(Figure 7.9 (d)). The electric field of the same stage in the run with the divergence correction
applied every 20 iterations shows both, the strength of this electric field is decreased within
the conductive body and channelling of the electric field from the surrounding halfspace
into the body is evident. The intermediate field in panels (g) and (j) differ from the final
electric field ((i) and (l)), but it is considerably closer to the final field than the interme-
diate field at the same stage computed without divergence correction ((a) and (d)). It is
also apparent that the resulting electric field after 500 iterations ((h) and (k)) is basically
identical with the final one ((j) and (l)), if the correction is applied. Without divergence
correction even 1000 iterations are insufficient to gain the correct electric field, which is
again consistent with the poor match between the corresponding apparent resistivities and
the COMMEMI values (Figure 7.7).

Figure 7.10 shows the divergence correction potential and the electric field given by its
gradient for the first application of the correction for the run in which the divergence
correction was applied every 20 iterations (at 0.1 s and for a y-directed source magnetic
field). That is the one correction that has been applied to calculate the electric field after 40

iterations shown in Figure 7.9 (g) and (j). Figure 7.10 (a) and (b) illustrate the potential for
the real and imaginary computations at the same depth as the field in Figure 7.9 (275 m).
Panels (c) and (d) show the horizontal components of the gradient of the potential. The
figure shows that the correction potential is generated by sources located over the two faces
of the conductive body that are normal to the x-direction, that is normal to the predominant
direction of the electric field. The source of the potential is the discontinuity of the normal
component of the current density for the corresponding intermediate electric field (see
for example the intermediate electric field in Figure 7.9 (a) and (d)). Similar figures of
the electric field, the correction potential and its gradient for both source magnetic field
directions and both frequencies (0.1 s and 10 s) can be found in Appendix E.2 (Figures E.11

to E.18).

For the COMMEMI 3D-1A model, applying the correction every 20 iterations seems to
be a good choice (but it is model dependent and can therefore vary). Figure 7.11 shows
the responses of the COMMEMI 3D-1A model after 100, 200, 400, 600, 800, 1000 and
5000 iterations (applying the divergence correction every 20 iterations). Once again the
results at 10 s are not distinguishable (except 100 iterations), but 0.1 s shows variations in
the curves. It is obvious the 100 and 200 iterations are too few, but 400 iterations and more
already give reasonable results. Making the results a little more accurate through the cost
of more iterations results in longer computation time. Keeping this in mind, the difference
between 1000 iterations and 5000 iterations is not considered to be worth the extra time.
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Figure 7.9: Horizontal components of the electric field at 0.1 s at a depth of 275 m (y-directed source
magnetic field). Panels (a) to (c) show the real and (d) to (f) the imaginary parts of the
electric fields for the run without divergence correction, whereas (g) to (i) are the real
and (j) to (l) the imaginary parts of the electric fields for the run in which the divergence
correction is applied every 20 iterations. The panels on the left show intermediate electric
fields after 40 iterations, the middle ones are after 500 iterations and on the right are the
final electric fields after 1000 iterations.
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Figure 7.10: Divergence correction potential and its gradient at 0.1 s for a y-directed source magnetic
field). Panel (a) shows the real and (b) the imaginary parts of the divergence correction
potential applied after 20 iterations in the run whose intermediate electric field is shown
in Figure 7.9 ((g) and (j)). The real (c) and imaginary (d) parts of the horizontal correction
electric field are given by the gradient of the correction potential. The potentials and
fields are shown at a depth of 275 m.

Figure 7.12 summarises the results of all three meshes for the parameters identified as
optimal (1000 iterations with the correction being applied every 20 iterations). The solid
lines are the curves from the coarse (blue), fine (green) and very fine (red) mesh obtained
from the calculation with correction, whereas the dashed lines (same colour coding) show
for comparison the curves obtained without correction. While at the short period (0.1 s) a
finer mesh can improve the results even without divergence correction, the correction is
essential for the longer period (10 s). Or, looking at it the other way, where very small cells
were required the application of the correction can compensate somewhat so that larger
cells give reasonable results, which would result in smaller meshes and directly related
shorter computation time.

COMMEMI 3D-2A

The second COMMEMI model is more complicated. It is based on a three-layered Earth
with two rectangular blocks in the top layer. The top layer (surface down to 10 km) is 10 Ωm,
in 10 km to 30 km depth is a 100 Ωm layer and underneath is a 0.1 Ωm halfspace assumed.
The two blocks of 1 Ωm and 100 Ωm, respectively, are 20 km wide, 40 km long and extend
over the whole thickness of the top layer. Figure 7.13 shows the plan and section views of
the COMMEMI 3D-2A model. Tabel 7.3 lists the site locations from Zhdanov et al. (1997),
where resistivity values (no phase values available) at the periods 100 s and 1000 s have
been calculated.

167



7 how to prove the 3d forward solver?

101

102

R
e
s
is

ti
v
it

y
 i
n

Ω
m

0 500 1000 1500 2000 2500 3000

x−distance in m

Number of iterations 

5000 600 200

1000 400 100

800

fine mesh (70 x 70 x 39)

0.1 s 

ρxy 

101

102

R
e
s
is

ti
v
it

y
 i
n

Ω
m

0 500 1000 1500 2000 2500 3000

x−distance in m

Number of iterations 

5000 600 200

1000 400 100

800

fine mesh (70 x 70 x 39)
0.1 s 
ρyx 

101

102

R
e
s
is

ti
v
it

y
 i
n

Ω
m

0 500 1000 1500 2000 2500 3000

y−distance in m

Number of iterations 

5000 600 200

1000 400 100

800

fine mesh (70 x 70 x 39)

0.1 s 

ρxy 

(a) Responses at 0.1 s

101

102

R
e
s
is

ti
v
it

y
 i
n

Ω
m

0 500 1000 1500 2000 2500 3000

y−distance in m

Number of iterations 

5000 600 200

1000 400 100

800

fine mesh (70 x 70 x 39)
0.1 s 
ρyx 

100

101

102

R
e
s
is

ti
v
it

y
 i
n

 Ω
m

0 500 1000 1500 2000 2500 3000

y−distance in m

Number of iterations 

5000 600 200

1000 400 100

800

fine mesh (70 x 70 x 39)
10 s 
ρxy 

100

101

102

R
e
s
is

ti
v
it

y
 i
n

 Ω
m

0 500 1000 1500 2000 2500 3000

y−distance in m

Number of iterations 

5000 600 200

1000 400 100

800

fine mesh (70 x 70 x 39)
10 s 
ρyx 

100

101

102

R
e
s
is

ti
v
it

y
 i
n

 Ω
m

0 500 1000 1500 2000 2500 3000

y−distance in m

Number of iterations 

5000 600 200

1000 400 100

800

fine mesh (70 x 70 x 39)

10 s 
ρxy 

(b) Responses at 10 s

100

101

102

R
e
s
is

ti
v
it

y
 i
n

 Ω
m

0 500 1000 1500 2000 2500 3000

y−distance in m

Number of iterations 

5000 600 200

1000 400 100

800

fine mesh (70 x 70 x 39)

10 s 
ρyx 

Figure 7.11: Figure showing the response curves at 0.1 s (a) and 10 s (b) obtained from the COMMEMI
3D-1A model after 100, 200, 400, 600, 800, 1000 and 5000 iterations using a fine mesh
(70 x 70 x 39 cells). The black symbols with error bars represent the mean value and the
standard deviation of the published results from Zhdanov et al. (1997).
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Figure 7.12: Figure showing the response curves at 0.1 s (a) and 10 s (b) obtained from the COMMEMI
3D-1A model using three different meshes: coarse mesh (blue), fine mesh (green) and
very fine mesh (red). The solid lines are the responses curves after 1000 iterations
applying the divergence correction every 20 iterations. For comparison the dashed lines
represent the curves after 1000 iterations without any correction being applied. The
symbols with error bars represent the mean value and the standard deviation of the
published results from Zhdanov et al. (1997).
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Figure 7.13: Sketch of the COMMEMI 3D-2A model: (a) shows the section view and (b) the plan
view of the 3D-2A model.

Table 7.3: Table of the different site locations of the COMMEMI 3D-2A model.

x (km) 0 ± 5 ± 15 ± 20 ± 25 ± 40 ± 70

y (km) 0 0 0 0 0 0 0

To calculate the forward responses a mesh of 70 x 70 x 43 cells (including 15 airlayers;
654 123 edges and 221 804 nodes) was used, which has a total mesh extent of about
210 km x 210 km x 200 km and the lateral size of the centre cells is 1 km x 1 km. Figure E.23 in
Appendix E.3 shows the mesh design as plan and section views. The divergence correction
was applied every 400 iterations using a Krylov subspace 396 (just less than the number
of iterations between each divergence correction). As the COMMEMI 3D-2A is based on
a layered background model, the chosen homogeneous halfspace boundary conditions
of the forward solver might not be ideal. Therefore faked 1D boundary conditions were
implemented for testing (i.e., 1D boundary conditions are not generally available in the
forward solver code, but are included hard-wired specifically for the 3D-2A example; there
is an analytical formula for the fields in a homogeneous halfspace whereas a layered Earth
requires a numerical solution which requires additional programming). Figure 7.14 shows
the xy and yx component data at 100 s for the homogeneous halfspace and 1D boundary
conditions in comparison. Solid lines are the forward responses after 6000 (blue), 40000

(green) and 80000 iterations (red). Also plotted are the published results from Wannamaker
(1991) (star), Mackie et al. (1993) (diamond) and Zhdanov et al. (1997) (square). Figure 7.15

shows the responses at 1000 s in the same way.

It can be seen that homogeneous halfspace boundaries cause shifted and skewed response
curves for the 3D-2A model due to the layered background. Compared to 6000 iterations the
resistivity curves improve to a reasonable fit after 40000 iterations, but the phases remain
strongly affected. At 1000 s not even 80000 iterations can improve the fit of the phases. Using
1D boundary conditions solves the problem and resistivity and phase curves fit well already
after 40000 iterations at 100 s and after 6000 iterations at 1000 s. Many more iterations are
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Figure 7.14: COMMEMI 3D-2A responses curves at 100 s: The xy component is shown in (a) for
homogeneous halfspace boundaries and in (b) using 1D boundaries, whereas the yx
response curves for homogeneous halfspace boundaries (c) and 1D boundaries (d)
are shown below. For comparison symbols are plotted representing the results from
Wannamaker (1991), Mackie et al. (1993) and Zhdanov et al. (1997) (no phase values).

171



7 how to prove the 3d forward solver?

65

70

75

80

85

90

P
h

a
s
e
 (

˚)

−40 −20 0 20 40

x−distance in km

φxy 

10−2

10−1

100

101

102

R
e
s
is

ti
v
it

y
 (

Ω
m

)

−40 −20 0 20 40

1000 s
ρxy 

Total No. of Iters 

80 000 iterations

40 000 iterations

6 000 iterations

Zhdanov etal. (1997)

Mackie etal. (1993)

Wannamaker (1991)

(a) Hom. halfspace boundaries - xy component
65

70

75

80

85

90

P
h

a
s
e
 (

˚)

−40 −20 0 20 40

x−distance in km

φxy 

10−2

10−1

100

101

102

R
e
s
is

ti
v
it

y
 (

Ω
m

)

−40 −20 0 20 40

1000 s
ρxy 

Total No. of Iters 

80 000 iterations

40 000 iterations

6 000 iterations

Zhdanov etal. (1997)

Mackie etal. (1993)

Wannamaker (1991)

(b) 1D boundaries - xy component

−120

−115

−110

−105

−100

−95

P
h

a
s
e
 (

˚)

−40 −20 0 20 40

x−distance in km

φyx 

100

101

R
e
s
is

ti
v
it

y
 (

Ω
m

)

−40 −20 0 20 40

1000 s 
ρyx  

Total No. of Iters 

80 000 iterations

40 000 iterations

6 000 iterations

Zhdanov etal. (1997)

Mackie etal. (1993)

Wannamaker (1991)

(c) Hom. halfspace boundaries - yx component
−120

−115

−110

−105

−100

−95

P
h

a
s
e
 (

˚)

−40 −20 0 20 40

x−distance in km

φyx 

100

101

R
e
s
is

ti
v
it

y
 (

Ω
m

)

−40 −20 0 20 40

1000 s 
ρyx  

Total No. of Iters 

80 000 iterations

40 000 iterations

6 000 iterations

Zhdanov etal. (1997)

Mackie etal. (1993)

Wannamaker (1991)

(d) 1D boundaries - yx component

Figure 7.15: COMMEMI 3D-2A responses curves at 1000 s: The xy component is shown in (a) for
homogeneous halfspace boundaries and in (b) using 1D boundaries, whereas the yx
response curves for homogeneous halfspace boundaries (c) and 1D boundaries (d)
are shown below. For comparison symbols are plotted representing the results from
Wannamaker (1991), Mackie et al. (1993) and Zhdanov et al. (1997) (no phase values).
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7.2 comparison of responses from different 3d codes

required to compute reasonable responses for the 3D-2A model than for the 3D-1A model,
although the numbers of cells in the mesh are similar. This illustrates the more challenging
nature of the 3D-2A model. For the sake of completeness, the corresponding plots of the
horizontal electric field, the correction potential and its gradient are shown in Appendix E.3.

7.2.2 The Dublin Test Model 1 - DTM1

The Dublin Test Model 1 was designed for the MT 3D inversion workshop at the Dublin
Institute of Advanced Studies in March 2008. This model was sent to a number of code
writers and users, who performed 3D forward modelling to obtain responses at 59 sites. A
few sets of these responses are available on MTnet and can be used for comparison.

Figure 7.16 shows one plan view and two section views of the DTM1. It consists of three
blocks embedded in a 100 Ωm homogeneous halfspace. The first body is 5 km wide, 40 km
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Figure 7.16: Sketch of the Dublin Test Model 1 (DTM1): (a) shows the plan view, (b) shows a section
view of the y-z-plane through the high resistive body (10 000 Ωm) and (c) is a section
view of the y-z-plane through the conductive block (1 Ωm).
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long and 15 km thick. Its resistivity is 10 Ωm. Underneath the first block two others are
located with resistivities of 1 Ωm and 10 000 Ωm, respectively. Both have a lateral extent
of 15 km by 25 km. The resistor is 30 km thick, whereas the thickness of the conductor is
only 5 km. In total 59 sites are located on three profiles parallel to the y-axis (at x = 15 km
(Profile N), 0 km (Profile C) and -15 km (Profile S)) and one profile along the y-axis (Profile
V). Table 7.4 lists the exact locations of all sites.

Table 7.4: Table of the different site locations of the Dublin Test Model 1 (DTM1) on three profiles
parallel to the y-axis (Profiles N, C and S) and one profile along the y-axis (Profile V).

x (km) 15 15 15 15 15 15 15 15

Profile N
y (km) ± 2.5 ± 7.5 ± 12.5 ± 17.5 ± 22.5 ± 27.5 ± 32.5 ± 37.5

x (km) 0 0 0 0 0 0 0 0

Profile C
y (km) ± 2.5 ± 7.5 ± 12.5 ± 17.5 ± 22.5 ± 27.5 ± 32.5 ± 37.5

x (km) -15 -15 -15 -15 -15 -15 -15 -15

Profile S
y (km) ± 2.5 ± 7.5 ± 12.5 ± 17.5 ± 22.5 ± 27.5 ± 32.5 ± 37.5

x (km) 0 ± 5 ± 10 ± 15 ± 20 ± 25

Profile V
y (km) 0 0 0 0 0 0

The mesh used for the forward modelling is shown in the Appendix E.4 (Figure E.44). It
consists of 91 x 60 x 57 cells (including 15 airlayers; 962 002 edges and 325 496 nodes) with
a lateral extent of 1 km x 1 km for the centre cells. Figures 7.17 and 7.18 show the forward
results (black symbols) at 100 s and 1000 s, respectively, after 1000 iterations applying the
divergence correction every 20 iterations (with a size of 16 for the Krylov subspace). For
comparison, results were calculated using the following codes: RLM3D (as implemented in
WinGlink®, Mackie et al., 1994) , wsinv3dmt (Siripunvaraporn et al., 2005) and MT3Dinv
(from GIF, University of British Columbia, Canada). Also results from Nuree Han and
Tae Jong Lee using the code by Nam et al. (2007) and from Randy Mackie using his code
(Mackie et al., 1994) are used for comparison. These five data sets (21 logarithmic equidistant
periods in the range of 0.1 s to 10 000 s for all 59 sites) are available on MTnet for download
and are plotted here with different coloured symbols.

Figures E.45 to E.52 in Appendix E.4 show the results for all four profiles at 100 s and
1000 s. All of them show a very good agreement between the forward results using the
code described in Chapter 6 and all the other responses - for resistivities as well as phases
and also for off-diagonal as well as diagonal elements. Figures E.53 to E.56 show the
corresponding horizontal components of the electric field at 5.5 km (through the 10 Ωm
block) and 26.4 km (through the two bottom blocks) and Figures E.57 to E.64 show the
divergence correction potential and its gradient at 5.5 km and 26.4 km and at 100 s and
1000 s for the first application of the correction.
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Figure 7.17: Figure showing the responses curves (black symbols) of Profile C at 100 s calculated for
the Dublin Test Model 1 (DTM1) (see Figure 7.16). Each panel, one each for xx, xy, yx
and yy components, shows the apparent resistivity curves on top and the phase curves
below. The colour symbols are results from other codes/users (see legend), which are
available as reference data sets on MTnet.
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Figure 7.18: Figure showing the responses curves (black symbols) of Profile C at 1000 s calculated
for the Dublin Test Model 1 (DTM1) (see Figure 7.16). Each panel, one each for xx, xy, yx
and yy components, shows the apparent resistivity curves on top and the phase curves
below. The colour symbols are results from other codes/users (see legend), which are
available as reference data sets on MTnet.
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7.3 summary of the forward modelling tests

All five forward tests discussed in this chapter were proved successful. They showed in
very different ways that the used forward algorithm calculates reliable resistivity and
phase curves for all four components. Only using the COMMEMI 3D-2A model showed
a limitation of the forward routine, which is caused by the assumption of homogeneous
halfspace boundary conditions. Using faked 1D boundaries showed the forward solver
itself is working fine. Keeping the boundary problem related to the very challenging 3D-2A
model in mind, one can be confident that the forward algorithm is working reliably and
it can therefore be considered suitable as the engine for the inversion code, which will be
described in Chapter 8.
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8
T H E I N V E R S I O N A L G O R I T H M

This chapter describes the 3D MT inversion code that is based on the finite-element forward
solver described in Chapter 6 and tested in Chapter 7. The inversion code uses a Gauss-
Newton method and allows the simultaneous inversion for the resistivity structure and
distortion parameters. It also tries to avoid noise propagation from one impedance element
into the others due to rotation during data processing. In the following the inversion
code will be called mcmt3did (i.e., Marion and Colin’s MT 3D Inversion code including
Distortion).

There have been quite a few recent efforts to develop 3D MT inversion algorithms. The
inversion codes are based on forward algorithms using finite-difference (FD) (e.g., Mackie
and Madden, 1993; Newman and Alumbaugh, 2000; Farquharson et al., 2002; Sasaki, 2004;
Siripunvaraporn et al., 2005; Han et al., 2008), finite-element (FE) (e.g., mcmt3did) and
integral-equation approaches (IE) (e.g., Avdeeva, 2008; Avdeev and Avdeeva, 2009). The
3D MT inverse problem is far from being solved, but these codes using different inversion
schemes showed that one can recover the conductivity structure of simple synthetic test
models reasonably well. The major issues of making MT 3D inversion a routinely used
procedure are the long computation time and the requirement of fast workstations with
large memories, preferable even huge clusters for parallel computation. The timewise most
expensive part is the construction of the sensitivity matrix. To avoid this time consuming
procedure different schemes were developed that use approximations of the sensitivity
matrix. Smith and Booker (1991) developed a rapid relaxation inversion scheme, where
approximate 1D sensitivities are used. Farquharson and Oldenburg (1999) approximate the
sensitivities by calculating them for a homogeneous or layered halfspace. Another approach
is based on quasi-linear approximations of the Green’s function (Zhdanov and Fang, 1996;
Zhdanov et al., 2000). However, such approximate methods have their limitations (e.g.,
work best for small resistivity contrasts, and the accuracy of the inversion is questionable)
and they are therefore of value but cannot replace methods based on the full solution of
the EM induction equations (Siripunvaraporn et al., 2005). Mackie and Madden (1993) use
a conjugate gradient (CG) method and Newman and Alumbaugh (2000) and Rodi and
Mackie (2001) (also Mackie et al., 2001) apply a non-linear conjugate gradient (NLCG)
method that avoids both the explicit computation and storage of a full sensitivity matrix.
This approach can be more practical in terms of computation time (Rodi and Mackie,
2001). The 3D inversion codes by Sasaki (2004) and Siripunvaraporn et al. (2005) are based
on a Gauss-Newton-type (GN) approach in model- and data-space, respectively, and the
inversion code by Avdeeva (2008) and Avdeev and Avdeeva (2009) uses the limited-memory
quasi-Newton method. Some of these codes are written using the message passing interface
(MPI) protocol or similar to make them run on PC-clusters or massively parallel systems in
order to reduce the computation time.
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8 the inversion algorithm

8.1 motivation and main idea of mcmt3did

MT field data often suffer from distortion effects caused by small-scale, near-surface conduc-
tivity inhomogeneities (see Section 2.7). Therefore in 2D different strategies were developed
to analysis and remove these distortion effects (see Section 2.9.2). In 2D de Groot-Hedlin
(1991) was the first to integrate the static shift into the inversion and later de Groot-Hedlin
(1995) also inverted for the full electric galvanic distortion matrix simultaneously to find the
smoothest model. Sasaki (2004) extended de Groot-Hedlin’s (1991) concept of inverting for
static shift parameters into three dimensions. Based on Sasaki’s (2004) code work on three-
dimensional inversion of static shifted MT data has been published by Sasaki and Meju
(2006) and Han et al. (2008), where only special limited cases of distortion or Earth structure
have been investigated. Inspired by de Groot-Hedlin’s (1995) simultaneous inversion for
the full galvanic distortion matrix and the resistivity structure in 2D, the 3D inversion
code presented here is written to accommodate galvanic distortion parameters during
inversion; first just as constant values based on a priori information and second as inversion
parameters. As only the electric galvanic distortion is considered the additional parameters
are namely one frequency independent, real 2 x 2 matrix per MT site (see Section 2.7).

The second new aspect of mcmt3did is the rotation of the synthetic data instead of the
field data to avoid noise propagation from one impedance element into the others. In 2D
the rotation of the impedance data into strike direction is essential (although the following
approach for the 3D code can of course also be applied to 2D codes, but such a 2D code
is not available yet) as the 2D inversion is based on the assumption that the impedance
can be decoupled as TE and TM mode (see Section 2.6.2). Rotation into strike direction is
not necessary for 3D inversion, but it is required that all impedance data are in the same
coordinate system for inversion. MT data are recorded in individual coordinate systems at
each site (e.g., magnetic north or any arbitrary orientation caused by local conditions), but
normally the whole data set of all MT sites is rotated into a common coordinate system,
e.g., true north. The rotation produces a mixing of the impedance elements and, in the
case of noisy data, especially if one component is more strongly affected than the others,
can cause degradation of data. Figure 8.1 shows a synthetic data example where Gaussian
noise is added to a response curve and then both data sets (i.e., the original responses and
the noisy responses) are rotated by 45°. Especially the xy phase shows loss of data quality
at intermediate periods, but also the diagonal elements show resistivity values orders of
magnitude too high. Therefore the applied strategy in mcmt3did is to read in the MT
data using the individual coordinate system for each site. Additionally a rotation angle
has to be specified for each site with respect to the general modelling coordinate system.
Instead of rotating the input data, which can be affected by noise, the noise-free synthetic
data from the forward modelling will be rotated for each individual site by the specified
angle before the comparison between input data and forward results is undertaken.

8.2 inversion strategy

One important part of inverse numerical modelling is to determine the measure of the
misfit. The sum of the data misfit and measures of model complexity is often called an
objective function (or a penalty function). A procedure is used that attempts to minimise
the objective function and therefore to provide a solution to the inverse problem.
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(b) Rotated noisy and noise-free synthetic data

Figure 8.1: A synthetic data example showing the noise propagation due to rotation of the impedance
tensor. The solid lines represent the noise-free and the open circles the noisy synthetic
data. Panel (a) shows both data sets before and (b) after rotation by 45°. The noisy data
is generated by adding Gaussian noise to the response curve: 20% to the xx and xy
component, 5% to yx and 10% to yy to simulate a distorted Ex field component. To
accommodate the fact the longer periods are stronger effected by noise, for periods > 10 s
a scaling factor (log10(period)) was multiplied to the percentage.

8.2.1 Measures of data misfit and model complexity

Considering the elements of a vector x to be the misfit between the observed and predicted
data or the parameters describing the model structure, there are various functions that can
be used to measure the ’size’ of the vector. If xi, i = 1, ..., n are the elements of the vector, a
general size of the vector is given by

φ(x) =

n∑
i=1

f(xi) . (8.1)

This general expression becomes the L2 norm of the vector if f(x) = x2,

||x||22 =

n∑
i=1

x2
i , (8.2)

or the more general form of the Lp norm

||x||pp =

n∑
i=1

|xi|
p , (8.3)

where 0 < p < ∞. The L1 norm and L2 norm are common measures for data misfit and
model complexity, however Farquharson and Oldenburg (1998) and Farquharson (2008)
demonstrated the advantages of using two other measures: one considered the ’most
robust’ by Huber (1964) and one proposed by Ekblom (1973, 1987) (which are the two
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measures used in the MCMT3DID code). Portniaguine and Zhdanov (1999) developed a
technique called focussing inversion images, where they use different measures of model
complexity as stabilizer functionals to calculate the objective function. They compared
different measures, such as the maximum smoothness stabilizer (the standard L2 norm;
f(x) = x2), the variational stabilizing functions (f(x) = (x2 + β2)1/4), the minimum support
functional (f(x) = x/(x2 + β2)1/2, where x is not the difference vector, but the model vector)
and the minimum gradient support functional (f(x) = x/(x2 + β2)1/2, where x is again the
difference vector). Portniaguine and Zhdanov (1999) find the minimum gradient support
functional to be very helpful to generate clearer, more focused and more resolved images
of geological structures.

The Huber measure

The measure by Huber (1964) is based on the function f(x) to be

f(xi) =

{
x2

i if |xi| 6 c

2c|xi| − c2 if |xi| > c
, (8.4)

where c is a positive constant. If the absolute value of the largest element in vector x is
smaller than the constant c the Huber measure becomes identical to a L2 norm, otherwise
the constant will separate the elements of the vector into those that are considered large
and those that are considered small. Due to this separation the large values only have a
smaller influence on the measure than they would using a normal L2 norm. The Huber
measure is also linked to a probability density function for xj that is Gaussian in the centre
and exponential in the tails (Huber, 1964).

The Ekblom measure

Ekblom (1973, 1987) proposed a perturbed version of the Lp norm

f(xi) =
(
x2

i + ε2
)p/2

, (8.5)

where ε is some positive number. Farquharson and Oldenburg (1998) and Farquharson
(2008) consider this measure as more numerically attractive than a normal Lp norm, because
the derivative at xi = 0 exists when p = 1.

Using the Huber and Ekblom measure allows for more flexibility in the code. The default
parameters for both measures are set to apply the standard L2 norm for both model
complexity and data misfit, but if desired a L1 norm can be used to generate blocky models
and a robust data misfit. Roughly Gaussian data would justify the straight L2 norm whereas
for a more uniform distribution the Huber norm may perform better. The user has to decide
which norm is appropriate for the used data set and chosen mesh (as for all other inversion
parameters).

8.2.2 The objective function

A commonly used approach is the minimisation of a combination of data misfit and model
complexity (e.g., Farquharson et al., 2002; Farquharson and Oldenburg, 2004; Han et al.,
2008; Avdeev and Avdeeva, 2009). Such a objective function Φ is of the form
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8.2 inversion strategy

Φ = φd + β φm , (8.6)

where φd is a measure of data misfit, φm is representing the model roughness and β is the
trade-off parameter (or regularisation parameter) that balances, or ’regularises’, the effects
of the two terms. This kind of objective function is often also called Tikhonov regularised
penalty function. In the case of the mcmt3did code the objective function also contains
a term for the measure of distortion complexity, which is needed if the distortion values
become inversion parameters. Therefore the full objective function Φ is given by

Φ = φd + βm(αs φs + αx φx) + βc φc , (8.7)

where φd is the measure of data misfit, φs is the measure of the closeness to a reference
model, φx is the measure of the amount of structure in the Earth, and φc, which is new
to this code, is the measure of the closeness to reference distortion values. The trade-off
parameters are given by αs, αx, βm and βc, where the α values internally trade-off the
contributions of the different measures of model complexity and the β values trade-off the
model complexity and distortion complexity against the data misfit. The model structure
terms φs and φx are calculated using the Ekblom measure. Therefore the closeness to
reference model can be written as

φs =
∑

i

(
[Wi

s(mi − mi
ref)]

2 + ε2
)p/2

, (8.8)

where Wi
s are the elements of a diagonal matrix W

s
, mi and mi

ref are the ith elements of the
vectors describing the model and the reference model, respectively. The Ekblom constants
are set to the following default values: ε = 0.0001 and p = 2 (individual modification of ε

and p values optional in code). The model roughness term φx is a vector containing the
information of changes in 13 different directions. Each of these elements, φk

x, has its own
trade-off parameter (in αx) and can be written as

φk
x =

∑
i

(
[Wk,i

x (mi − mi
ref)]

2 + ε2
)p/2

, (8.9)

where W
k,i
x is the ith element of the matrix Wk

x
, which is one of the 13 direction matrices.

W1
x

, W2
x

and W3
x

are the first order difference matrices in the x-, y- and z-directions of the
mesh, W4

x
to W9

x
represent the diagonal directions in the xy-, xz- and yz planes and W10

x

to W14
x

are through the vertices of a cell (see Figure 8.2).

The data misfit φd is calculated using the Huber measure, where φd =
∑

i φi
d with

φi
d =

{
[Wi

d(di
pred − di

obs)]2 if |Wi
d(di

pred − di
obs)| 6 h

2h|Wi
d(di

pred − di
obs)| − h2 if |Wi

d(di
pred − di

obs)| > h
, (8.10)

where h is the chosen positive Huber constant (default value in the code is h = 1000,
different value optional), di

obs and di
pred are the observed and predicted ith data values,
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Figure 8.2: Figures showing the directions in space of the finite-difference matrices Wk
x

, where
k = 1, ..., 13. The x-, y- and z-directions are shown in (a), the directions in the xy-, xz, and
yz-planes are in (b) and (c) shows the directions through the vertices of the cell, where
the numbers represent the indices k of the matrices.

respectively, and Wi
d is the ith element of the diagonal weighting matrix, whose values are

reciprocals of the measurement uncertainties.
The distortion complexity, φc =

∑
i φi

c, is calculated analogously using the Huber measure

φi
c =

{
[Wi

c(ci
pred − ci

obs)]2 if |Wi
c(ci

pred − ci
obs)| 6 h

2h|Wi
c(ci

pred − ci
obs)| − h2 if |Wi

c(ci
pred − ci

obs)| > h
, (8.11)

where h is the chosen positive Huber constant (default h = 1000, different value optional
and note that h can be specified independently for the calculation of φd and φc). The
observed and predicted ith distortion parameter is given by ci

obs and ci
pred, while Wi

c is
the ith element of the diagonal weighting matrix, which are set to one by default, but can
be set individually to any other value. Note that this measure of distortion complexity is
comparing distortion matrix elements, it is not penalising individual gain, anisotropy, twist
and shear values.

8.2.3 Gauss-Newton method

As the objective function (see Equation 8.7) is basically a sum-of-squares function, a Gauss-
Newton (GN) algorithm can be applied to solve the non-linear least squares problem. The
Gauss-Newton method can be seen as a modification of Newton’s method for finding the
minimum of a function, i.e., in this case finding the model and/or distortion parameters
that minimize the objective function. The Newton method is based on a second order Taylor
expansion to approximate the hyper-surface that corresponds to the objective function by a
parabolic bowl, and therefore requires the full knowledge of the Hessian matrix (i.e., matrix
of second order partial derivatives). The second order derivatives are computationally
challenging, and therefore the Gauss-Newton method is used where the Hessian matrix
is approximated by the transpose of the Jacobian matrix (i.e., matrix of first order partial
derivatives times a factor of 2) times the Jacobian matrix. The resulting linear system
of Gauss-Newton equations is solved using an iterative solver. The applied solver is the
conjugate gradient solver from sparskit (Saad, 1990). The solution of the linear system of
Gauss-Netwon equations is the update to the model and/or distortion matrices, which leads
to a reduced value of the objective function. The new objective function is approximated by
the appropriate Gauss-Newton approximation of a parabolic bowl, the new Gauss-Netwon
equation system is set up and solved to determine the new update to the model/distortion
matrices. This sequence is repeated as an iterative procedure.
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8.2 inversion strategy

In the simple case of an inversion for conductivity structure only, the objective function
(Equation 8.7) is reduced to

Φ = φd + βm

(
αs φs + αx φx

)
. (8.12)

To simplify matters in the following the L2-norm will be used to express the different
measures of misfit and model complexity, as the Huber and the Ekblom measures involve
a straight-forward modification (see Appendix F.1) of the equations obtained from the
L2-norm (Farquharson and Oldenburg, 1998). Therefore Equation 8.12 can be written as

Φ = ||W
d
(dpred − dobs)||2 + βmαs ||W

s
(m − mref)||

2

+βm

∑
k

αk ||W
k
(m − mref)||

2 . (8.13)

At the (n + 1)th iteration, the predicted data can be approximated by the linear Taylor series

dpred = dn+1 ≈ dn + J
m

δm , (8.14)

where δm = mn+1 − mn and J
m

is the Jacobian matrix of sensitivities with respect to the
model parameter

Jmij
=

∂di

∂mj

∣∣∣∣
mn

. (8.15)

Substituting Equation 8.14 into the objective function in Equation 8.13 yields

Φn+1 ≈ ||W
d

(dpred − dobs)︸ ︷︷ ︸ ||2 + βmαs ||W
s
(mn+1 − mref)︸ ︷︷ ︸ ||2

dn + J
m

δm − dobs δm + mn − mref

+ βm
∑

k αk ||W
k

(mn+1 − mref)︸ ︷︷ ︸ ||2

δm + mn − mref

, (8.16)

where W
k

are the 13 finite-difference matrices (see Equation 8.9 and Figure 8.2). Differ-
entiating Equation 8.16 with respect to the elements of δm and equating the resulting
derivatives to zero gives the following linear equation system

0 = JT

m
WT

d
W

d
(dn + J

m
δm − dobs) + βmαs WT

s
W

s
(δm + mn − mref)

+ βm

∑
k

αk WT
k

W
k
(δm + mn − mref) (8.17)
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⇒

[
JT

m
WT

d
W

d
J
m

+ βmαs WT
s

W
s

+ βm

∑
k

αk WT
k

W
k

]
︸ ︷︷ ︸ δm︸︷︷︸

A
m

xm

(8.18)

=
−JT

m
WT

d
W

d
(dn − dobs) −

[
βmαs WT

s
W

s
+ βm

∑
k

αk WT
k

W
k

]
(mn − mref)︸ ︷︷ ︸

bm

This symmetric, linear system of Gauss-Newton equations (A
m

xm = bm) is solved using
the conjugate gradient (CG) method and an incomplete LU preconditioner (ILU) (sparskit;
Saad, 1990). The inverse of A

m
is not explicitly created, but the CG solver comprises prod-

ucts of matrix A
m

with vectors. These products require products of the Jacobian matrix, J
m

,

its transpose, JT

m
, and the various weighting matrices W with vectors. The latter are trivial

operations, but the products involving the Jacobian or its transpose are done by solving
pseudo-forward problems, i.e., the system of equations to solve is given by J

m
u = v and

JT

m
v = u , respectively (see e.g., Mackie and Madden, 1993; Rodi and Mackie, 2001).

If an inversion for only distortion parameters is required, the objective function (Equa-
tion 8.7) reduces to

Φ = φd + βc φc = ||W
d
(dpred − dobs)||2 + βc ||W

c
(cpred − cobs)||2 , (8.19)

where L2-norms are used to approximate the measures of data misfit and distortion com-
plexity in Equation 8.19, and the subsequent description for clarity (the contributions
of using non-L2 norms can be taken into account in a straight-forward manner, see Ap-
pendix F.1; Farquharson and Oldenburg, 1998). Analogous to the above, the predicted data
can be approximated by the linear Taylor series at the (n + 1)th iterations as

dpred = dn+1 ≈ dn + J
c

δc , (8.20)

where δc = cn+1 − cn and J
c

is the Jacobian matrix of sensitivities with respect to the
distortion parameters

Jcij
=

∂di

∂cj

∣∣∣∣
cn

. (8.21)

Substituting Equation 8.20 into the objective function in Equation 8.19 yields

Φn+1 ≈ ||W
d
(dn + J

c
δc − dobs)||2 + βc ||W

c
(δc + cn − cobs)||2 . (8.22)

Differentiating Equation 8.22 with respect to the elements of δc and equating the resulting
derivatives to zero yields

0 = JT

c
WT

d
W

d
(dn + J

c
δc − dobs) + βc WT

c
W

c
(δc + cn − cref) (8.23)
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⇒

[
JT

c
WT

d
W

d
J
c

+ βc WT
c

W
c

]
︸ ︷︷ ︸ δc︸︷︷︸

A
c

xc

=
−JT

c
WT

d
W

d
(dn − dobs) − βc WT

c
W

c
(cn − cref)︸ ︷︷ ︸

bc

(8.24)

The system of symmetric and linear Gauss-Newton equations (A
c

xc = bc) is solved with a
CG solver using a ILU preconditioning (sparskit; Saad, 1990). In this case the product
of A

c
with vectors involved by the CG solver are trivial operations and do not require

an iterative solution of a pseudo-forward problem (as it is required for the solution of
Equation 8.18).

Slightly more complicated is the case of simultaneous inversion for the model structure
and the distortion parameters. In this case the full objective function (Equation 8.7) has
to be taken into account. To simplify matters once again the L2-norm is used to express
the measures of data misfit, model and distortion complexity instead of using the Huber
and the Ekblom measures. The contribution of using the non-L2-norms can be taken into
account in a straight-forward manner (see Appendix F.1; Farquharson and Oldenburg, 1998).

The full objective function is given by

Φ = ||W
d
(dpred − dobs)||2 + βmαs ||W

s
(m − mref)||

2

+βm

∑
k

αk ||W
k
(m − mref)||

2 + βc ||W
c
(cpred − cobs)||2 . (8.25)

At the (n + 1)th iteration, the linear Taylor approximation describes the predicted data as

dpred = dn+1 ≈ dn + J
g

δg , (8.26)

where

δg =

 δm

· · · · · ·
δc

 = gn+1 − gn =

 mn+1 − mn

· · · · · · · · · · · ·
cn+1 − cn

 (8.27)

is the vector of changes in the inversion parameters (at the top the model and at the bottom
the distortion parameters) and

J
g

=
(

J
m

... J
c

)
(8.28)

is the Jacobian matrix of sensitivities with respect to the model and distortion parameters

Jgij
=

∂di

∂gj

∣∣∣∣
gn

=


∂di
∂mj

∣∣∣
mn

if gij is related to a model parameter

∂di
∂cj

∣∣∣
cn

if gij is related to a distortion parameter

. (8.29)
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Substituting Equation 8.26 into the objective function in Equation 8.25 yields

Φn+1 ≈ ||W
d
(dn + J

g
δg − dobs)||2 + βmαs ||V

s
(δg + gn − g

ref
)||2

+ βm

∑
k

αk ||V
k
(δg + gn − g

ref
)||2 + βc ||V

c
(δg + g

n
− g

ref
)||2 , (8.30)

where

V
s

=

(
W

s
0

0 0

)
, V

k
=

(
W

k
0

0 0

)
and V

c
=

(
0 0

0 W
c

)
.

Differentiating Equation 8.30 with respect to the elements of δg and equating the resulting
derivatives to zero yields

0 = JT

g
WT

d
W

d
(dn + J

g
δg − dobs) + βmαs VT

s
V

s
(δg + gn − g

ref
)

+ βm

∑
k

αk VT
k

V
k
(δg + gn − g

ref
) + βc VT

c
V

c
(δg + gn − g

ref
) (8.31)

⇒

 JT

g
WT

d
W

d
J
g

+ βmαs VT
s

V
s

+βm
∑

k αk VT
k

V
k

+ βc VT
c

V
c


︸ ︷︷ ︸

δg︸︷︷︸
A

g
xg

=
−JT

g
WT

d
W

d
(dn − dobs) −


βmαs VT

s
V

s

+βm
∑

k αk VT
k

V
k

+βc VT
c

V
c

(gn − g
ref

)
︸ ︷︷ ︸

bg

(8.32)

The right hand side, bg, is simply a merged vector made of bm and bc, because V
s

and V
k

only contribute if the element of bg is a model parameter and if it is a distortion parameter
then only V

c
contributes. Also

JT

b
=


JT

m

· · · · · ·
JT

c

 , (8.33)

which also separates the contribution with respect to model and distortion parameters.
However, the matrix A

b
cannot simply be separated into a top and a bottom part related to

model and distortion parameters, respectively, although parts of the matrix are identical to
A

m
and A

c
, i.e.,

A
b

=

(
A

m
M

1

M
2

A
c

)
, (8.34)
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where M
1

= JT

m
WT

d
W

d
J
c

and M
2

= JT

c
WT

d
W

d
J
m

are mixed terms. A CG solver
using a ILU preconditioning (sparskit; Saad, 1990) is applied to solve the symmetric and
linear system of Gauss-Newton equations (A

g
xg = bg). Analogous to Equation 8.18 the

CG solver requires products of the matrix A
g

with vectors that involve products of the

Jacobian, J
m

, and its transpose, JT

m
, with vectors. These products are calculated by solving

the pseudo-forward problem of a system of equations given by J
m

u = v and JT

m
v = u ,

respectively (see e.g., Mackie and Madden, 1993; Rodi and Mackie, 2001).

8.3 calculation of jacobian matrices

To check if the calculation of the Jacobian matrices is done correctly within the inversion
code the calculated Jacobian is compared to the so-called brute-force Jacobian.

8.3.1 Jacobian matrix with respect to the resistivity structure

The Jacobian matrix with respect to the resistivity structure can be brute-force computed by
changing the conductivity value of an individual cell (one at a time) and calculating the
forward responses for the modified model. The original model, morg, and the related re-
sponses, dorg, will be subtracted from the modified model, mmod, and its responses, dmod.
Therefore each individual element of the brute-force Jacobian matrix can be determined as

Jbf
mij
≈

dmod
i − d

org
i

mmod
j − m

org
j

, (8.35)

where the effect of the change in the jth model parameter on the ith data value is calculated.
The brute-force Jacobian (Jbf

m
) is compared to the Jacobian matrix calculated within the

inversion code. The Jacobian matrix elements are the derivatives of the synthetic data, D,
with respect to the conductivity structure (note that to simplify matters σ is used in the
equations but the numerical formulation uses log(σ))

Jij =
∂

∂σj
Di . (8.36)

In the simplest case the required data is an undistorted and unrotated set of impedances
values, Z, where

∂

∂σ
D =

∂

∂σ
Z . (8.37)

If the impedance data is distorted then D = C Z, where C is the distortion matrix, and the
derivative is given by

∂

∂σ
D =

∂

∂σ
C Z = C

∂

∂σ
Z , (8.38)

because the distortion matrix is, by definition, independent of the conductivity model.
During the inversion process the Jacobian is required in two matrix-vector multiplications;
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8 the inversion algorithm

once in a subroutine determining J
m

u = v and once calculating the inverse operation, i.e.,

JT

m
v = u. These matrix-vector multiplications are determined by solving pseudo-forward

problems iteratively (Mackie and Madden, 1993; Rodi and Mackie, 2001).

To compare the Jacobian matrix elements of J
m

and JT

m
to the brute-force values of Jbf

m
, one

feeds the iterative solver of the pseudo-forward problem with a vector u (or v respectively)
that is set to zero except for one element that is set to one. Repeating this process for each
vector element the full Jacobian matrix (or its transpose) is calculated. Unfortunately the
comparison in Figures 8.3 and 8.4 shows that the iterative solution does not match the
brute-force Jacobian in a satisfying way (i.e., the resulting values are incorrect). Several
debugger and memory checking software (e.g., gdb, valgrind, absoft) have been applied to
the code. None of them found a memory or numerical problem with the coding. It seems to
be a formulation/equation problem. The comparison in Figures 8.3 and 8.4 shows the true
matrix elements as well as the absolute values. They indicate a good tendency for many
values, but a closer look reveals quite significant differences. Unfortunately no pattern (in
neither figure) is obvious that could give an indication of the cause of the problem. Also
trying to calculate the derivatives of the electric field components (instead of the impedance
data) with respect to the resistivity structure has not revealed any helpful information.
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Figure 8.3: Figure showing the comparison of the brute-force with the calculated Jm values for a ho-
mogeneous halfspace model using the subroutines to determine Ju and JTv respectively.
Data values are in impedance.

Therefore, to be able to show some preliminary inversion results, the code is modified in
the following way: For a small area the brute-force Jacobian is calculated and written to
a file. This file is read into the inversion code and every time the calculation of J

m
u = v
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Absolute values of matrix elements

Ro
w

 in
de

x 
of

 m
at

ri
x 

el
em

en
ts

Row
 index of m

atrix elem
ents

Column index of matrix elements

10-710-8 10-5 10-410-6

Figure 8.4: Figure showing the comparison of the brute-force with the calculated Jm absolute values
for a homogeneous halfspace model using the subroutines to determine Ju and JTv

respectively. Data values are in impedance.

or JT

m
v = u is required, the hard-wired, brute-force Jacobian is used to execute a simple

multiplication with the vector, instead of using the iterative solver. The disadvantage of this
procedure is that calculating the brute-force Jacobian is very time consuming and therefore
it is impracticable to redo the calculation every time the model has changed. The Jacobian
of the starting model will be used throughout the whole inversion, which seems to be a
reasonable approach as the perfect inversion result is not the aim but to demonstrate the
functionality of the code.

Using a homogeneous halfspace or 1D Jacobian (as, e.g., Smith and Booker (1991) and
Farquharson and Oldenburg (1999) applied) to approximate the Jacobian instead of calcu-
lating the brute-force values is not possible. The comparison of brute-force and calculated
Jacobian matrix elements shown in Figures 8.3 and 8.4 is based on a homogeneous halfspace
resistivity model and shows that calculation even for such a simple model is not working
properly.

8.3.2 Jacobian matrix with respect to the distortion parameters

Analogous to the Jacobian with respect to the resistivity parameters the Jacobian with
respect to the distortion parameters, J

c
, can be checked by comparison with the brute-force

values. One distortion parameter is modified at a time to calculate the forward responses.
The fraction of the differences between the modified and original distortion parameters and
their response values gives the values of each of the brute-force Jacobian matrix elements
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8 the inversion algorithm

Jbf
cij
≈

dmod
i − d

org
i

cmod
j − c

org
j

, (8.39)

where the effect of the change in the jth distortion parameter on the ith data value is
calculated. If distortion is present the data matrix, D, is given by

D = CZ , (8.40)

or in components

(
Dxx Dxy

Dyx Dyy

)
=

(
C11 C12

C21 C22

) (
Zxx Zxy

Zyx Zyy

)

=

(
C11Zxx + C12Zyx C11Zxy + C12Zyy

C21Zxx + C22Zyx C21Zxy + C22Zyy

)
, (8.41)

where C is the known distortion matrix and Z is the known matrix of impedance values
from the forward solution related to the given conductivity structure. As Z is independent
of the distortion parameters, its elements only act as factors on the C matrix. Therefore the
derivative with respect to the distortion parameters is easy to calculate, e.g.,

∂Dxx

∂C11
=

∂

∂C11
(C11 Zxx + C12 Zyx) = Zxx . (8.42)

Appendix F.3 lists the derivatives of all data matrix elements with respect to all distortion
matrix elements and also the calculations of the derivatives for the case where data are
not in impedances but in resistivity and phase values. Other than for the Jacobian with
respect to the resistivity, where an iterative solution was required due to the dependence of
the matrix elements on the resistivity, the Jacobian with respect to distortion can be set up
directly as the matrix values are independent of the distortion values themselves.

The comparison of the brute-force Jacobian and the set-up one in the code is done using
two different resistivity structures; first an homogeneous halfspace of 100 Ωm and second
two blocks embedded in a 100 Ωm homogeneous halfspace. The latter model is sketched in
Figure 8.5.

Figures 8.6 and 8.7
show the true values and the absolute values of the Jacobian matrix elements, respectively.
In both cases the agreement of the brute-force values and the values from the code is very
good for both resistivity structures (same comparison but for data values in resistivity and
phase instead of impedance is shown in Appendix F, Figures F.1 and F.2). Therefore the
subroutine generating the Jacobian with respect to the distortion parameters is verified,
and one can be confident in the calculated values.
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(b) 3D model for Jc test - section view

Figure 8.5: Sketch of the 3D model used for the Jc test: (a) shows the plan view and (b) the section
view.

8.3.3 Jacobian matrix with respect to the resistivity structure and to the distortion parameters

As Equations 8.28 and 8.33 show, the Jacobian with respect to the resistivity structure
and the distortion parameter is just a matrix that is merged using the individual Jacobian
matrices with respect to either parameter set. Therefore, no additional subroutine is required
to deal with the Jacobian with respect to both parameter sets, as the existing ones for J

m
,

JT

m
and J

c
are adequate to perform all necessary calculations. Even the mixed terms in the

A
g

matrix (see Equation 8.34), can be determined using the subroutines calculating the

matrix-vector products of a vector with one of the Jacobians (i.e., J
m

, JT

m
, J

c
or JT

c
).

8.4 rotation of the synthetic data

To rotate the noise-free synthetic data instead of the noisy (and distorted) observed data,
the individual rotation angle for each site is required as input information. The rotation
needs to be taken into account at two parts of the inversion code. First, if the difference
between observed and synthetic/predicted data is required to calculate the data misfit, and
second, when the Jacobian matrix elements are calculated.

To calculate the difference between the observed data, D
obs

, and the synthetic forward data,
Z

pred
, both data sets need to be in the same coordinate system, therefore the predicted

data is rotated into the coordinate system used by the observed data,

D
pred

= R(θ) Z
pred

RT (θ) , (8.43)

where θ is the individual rotation angle for each site and R is the rotation matrix given by

R(θ) =

(
cos θ sin θ

− sin θ cos θ

)
and RT (θ) =

(
cos θ − sin θ

sin θ cos θ

)
. (8.44)
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Figure 8.6: Figure showing the comparison of the brute-force with the calculated Jc values for a
homogeneous halfspace model (left) and a 3D model as shown in Figure 8.5 (right). Data
values are in impedance.

In the case where also the distortion parameters need to be taken into account the predicted
data is calculated by

D
pred

= R(θ) C Z
pred

RT (θ) . (8.45)

Based on these additional matrices and their multiplication with the actual forward
impedance, Z

pred
, also the calculation of the derivatives is affected. In the case of distortion-

free but rotated data the elements of the Jacobian matrix with respect to the resistivity
structure are given by

∂

∂σ
D

pred
=

∂

∂σ
R Z

pred
RT = R

∂Z
pred

∂σ
RT . (8.46)

If the data is distorted and rotated the derivatives with respect to the resistivity structure
can be written as

∂

∂σ
D

pred
=

∂

∂σ
R C Z

pred
RT = R C

∂Z
pred

∂σ
RT , (8.47)

and additionally the derivatives with respect to the distortion parameters is required, which
is given by

∂

∂C
D

pred
=

∂

∂C
R C Z

pred
RT = R

∂C Z
pred

∂C
RT , (8.48)

where the determination of ∂C Z/∂C is given by Equation 8.42 (and the equations in
Appendix F.3).
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Figure 8.7: Figure showing the comparison of the brute-force with the calculated Jc absolute values
for a homogeneous halfspace model (left) and a 3D model as shown in Figure 8.5 (right).
Data values are in impedance. (Note white colour indicates absolute values less than
10−15.)
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9
T E S T I N G O F T H E 3 D I N V E R S I O N C O D E

This chapter shows the preliminary results of a test inversion using the 3D inversion code
mcmt3did (described in Chapter 8). As already mentioned in the previous chapter, there
is still a coding problem in the part of the code that is calculating the Jacobian matrix with
respect to the resistivity structure. The brute-force Jacobian matrix of the starting model
is used instead, but as the calculation is expensive in computation time no updates of the
Jacobian are derived for the subsequent iteration steps. Based on this approximation the
inversion result cannot be expected to be perfect; it will be a rather fuzzy image of the struc-
ture, but it can give an impression if the overall inversion part of the code is performing well.

The COMMEMI 3D-1A model (Zhdanov et al., 1997) is used as the test model and the
synthetic forward responses, used as observed data for the inversion, were calculated using
the 3D forward routine of Mackie et al. (1994) (implemented in Geosystem’s WinGLink®
package). A sketch of the COMMEMI 3D-1A model can be found in Chapter 7 (Figure 7.6).
Figure 9.1 shows the mesh used for the inversion. It consist of 38 x 37 x 26 cells (including
9 airlayers) with a lateral centre cell width of 200 m. An array of 48 sites (blue dots in
Figure 9.1 (b)) was placed above and around the lateral extent of the conductive body and a
full impedance data set (i.e., real and imaginary part of diagonal and off-diagonal elements)
was calculated at three periods, namely 0.1 s, 1 s and 10 s. The black dashed line in Figure 9.1
(b) indicates the location of the profile, which is used later for data comparison.

For the inversion normally all cells in the subsurface would be active (i.e., the resistivity of
the cells would be updated during the inversion process), whereas the cells in the airlayer
are inactive (i.e., cannot be changed by the inversion algorithm). That means, the Jacobian
matrix has a dimension of 1152 data values (48 sites · 8 response values · 3 frequencies) by
23902 active cells (38 x 37 x 17). For a brute-force calculation of the Jacobian matrix elements,
23902 active cells are too many, as that would require 23903 forward solutions (one for each
cell plus one as reference to subtract from; see description of how the brute-force values are
calculated in Section 8.3). Only the centre part of the mesh (15 x 20 x 12 cells) was therefore
selected to be active, while the padding cells were all set to be inactive. Calculating the
brute-force Jacobian matrix, Jbf, for 15 x 20 x 12 (=3600) active cells and three periods would
require about 180 days on a single CPU (in fact the elements of the brute-force Jacobian
were calculated in 72 individual parts and merged by hand). It is therefore impossible to
update the brute-force Jacobian matrix for every iteration step during the inversion, but the
brute-force Jacobian calculated for the starting model was kept for all iterations.
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Figure 9.1: Figure showing the design of the inversion mesh. Panels (a) and (b) show the inversion
mesh in plan view and (c) and (d) in section view. The red block indicates the location
of the 0.5 Ωm block that is embedded in a 100 Ωm halfspace (COMMEMI 3D-1A model
from Zhdanov et al. (1997)). The lightblue colour in (c) and (d) represents the airlayers.
The blue dots in (b) show the location of the 48 sites and the black dashed line represents
the location of the profile used for data comparison in Figures 9.5 to 9.7.

Figure 9.2 shows the depth slices of the COMMEMI 3D-1A model. The 12 depth layers
show (in lateral and vertical direction) the active cells only. The conductive block extends
from the third to tenth layer (250 m to 2250 m depth).

Figure 9.3 shows the same depth slices as in Figure 9.2, the resistivity structure is not
representing the true model but the inversion result after five iterations. All eight impedance
elements were taken into account for the inversion at all 48 sites and all three periods.
The error of the impedance elements was chosen to be 5% of the complex absolute value
of the XY component in XX and XY and 5% of the complex absolute value of the YX
component in YX and YY. (Noise was not added to the synthetic data.) The starting and
reference models were a 100 Ωm homogeneous halfspace, the forward solver was set to
1000 iterations applying the divergence correction (see Section 6.3) every 20 iterations (using
a Krylov subspace of 16) and the trade-off parameter βm was set to 10. The model trade-off
parameter αs was set to 10−6 and the values of αx were 1.0 for the differences in the main
direction x, y and z and 0.0 for all other directions (see Section 8.2.2 for more details).
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Figure 9.2: Figure showing depth slices of the true inversion model (depth range for each slice
listed below the figures). The inversion test model is the COMMEMI 3D inversion model
(Zhdanov et al., 1997) consisting of a 0.5 Ωm block in a homogeneous halfspace of
100 Ωm. The extracted depth slices shown represent the complete area of active cells.
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Figure 9.3: Figure showing depth slices of the 3D inversion result after 5 iterations. The depth range
is specified below each depth slice. (Undistorted impedance data is used and no extra
weighting is applied.)
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The model resulting from the inversion indicates the lateral location of the structure more
or less in the correct place, the tendency of the structure being more conductive than the
background is also correct. But neither the absolute resistivity values nor the depth extent
of the structure is similar to the true structure. Instead strong near-surface scatter can be
found in the top three layers. More periods than just one per decade, higher frequencies
(sensing the resistivity above the conductor) and closer site spacing might reduce the
near-surface scatter. It can also not be excluded that the scatter is enhanced due to the
approximation using the brute-force Jacobian for all iteration steps, although the phe-
nomenon of near-surface scatter is known from other 3D MT inversion codes as well (e.g.,
Siripunvaraporn et al., 2005; Avdeeva, 2008). Avdeeva (2008) states that the singularity of
the gradient in the vicinity of the MT sites introduces erratic structures to the model, which
complicate the solution of the 3D MT inverse problem, and, in particular, is a problem for
Newton-type optimisation approaches. More direct constraints on the model conductivity
values, especially for near-surface cells, are suggested as a solution by Siripunvaraporn
et al. (2005) (called covariance matrix, as kind of low-pass filtering of the conductivities)
and Avdeeva (2008) (suggesting a covariance matrix or a inverse Hessian matrix to smooth
the gradients).

mcmt3did has the option to introduce a covariance smoothing by adding extra weights for
each individual cell of the reference model to the elements of matrix W

s
. Figure 9.4 shows

the inversion result after five iterations trying to inhibit the near-surface scatter by giving an
extra weight of a factor 10000 to the top three layers, that means the cells are forced to stay
close to the reference model (the larger the factor the stronger the constraint), which has a
resistivity of 100 Ωm. All other inversion parameter settings remain unchanged. Clearly
the top three layers show the correct homogeneous resistivity of 100 Ωm, but once again,
the depth extent and the resistivity of the conductive body is not resolved well (note that
different colour scales had to be used in Figures 9.2 to 9.4 to make the resistivity structures
visible).

The inversion appears to work correctly, but the limitation of using the brute-force Jacobian
matrix of the starting model is hindering the inversion process to reach a satisfying result
and data fit. Figures 9.5 to 9.7 show a comparison of the input data (undistorted impedances,
red circles) and the inversion result (blue triangles) at 0.1 s, 1 s and 10 s. The fit is poor
and the responses curves of the inversion results stay close to how responses of a 100 Ωm
homogeneous halfspace would look like.

In a next step of testing the same inversion parameter settings including the extra weighting
for the top three layers were used to invert distorted impedance tensor data. To calculate the
distorted data the impedance data of the previous inversion test were multiplied with indi-
vidual distortion matrices for each site. The distortion matrices were randomly generated
by using the Groom-Bailey decomposition approach (i.e., a random shear angle between
±45° and a random twist angle between ±60° were generated, the gain was set to 10 and
the anisotropy to 1). Inverting the distorted impedance data for the resistivity structure
only (as standard 3D inversion codes do) the resulting model and responses are identical
to the result obtained from the inversion using undistorted data. The green diamonds in
Figures 9.5 to 9.7 represent the distorted input impedance data set. The inversion result
response curves are identical to the blue triangles plotted for the undistorted data inversion.
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Figure 9.4: Figure showing the 3D inversion results after 5 iterations using an extra weighting of a
factor 10000 for the top three layers to avoid the near-surface scatter. The depth range
is specified below each depth slice. (This inversion result is obtained for undistorted
impedance data, although using distorted data results in an identical inversion model.)
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Since there is no recognisable difference in the inversion (for resistivity structure only)
result using distorted or undistorted data, it is impossible at the current form of the code to
say whether or not the inclusion of the distortion parameter during the inversion would
improve the results or not. Once again, the brute-force approximation of the Jacobian is the
likely cause (although another coding problem in addition to the brute-force approximation
can also not be excluded at the current testing level).

In conclusion, using the brute-force Jacobian of the starting model allows determining
whether or not the inversion for the resistivity structure only is progressing correctly and
changing the resistivity values in the correct direction. Although the inversion results are
still far from the true structure, the fuzzy model found using extra weighting for the top
three layers suggests a block that is more conductive than the background and has in lateral
direction the correct location but the depth extent is not accurately found. Therefore the
inversion (with respect to the resistivity structure) part of the program is considered as
working fine, and resolving the true structure better is only hindered by the brute-force
approximation of the Jacobian using the starting model. Unfortunately the inversion cannot
progress far enough to be able to test whether or not the inclusion of the distortion parame-
ters during the inversion process (or the internal rotation of the synthetic data into the local
measurement coordinate system) would improve the result if distorted (and/or noisy) data
are inverted.

Once the coding problem regarding the calculation of the Jacobian matrix is solved, more
detailed tests are required. Beside testing different parameter settings (e.g., different α and
β values), reducing the extra weighting of the top layers and running inversion for the
different input data formats (i.e., impedance, resistivity and phase, tipper), the various
aspects of the inclusion of the distortion parameters and their related inversion settings need
to be tested. Especially the trade-off between model structure and distortion parameter
requires thorough testing. Possible scenarios are to increase or decrease both trade-off
parameters (βm and βc) every iteration step or increase one and at the same time decrease
the other one. They also can be kept fixed, or one could try to fit the data by distortion
only for the first iteration and then keep the resulting distortion values fixed and only
invert for the resistivity structure for all remaining iteration steps (suggested by Laust
Pedersen, University Uppsala, Sweden). A thorough testing is required to get a suggestion
which might be the best choice for the trade-off parameter settings. Only then a careful
assessment can be made on how useful the approach is to take the distortion parameters
into account during the inversion and how much one relies on a priori information about
the distortion parameter. The assessment of the internal rotation of the synthetic data
into the local coordinate systems of each site also relies on a properly working inversion
algorithm and has to be postponed as well.
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Figure 9.5: Figure showing a comparison of the undistorted (red circles), and distorted (green
diamonds) input data with the forward synthetic response from the inversion (blue
triangles) obtained after 5 iterations using the brute-force Jacobian approximation. The
responses shown are at 0.1 s and along a y-directed profile (x = 250 m, black dashed line
in Figure 9.1 (b)).
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Figure 9.6: Figure showing a comparison of the undistorted (red circles), and distorted (green
diamonds) input data with the forward synthetic response from the inversion (blue
triangles) obtained after 5 iterations using the brute-force Jacobian approximation. The
responses shown are at 1 s and along a y-directed profile (x = 250 m, black dashed line in
Figure 9.1 (b)).
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Figure 9.7: Figure showing a comparison of the undistorted (red circles), and distorted (green
diamonds) input data with the forward synthetic response from the inversion (blue
triangles) obtained after 5 iterations using the brute-force Jacobian approximation. The
responses shown are at 10 s and along a y-directed profile (x = 250 m, black dashed line
in Figure 9.1 (b)).
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10
C O N C L U S I O N S A N D O U T L O O K

The thesis work presented here consists of two parts, (i) processing, analysis, modelling
and interpretation of a MT data set in northeastern Botswana (as part of SAMTEX) and
(ii) developing a 3D MT inversion code that deals with electric galvanic distortion. As the
topics of these two parts are so different, their summaries, conclusions and discussions of
future work and possible improvements are outlined separately.

10.1 modelling and interpretation of the zim line data

10.1.1 Summary and conclusion

During the SAMTEX project a broad region in South Africa, Botswana and Namibia has
been investigated by deep-probing MT measurements. The area of interest for the thesis
work presented here is located in northeastern Botswana and is associate with the geological
terranes of the Limpopo Belt, the Zimbabwe Craton, the Magondi Mobile Belt and the
Ghanzi-Chobe Belt. Other dominant features in the area are the giant mafic Okavango Dyke
Swarm, which has a strong magnetic field signature, and the Makgadikgadi Pans, a huge
salt pan complex that is most likely associated with a brine aquifer.

The data set from the ZIM line crossing the terranes mentioned above exhibits strong lateral
variation in penetration depth. Neighbouring sites require periods with a difference of
up to 3 decades to penetrate to a similar depth. Therefore standard strike analysis using
the Groom-Bailey decomposition technique for one frequency, or a frequency range, is
not appropriate - instead one depth or depth range is required. Strike analyses based on
depth ranges showed that the strike angle varies along the profile and with depth. Data
sensing the lithospheric mantle generally prefer a strike angle of 35° E of N, whereas the
crustal depths showed two dominant directions - 110° E of N for sites located on top of the
Okavango dyke swarm, and therefore consistent with its strike direction, and 55° E of N for
all other sites.

Niblett-Bostick resistivity maps showed that the two groups (one close to Francistown
and the other close to Maun) of sites located above the Okavango dyke swarm have
different resistivities. As the dykes are known independently to be highly resistive, the
rather conductive Niblett-Bostick resistivities at Maun were considered to be the anoma-
lous ones. One-dimensional anisotropic forward modelling tests showed that the very
conductive near-surface layers mask all possible effects of the dyke swarm and that a
2.6% dilatation of the dykes causes a nearly unrecognisable enhancement of the resistivity.
The models also suggest that there is a structure - either anisotropic or fault-like - that is
orientated perpendicular to the dyke swarm and extends from about 10 - 15 km depth deep
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10 conclusions and outlook

into the lithospheric mantle (to about 120 km or deeper). Such a depth extent suggests a
crustal-mantle coupling and anisotropy due to, e.g., graphite rather than hydrogen diffusion.

Maps of the most conductive direction for crustal and lithospheric depth ranges indicate
that the boundary of the Magondi Mobile Belt and the Ghanzi-Chobe Belt is located (about
60 - 80 km) further to the north (roughly at site ZIM128) than previously estimated based on
potential field data. Additionally, the southwestern boundary of the Zimbabwe Craton is
located further to the west (somewhere close to Gope; near KAL018/019) than the terrane
outline from the potential field data suggests.

The crustal 2D inversion (using the appropriate strike direction of 55° E of N) for the north-
ern part of the ZIM line shows an about 600 m thick conductive near-surface layer identified
as the brine aquifer associated with the Makgadikgadi Pan Complex. The boundary between
the resistive Ghanzi-Chobe Belt to the north and the more heterogeneous Magondi Mobile
Belt to the south was found to be dipping northwards. A boundary between the Magondi
Belt and the Zimbabwe Craton could not be identified, but two mid- to lower-crustal conduc-
tors within the Magondi Belt were found in the area and depth range suggested by de Beer
et al. (1975, 1976) and van Zijl and de Beer (1983) (the top of the conductors is at about
20 km depth in the crustal 2D MT inversion model; located beneath ZIM121/ZIM122 and
ZIM125). The cause of these conductors remains uncertain, but graphite and/or sulphide
are favoured.

The whole ZIM profile was inverted using the lithospheric strike angle of 35° E of N.
The crustal structures obtained from the focussed inversion appear unchanged, therefore
artefacts resulting from enforcing the lithospheric strike angle on the crustal data are
not evident. The Zimbabwe Craton and the Ghanzi-Chobe Belt show a resistive, thick
lithospheric mantle. In the case of the Magondi Mobile Belt, the lithospheric mantle is poorly
constrained in the 2D inversion model and it is therefore impossible to say with any certainty
that a real structure is responsible for the higher conductivities observed there. Resistivity-
depth profiles have been extracted from the 2D inversion model and compared with the
KIM-NAM resistivity-depth profiles from Muller et al. (2009) and theoretical geotherms.
Based on the inflection point (which defines the thermal lithospheric thickness) of the
resistivity-depth profile of the Ghanzi-Chobe Belt, its depth to the lithosphere-asthenosphere
boundary (LAB) is estimated at 180±20 km. The relative difference in thickness between
the Ghanzi-Chobe Belt lithospheric mantle and that of the Zimbabwe Craton is about 40 km
and therefore the depth to the LAB is estimated to be about 220±20 km for the Zimbabwe
Craton. Geotherms of 41 mW/m2 at the Orapa and Letlhakane kimberlite pipes (about
150 - 200 km east of the ZIM line) also suggest a lithospheric thickness of about 220 km at
the time of the emplacement of the pipes (at about 93 Ma, Stiefenhofer et al. (1997) and
references therein). Geochemical analysis of xenoliths from these pipes (from a maximum
depth of 205 km, with no samples available from deeper depth) showed, at 190 km, a sharp
increase to 80 - 100% in the abundance of xenoliths showing melt-related metasomatism.
Above 190 km, fertile lherzolites and depleted harzburgites, both with some evidence of
metasomatism, are the dominant rock types (Griffin et al., 2003). The melt-metasomatised
classes all show shearing (Griffin et al., 2003), which is often taken as indicating proximity to
the base of the lithosphere. Kennedy et al. (2002) propose that sheared melt-metasomatism
is a result of transitory, high-strain-rate deformation in a zone of noncoaxial strain localised
at the base of the lithosphere.
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10.1 modelling and interpretation of the zim line data

The Okavango dyke swarm is a highly resistive crustal structure, and since the average dyke
width is about 17 m, the dyke swarm should be treated as anisotropic at the MT scale, rather
than as a 2D structure. In the 2D inversion model, a conductor is imaged beneath the dyke
swarm at about 60 - 70 km depth, whereas for the other terranes a conductor is apparent
in mid- to lower-crustal depths. Tests with synthetic 2D anisotropic data showed that an
isotropic 2D inversion of anisotropic data may cause the imaging of a crustal conductor
incorrectly at lithospheric mantle depths. Additionally, the tests showed that the dykes
may extend throughout most of the crust. Based on 2D modelling of magnetic data, Dailey
et al. (2009) find that maximum depths of between 4 - 30 km for the dyke swarm can be
accommodated by the magnetic data.

10.1.2 Future work and possible improvements

For the crustal study of the northern part of the ZIM line the site spacing of about 20 km is
relative sparse and completely undersamples the top 10-20 km of the subsurface. Additional
sites would therefore be useful to gain better constraints at the crustal scale. As there are
only broadband MT sites on the ZIM line, it would be good to return to the sites above the
Magondi Mobile Belt using long period MT systems (preferential during a period of greater
sun spot activity) to achieve greater penetration depths, which could answer the question
whether the Magondi lithospheric mantle is really more conductive than the lithospheric
mantle beneath the Zimbabwe Craton and the Ghanzi-Chobe Belt, or whether there is
possibly a connection between the resistive lithospheric mantle of the Zimbabwe Craton
and the Ghanzi-Chobe Belt. A re-recording of some sites with the long period MT system
would also give additional vertical magnetic field data, which are missing on the ZIM line
for logistical reasons. The vertical magnetic field data will help to distinguish between
anisotropy and 2D heterogeneity.

To gain a better overall understanding of the geological terranes and their structure it is also
important to investigate neighbouring profiles using 2D modelling methods. Unfortunately
only profiles to the west of the ZIM line are available (i.e., the KAL, MAK, MOF, SAN and
SSO profiles), as everything to the east would be located in Zimbabwe, where, due to politi-
cal/safety issues, no data were recorded. If the situation improves in Zimbabwe, it might be
worthwhile to collect additional data there as well. Finally, a more equal distribution of the
MT sites would be preferable in terms of potential 3D modelling and inversion, although
that would be logistically very difficult.

Some of the areas with more dense 2D profiles, such as e.g., the area of the southwestern
boundary of the Zimbabwe craton using sites of the KAL, MAK, MOF, SSO, SAN and ZIM
profiles, could possibly be reduced to a 3D inversion data set. The main problem is the
limited number of cells for 3D meshes (due to limited computation time and computer
memory), which causes large cell widths to cover an area of several hundreds of kilometres.
As only one site per mesh cells is allowed, along profile a number of sites need to be
rejected. The resolution of such a large scale mesh is also not suitable to resolve crustal
scale structures. The other issue of 3D inversion is the limited number of periods that
can be taken into account and the requirement of using the same periods for all sites.
An interpolation and/or averaging scheme is required to produce a data set of common
periods. Three-dimensional inversion of individual 2D profiles might be a useful approach,
as a structure placed beneath the profile using a 2D modelling and inversion approach

211



10 conclusions and outlook

might be a 3D structure next to the profile, which a 3D inversion model might be able to
reconstruct correctly.

10.2 development of a 3d mt inversion code

10.2.1 Summary and conclusion

The 3D finite-element solver by Colin Farquharson (MUN, St. John’s, Newfoundland,
Canada) uses edge-element basis functions to calculate the solution for the electric field
equation system for the MT case. As the significance of the conductivity term in the electric
field equation decreases with decreasing frequencies, the divergence-free current density
requirement implicitly diminishes. Therefore a divergence correction, after Smith (1996),
is applied. A nodal-element basis function formulation is used to calculate the static po-
tential related to the current density of the approximate electric field. The gradient of the
approximated potential is added to the approximated electric field to correct the field. This
correction scheme is applied frequently during the iterative solution of the electric field
equation system and improves the convergence significantly.

Different tests using various 2D and 3D models and response sets for comparison, showed
that the forward algorithm calculates reliable resistivities and therefore can be considered
as providing a reasonable and robust basis for the 3D inversion code. Due to the uniform
boundaries implemented in the code, there might be difficulties in calculating an accurate
response for a model with a layered halfspace background.

The 3D inversion code presented here accommodates electric galvanic distortion parameters
during inversion. The distortion parameters can either be treated as constant values (if e.g.,
a priori information is available) or as inversion parameters (i.e., simultaneous inversion for
the resistivity structure and the distortion parameters). Additionally, the code has the option
to rotate the noise-free synthetic data into the local measurement coordinate system of each
site to avoid the rotation of the noisy observed data prior to modelling, and therefore tries
to avoid degradation of the data due to the propagation of noise from one component into
the others.

Typically, an objective function within an inversion code contains a measure of the data
misfit, a measure of the model complexity and a trade-off parameter to balance these
two terms. The 3D inversion code presented here also has a measure of closeness to a
reference model and a measure of closeness to reference distortion values. The objective
function is essentially a sum-of-squares function, and therefore a Gauss-Newton algorithm
can be applied to solve the non-linear least square problem. The Gauss-Newton method
approximates the Hessian matrix by the multiplication of the transpose Jacobian matrix
and the Jacobian matrix. The approximation results in a linear system of Gauss-Newton
equations that is solved using an iterative solver.

A normal inversion for the resistivity structure only requires first derivatives of the data
with respect to the cell conductivities, which become the elements of the Jacobian matrix.
Inverting for the resistivity structure and the distortion parameters requires a modification
of the Jacobian matrix to account additionally for the first derivatives of the data with
respect to the distortion parameters. Comparison of the Jacobian matrix with a so-called
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brute-force Jacobian matrix computation approach (compute forward response of a model,
change one model parameter and calculate the forward response again, then divide the
difference of the forward responses by the difference of the model parameter) showed that
the derivatives with respect to the distortion parameter are calculated correctly. But the
comparison also revealed that there is still an unsolved coding problem in computing the
Jacobian matrix elements with respect to the resistivity structure. Therefore the inversion
results shown are calculated using the brute-force Jacobian of the starting model to replace
the Jacobian with the resistivity structure for all iteration steps (note that normally the
Jacobian would be recalculated each iteration using the updated model).

Including the rotation of the synthetic data requires only a simple matrix multiplication of
the impedance tensor with a rotation matrix and its transpose. This rotation needs to be
applied when the forward responses are calculated but also needs to be taken into account
for the calculation of the elements of the Jacobian matrix.

The brute-force Jacobian approximation used suggests that the inversion with respect to
the resistivity structure is working correctly (except for the calculation of the Jacobian
itself). Unfortunately the resulting inversion models are fuzzy and not close to the true
structure, which reveals the disadvantage of using the applied Jacobian approximation.
Using undistorted compared to distorted data, the inversion results using the brute-force
Jacobian approximation show indistinguishable inversion models. Testing of the distortion
aspects of the code is therefore not possible at the current stage and has to be postponed
until the coding problem for the calculation of the Jacobian with respect to the resistivity
structure is identified and corrected.

10.2.2 Future work and possible improvements

Further testing is required to correct the coding problem for the calculation of the deriva-
tives of the data with respect to the conductivity structure to avoid the current work-around
using the brute-force Jacobian. A more thorough testing of the various parameter settings is
also necessary, as well as test runs using synthetic data from different models, including the
examination of the use of resistivity and phase data and tipper data. Once the inversion with
respect to the resistivity structure is working reliably, a thorough investigation and testing
of the distortion aspects of the code and the internal rotation into the local measurement
coordinate systems must follow.

In general, there is the potential for further improvement and advancement in the inversion
code. Applying a parallel programming protocol, such as, for example, MPI, the code could
be used on clusters to save computational time and therefore it would become more feasible
for application to real data sets or larger synthetic models.

In terms of distorted data, it would be interesting to extend the code to be able to invert
for the phase tensor values instead of for impedance or resistivity and phase, as the phase
tensor is distortion-free. Replacing the homogeneous halfspace boundary conditions by
1D, or possibly 2D, boundary conditions in the forward solver would make the code more
suitable for synthetic models and real geology that require a layered background model (as
seen for the COMMEMI 3D-2A model in Chapter 7).
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The code, in its current form, uses a rectilinear discretised mesh and therefore does not take
full advantage of the finite-element approach, where unstructured grids allow for a fine
meshing where needed, and a reduced resolution, where not needed. Such a change would
require the adoption of a good mesh generator and the adjustment of all basis functions and
related operations executed in the code. In the case of using unstructured grids, it might be
more beneficial to write a new code from scratch, that is designed from the beginning on
for the use of these grids.
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A
L I T T L E A U X I L I A R I E S

a.1 conversion from magnetotelluric tensor (field units) to impedance

tensor (si units)

The unit of the magnetotelluric tensor M (also called impedance tensor in field units) is
mV
km /nT , whereas the SI unit of the impedance tensor Z is Ω. The following determination
is in units not in parameters.
The magnetotelluric tensor is calculated from the E and B fields, therefore the (field) unit of
its elements is given by

mV
km

nT
=

mV

km ·nT
=

0.001V

1000m · 10−9T
, (A.1)

whereas the SI units of the impedance tensor are determined using the E and H fields.
Because the relation between the magnetic flux density and the magnetic field is B = µ0H,
Equation A.1 needs to be multiplied by the vacuum permeability µ0 = 4 · π 10−7 Vs

Am .

4 · π 10−7 Vs

Am
· 0.001 V

1000 m · 10−9T
=

4 · π 10−7 · 0.001

1000 · 10−9

Vs · V
Am2 · T

(A.2)

and because T = Vs
m2 Equation A.2 becomes equal to

4 · π 10−10

10−6

V2sm2

Am2Vs
= 4 · π · 0.0001

V

A
=

4 · π
10000

Ω . (A.3)

That means the value of the magnetotelluric tensor M in field units needs to be multiplied
by the factor 4·π

10000 to convert it into an impedance tensor (Z) value in SI units.

a.2 coordinate rotation

Sometimes the local coordinate system of a site is not identical to the coordinate system
required by processing routines, e.g., strike direction or coordinate system of the model
mesh. In these cases the data of a site (observed or modelled data - preferable the later)
needs to be rotated. A rotation of the coordinates affects the electrical and magnetic fields
and therefore also the impedance matrix and the tipper vector. The rotation of the horizontal
electrical field is giving by

Erot = R E , (A.4)

where E =

(
Ex

Ey

)
is the vector of the horizontal electric fields and R =

(
cos θ sin θ

− sin θ cos θ

)
is the rotation matrix using the rotation angle θ (passive rotation, i.e., rotation of the co-
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A little auxiliaries

ordinate system, which results in clockwise rotation of the vector for a positive angle θ).
Multiplying Equation A.4 by the transpose rotation matrix RT gives

RT Erot = RT R︸ ︷︷ ︸ E ⇒ E = RT Erot ,

= I
(A.5)

where I is the identity matrix.

Doing analogous for the horizontal magnetic field vector H =

(
Hx

Hy

)
results in

H = RT Hrot . (A.6)

The relationship between the electric and magnetic fields and the impedance is given by
(see Equation 2.52) E = Z H (therefore Erot = Z

rot
Hrot should also be valid). Substitution

of the fields using Equations A.5 and A.6 illustrate the necessary transformation that needs
to be applied to Z to obtain Z

rot
.

Erot = R Z RT︸ ︷︷ ︸ Hrot

=

Erot =
︷︸︸︷
Z

rot
Hrot

(A.7)

The tipper T is expressed by Hz = T H, where Hz is the vertical magnetic field and H is
the vector of the horizontal magnetic fields. A rotation of the coordinate system around the
z axis does not affect the vertical magnetic field, but the horizontal components (as shown
in Equation A.6). Analogous to the rotated impedance matrix the rotated tipper vector can
be calculated:

Hz = T H = T RT Hrot ⇒ Trot = T RT . (A.8)
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B
D ATA I M A G I N G A N D S T R I K E A N A LY S I S O F T H E Z I M A R E A

This appendix is a supplement to Chapter 4, which described the application of data
imaging and analysis techniques, e.g., Niblett-Bostick resistivity maps, phase tensor maps
and strike analysis to the ZIM line data (and near by sites). Since in Chapter 4 only a few
representative figures were shown for completeness additional plots can be found in this
appendix.

b.1 niblett-bostick resistivity maps for crustal and lithospheric depths

The Niblett-Bostick resistivity maps have been discussed in Section 4.1.2, where one rep-
resentative depth each for the crust (Figure 4.5) and lithosphere (Figure 4.6) were shown.
Figures B.1 to B.10 show similar plots for a number of different depths. For the crustal
depths range the following investigation depths were selected: 5 km (Figure B.1), 10 km
(Figure B.2), 20 km (Figure B.3) and 35 km (Figure B.4). The investigation depths of 50 km
(Figure B.5), 70 km (Figure B.6), 100 km (Figure B.7) and 150 km (Figure B.8) are associ-
ated with lithospheric depths. At some sites the penetration depth is as large as 200 km
(Figure B.9) or even 250 km (Figure B.10). These depths are most likely related to the
lithosphere-asthenosphere boundary or the asthenosphere.

All Figures from B.1 to B.10 have the same set-up. The background is the regional magnetic
map in grey scale (see Figure 3.10, magnetic data courtesy of the Council for Geoscience,
Pretoria, South Africa). Each site is represented by a coloured circle, where the colour
indicates the Niblett-Bostick resistivity value at this depth and the size of the symbol gives
a suggestion of the period needed to penetrated to the chosen depth. The resistivity values
for ρxy (a) and ρyx (b) are plotted on separated maps.
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B data imaging and strike analysis of the zim area
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Figure B.1: Niblett-Bostick resistivities ρxy (a) and ρyx (b) at 5 km depth. While the colour of the
circles represents the Niblett-Bostick resistivity value at that depth, the size of the symbol
indicates the period that is required to penetrate to this depth.
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Figure B.2: Niblett-Bostick resistivities ρxy (a) and ρyx (b) at 10 km depth. While the colour of the
circles represents the Niblett-Bostick resistivity value at that depth, the size of the symbol
indicates the period that is required to penetrate to this depth.
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Figure B.3: Niblett-Bostick resistivities ρxy (a) and ρyx (b) at 20 km depth. While the colour of the
circles represents the Niblett-Bostick resistivity value at that depth, the size of the symbol
indicates the period that is required to penetrate to this depth.
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Figure B.4: Niblett-Bostick resistivities ρxy (a) and ρyx (b) at 35 km depth. While the colour of the
circles represents the Niblett-Bostick resistivity value at that depth, the size of the symbol
indicates the period that is required to penetrate to this depth.
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Figure B.5: Niblett-Bostick resistivities ρxy (a) and ρyx (b) at 50 km depth. While the colour of the
circles represents the Niblett-Bostick resistivity value at that depth, the size of the symbol
indicates the period that is required to penetrate to this depth.
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Figure B.6: Niblett-Bostick resistivities ρxy (a) and ρyx (b) at 70 km depth. While the colour of the
circles represents the Niblett-Bostick resistivity value at that depth, the size of the symbol
indicates the period that is required to penetrate to this depth.
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Figure B.7: Niblett-Bostick resistivities ρxy (a) and ρyx (b) at 100 km depth. While the colour of
the circles represents the Niblett-Bostick resistivity value at that depth, the size of the
symbol indicates the period that is required to penetrate to this depth.
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Figure B.8: Niblett-Bostick resistivities ρxy (a) and ρyx (b) at 150 km depth. While the colour of
the circles represents the Niblett-Bostick resistivity value at that depth, the size of the
symbol indicates the period that is required to penetrate to this depth.
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Figure B.9: Niblett-Bostick resistivities ρxy (a) and ρyx (b) at 200 km depth. While the colour of
the circles represents the Niblett-Bostick resistivity value at that depth, the size of the
symbol indicates the period that is required to penetrate to this depth.
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Figure B.10: Niblett-Bostick resistivities ρxy (a) and ρyx (b) at 250 km depth. While the colour of
the circles represents the Niblett-Bostick resistivity value at that depth, the size of the
symbol indicates the period that is required to penetrate to this depth.
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b.2 phase tensor maps for crustal and lithospheric depths

Phase tensor maps have been discussed in Section 4.1.3, but only representative plots for
crustal (Figure 4.10) and lithospheric (Figure 4.11) depths were shown. Figures B.11 to
B.20 show similar plots for a number of different depths: 5 km (Figure B.1), 10 km (Fig-
ure B.2), 20 km (Figure B.3) and 35 km (Figure B.4) all representing crustal depths and
50 km (Figure B.5), 70 km (Figure B.6), 100 km (Figure B.7) and 150 km (Figure B.8) are
associated with lithospheric depths. At some sites the penetration depth is as large as
200 km (Figure B.9) or even 250 km (Figure B.10), which are most likely to reach down to
the lithosphere-asthenosphere boundary or the asthenosphere.

The phase tensor ellipses are plotted with its axes being normalised by the major axis
(Φmax). The regional magnetic map (see Figure 3.10, magnetic data courtesy of the Council
for Geoscience, Pretoria, South Africa) in grey scale is used as background and the colour
of the ellipses is related to the skew angle β (a) and the minor axis Φmin (b) respectively. A
very small skew angle β is a possible indication of two-dimensionality in that area, whereas
the large Φmin for example indicates decreasing resistivities.
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Figure B.11: Phase tensor maps at 5 km depth. The phase tensors are represented by ellipses (axes
normalised by Φmax) at each site. The colour of the ellipses indicates the skew angle β

(a) and Φmin (b) respectively.
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Figure B.12: Phase tensor maps at 10 km depth. The phase tensors are represented by ellipses (axes
normalised by Φmax) at each site. The colour of the ellipses indicates the skew angle β

(a) and Φmin (b) respectively.
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Figure B.13: Phase tensor maps at 20 km depth. The phase tensors are represented by ellipses (axes
normalised by Φmax) at each site. The colour of the ellipses indicates the skew angle β

(a) and Φmin (b) respectively.
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Figure B.14: Phase tensor maps at 35 km depth. The phase tensors are represented by ellipses (axes
normalised by Φmax) at each site. The colour of the ellipses indicates the skew angle β

(a) and Φmin (b) respectively.
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Figure B.15: Phase tensor maps at 50 km depth. The phase tensors are represented by ellipses (axes
normalised by Φmax) at each site. The colour of the ellipses indicates the skew angle β

(a) and Φmin (b) respectively.
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Figure B.16: Phase tensor maps at 70 km depth. The phase tensors are represented by ellipses (axes
normalised by Φmax) at each site. The colour of the ellipses indicates the skew angle β

(a) and Φmin (b) respectively.
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Figure B.17: Phase tensor maps at 100 km depth. The phase tensors are represented by ellipses (axes
normalised by Φmax) at each site. The colour of the ellipses indicates the skew angle β

(a) and Φmin (b) respectively.
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Figure B.18: Phase tensor maps at 150 km depth. The phase tensors are represented by ellipses (axes
normalised by Φmax) at each site. The colour of the ellipses indicates the skew angle β

(a) and Φmin (b) respectively.
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Figure B.19: Phase tensor maps at 200 km depth. The phase tensors are represented by ellipses (axes
normalised by Φmax) at each site. The colour of the ellipses indicates the skew angle β

(a) and Φmin (b) respectively.
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Figure B.20: Phase tensor maps at 250 km depth. The phase tensors are represented by ellipses (axes
normalised by Φmax) at each site. The colour of the ellipses indicates the skew angle β

(a) and Φmin (b) respectively.
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b.3 zim line strike analysis

As discussed in Section 4.2 the strike analysis is very much dependent on the chosen
frequencies and sites. The following Figures B.21 to B.36 present for each site of the ZIM
line the RMS values in dependence of the strike angle and the frequency band (selected
via a depth range based on the Niblett-Bostick approach). For each site three frequency
bands were selected; one band is related to crustal depths of 5 - 35 km, one represents the
lithospheric depths from 50 to 150 km and the last band is over all existing frequencies.
For each of the frequency bands the strike analysis and decomposition code strike (see
Section 2.9.2) was applied several times (in single site mode), each time enforcing a fixed
strike angle from 0° to 90° in 1° intervals. For each frequency in the chosen range, the RMS
is plotted versus the enforced strike angle, where the colour of the symbols represent the
frequencies (red/warm colours are short periods and blue/cold colours are long periods).
Additionally strike was used to find a common strike angle over all frequencies in each
band, which is represented as average strike by a red line. It is obvious that the average
strike angles for the crust and the lithosphere independently are not necessarily close to
the angle obtained over all frequencies. One can also see that (some or all bands of) some
sites accept nearly all strike angles without a major increase in RMS value (e.g., ZIM103,
ZIM111).
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Figure B.21: Figure showing the different RMS values for strike angles from 0° - 90° for the site
ZIM101. The RMS values for the whole azimuth range are plotted for three different
depth/frequency ranges: crustal depth (5-35 km), lithospheric depth (50-150 km) and
over the whole frequency range. The colour coding is related to the frequencies. The
red line indicates the strike direction one would obtain performing a normal strike
analysis for the same frequency/depth range.
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Figure B.22: Figure showing the different RMS values for strike angles from 0° - 90° for the sites
ZIM102 and ZIM103. The RMS values for the whole azimuth range are plotted for
three different depth/frequency ranges: crustal depth (5-35 km), lithospheric depth
(50-150 km) and over the whole frequency range. The colour coding is related to the
frequencies. The red line indicates the strike direction one would obtain performing a
normal strike analysis for the same frequency/depth range.
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Figure B.23: Figure showing the different RMS values for strike angles from 0° - 90° for the sites
ZIM104 and ZIM105. The RMS values for the whole azimuth range are plotted for
three different depth/frequency ranges: crustal depth (5-35 km), lithospheric depth
(50-150 km) and over the whole frequency range. The colour coding is related to the
frequencies. The red line indicates the strike direction one would obtain performing a
normal strike analysis for the same frequency/depth range.
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Figure B.24: Figure showing the different RMS values for strike angles from 0° - 90° for the sites
ZIM106 and ZIM107. The RMS values for the whole azimuth range are plotted for
three different depth/frequency ranges: crustal depth (5-35 km), lithospheric depth
(50-150 km) and over the whole frequency range. The colour coding is related to the
frequencies. The red line indicates the strike direction one would obtain performing a
normal strike analysis for the same frequency/depth range.
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Figure B.25: Figure showing the different RMS values for strike angles from 0° - 90° for the sites
ZIM108 and ZIM109. The RMS values for the whole azimuth range are plotted for
three different depth/frequency ranges: crustal depth (5-35 km), lithospheric depth
(50-150 km) and over the whole frequency range. The colour coding is related to the
frequencies. The red line indicates the strike direction one would obtain performing a
normal strike analysis for the same frequency/depth range.
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Figure B.26: Figure showing the different RMS values for strike angles from 0° - 90° for the sites
ZIM110 and ZIM111. The RMS values for the whole azimuth range are plotted for
three different depth/frequency ranges: crustal depth (5-35 km), lithospheric depth
(50-150 km) and over the whole frequency range. The colour coding is related to the
frequencies. The red line indicates the strike direction one would obtain performing a
normal strike analysis for the same frequency/depth range.
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Figure B.27: Figure showing the different RMS values for strike angles from 0° - 90° for the sites
ZIM112 and ZIM113. The RMS values for the whole azimuth range are plotted for
three different depth/frequency ranges: crustal depth (5-35 km), lithospheric depth
(50-150 km) and over the whole frequency range. The colour coding is related to the
frequencies. The red line indicates the strike direction one would obtain performing a
normal strike analysis for the same frequency/depth range.
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Figure B.28: Figure showing the different RMS values for strike angles from 0° - 90° for the sites
ZIM114 and ZIM115. The RMS values for the whole azimuth range are plotted for
three different depth/frequency ranges: crustal depth (5-35 km), lithospheric depth
(50-150 km) and over the whole frequency range. The colour coding is related to the
frequencies. The red line indicates the strike direction one would obtain performing a
normal strike analysis for the same frequency/depth range.
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Figure B.29: Figure showing the different RMS values for strike angles from 0° - 90° for the sites
ZIM116 and ZIM117. The RMS values for the whole azimuth range are plotted for
three different depth/frequency ranges: crustal depth (5-35 km), lithospheric depth
(50-150 km) and over the whole frequency range. The colour coding is related to the
frequencies. The red line indicates the strike direction one would obtain performing a
normal strike analysis for the same frequency/depth range.
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B data imaging and strike analysis of the zim area
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Figure B.30: Figure showing the different RMS values for strike angles from 0° - 90° for the sites
ZIM118 and ZIM119. The RMS values for the whole azimuth range are plotted for
three different depth/frequency ranges: crustal depth (5-35 km), lithospheric depth
(50-150 km) and over the whole frequency range. The colour coding is related to the
frequencies. The red line indicates the strike direction one would obtain performing a
normal strike analysis for the same frequency/depth range.

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0 ° 10 ° 20 ° 30 ° 40 ° 50 ° 60 ° 70 ° 80 ° 90 °

5
 k

m
 −

 3
5
 k

m
5
0
 k

m
 −

 1
5
0
 k

m
a

ll freq
u

en
cies/d

ep
th

s

0

1

2

3

4

5

0

1

2

3

4

5

0 ° 10 ° 20 ° 30 ° 40 ° 50 ° 60 ° 70 ° 80 ° 90 °

0

1

2

3

4

5

0

1

2

3

4

5

0 ° 10 ° 20 ° 30 ° 40 ° 50 ° 60 ° 70 ° 80 ° 90 °

0 ° 10 ° 20 ° 30 ° 40 ° 50 ° 60 ° 70 ° 80 ° 90 °

zim120 

strike angle 

R
M

S
 

R
M

S
R

M
S

 

depth 
range

0.01 0.10 1.00 10.00 100.00 1000.00

Periods in s 

av. azimuth = 33.89°

no data

av. azimuth = 30.64°

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0 ° 10 ° 20 ° 30 ° 40 ° 50 ° 60 ° 70 ° 80 ° 90 °

5
 k

m
 −

 3
5
 k

m
5
0
 k

m
 −

 1
5
0
 k

m
a

ll freq
u

en
cies/d

ep
th

s

0

2

4

6

8

10

0

2

4

6

8

10

0 ° 10 ° 20 ° 30 ° 40 ° 50 ° 60 ° 70 ° 80 ° 90 °

0

2

4

6

8

10

0

2

4

6

8

10

0 ° 10 ° 20 ° 30 ° 40 ° 50 ° 60 ° 70 ° 80 ° 90 °

0 ° 10 ° 20 ° 30 ° 40 ° 50 ° 60 ° 70 ° 80 ° 90 °

zim121 

strike angle 

R
M

S
 

R
M

S
R

M
S

 

depth 
range

0.01 0.10 1.00 10.00 100.00 1000.00

Periods in s 

av. azimuth = 47.79°

av. azimuth = 25.76°

av. azimuth = 61.10°

Figure B.31: Figure showing the different RMS values for strike angles from 0° - 90° for the sites
ZIM120 and ZIM121. The RMS values for the whole azimuth range are plotted for
three different depth/frequency ranges: crustal depth (5-35 km), lithospheric depth
(50-150 km) and over the whole frequency range. The colour coding is related to the
frequencies. The red line indicates the strike direction one would obtain performing a
normal strike analysis for the same frequency/depth range.
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Figure B.32: Figure showing the different RMS values for strike angles from 0° - 90° for the sites
ZIM122 and ZIM123. The RMS values for the whole azimuth range are plotted for
three different depth/frequency ranges: crustal depth (5-35 km), lithospheric depth
(50-150 km) and over the whole frequency range. The colour coding is related to the
frequencies. The red line indicates the strike direction one would obtain performing a
normal strike analysis for the same frequency/depth range.
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Figure B.33: Figure showing the different RMS values for strike angles from 0° - 90° for the sites
ZIM124 and ZIM125. The RMS values for the whole azimuth range are plotted for
three different depth/frequency ranges: crustal depth (5-35 km), lithospheric depth
(50-150 km) and over the whole frequency range. The colour coding is related to the
frequencies. The red line indicates the strike direction one would obtain performing a
normal strike analysis for the same frequency/depth range.
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Figure B.34: Figure showing the different RMS values for strike angles from 0° - 90° for the sites
ZIM126 and ZIM127. The RMS values for the whole azimuth range are plotted for
three different depth/frequency ranges: crustal depth (5-35 km), lithospheric depth
(50-150 km) and over the whole frequency range. The colour coding is related to the
frequencies. The red line indicates the strike direction one would obtain performing a
normal strike analysis for the same frequency/depth range.
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Figure B.35: Figure showing the different RMS values for strike angles from 0° - 90° for the sites
ZIM128 and ZIM129. The RMS values for the whole azimuth range are plotted for
three different depth/frequency ranges: crustal depth (5-35 km), lithospheric depth
(50-150 km) and over the whole frequency range. The colour coding is related to the
frequencies. The red line indicates the strike direction one would obtain performing a
normal strike analysis for the same frequency/depth range.
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Figure B.36: Figure showing the different RMS values for strike angles from 0° - 90° for the sites
ZIM130 and ZIM131. The RMS values for the whole azimuth range are plotted for
three different depth/frequency ranges: crustal depth (5-35 km), lithospheric depth
(50-150 km) and over the whole frequency range. The colour coding is related to the
frequencies. The red line indicates the strike direction one would obtain performing a
normal strike analysis for the same frequency/depth range.
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C
Z I M L I N E D ATA , 2 D I N V E R S I O N R E S U LT S A N D M O D E L S

This appendix belongs to Chapter 5 and shows additional response curves and 2D resistivity
models for the northern crustal part of the ZIM profile, the whole ZIM profile and the
synthetic anisotropic models that complement the figures shown in Chapter 5.

c.1 crustal, northern part of the zim line

In Section 5.2 the northern crustal part of the ZIM line was investigated using the appropri-
ate strike direction of 55° E of N for this data set. The data set was reduced to sites ZIM118

to ZIM131 and to periods with Niblett-Bostick penetration depths of 40 km and less. The
black dots in Figures C.1 and C.2 represent the used observed data. For the 2D inversion
in WinGLink® three different weighting function settings were used (see Section 5.2 for
more details) and the model responses resulting from these three inversions are shown in
Figures C.1 and C.2 in comparison to the observed data (coloured lines).

To justify certain feature in the inversion model, five different manipulated version of the
final inversion model were used to invert the data again trying to find the closest model
to the starting model (the manipulated model). Figures C.3 to C.7 show in each case the
manipulated starting model in (a) and below the obtained inversion models using the three
different weighting function setting in (b), (c) and (d). Figure C.3 show the model where all
conductors have been removed, while the model in Figure C.4 only contains the conductors,
whereas the resistors have been removed. (The near-surface conductor associated with the
brine aquifer is shown enlarged.) The model in Figure C.5 contains all major conductors
and resistors but their shapes have been smoothed. Figures C.6 and C.7 are models where
tear zones of different shapes are applied to a smoothed model of the major structures. In
general, all the original observed structures recur in all these inversion test and therefore
can be assumed to be reliable.
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C zim line data, 2d inversion results and models
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Figure C.1: This figure shows the responses curves of sites ZIM118 to ZIM125 of the crustal data set
for a strike direction of 55° E of N. The resistivity curves are shown on top and below
are the phase curves for each site. The symbols represent the observed data, and the
coloured lines represent the response curves of the three inversion models obtained
using different weighting function settings (see Figure 5.2; note colour coding is the
same).
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Figure C.2: This figure shows the responses curves of sites ZIM126 to ZIM131 of the crustal data set
for a strike direction of 55° E of N. The resistivity curves are shown on top and below
are the phase curves for each site. The symbols represent the observed data, and the
coloured lines represent the response curves of the three inversion models obtained
using different weighting function settings (see Figure 5.2; note colour coding is the
same).
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(b) Weighting function setting: α = 1, β = 0, H = 0 and V = 0
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(c) Weighting function setting: α = 1, β = 0.3, H = 500 and V = 500
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(d) Weighting function setting: α = 3, β = 0, H = 500 and V = 500

Figure C.3: Results of inversion using the closest to starting model option. Panel (a) shows the
starting model, where all conductors have been removed. The inversion results using
different settings for the weighting function are shown in (b) to (d). For the inversions
the smoothing operator was set to τ = 1, and both TE mode and TM mode data were
used.
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(b) Weighting function setting: α = 1, β = 0, H = 0 and V = 0
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(c) Weighting function setting: α = 1, β = 0.3, H = 500 and V = 500
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(d) Weighting function setting: α = 3, β = 0, H = 500 and V = 500

Figure C.4: Results of inversion using the closest to starting model option. Panel (a) shows the
starting model, where all resistors have been removed. The inversion results using
different settings for the weighting function are shown in (b) to (d). For the inversions
the smoothing operator was set to τ = 1, and both TE mode and TM mode data were
used. The enlarged part shows the near-surface conductor for each model, which is
associated with the brine aquifer.
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(b) Weighting function setting: α = 1, β = 0, H = 0 and V = 0
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(c) Weighting function setting: α = 1, β = 0.3, H = 500 and V = 500
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(d) Weighting function setting: α = 3, β = 0, H = 500 and V = 500

Figure C.5: Results of inversion using the closest to starting model option. Panel (a) shows the
starting model, which is a retoughed version of the model show in Figure 5.2. The
inversion results using different settings for the weighting function are shown in (b) to
(d). For the inversions the smoothing operator was set to τ = 1, and both TE mode and
TM mode data were used.
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(b) Weighting function setting: α = 1, β = 0, H = 0 and V = 0
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(c) Weighting function setting: α = 1, β = 0.3, H = 500 and V = 500
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(d) Weighting function setting: α = 3, β = 0, H = 500 and V = 500

Figure C.6: Results of inversion using the closest to starting model option. Panel (a) shows the
starting model, where tear zones (indicated by the blocks of black pattern) have been
introduced. The inversion results using different settings for the weighting function are
shown in (b) to (d). For the inversions the smoothing operator was set to τ = 1, and both
TE mode and TM mode data were used.
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(b) Weighting function setting: α = 1, β = 0, H = 0 and V = 0
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(c) Weighting function setting: α = 1, β = 0.3, H = 500 and V = 500
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(d) Weighting function setting: α = 3, β = 0, H = 500 and V = 500

Figure C.7: Results of inversion using the closest to starting model option. Panel (a) shows the
starting model using tear zones (indicated by the blocks of black pattern). The inversion
results using different settings for the weighting function are shown in (b) to (d). For the
inversions the smoothing operator was set to τ = 1, and both TE mode and TM mode
data were used.
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c.2 whole zim line

In Section 5.3 the whole ZIM line data were inverted using the lithospheric strike angle of
35° E of N. Figures C.8 and C.9 show the complete data set of the ZIM line. The observed
data are represented by the symbols. The red dots show the TE mode data and the blue
diamonds the TM mode data that were taken into account during the inversion, while the
black symbols show all other data points that have been rejected for the inversion guided
by D+ smooth curves (via soundings menu in WinGLink®). During the process of the
2D inversion some sites had to be rejected completely because the responses could not
be fit by the synthetic data and therefore caused very high RMS values (larger 15 for the
individual sites). Therefore ZIM102, ZIM103, ZIM104, ZIM107, ZIM113 and ZIM115 do not
have associated synthetic response curves from the final 2D inversion model. For all other
sites represent the solid lines the synthetic data curves of the final model, where the black
line shows the TE mode and the turquoise one is the TM mode.

To test the connectivity of the various resistors in the final 2D inversion model, resistive
connections have been drawn into the model and the forward responses calculated for
these model were compared to the observed data. Figure C.10 (a) shows the model were
the lithospheric mantle resistors are connected with each other as well as with the crustal
resistor beneath ZIM 117 - ZIM120. A connection of only the two lithospheric resistors
is shown in (b). Figure C.11 (a) enforces connections between the crustal resistors and
the lithospheric ones beneath and in the model in (b) are the resistors beneath ZIM131

disconnected. Figures C.12, C.13 and C.14 show the observed data as symbols and the
different forward responses curves of the four models are represented by coloured lines
(only for the relevant sites).

Synthetic data calculated using the code by Pek and Verner (1997) for various models
(see Figure 5.14 and Table 5.1 for details) were used to test the effects of applying an
isotropic inversion code to anisotropic data, as it is most likely caused by the presence of the
Okavango dyke swarm. It is apparent that the middle/lower crustal conductor is wrongly
imaged as an upper mantle structure and that the lithospheric thickness might be affected
as well (appears too resistive and too thick). Introducing a tear zone at the location of the
anisotropic block does not help to avoid the wrong resistivity image (see Figure C.18).
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Figure C.8: This Figure shows the responses curves of sites ZIM101 to ZIM116 for a strike direction
of 35° E of N. The resistivity curves are shown on top and below are the phase curves
for each site. The symbols represent the observed data, where the red dots are the TE
mode data and the blue diamonds are the TM mode data that are taken into account for
the inversion, whereas the black symbols represent all other data points that have been
rejected. The solid black line is the TE and the turquoise the TM response curve of the
final 2D inversion model shown in Figure 5.6 (note some sites have been rejected during
the inversion process and therefore don’t have a final model response).
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Figure C.9: This Figure shows the responses curves of sites ZIM117 to ZIM131 for a strike direction
of 35° E of N. The resistivity curves are shown on top and below are the phase curves
for each site. The symbols represent the observed data, where the red dots are the TE
mode data and the blue diamonds are the TM mode data that are taken into account for
the inversion, whereas the black symbols represent all other data points that have been
rejected. The solid black line is the TE mode and the turquoise the TM mode response
curve of the final 2D inversion model shown in Figure 5.6 (note some sites have been
rejected during the inversion process and therefore do not have final model response
curves). 271
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(a) Connection of both lithospheric resistors and the crustal resistor beneath ZIM117 - ZIM120

(model called connected1; blue response curves in Figures C.12 to C.14)
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(b) Connection of both lithospheric resistors (model called connected2; green response curves
in Figures C.12 to C.14)

Figure C.10: This figure shows manipulated versions of the final 2D inversion model (see Figure 5.6),
which are used to prove or falsify hypotheses about connection or disconnection
between the resistors in the model. The forward responses calculated for these models
are shown in Figures C.12 to C.14, where they are compared to the observed data and
the forward response curves from the final 2D inversion model.
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(a) Connection of the crustal and lithospheric resistors at the southern and at the northern end of
the profile (model called connected3; turquoise response curves in Figures C.12 to C.14)
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(b) Disconnection of the crustal and lithospheric resistors beneath ZIM130 / ZIM131 (model called
disconnected; pink response curves in Figures C.12 to C.14)

Figure C.11: This figure shows manipulated versions of the final 2D inversion model (see Figure 5.6),
which are used to prove or falsify hypotheses about connection or disconnection
between the resistors in the model. The forward responses calculated for these models
are shown in Figures C.12 to C.14, where they are compared to the observed data and
the forward response curves from the final 2D inversion model.
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Figure C.12: This figure shows the comparison of the observed data (black dots) and the response
curves of the final 2D inversion model (red line) with the response curves obtained
from the modified models shown in Figures C.10 and C.11. For each of the models
only the response curves of the relevant sites are plotted using the following colour
coding: blue - connected1 (Figure C.10 (a)), green - connected2 (Figure C.10 (b)),
turquoise - connected3 (Figure C.11 (a)) and pink - disconnected (Figure C.11

(b)).
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Figure C.13: This figure (Figure C.12 continued) shows the comparison of the observed data (black
dots) and the response curves of the final 2D inversion model (red line) with the
response curves obtained from the modified models shown in Figures C.10 and C.11.
For each of the models only the response curves of the relevant sites are plotted using
the following colour coding: blue - connected1 (Figure C.10 (a)), green - con-
nected2 (Figure C.10 (b)), turquoise - connected3 (Figure C.11 (a)) and pink -
disconnected (Figure C.11 (b)).
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Figure C.14: This figure (Figures C.12/C.13 continued) shows the comparison of the observed data
(black dots) and the response curves of the final 2D inversion model (red line) with
the response curves obtained from the modified models shown in Figures C.10 and
C.11. For each of the models only the response curves of the relevant sites are plotted
using the following colour coding: blue - connected1 (Figure C.10 (a)), green -
connected2 (Figure C.10 (b)), turquoise - connected3 (Figure C.11 (a)) and pink -
disconnected (Figure C.11 (b)).
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(a) Model: nodykes a
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(b) Model: nodykes b
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(c) Model: toplayer a
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(d) Model: toplayer b
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(e) Model: crust a
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(f) Model: crust b

Figure C.15: These figures show the isotropic inversion results of synthetic 2D anisotropic data
(calculated using Pek and Verner’s (1997) code) simulating dykes of 30000 Ωm in the
crust. The white dashed line outlines the area of the anisotropic block representing the
dykes and the layered background is illustrated by black dashed lines (for more details
on the exact models see Figure 5.14 and Table 5.1).
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(a) Model: nodykes c
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(b) Model: nodykes d
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(c) Model: toplayer c
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(d) Model: toplayer d
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(e) Model: crust c

10000

1000

100

10

1

ρ (Ωm)
0 km

50 km

100 km

150 km

200 km

250 km

300 km

350 km

100 km

RMS = 1.07

(f) Model: crust d

Figure C.16: These figures show the isotropic inversion results of synthetic 2D anisotropic data
(calculated using Pek and Verner’s (1997) code) simulating dykes of 30000 Ωm in the
crust. The white dashed line outlines the area of the anisotropic block representing the
dykes and the layered background is illustrated by black dashed lines (for more details
on the exact models see Figure 5.14 and Table 5.1).
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10000

1000

100

10

1

ρ (Ωm)
0 km

50 km

100 km

150 km

200 km

250 km

300 km

350 km

100 km

RMS = 0.76

(b) Model: nodykes f
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(c) Model: toplayer e
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(d) Model: toplayer f
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(e) Model: crust e
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(f) Model: crust f

Figure C.17: These figures show the isotropic inversion results of synthetic 2D anisotropic data
(calculated using Pek and Verner’s (1997) code) simulating dykes of 30000 Ωm in the
crust. The white dashed line outlines the area of the anisotropic block representing the
dykes and the layered background is illustrated by black dashed lines (for more details
on the exact models see Figure 5.14 and Table 5.1).
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(a) Model: toplayer c with tear zone
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(b) Model: crust c with tear zone

Figure C.18: These figures show the isotropic inversion results of synthetic 2D anisotropic data of
the models toplayer c and crust c (see Figure 5.14 and Table 5.1 for details). The
white dashed line outlines the area of the anisotropic block representing the dykes
and the layered background is illustrated by black dashed lines. Other than for the
inversion results shown in Figures C.15 to C.17, the area of the dykes (white dashed
line) was selected to be a tear zone during the inversion.
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D
B A S I S F U N C T I O N S

d.1 edge element basis functions

In Section 6.1 the general formulation of a x-directed edge-element basis function was
shown (Equation 6.1). In this appendix all edge-element basis functions of one cell are
discussed. The numbering of the edges within a cell is in the following order: x-directed
edges first (with y varying faster than z), then y-directed edges (x varies faster than z)
and then all z-directed edges (x varying faster than y). Figure D.1 shows a sketch of a cell
including the numbering of all edges and the locations of edges with respect to a global
Cartesian coordinate system.

x
y

z

1
6

10

5
2

12

119
8

7
3 4

x1,y1,z1

x2

z2

y2

Figure D.1: Sketch of one cell and its numbering of edges and the global mesh coordinates.

The basis functions for such a simple rectangular brick element are for example described
by Jin (2002). The x-directed basis functions are given by

v1 =
(y2 − y) (z2 − z)

(y2 − y1) (z2 − z1)
=

1

(y2 − y1) (z2 − z1)
(y2 − y) (z2 − z)

=
1

(y2 − y1) (z2 − z1)
(y2z2 − z2y − y2z + yz) , (D.1)

281



D basis functions

v2 =
(y − y1) (z2 − z)

(y2 − y1) (z2 − z1)
=

1

(y2 − y1) (z2 − z1)
(y − y1) (z2 − z)

=
1

(y2 − y1) (z2 − z1)
(−y1z2 + z2y + y1z − yz) , (D.2)

v3 =
(y2 − y) (z − z1)

(y2 − y1) (z2 − z1)
=

1

(y2 − y1) (z2 − z1)
(y2 − y) (z − z1)

=
1

(y2 − y1) (z2 − z1)
(−y2z1 + z1y + y2z − yz) , (D.3)

and

v4 =
(y − y1) (z − z1)

(y2 − y1) (z2 − z1)
=

1

(y2 − y1) (z2 − z1)
(y − y1) (z − z1)

=
1

(y2 − y1) (z2 − z1)
(y1z1 − z1y + y1z − yz) . (D.4)

The basis functions for the x-directed edges are all of the general form

v1→4 = G (a + by + cz + dyz) , (D.5)

where G = 1/ (y2 − y1) (z2 − z1) and a, b, c and d are constants, which are individual to
each edge. Using this general form, ∇ × v1→4 can be written as:

∇ ×

 v1→4

0

0

 = G

 0
∂
∂z(a + by + cz + dyz)

− ∂
∂y(a + by + cz + dyz)

 = G

 0

c + dy

−b − dz

 (D.6)

Analogous are the basis functions of the y-directed edges defined as

v5 =
(x2 − x) (z2 − z)

(x2 − x1) (z2 − z1)
=

1

(x2 − x1) (z2 − z1)
(x2 − x) (z2 − z)

=
1

(x2 − x1) (z2 − z1)
(x2z2 − z2x − x2z + xz) , (D.7)

v6 =
(x − x1) (z2 − z)

(x2 − x1) (z2 − z1)
=

1

(x2 − x1) (z2 − z1)
(x − x1) (z2 − z)

=
1

(x2 − x1) (z2 − z1)
(−x1z2 + z2x + x1z − xz) , (D.8)

v7 =
(x2 − x) (z − z1)

(x2 − x1) (z2 − z1)
=

1

(x2 − x1) (z2 − z1)
(x2 − x) (z − z1)

=
1

(x2 − x1) (z2 − z1)
(−x2z1 + z1x + x2z − xz) , (D.9)

and

v8 =
(x − x1) (z − z1)

(x2 − x1) (z2 − z1)
=

1

(x2 − x1) (z2 − z1)
(x − x1) (z − z1)

=
1

(x2 − x1) (z2 − z1)
(x1z1 − z1x + x1z − xz) . (D.10)
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The general form of the y-directed basis function is given by

v5→8 = H (e + fx + gz + hxz) , (D.11)

where H = 1/ (x2 − x1) (z2 − z1) and e, f, g and h are constants, which are individual to
each edge. Using this general equation, ∇ × v5→8 can be written as:

∇ ×

 0

v5→8

0

 = H

 − ∂
∂z(e + fx + gz + hxz)

0
∂
∂x(e + fx + gz + hxz)

 = H

 −g − hx

0

f + hz

 (D.12)

And finally the z-directed edge basis functions are given by

v9 =
(x2 − x) (y2 − y)

(x2 − x1) (y2 − y1)
=

1

(x2 − x1) (y2 − y1)
(x2 − x) (y2 − y)

=
1

(x2 − x1) (y2 − y1)
(x2z2 − y2x − x2y + xy) , (D.13)

v10 =
(x − x1) (y2 − y)

(x2 − x1) (y2 − y1)
=

1

(x2 − x1) (y2 − y1)
(x − x1) (y2 − y)

=
1

(x2 − x1) (y2 − y1)
(−x1y2 + y2x + x1y − xy) , (D.14)

v11 =
(x2 − x) (y − y1)

(x2 − x1) (y2 − y1)
=

1

(x2 − x1) (y2 − y1)
(x2 − x) (y − y1)

=
1

(x2 − x1) (y2 − y1)
(−x2y1 + y1x + x2y − xy) , (D.15)

v12 =
(x − x1) (y − y1)

(x2 − x1) (y2 − y1)
=

1

(x2 − x1) (y2 − y1)
(x − x1) (y − y1)

=
1

(x2 − x1) (y2 − y1)
(x1y1 − y1x + x1y − xy) . (D.16)

The z-directed basis function all have the following general form

v9→12 = K (i + jx + ky + lxy) , (D.17)

where K = 1/ (x2 − x1) (y2 − y1) and i, j, k and l are constants, which are individual to
each edge. Using this general form, ∇ × v9→12 can be written as

∇ ×

 0

0

v9→12

 = K


∂

∂y(i + jx + ky + lxy)

− ∂
∂x(i + jx + ky + lxy)

0

 = K

 k + lx

−j − ly

0

 (D.18)

To solve the system of equations calculating the electric field components (Equation 6.10) a
multiplication of the curls of the basis functions is required. Using the general form of the
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basis functions, the multiplication of (∇ × vi) · (∇ × vj) for parallel-directed edges i and j

is given by

∇ ×

 v1→4

0

0


i

· ∇ ×

 v1→4

0

0


j

= G

 0

ci + diy

−bi − diz

 ·G
 0

cj + djy

−bj − djz


= G2

{
(ci + diy)(cj + djy) + (−bi − diz)(−bj − djz)

}
= G2

(
cicj + cidjy + dicjy + didjy

2 + bibj + bidjz + dibjz + didjz
2
)

, (D.19)

∇ ×

 0

v5→8

0


i

· ∇ ×

 0

v5→8

0


j

= H

 −gi − hix

0

fi + hiz

 ·H
 −gj − hjx

0

fj + hjz



= H2
{
(−gi − hix)(−gj − gjx) + (fi + hiz)(fj + hjz)

}
= H2

(
gigj + gihjx + higjx + hihjx

2 + fifj + fihjz + hifjz + hihjz
2
)

(D.20)

and

∇ ×

 0

0

v9→12


i

· ∇ ×

 0

0

v9→12


j

= K

 ki + lix

−ji − liy

0

 ·
 kj + ljx

−jj − ljy

0


= K2

{
(ki + lix)(kj + ljx) + (−ji − liy)(−jj − ljy)

}
= K2

(
kikj + kiljx + likjx + liljx

2 + jijj + jiljy + lijjy + liljy
2
)

. (D.21)

The mixed term multiplication of (∇ × vi) · (∇ × vj) for perpendicular edges i and j is
given by

∇ ×

 v1→4

0

0


i

· ∇ ×

 0

v5→8

0


j

= G

 0

ci + diy

−bi − diz

 ·H
 −gj − hjx

0

fj + hjz


= GH(−bi − diz)(fj + hjz)

= GH
(
−bifj − bihjz − difjz − dihjz

2
)

, (D.22)

∇ ×

 v1→4

0

0


i

· ∇ ×

 0

0

v9→12


j

= G

 0

ci + diy

−bi − diz

 ·K
 kj − ljx

−jj − ljy

0


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= GK(ci + diy)(−jj − ljy)

= GK
(
−cijj − ciljy − dijjy − diljy

2
)

(D.23)

and

∇ ×

 0

v5→8

0


j

· ∇ ×

 0

0

v9→12


j

= H

 −gj − hjx

0

fj + hjz

 ·K
 kj − ljx

−jj − ljy

0


= HK(−gi − hix)(kj + ljx)

= HK
(
−gikj − giljx − hikjx − hiljx

2
)

. (D.24)

d.2 nodal element basis functions

In Section 6.1 the general formulation of a nodal-element basis function was given (Equa-
tion 6.2). The basis function for a simple rectangular brick element is for example given
by Jin (2002) and Figure D.2 shows a sketch of such an example cell, its numbering of all
nodes and the locations of the nodes with respect to a global Cartesian coordinate system.
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Figure D.2: Sketch of one cell and its numbering of nodes and the global mesh coordinates.
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Based on these numbers the nodal-elements ui (where i = 1, ..., 8) are given by

u1 =
(x2 − x) (y2 − y) (z2 − z)

(x2 − x1) (y2 − y1) (z2 − z1)
=

=
x2y2z2 − y2z2x − x2z2y − x2y2z + z2xy + y2xz + x2yz − xyz

(x2 − x1) (y2 − y1) (z2 − z1)
, (D.25)

u2 =
(x − x1) (y2 − y) (z2 − z)

(x2 − x1) (y2 − y1) (z2 − z1)
=

=
−x1y2z2 + y2z2x + x1z2y + x1y2z − z2xy − y2xz − x1yz + xyz

(x2 − x1) (y2 − y1) (z2 − z1)
, (D.26)

u3 =
(x2 − x) (y − y1) (z2 − z)

(x2 − x1) (y2 − y1) (z2 − z1)
=

=
−x2y1z2 + y1z2x + x2z2y + x2y1z − z2xy − y1xz − x2yz + xyz

(x2 − x1) (y2 − y1) (z2 − z1)
, (D.27)

u4 =
(x − x1) (y − y1) (z2 − z)

(x2 − x1) (y2 − y1) (z2 − z1)
=

=
x1y1z2 − y1z2x − x1z2y − x1y1z + z2xy + y1xz + x1yz − xyz

(x2 − x1) (y2 − y1) (z2 − z1)
, (D.28)

u5 =
(x2 − x) (y2 − y) (z − z1)

(x2 − x1) (y2 − y1) (z2 − z1)
=

=
−x2y2z1 + y2z1x + x2z1y + x2y2z − z1xy − y2xz − x2yz + xyz

(x2 − x1) (y2 − y1) (z2 − z1)
, (D.29)

u6 =
(x − x1) (y2 − y) (z − z1)

(x2 − x1) (y2 − y1) (z2 − z1)
=

=
x1y2z1 − y2z1x − x1z1y − x1y2z + z1xy + y2xz + x1yz − xyz

(x2 − x1) (y2 − y1) (z2 − z1)
, (D.30)

u7 =
(x2 − x) (y − y1) (z − z1)

(x2 − x1) (y2 − y1) (z2 − z1)
=

=
x2y1z1 − y1z1x − x2z1y − x2y1z + z1xy + y1xz + x2yz − xyz

(x2 − x1) (y2 − y1) (z2 − z1)
, (D.31)

u8 =
(x − x1) (y − y1) (z − z1)

(x2 − x1) (y2 − y1) (z2 − z1)
=

=
−x1y1z1 + y1z1x + x1z1y + x1y1z − z1xy − y1xz − x1yz + xyz

(x2 − x1) (y2 − y1) (z2 − z1)
. (D.32)
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The nodal basis functions are all of the general form

u1→8 = C (a + bx + cy + dz + exy + fxz + gyz + xyz) , (D.33)

where C = 1/ (x2 − x1) (y2 − y1) (z2 − z1) and a, b, c, d, e, f and g are constants, which are
individual to each node. Using this general form, the gradient ∇u1→8 can be written as

∇u1→8 = C


∂
∂xu1→8

∂
∂yu1→8

∂
∂zu1→8

 = C

 b + ey + fz + yz

c + ex + gz + xz

d + fx + gy + xy

 . (D.34)

To solve the system of equations for the approximate potential (Equation 6.24) a multiplica-
tion of the gradients of two nodal basis functions is required. Using the general form of the
basis functions, the multiplication of (∇ui) · (∇uj) for two nodes i and j is given by

∇ui · ∇uj = C

 bi + eiy + fiz + yz

ci + eix + giz + xz

di + fix + giy + xy

 ·C
 bj + ejy + fjz + yz

cj + ejx + gjz + xz

dj + fjx + gjy + xy

 , (D.35)

if i = j then

∇ui · ∇ui = C2
(
(bi + eiy + fiz + yz)2 + (ci + eix + giz + xz)2 (D.36)

+ (di + fix + giy + xy)2
)

else

∇ui · ∇uj = C2
{
(bi + eiy + fiz + yz)(bj + ejy + fjz + yz)

+ (ci + eix + giz + xz)(cj + ejx + gjz + xz)

+ (di + fix + giy + xy)(dj + fjx + gjy + xy)
}

.

(D.37)

The right hand side of Equation 6.24 involves the multiplication of a nodal-element and an
edge-element basis function, i. e., uh · vj · n̂. This product is only non-zero, if the hth node
and the jth edge are part of the same cell (or more specific of the same face in this cell),
and if vj is parallel to n̂, i.e.,

uh · vj · n̂ =

{
0 if vj ⊥ n̂ and/or uh and vj are not part of the same face

th,j if vj ‖ n̂; uh and vj are part of the same face
(D.38)

where for n̂ in x-direction th,j (where h = 1, .., 8 and j = 1, 2, 3, 4) is given by (using
Equations D.5 and D.33)
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t1→8,1→4 = u1→8 · v1→4

= C (ah + bhx + chy + dhz + ehxy + fhxz + ghyz + xyz)

· G
(
aj + bjy + cjz + djyz

)
= C G(ahaj + ahbjy + ahcjz + ahdjyz

+ bhajx + bhbjxy + bhcjxz + bhdjxyz

+ chajy + chbjy
2 + chcjyz + chdjy

2z

+ dhajz + dhbjyz + dhcjz
2 + dhdjyz2

+ ehajxy + ehbjxy2 + ehcjxyz + ehdjxy2z

+ fhajxz + fhbjxyz + fhcjxz2 + fhdjxyz2

+ ghajyz + ghbjy
2z + ghcjyz2 + ghdjy

2z2

+ ajxyz + bjxy2z + cjxyz2 + djxy2z2) .

(D.39)

Analogous for a y-directed n̂ is th,j (where h = 1, .., 8 and j = 5, 6, 7, 8) given by (using
Equations D.11 and D.33)

t1→8,5→8 = u1→8 · v5→8

= C (ah + bhx + chy + dhz + ehxy + fhxz + ghyz + xyz)

· H
(
ej + fjx + gjz + hjxz

)
= C H(ahej + ahfjx + ahgjz + ahhjxz

+ bhejx + bhfjx
2 + bhgjxz + bhhjx

2z

+ chejy + chfjxy + chgjyz + chhjxyz

+ dhejz + dhfjxz + dhgjz
2 + dhhjxz2

+ ehejxy + ehfjx
2y + ehgjxyz + ehhjx

2yz

+ fhejxz + fhfjx
2z + fhgjxz2 + fhhjx

2z2

+ ghejyz + ghfjxyz + ghgjyz2 + ghhjxyz2

+ ejxyz + fjx
2yz + gjxyz2 + hjx

2yz2) ,

(D.40)

and for a z-directed n̂ (th,j, where h = 1, .., 8 and j = 9, 10, 11, 12) using Equations D.17 and
D.33 yields

t1→8,9→12 = u1→8 · v9→12

= C (ah + bhx + chy + dhz + ehxy + fhxz + ghyz + xyz)

· K
(
ij + jjx + kjy + ljxy

)
= C K(ahij + ahjjx + ahkjy + ahljxy

+ bhijx + bhjjx
2 + bhkjxy + bhljx

2y

+ chijy + chjjxy + chkjy
2 + chljxy2

+ dhijz + dhjjxz + dhkjyz + dhljxyz

+ ehijxy + ehjjx
2y + ehkjxy2 + ehljx

2y2

+ fhijxz + fhjjx
2z + fhkjxyz + fhljx

2yz

+ ghijyz + ghjjxyz + ghkjy
2z + ghljxy2z

+ ijxyz + jjx
2yz + kjxy2z + ljx

2y2z) .

(D.41)
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E
F O RWA R D M O D E L L I N G R E S U LT S

e.1 rotated 2d versus 3d responses

This appendix belongs to the comparison of the 3D responses with the 2D rotated responses
over a simple dyke model as described in Section 7.1.2. Figure 7.4 shows the 3D mesh
design and the location of the 1 Ωm dyke embedded in a 100 Ωm homogeneous halfspace
as well as the locations of all seven sites. The following figures (Figures E.1 to E.3) show
the apparent resistivity curves on top and the phase curves below. All four components
are plotted; from left to right xx, xy, yx and then yy. The red stars are the 3D responses
and the blue squares represent the 2D responses calculated using the code of Rodi and
Mackie (2001) (implemented in Geosystem’s software WinGLink®) and rotated by 45°. In
general these responses agree very well in all four components. Only site 1 and 2 show
small differences, which are most likely related to the rather blocky realisation of the 45°
dyke in the 3D model.
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Figure E.1: Resistivity and phase curves for all four components calculated at site 1. The blue squares
represent the rotated 2D responses and the red stars are the 3D responses.
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Figure E.2: Resistivity and phase curves for all four components calculated at sites 2 (a), 3 (b) and 4

(c). The blue squares represent the rotated 2D responses and the red stars are the 3D
responses.
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Figure E.3: Resistivity and phase curves for all four components calculated at sites 5 (a), 6 (b) and 7

(c). The blue squares represent the rotated 2D responses and the red stars are the 3D
responses.
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e.2 results of the commemi 3d-1a model

This part of the appendix contains a collection of figures related to the forward tests
conducted using the 3D-1A COMMEMI model in Section 7.2.1. The 3D-1A model consists
of a 0.5 Ωm block in a homogeneous halfspace of 100 Ωm. Three different sizes of the mesh
were used to calculate the forward responses, of which the mesh design is shown here.
Figure E.4 shows the mesh for the coarse mesh (46 x 46 x 39 cells with a centre cell width
of 250 m), Figure E.5 illustrates the fine mesh (70 x 70 x 39 cells with a centre cell width of
100 m) and finally the very fine mesh (96 x 96 x 39 cells with a centre cell width of 50 m) is
shown in Figure E.6.

−30

−20

−10

0

10

20

30

y
 (

k
m

)

−30 −20 −10 0 10 20 30

x (km)

(a) Plan view - complete mesh

−3

−2

−1

0

1

2

3

y
 (

k
m

)

−3 −2 −1 0 1 2 3

x (km)

(b) Plan view - centre of the mesh

−10

0

10

20

30

40

50

z
 (

k
m

)

−30 −20 −10 0 10 20 30

x (km)

(c) Section view - complete mesh

−1

0

1

2

3

4

z
 (

k
m

)

−3 −2 −1 0 1 2 3

x (km)

(d) Section view - centre of the mesh

Figure E.4: Figures showing the mesh design for the 3D-1A coarse mesh in plan view ((a) and (b))
and in section view ((c) and (d)). The mesh consists of 46 x 46 x 39 cells with a centre cell
width of 250 m. The red rectangular shows the location of the 0.5 Ωm block of the model
and the blue layer indicates the airlayers.
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Figure E.5: Figures showing the mesh design for the 3D-1A fine mesh in plan view ((a) and (b))
and in section view ((c) and (d)). The mesh consists of 70 x 70 x 39 cells with a centre cell
width of 100 m. The red rectangular shows the location of the 0.5 Ωm block of the model
and the blue layer indicates the airlayers.

Figures E.7, E.8 and E.9 show the comparison of the 3D forward responses (without
divergence correction and with correction applied every 10, 20, 50 and 100 iterations) at
0.1 s and 10 s with the results from Zhdanov et al. (1997) for the coarse, fine and very
fine mesh, respectively. All figures show that the correction is required to gain reasonable
response curves, although it seems that at 10 s it does not matter how often the correction
is applied. The corresponding convergence curves for these runs are shown in Figure E.10.
Plotted is the preconditioned residual norm (ILU preconditioning with zero fill-in), which
is a measure of convergence provided during the iterative procedure by the sparskit

solver (Saad, 1990). It can be seen that the convergence is significantly quicker if the
divergence correction is applied, and that the convergence tends to be somewhat quicker if
the divergence correction is applied more frequently.
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Figure E.6: Figures showing the mesh design for the 3D-1A very fine mesh in plan view ((a) and (b))
and in section view ((c) and (d)). The mesh consists of 96 x 96 x 39 cells with a centre cell
width of 50 m. The red rectangular shows the location of the 0.5 Ωm block of the model
and the blue layer indicates the airlayers.
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Figures E.11 to E.14 show the horizontal components of the electric field at 275 m depth at
0.1 s and 10 s for both source magnetic field polarizations after 40, 500 and 1000 iterations.
The positive effect of the divergence correction to the calculated field is obvious. Figure E.15

to E.18 show the corresponding correction potentials and their gradients (correction fields)
for the first application of the correction. The figures show that the correction potential
is generated by sources (discontinuities of the normal component of the current density)
located over the two faces of the body that are normal to the predominant direction of the
electric field.

A comparison of 3D-1A response curves for all three meshes obtained after 100, 200, 400,
600, 800, 1000 and 5000 iteration applying the divergence correction every 20 iterations
is shown in Figures E.19 (coarse mesh), Figures E.20 (fine mesh) and Figures E.21 (very
fine mesh). While 100 and 200 iterations are not enough to gain a reasonable results, 5000

iterations compared to 1000 iterations can be considered to not be worth the additional
costs (computation time). Since 1000 iterations and application of the divergence correction
every 20 iterations seems to be the ideal combination for the COMMEMI 3D-1A model,
the responses from these settings of all three meshes are shown in Figure E.22. Solid line
show the response curve with correction applied and for comparison the response without
correction are shown as dashed lines. For more details see Figure 7.12 and corresponding
text in Section 7.2.1.
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Figure E.7: Figure showing the response curves at 0.1 s (a) and 10 s (b) obtained from the COM-
MEMI 3D-1A model using a coarse mesh (46 x 46 x 39 cells) and applying the divergence
correction every 10, 20, 50 and 100 iterations. The black line shows the response curve
calculated without the divergence correction and the symbols with error bars represent
the mean value and the standard deviation of the published results from Zhdanov et al.
(1997).
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Figure E.8: Figure showing the response curves at 0.1 s (a) and 10 s (b) obtained from the COMMEMI
3D-1A model using a fine mesh (70 x 70 x 39 cells) and applying the divergence correction
every 10, 20, 50 and 100 iterations. The black line shows the response curve calculated
without the divergence correction and the symbols with error bars represent the mean
value and the standard deviation of the published results from Zhdanov et al. (1997).
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Figure E.9: Figure showing the response curves at 0.1 s (a) and 10 s (b) obtained from the COMMEMI
3D-1A model using a very fine mesh (96 x 96 x 39 cells) and applying the divergence
correction every 10, 20, 50 and 100 iterations. The black line shows the response curve
calculated without the divergence correction and the symbols with error bars represent
the mean value and the standard deviation of the published results from Zhdanov et al.
(1997).
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Figure E.10: Figure showing the convergence curves for the coarse mesh (a and b), the fine mesh
(c and d) and the very fine mesh (e and f). These curves belong to the calculation of
responses curves at 0.1 s (left) and 10 s (right) for the COMMEMI 3D-1A model.
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Figure E.11: Horizontal components of the electric field at 0.1 s at a depth of 275 m (x-directed
source magnetic field). Panels (a) to (c) show the real and (d) to (f) the imaginary parts
of the electric fields for the run without divergence correction, whereas (g) to (i) are
the real and (j) to (l) the imaginary parts of the electric fields for the run in which
the divergence correction is applied every 20 iterations. The panels on the left show
intermediate electric fields after 40 iterations, the middle ones are after 500 iterations
and on the right are the final electric fields after 1000 iterations.
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Figure E.12: Horizontal components of the electric field at 0.1 s at a depth of 275 m (y-directed
source magnetic field). Panels (a) to (c) show the real and (d) to (f) the imaginary parts
of the electric fields for the run without divergence correction, whereas (g) to (i) are
the real and (j) to (l) the imaginary parts of the electric fields for the run in which
the divergence correction is applied every 20 iterations. The panels on the left show
intermediate electric fields after 40 iterations, the middle ones are after 500 iterations
and on the right are the final electric fields after 1000 iterations.
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Figure E.13: Horizontal components of the electric field at 10 s at a depth of 275 m (x-directed source
magnetic field). Panels (a) to (c) show the real and (d) to (f) the imaginary parts of the
electric fields for the run without divergence correction, whereas (g) to (i) are the real
and (j) to (l) the imaginary parts of the electric fields for the run in which the divergence
correction is applied every 20 iterations. The panels on the left show intermediate
electric fields after 40 iterations, the middle ones are after 500 iterations and on the
right are the final electric fields after 1000 iterations.
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Figure E.14: Horizontal components of the electric field at 10 s at a depth of 275 m (y-directed source
magnetic field). Panels (a) to (c) show the real and (d) to (f) the imaginary parts of the
electric fields for the run without divergence correction, whereas (g) to (i) are the real
and (j) to (l) the imaginary parts of the electric fields for the run in which the divergence
correction is applied every 20 iterations. The panels on the left show intermediate
electric fields after 40 iterations, the middle ones are after 500 iterations and on the
right are the final electric fields after 1000 iterations.
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Figure E.15: Divergence correction potential and its gradient at 0.1 s for a x-directed source magnetic
field. Panel (a) shows the real and (b) the imaginary parts of the divergence correction
potential applied after 20 iterations in the run whose intermediate electric field is
shown in Figure E.11 ((g) and (j)). The real (c) and imaginary (d) parts of the horizontal
correction electric field are given by the gradient of the correction potential. The
potential and field are shown at a depth of 275 m.
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Figure E.16: Divergence correction potential and its gradient at 0.1 s for a y-directed source magnetic
field. Panel (a) shows the real and (b) the imaginary parts of the divergence correction
potential applied after 20 iterations in the run whose intermediate electric field is
shown in Figure E.12 ((g) and (j)). The real (c) and imaginary (d) parts of the horizontal
correction electric field are given by the gradient of the correction potential. The
potential and field are shown at a depth of 275 m.
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Figure E.17: Divergence correction potential and its gradient at 10 s for a x-directed source magnetic
field. Panel (a) shows the real and (b) the imaginary parts of the divergence correction
potential applied after 20 iterations in the run whose intermediate electric field is
shown in Figure E.13 ((g) and (j)). The real (c) and imaginary (d) parts of the horizontal
correction electric field are given by the gradient of the correction potential. The
potential and field are shown at a depth of 275 m.
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Figure E.18: Divergence correction potential and its gradient at 10 s for a y-directed source magnetic
field. Panel (a) shows the real and (b) the imaginary parts of the divergence correction
potential applied after 20 iterations in the run whose intermediate electric field is
shown in Figure E.14 ((g) and (j)). The real (c) and imaginary (d) parts of the horizontal
correction electric field are given by the gradient of the correction potential. The
potential and field are shown at a depth of 275 m.
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Figure E.19: Figure showing the response curves at 0.1 s (a) and 10 s (b) obtained from the COM-
MEMI 3D-1A model after 100, 200, 400, 600, 800, 1000 and 5000 iterations (applying the
divergence correction every 20 iterations) using a coarse mesh (46 x 46 x 39 cells). The
black symbols with error bars represent the mean value and the standard deviation of
the published results from Zhdanov et al. (1997).
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Figure E.20: Figure showing the response curves at 0.1 s (a) and 10 s (b) obtained from the COM-
MEMI 3D-1A model after 100, 200, 400, 600, 800, 1000 and 5000 iterations (applying
the divergence correction every 20 iterations) using a fine mesh (70 x 70 x 39 cells). The
black symbols with error bars represent the mean value and the standard deviation of
the published results from Zhdanov et al. (1997).
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Figure E.21: Figure showing the response curves at 0.1 s (a) and 10 s (b) obtained from the COM-
MEMI 3D-1A model after 100, 200, 400, 600, 800, 1000 and 5000 iterations (applying the
divergence correction every 20 iterations) using a very fine mesh (96 x 96 x 39 cells). The
black symbols with error bars represent the mean value and the standard deviation of
the published results from Zhdanov et al. (1997).
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Figure E.22: Figure showing the response curves at 0.1 s (a) and 10 s (b) obtained from the COM-
MEMI 3D-1A model using three different meshes: coarse mesh (blue), fine mesh (green)
and very fine mesh (red). The solid lines are the responses curves after 1000 iterations
applying the divergence correction every 20 iterations. For comparison the dashed lines
represent the curves after 1000 iterations without any correction being applied. The
symbols with error bars represent the mean value and the standard deviation of the
published results from Zhdanov et al. (1997).
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e.3 results of the commemi 3d-2a model

The COMMEMI 3D-2A model from Zhdanov et al. (1997) was also used to test the forward
algorithm in Section 7.2.1. Figure E.23 shows the used mesh and the resistivity structure
of the model. As the model is based on a layered-background resistivity distribution, the
implemented homogeneous halfspace boundary conditions turned out to not be ideal.
Therefore faked 1D boundaries (hard-wired specifically for the 3D-2A example) were
tested as well. The resulting response curves at 100 s and 1000 s are shown in Figures 7.14

and 7.15 in comparison to different published results. This appendix contains the plots
of the horizontal components of the electric field at 250 m depth after 6000, 40000 and
80000 iterations for both forward implementations using homogeneous halfspace and 1D
boundaries (Figures E.24 to E.35). Figures E.36 to E.43 show the corresponding correction
potentials and their gradients for the first application of the correction.
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Figure E.23: Figures showing the mesh design for the 3D-2A mesh in plan view ((a) and (b)) and in
section view ((c) and (d)). The mesh consists of 70 x 70 x 43 cells with a centre cell width
of 1 km. The resistivity distribution is indicated by colours: red - 1 Ωm, white - 10 Ωm,
blue - 100 Ωm, green - 0.1 Ωm and lightblue indicates the airlayer.
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Figure E.24: Horizontal components of the electric field at 100 s at a depth of 250 m (x-directed
source magnetic field). Panels (a) and (c) show the real and (b) to (d) the imaginary
parts of the electric fields for the run with homogeneous halfspace boundaries ((a) and
(b)) and 1D boundaries ((c) and (d)). Shown are the fields after 6000 iterations and the
divergence correction is applied every 400 iterations.
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Figure E.25: Horizontal components of the electric field at 100 s at a depth of 250 m (x-directed
source magnetic field). Panels (a) and (c) show the real and (b) to (d) the imaginary
parts of the electric fields for the run with homogeneous halfspace boundaries ((a) and
(b)) and 1D boundaries ((c) and (d)). Shown are the fields after 40000 iterations and the
divergence correction is applied every 400 iterations.
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Figure E.26: Horizontal components of the electric field at 100 s at a depth of 250 m (x-directed
source magnetic field). Panels (a) and (c) show the real and (b) to (d) the imaginary
parts of the electric fields for the run with homogeneous halfspace boundaries ((a) and
(b)) and 1D boundaries ((c) and (d)). Shown are the fields after 80000 iterations and the
divergence correction is applied every 400 iterations.
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Figure E.27: Horizontal components of the electric field at 100 s at a depth of 250 m (y-directed
source magnetic field). Panels (a) and (c) show the real and (b) to (d) the imaginary
parts of the electric fields for the run with homogeneous halfspace boundaries ((a) and
(b)) and 1D boundaries ((c) and (d)). Shown are the fields after 6000 iterations and the
divergence correction is applied every 400 iterations.
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Figure E.28: Horizontal components of the electric field at 100 s at a depth of 250 m (y-directed
source magnetic field). Panels (a) and (c) show the real and (b) to (d) the imaginary
parts of the electric fields for the run with homogeneous halfspace boundaries ((a) and
(b)) and 1D boundaries ((c) and (d)). Shown are the fields after 40000 iterations and the
divergence correction is applied every 400 iterations.
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Figure E.29: Horizontal components of the electric field at 100 s at a depth of 250 m (y-directed
source magnetic field). Panels (a) and (c) show the real and (b) to (d) the imaginary
parts of the electric fields for the run with homogeneous halfspace boundaries ((a) and
(b)) and 1D boundaries ((c) and (d)). Shown are the fields after 80000 iterations and the
divergence correction is applied every 400 iterations.
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Figure E.30: Horizontal components of the electric field at 1000 s at a depth of 250 m (x-directed
source magnetic field). Panels (a) and (c) show the real and (b) to (d) the imaginary
parts of the electric fields for the run with homogeneous halfspace boundaries ((a) and
(b)) and 1D boundaries ((c) and (d)). Shown are the fields after 6000 iterations and the
divergence correction is applied every 400 iterations.
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Figure E.31: Horizontal components of the electric field at 1000 s at a depth of 250 m (x-directed
source magnetic field). Panels (a) and (c) show the real and (b) to (d) the imaginary
parts of the electric fields for the run with homogeneous halfspace boundaries ((a) and
(b)) and 1D boundaries ((c) and (d)). Shown are the fields after 40000 iterations and the
divergence correction is applied every 400 iterations.
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Figure E.32: Horizontal components of the electric field at 1000 s at a depth of 250 m (x-directed
source magnetic field). Panels (a) and (c) show the real and (b) to (d) the imaginary
parts of the electric fields for the run with homogeneous halfspace boundaries ((a) and
(b)) and 1D boundaries ((c) and (d)). Shown are the fields after 80000 iterations and the
divergence correction is applied every 400 iterations.
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Figure E.33: Horizontal components of the electric field at 1000 s at a depth of 250 m (y-directed
source magnetic field). Panels (a) and (c) show the real and (b) to (d) the imaginary
parts of the electric fields for the run with homogeneous halfspace boundaries ((a) and
(b)) and 1D boundaries ((c) and (d)). Shown are the fields after 6000 iterations and the
divergence correction is applied every 400 iterations.
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Figure E.34: Horizontal components of the electric field at 1000 s at a depth of 250 m (y-directed
source magnetic field). Panels (a) and (c) show the real and (b) to (d) the imaginary
parts of the electric fields for the run with homogeneous halfspace boundaries ((a) and
(b)) and 1D boundaries ((c) and (d)). Shown are the fields after 40000 iterations and the
divergence correction is applied every 400 iterations.
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Figure E.35: Horizontal components of the electric field at 1000 s at a depth of 250 m (y-directed
source magnetic field). Panels (a) and (c) show the real and (b) to (d) the imaginary
parts of the electric fields for the run with homogeneous halfspace boundaries ((a) and
(b)) and 1D boundaries ((c) and (d)). Shown are the fields after 80000 iterations and the
divergence correction is applied every 400 iterations.
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Figure E.36: Divergence correction potential and its gradient of the COMMEMI 3D-2A model at 100 s
for a x-directed source magnetic field and homogeneous halfspace boundaries. Panel (a)
shows the real and (b) the imaginary parts of the divergence correction potential applied
after 400 iterations. The real (c) and imaginary (d) parts of the horizontal correction
electric field are given by the gradient of the correction potential. The potential and
field are shown at a depth of 250 m.
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Figure E.37: Divergence correction potential and its gradient of the COMMEMI 3D-2A model at
100 s for a x-directed source magnetic field and 1D boundaries. Panel (a) shows the real
and (b) the imaginary parts of the divergence correction potential applied after 400

iterations. The real (c) and imaginary (d) parts of the horizontal correction electric field
are given by the gradient of the correction potential. The potential and field are shown
at a depth of 250 m.
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Figure E.38: Divergence correction potential and its gradient of the COMMEMI 3D-2A model at 100 s
for a y-directed source magnetic field and homogeneous halfspace boundaries. Panel (a)
shows the real and (b) the imaginary parts of the divergence correction potential applied
after 400 iterations. The real (c) and imaginary (d) parts of the horizontal correction
electric field are given by the gradient of the correction potential. The potential and
field are shown at a depth of 250 m.
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Figure E.39: Divergence correction potential and its gradient of the COMMEMI 3D-2A model at
100 s for a y-directed source magnetic field and 1D boundaries. Panel (a) shows the real
and (b) the imaginary parts of the divergence correction potential applied after 400

iterations. The real (c) and imaginary (d) parts of the horizontal correction electric field
are given by the gradient of the correction potential. The potential and field are shown
at a depth of 250 m.
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Figure E.40: Divergence correction potential and its gradient of the COMMEMI 3D-2A model at
1000 s for a x-directed source magnetic field and homogeneous halfspace boundaries.
Panel (a) shows the real and (b) the imaginary parts of the divergence correction
potential applied after 400 iterations. The real (c) and imaginary (d) parts of the
horizontal correction electric field are given by the gradient of the correction potential.
The potential and field are shown at a depth of 250 m.
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Figure E.41: Divergence correction potential and its gradient of the COMMEMI 3D-2A model at
1000 s for a x-directed source magnetic field and 1D boundaries. Panel (a) shows the
real and (b) the imaginary parts of the divergence correction potential applied after 400

iterations. The real (c) and imaginary (d) parts of the horizontal correction electric field
are given by the gradient of the correction potential. The potential and field are shown
at a depth of 250 m.
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Figure E.42: Divergence correction potential and its gradient of the COMMEMI 3D-2A model at
1000 s for a y-directed source magnetic field and homogeneous halfspace boundaries.
Panel (a) shows the real and (b) the imaginary parts of the divergence correction
potential applied after 400 iterations. The real (c) and imaginary (d) parts of the
horizontal correction electric field are given by the gradient of the correction potential.
The potential and field are shown at a depth of 250 m.
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Figure E.43: Divergence correction potential and its gradient of the COMMEMI 3D-2A model at
1000 s for a y-directed source magnetic field and 1D boundaries. Panel (a) shows the
real and (b) the imaginary parts of the divergence correction potential applied after 400

iterations. The real (c) and imaginary (d) parts of the horizontal correction electric field
are given by the gradient of the correction potential. The potential and field are shown
at a depth of 250 m.
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e.4 results of the dtm1 model

The Dublin Test Model 1 (DTM1) was used in Section 7.2.2 to test the forward algorithm.
The model consists of three blocks of different sizes and resistivities. The model is described
in Figure 7.16. Figure E.44 shows the design of the mesh used to calculate forward responses
at sites on four profiles (Table 7.4 lists the locations of the 59 sites of the data sets used
for comparison). Figure E.45 to Figure E.52 show the resistivity and phase curves for all
four components at 100 s and 1000 s as black symbols. These responses match very well the
results from five other codes/users (see Section 7.2.2 for references), which are represented
by coloured symbols. For the sake of completeness, Figures E.53 to E.56 show the horizontal
components of the electric field at 100 s and 1000 s in 5.5 km and 26.4 km depth and the
corresponding correction potentials and their gradients are shown in Figures E.57 to E.64.
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Figure E.44: Figures showing the mesh design for the DTM1 mesh in plan view ((a) and (b)) and in
section view ((c) and (d)). The mesh consists of 91 x 60 x 57 cells with a centre cell width
of 1 km. The coloured rectangulars show the location of the three blocks of the model
(blue - 10 Ωm, red - 1 Ωm and green - 10 000 Ωm) and the lightblue layer indicates the
airlayers.
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Figure E.45: Figure showing the responses curves (black symbols) of Profile N at 100 s calculated for
the Dublin Test Model 1 (DTM1) (see Figure 7.16). Each panel, one each for xx, xy, yx
and yy components, shows the apparent resistivity curves on top and the phase curves
below. The colour symbols are results from other codes/users (see legend), which are
available as reference data sets on MTnet.
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Figure E.46: Figure showing the responses curves (black symbols) of Profile C at 100 s calculated for
the Dublin Test Model 1 (DTM1) (see Figure 7.16). Each panel, one each for xx, xy, yx
and yy components, shows the apparent resistivity curves on top and the phase curves
below. The colour symbols are results from other codes/users (see legend), which are
available as reference data sets on MTnet.
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Figure E.47: Figure showing the responses curves (black symbols) of Profile S at 100 s calculated for
the Dublin Test Model 1 (DTM1) (see Figure 7.16). Each panel, one each for xx, xy, yx
and yy components, shows the apparent resistivity curves on top and the phase curves
below. The colour symbols are results from other codes/users (see legend), which are
available as reference data sets on MTnet.

326



E.4 results of the dtm1 model

−180

−135

−90

−45

0

45

90

135

180

P
h

a
s
e
 (

˚)

−20 −10 0 10 20

x−distance in km

φ
xx
 

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

R
e
s
is

ti
v
it

y
 (

Ω
m

)

−20 −10 0 10 20

Profile V − 100 s

ρ
xx
 

WinGLink wsinv3dmt MT3Dinv
Nuree Han/Tae Jong Lee Randy Mackie

0

45

90

P
h

a
s
e
 (

˚)

−20 −10 0 10 20

x−distance in km

φ
xy
 

101

102

103

R
e
s
is

ti
v
it

y
 (

Ω
m

)

−20 −10 0 10 20

Profile V − 100 s

ρ
xy
 

WinGLink wsinv3dmt MT3Dinv
Nuree Han/Tae Jong Lee Randy Mackie

−180

−135

−90

P
h

a
s
e
 (

˚)

−20 −10 0 10 20

x−distance in km

φ
yx
 

101

102

103

R
e
s
is

ti
v
it

y
 (

Ω
m

)

−20 −10 0 10 20

Profile V − 100 s

ρ
yx
 

WinGLink wsinv3dmt MT3Dinv
Nuree Han/Tae Jong Lee Randy Mackie

−180

−135

−90

−45

0

45

90

135

180

P
h

a
s
e
 (

˚)

−20 −10 0 10 20

x−distance in km

φ
yy
 

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

R
e
s
is

ti
v
it

y
 (

Ω
m

)

−20 −10 0 10 20

Profile V − 100 s

ρ
yy
 

WinGLink wsinv3dmt MT3Dinv
Nuree Han/Tae Jong Lee Randy Mackie

Figure E.48: Figure showing the responses curves (black symbols) of Profile V at 100 s calculated for
the Dublin Test Model 1 (DTM1) (see Figure 7.16). Each panel, one each for xx, xy, yx
and yy components, shows the apparent resistivity curves on top and the phase curves
below. The colour symbols are results from other codes/users (see legend), which are
available as reference data sets on MTnet.
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Figure E.49: Figure showing the responses curves (black symbols) of Profile N at 1000 s calculated
for the Dublin Test Model 1 (DTM1) (see Figure 7.16). Each panel, one each for xx, xy, yx
and yy components, shows the apparent resistivity curves on top and the phase curves
below. The colour symbols are results from other codes/users (see legend), which are
available as reference data sets on MTnet.
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Figure E.50: Figure showing the responses curves (black symbols) of Profile C at 1000 s calculated
for the Dublin Test Model 1 (DTM1) (see Figure 7.16). Each panel, one each for xx, xy, yx
and yy components, shows the apparent resistivity curves on top and the phase curves
below. The colour symbols are results from other codes/users (see legend), which are
available as reference data sets on MTnet.
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Figure E.51: Figure showing the responses curves (black symbols) of Profile S at 1000 s calculated
for the Dublin Test Model 1 (DTM1) (see Figure 7.16). Each panel, one each for xx, xy, yx
and yy components, shows the apparent resistivity curves on top and the phase curves
below. The colour symbols are results from other codes/users (see legend), which are
available as reference data sets on MTnet.
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Figure E.52: Figure showing the responses curves (black symbols) of Profile V at 1000 s calculated
for the Dublin Test Model 1 (DTM1) (see Figure 7.16). Each panel, one each for xx, xy, yx
and yy components, shows the apparent resistivity curves on top and the phase curves
below. The colour symbols are results from other codes/users (see legend), which are
available as reference data sets on MTnet.
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Figure E.53: Horizontal components of the electric field at 100 s at depths of about 5.5 km (top) and
26.4 km (bottom) for a x-directed source magnetic field. Panels (a) and (c) show the real
and (b) and (d) the imaginary parts of the electric fields after 1000 iterations applying
the divergence correction every 20 iterations.
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Figure E.54: Horizontal components of the electric field at 100 s at depths of about 5.5 km (top) and
26.4 km (bottom) for a y-directed source magnetic field. Panels (a) and (c) show the real
and (b) and (d) the imaginary parts of the electric fields after 1000 iterations applying
the divergence correction every 20 iterations.
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Figure E.55: Horizontal components of the electric field at 1000 s at depths of about 5.5 km (top) and
26.4 km (bottom) for a x-directed source magnetic field. Panels (a) and (c) show the real
and (b) and (d) the imaginary parts of the electric fields after 1000 iterations applying
the divergence correction every 20 iterations.
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Figure E.56: Horizontal components of the electric field at 1000 s at depths of about 5.5 km (top) and
26.4 km (bottom) for a y-directed source magnetic field. Panels (a) and (c) show the real
and (b) and (d) the imaginary parts of the electric fields after 1000 iterations applying
the divergence correction every 20 iterations.
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Figure E.57: Divergence correction potential and its gradient at 100 s for a x-directed source magnetic
field. Panel (a) shows the real and (b) the imaginary parts of the divergence correction
potential applied after 20 iterations. The real (c) and imaginary (d) parts of the horizontal
correction electric field are given by the gradient of the correction potential. The potential
and the field are shown at a depth of 5.5 km.
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Figure E.58: Divergence correction potential and its gradient at 100 s for a y-directed source magnetic
field. Panel (a) shows the real and (b) the imaginary parts of the divergence correction
potential applied after 20 iterations. The real (c) and imaginary (d) parts of the horizontal
correction electric field are given by the gradient of the correction potential. The potential
and the field are shown at a depth of 5.5 km.
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Figure E.59: Divergence correction potential and its gradient at 100 s for a x-directed source magnetic
field. Panel (a) shows the real and (b) the imaginary parts of the divergence correction
potential applied after 20 iterations. The real (c) and imaginary (d) parts of the horizontal
correction electric field are given by the gradient of the correction potential. The potential
and the field are shown at a depth of of 26.4 km.
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Figure E.60: Divergence correction potential and its gradient at 100 s for a y-directed source magnetic
field. Panel (a) shows the real and (b) the imaginary parts of the divergence correction
potential applied after 20 iterations. The real (c) and imaginary (d) parts of the horizontal
correction electric field are given by the gradient of the correction potential. The potential
and the field are shown at a depth of of 26.4 km.
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Figure E.61: Divergence correction potential and its gradient at 1000 s for a x-directed source mag-
netic field. Panel (a) shows the real and (b) the imaginary parts of the divergence
correction potential applied after 20 iterations. The real (c) and imaginary (d) parts
of the horizontal correction electric field are given by the gradient of the correction
potential. The potential and the field are shown at a depth of 5.5 km.
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Figure E.62: Divergence correction potential and its gradient at 1000 s for a y-directed source mag-
netic field. Panel (a) shows the real and (b) the imaginary parts of the divergence
correction potential applied after 20 iterations. The real (c) and imaginary (d) parts
of the horizontal correction electric field are given by the gradient of the correction
potential. The potential and the field are shown at a depth of 5.5 km.
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Figure E.63: Divergence correction potential and its gradient at 1000 s for a x-directed source mag-
netic field. Panel (a) shows the real and (b) the imaginary parts of the divergence
correction potential applied after 20 iterations. The real (c) and imaginary (d) parts
of the horizontal correction electric field are given by the gradient of the correction
potential. The potential and the field are shown at a depth of 26.4 km.
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Figure E.64: Divergence correction potential and its gradient at 1000 s for a y-directed source mag-
netic field. Panel (a) shows the real and (b) the imaginary parts of the divergence
correction potential applied after 20 iterations. The real (c) and imaginary (d) parts
of the horizontal correction electric field are given by the gradient of the correction
potential. The potential and the field are shown at a depth of 26.4 km.
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This Appendix belongs to Chapter 8, which describes the inversion code mcmt3did. For
the inversion process using a Gauss-Newton approach it is essential to determine the
derivatives of the objective function with respect to the inversion parameters to generate the
needed Jacobian matrix and its transpose. Section F.1 discusses the contribution of using a
non-L2 norm as measure of misfit and model complexity and the equations to calculate the
derivatives of the data with respect to the conductivity structure and with respect to the
distortion parameters is shown in Sections F.2 and F.3, respectively.

f.1 contribution of using a non-l2 norm as measure of misfit and model

complexity

Farquharson and Oldenburg (1998) discussed the contribution of using non-L2 measures,
such as the Huber and Ekblom measures, to the derivatives of the data misfit and model
structure compared to using standard L2 measures. In order to construct a system of equa-
tions upon which an iteratively reweighted least-squares routine can be used, Farquharson
and Oldenburg (1998) consider a diagonal matrix R given by

R = diag

{
f ′(x1)

x1
,
f ′(x2)

x2
, ...,

f ′(xn)

xn

}
, (F.1)

where f ′(xi) is the derivative of the function f(xi). In the case of MCMT3DID the function
f(x) is either the Huber measure or the Ekblom measure. Therefore the derivative of φs

with respect to the conductivity structure is

∂φs

∂m
= WT

s
R

s
W

s
(m − mref) , (F.2)

where W
s

and WT
s

are the weighting matrix and its transpose and the elements of the
matrix R

s
are given by

Rii
s = p

([
Wi

s(mi − mi
ref)

]2
+ ε2

)p/2−1

. (F.3)

Analogous is the derivative of φx with respect to the conductivity structure given by

∂φk
x

∂m
= WT ,k

x
Rk

x
Wk

x
(m − mref) , (F.4)
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where Wk
x

is one of the 13 direction matrices (see Figure 8.2, Section 8.2.2) and the elements
of the matrix Rk

x
are given by

Rk,ii
x = p

([
Wk,i

x (mi − mi
ref)

]2
+ ε2

)p/2−1

. (F.5)

The derivative of φd with respect to the model structure is can be written as

∂φd

∂m
= JT

m
WT

d
R

d
W

d

(
J
m

m − dobs

)
, (F.6)

where the elements of the matrix R
d

are given by

Rii
d =

{
2 if |Wi

d(di
pred − di

obs)| 6 h

2h/|Wi
d(di

pred − di
obs)| if |Wi

d(di
pred − di

obs)| > h
. (F.7)

Analogous is the derivative of φd with respect to the distortion parameters given by

∂φd

∂c
= JT

c
WT

d
R

d
W

d

(
J
c

c − dobs

)
. (F.8)

And finally the derivative of φc with respect to the distortion parameters can be written as

∂φc

∂c
= WT

c
R

c
W

c
(c − cref) , (F.9)

where the elements of the matrix R
c

are given by

Rii
c =

{
2 if |Wi

c(ci
pred − ci

obs)| 6 h

2h/|Wi
c(ci

pred − ci
obs)| if |Wi

c(ci
pred − ci

obs)| > h
. (F.10)

Therefore using non-L2 norm measures turns Equation 8.18 into


JT

m
WT

d
R

d
W

d
J
m

+βmαs WT
s

R
s

W
s

+βm
∑

k αk WT
k

Rk
x

W
k

 δm = (F.11)

− JT

m
WT

d
R

d
W

d
(dn − dobs) −

[
βmαs WT

s
R

s
W

s

+βm
∑

k αk WT
k

Rk
x

W
k

]
(mn − mref) ,

Equation 8.24 becomes

[
JT

c
WT

d
R

d
W

d
J
c

+ βc WT
c

R
c

W
c

]
δc = (F.12)

−JT

c
WT

d
R

d
W

d
(dn − dobs) − βc WT

c
R

c
W

c
(cn − cref) ,
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and finally Equation 8.32 can be written as

 JT

g
WT

d
R

d
W

d
J
g

+ βmαs VT
s

P
s

V
s

+βm
∑

k αk VT
k

P
k

V
k

+ βc VT
c

P
c

V
c

 δg = (F.13)

−JT

g
WT

d
R

d
W

d
(dn − dobs) −


βmαs VT

s
P

s
V

s

+βm
∑

k αk VT
k

P
k

V
k

+βc VT
c

P
c

V
c

(gn − g
ref

)
,

where

P
s

=

(
R

s
0

0 0

)
, P

k
=

(
Rk

x
0

0 0

)
and P

c
=

(
0 0

0 R
c

)
.

f.2 derivatives of the data with respect to the conductivities

This part of the appendix shows how the derivatives with respect to the conductivity struc-
ture are calculate for data values that are either impedance, tipper or apparent resistivity
and phase. The impedance tensor, Z, is related to the calculated electric, E, and magnetic,
H, fields by

(
Ex

Ey

)
=

(
Zxx Zxy

Zyx Zyy

) (
Hx

Hy

)
. (F.14)

As the inversion code calculates the fields for two different polarisations (here indicated by
indices 1 and 2), the impedance tensor is determined by

(
Ex1 Ex2

Ey1 Ey2

)
=

(
Zxx Zxy

Zyx Zyy

) (
Hx1 Hx2

Hy1 Hy2

)
. (F.15)

The inverse of the matrix H is given by

(
Hx1 Hx2

Hy1 Hy2

)−1

=
1

Hx1Hy2 − Hx2Hy1

(
Hy2 −Hx2

−Hy1 Hx1

)
(F.16)

and therefore the impedance tensor elements are calculated as(
Zxx Zxy

Zyx Zyy

)
=

(
Ex1 Ex2

Ey1 Ey2

) (
Hx1 Hx2

Hy1 Hy2

)−1

=

(
Ex1 Ex2

Ey1 Ey2

)
1

Hx1Hy2 − Hx2Hy1

(
Hy2 −Hx2

−Hy1 Hx1

)

=


Ex1Hy2−Ex2Hy1

Hx1Hy2−Hx2Hy1

−Ex1Hx2+Ex2Hx1
Hx1Hy2−Hx2Hy1

Ey1Hy2−Ey2Hy1

Hx1Hy2−Hx2Hy1

−Ey1Hx2+Ey2Hx1

Hx1Hy2−Hx2Hy1

 . (F.17)
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The individual components of the impedance tensor can be written as

Zxx =
Ex1Hy2 − Ex2Hy1

Hx1Hy2 − Hx2Hy1
=

Ex2 −
Hy2

Hy1
Ex1

Hx2 −
Hy2

Hy1
Hx1

=
Ex2 − βEx1

Hx2 − βHx1
, (F.18)

Zxy =
−Ex1Hx2 + Ex2Hx1

Hx1Hy2 − Hx2Hy1
=

Ex1 − Hx1
Hx2

Ex2

Hy1 − Hx1
Hx2

Hy2

=
Ex1 − αEx2

Hy1 − αHy2
, (F.19)

Zyx =
Ey1Hy2 − Ey2Hy1

Hx1Hy2 − Hx2Hy1
=

Ey2 −
Hy2

Hy1
Ey1

Hx2 −
Hy2

Hy1
Hx1

=
Ey2 − βEy1

Hx2 − βHx1
(F.20)

and

Zyy =
−Ey1Hx2 + Ey2Hx1

Hx1Hy2 − Hx2Hy1
=

Ey1 − Hx1
Hx2

Ey2

Hy1 − Hx1
Hx2

Hy2

=
Ey1 − αEy2

Hy1 − αHy2
, (F.21)

where

α = −
Hx1

Hx2
and β = −

Hy2

Hy1
. (F.22)

The tipper vector is calculated from the magnetic field components,

Hz = (Tx Ty)

(
Hx

Hy

)
(F.23)

or, written in terms of the two different polarisations (indices 1 and 2),

(Hz1 Hz2) = (Tx Ty)

(
Hx1 Hx2

Hy1 Hy2

)
, (F.24)

applying the inverse of the matrix containing the lateral magnetic field components (Equa-
tion F.16) yields

(
Tx Ty

)
=

(
Hz1 Hz2

) (
Hx1 Hx2

Hy1 Hy2

)−1

=
(

Hz1 Hz2

) 1

Hx1Hy2 − Hx2Hy1

(
Hy2 −Hx2

−Hy1 Hx1

)

=
(

Hz1Hy2−Hz2Hy1

Hx1Hy2−Hx2Hy1

−Hz1Hx2+Hz2Hx1
Hx1Hy2−Hx2Hy1

)
. (F.25)

Applying the ratios α and β yields (in components)

Tx =
Hy2Hz1 − Hy1Hz2

Hy2Hx1 − Hy1Hx2
=

Hz2 −
Hy2

Hy1
Hz1

Hx2 −
Hy2

Hy1
Hx1

=
Hz2 + βHz1

Hx2 + βHx1
(F.26)
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and

Ty =
Hx1Hz2 − Hx2Hz1

Hx1Hy2 − Hx2Hy1
=

Hz1 − Hx1
Hx2

Hz2

Hy1 + −Hx1
Hx2

Hy2

=
Hz1 + αHz2

Hy1 + αHy2
. (F.27)

As the ratios α and β depend on the magnetic field components, which themselves depend
on the cell conductivities, the derivatives of the ratios with respect to the conductivity of a
cell (σ) are given by

∂α

∂σ
=

Hx1

(Hx2)2
∂Hx2

∂σ
−

1

Hx2

∂Hx1

∂σ
(F.28)

and

∂β

∂σ
=

Hy2

(Hy1)2
∂Hy1

∂σ
−

1

Hy1

∂Hy2

∂σ
. (F.29)

The derivatives of the four components of the impedance tensor with respect to the
conductivity of a cell (σ) are given by

∂Zxx

∂σ
=

∂
∂σ (Ex2 + βEx1) (Hx2 + βHx1)

(Hx2 + βHx1)2

−
(Ex2 + βEx1) ∂

∂σ (Hx2 + βHx1)

(Hx2 + βHx1)2

=

{
∂Ex2

∂σ
+ β

∂Ex1

∂σ
+

∂β

∂σ
Ex1

}
1

(Hx2 + βHx1)

−
(Ex2 + βEx1)

(Hx2 + βHx1)2

{
∂Hx2

∂σ
+ β

∂Hx1

∂σ
+

∂β

∂σ
Hx1

}
, (F.30)

∂Zxy

∂σ
=

∂
∂σ (Ex1 + αEx2)

(
Hy1 + αHy2

)(
Hy1 + αHy2

)2
−

(Ex1 + αEx2) ∂
∂σ

(
Hy1 + αHy2

)(
Hy1 + αHy2

)2
=

{
∂Ex1

∂σ
+ α

∂Ex2

∂σ
+

∂α

∂σ
Ex2

}
1(

Hy1 + αHy2

)
−

(Ex1 + αEx2)(
Hy1 + αHy2

)2 {
∂Hy1

∂σ
+ α

∂Hy2

∂σ
+

∂α

∂σ
Hy2

}
, (F.31)

∂Zyx

∂σ
=

∂
∂σ

(
Ey2 + βEy1

)
(Hx2 + βHx1)

(Hx2 + βHx1)2

−

(
Ey2 + βEy1

)
∂

∂σ (Hx2 + βHx1)

(Hx2 + βHx1)2

=

{
∂Ey2

∂σ
+ β

∂Ey1

∂σ
+

∂β

∂σ
Ey1

}
1

(Hx2 + βHx1)

−

(
Ey2 + βEy1

)
(Hx2 + βHx1)2

{
∂Hx2

∂σ
+ β

∂Hx1

∂σ
+

∂β

∂σ
Hx1

}
(F.32)
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and

∂Zyy

∂σ
=

∂
∂σ

(
Ey1 + αEy2

) (
Hy1 + αHy2

)(
Hy1 + αHy2

)2
−

(
Ey1 + αEy2

)
∂

∂σ

(
Hy1 + αHy2

)(
Hy1 + αHy2

)2
=

{
∂Ey1

∂σ
+ α

∂Ey2

∂σ
+

∂α

∂σ
Ey2

}
1(

Hy1 + αHy2

)
−

(
Ey1 + αEy2

)(
Hy1 + αHy2

)2 {
∂Hy1

∂σ
+ α

∂Hy2

∂σ
+

∂α

∂σ
Hy2

}
. (F.33)

The derivatives of the electric and magnetic field components with respect to the cell
conductivity are the solution of the iterative process within the inversion code. Applying
the chain rule, the derivatives of Equations F.18 to F.22 (and F.26 and F.27) with respect to
the electric and magnetic field components are required to calculate the derivatives of the
data with respect to the conductivity σ. The derivatives of the coefficients α and β with
respect to the magnetic field components can be written as

∂α

∂Hx1
= −

1

Hx2
, (F.34)

∂α

∂Hx2
=

Hx1

(Hx2)2
, (F.35)

∂β

∂Hy1
=

Hy2

(Hy1)2
and (F.36)

∂β

∂Hy2
= −

1

Hy1
. (F.37)

The derivatives of the impedance tensor elements with respect to the electrical and magnetic
field components are given by

Zxx component:

∂Zxx

∂Ex1
=

β

Hx2 + βHx1
, (F.38)

∂Zxx

∂Ey1
= 0 , (F.39)

∂Zxx

∂Hx1
= −β

Ex2 + βEx1

(Hx2 + βHx1)2
, (F.40)

∂Zxx

∂Hy1
= −

Ex2 + βEx1

(Hx2 + βHx1)2
∂β

∂Hy1
Hx1 +

1

Hx2 + βHx1

∂β

∂Hy1
Ex1 , (F.41)

∂Zxx

∂Ex2
=

1

Hx2 + βHx1
, (F.42)
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∂Zxx

∂Ey2
= 0 , (F.43)

∂Zxx

∂Hx2
= −

Ex2 + βEx1

(Hx2 + βHx1)2
, (F.44)

∂Zxx

∂Hy2
= −

Ex2 + βEx1

(Hx2 + βHx1)2
∂β

∂Hy2
Hx1 +

1

Hx2 + βHx1

∂β

∂Hy2
Ex1 , (F.45)

Zxy component:

∂Zxy

∂Ex1
=

1

Hy1 + αHy2
, (F.46)

∂Zxy

∂Ey1
= 0 , (F.47)

∂Zxy

∂Hx1
=

Ex1 + αEx2

(Hy1 + αHy2)2
∂α

∂Hx1
Hy2 +

1

Hy1 + αHy1

∂α

∂Hx1
Ex2 , (F.48)

∂Zxy

∂Hy1
= −

Ex1 + αEx2

(Hy1 + αHy2)2
, (F.49)

∂Zxy

∂Ex2
=

α

Hy1 + αHy2
, (F.50)

∂Zxy

∂Ey2
= 0 , (F.51)

∂Zxy

∂Hx2
= −

Ex1 + αEx2

(Hy1 + αHy2)2
∂α

∂Hx2
Hy2 +

1

Hy1 + αHy2

∂α

∂Hx2
Ex2 , (F.52)

∂Zxy

∂Hy2
= −α

Ex1 + αEx2

(Hy1 + αHy2)2
, (F.53)

Zyx component:

∂Zyx

∂Ex1
= 0 , (F.54)

∂Zyx

∂Ey1
=

β

Hx2 + βHx1
, (F.55)

∂Zyx

∂Hx1
= −β

Ey2 + βEy1

(Hx2 + βHx1)2
, (F.56)
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∂Zyx

∂Hy1
= −

Ey2 + βEy1

(Hx2 + βHx1)2
∂β

∂Hy1
Hx1 +

1

Hx2 + βHx1

∂β

∂Hy1
Ey1 , (F.57)

∂Zyx

∂Ex2
= 0 , (F.58)

∂Zyx

∂Ey2
=

1

Hx2 + βHx1
, (F.59)

∂Zyx

∂Hx2
= −

Ey2 + βEy1

(Hx2 + βHx1)2
, (F.60)

∂Zyx

∂Hy2
= −

Ey2 + βEy1

(Hx2 + βHx1)2
∂β

∂Hy2
Hx1 +

1

Hx2 + βHx1

∂β

∂Hy2
Ey1 , (F.61)

Zyy component:

∂Zyy

∂Ex1
= 0 , (F.62)

∂Zyy

∂Ey1
=

1

Hy1 + αHy2
, (F.63)

∂Zyy

∂Hx1
= −

Ey1 + αEy2

(Hy1 + αHy2)2
∂α

∂Hx1
Hy2 +

1

Hy1 + αHy2

∂α

∂Hx1
Ey2 , (F.64)

∂Zyy

∂Hy1
= −

Ey1 + αEy2

(Hy1 + αHy2)2
, (F.65)

∂Zyy

∂Ex2
= 0 , (F.66)

∂Zyy

∂Ey2
=

α

Hy1 + αHy2
, (F.67)

∂Zyy

∂Hx2
= −

Ey1 + αEy2

(Hy1 + αHy2)2
∂α

∂Hx2
Hy2 +

1

Hy1 + αHy2

∂α

∂Hx2
Ey2 , (F.68)

∂Zyy

∂Hy2
= −α

Ey1 + αEy2

(Hy1 + αHy2)2
. (F.69)

The derivatives of the elements of the tipper vector with respect to the magnetic field
components are given by

∂Tx

∂Hx1
= −β

Hz2 + βHz1

(Hx2 + βHx1)2
, (F.70)
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∂Tx

∂Hy1
= −

Hz2 + βHz1

(Hx2 + βHx1)2
∂β

∂Hy1
Hx1 +

1

Hx2 + βHx1

∂β

∂Hy1
Hz1 , (F.71)

∂Tx

∂Hz1
=

β

Hx2 + βHx1
, (F.72)

∂Tx

∂Hx2
= −

Hz2 + βHz1

(Hx2 + βHx1)2
, (F.73)

∂Tx

∂Hy2
= −

Hz2 + βHz1

(Hx2 + βHx1)2
∂β

∂Hy2
Hx1 +

1

Hx2 + βHx1

∂β

∂Hy2
Hz1 , (F.74)

∂Tx

∂Hz2
=

1

Hx2 + βHx1
(F.75)

∂Ty

∂Hx1
= −

Hz1 + αHz2

(Hy1 + αHy2)2
∂α

∂Hx1
Hy2 +

1

(Hy1 + αHy2)2
∂α

∂Hx1
Hz2 , (F.76)

∂Ty

∂Hy1
= −

Hz1 + αHz2

(Hy1 + αHy2)2
, (F.77)

∂Ty

∂Hz1
=

1

Hy1 + αHy2
, (F.78)

∂Ty

∂Hx2
= −

Hz1 + αHz2

(Hy1 + αHy2)2
∂α

∂Hx2
Hy2 +

1

(Hy1 + αHy2)2
∂α

∂Hx2
Hz1 , (F.79)

∂Ty

∂Hy2
= −α

Hz1 + αHz2

(Hy1 + αHy2)2
, (F.80)

∂Ty

∂Hz2
=

α

Hy1 + αHy2
(F.81)

The apparent resistivities can be determined from the impedance tensor elements by

ρij =
1

ωµ
|Zij|

2 =
1

ωµ
ZijZ

∗
ij =

1

ωµ
(Re Zij + iIm Zij)(Re Zij − iIm Zij) , (F.82)

and phases are given by

Zij = |Zij|e
iφij . (F.83)

Therefore the derivatives of the apparent resistivities with respect to the electrical and
magnetic field components (where F stands for any of these field components) can be
written as
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∂ρij

∂F
=

1

ωµ

(
∂Re Zij

∂F
+ i

∂Im Zij

∂F

)(
Re Zij − i Im Zij

)
+

1

ωµ

(
Re Zij + i Im Zij

)(∂Re Zij

∂F
− i

∂Im Zij

∂F

)

=
1

ωµ

{
∂Re Zij

∂F
Re Zij − i

∂Re Zij

∂F
Im Zij + i

∂Im Zij

∂F
Re Zij +

∂Im Zij

∂F
Im Zij

+Re Zij
∂Re Zij

∂F
− i Re Zij

∂Im Zij

∂F
+ i Im Zij

∂Re Zij

∂F
+ Im Zij

∂Im Zij

∂F

}

=
2

ωµ

{
Re Zij

∂Re Zij

∂F
+ Im Zij

∂Im Zij

∂F

}
. (F.84)

The derivatives of the phases with respect to the electric and magnetic field components
can be derived using the following equation

∂Re Zij

∂F
+ i

∂Im Zij

∂F
= |Zij|e

iφij i
∂φij

∂F
+

∂|Zij|

∂F
eiφij ,

1

Zij

{
∂Re Zij

∂F
+ i

∂Im Zij

∂F

}
=

1

|Zij|

∂|Zij|

∂F
+ i

∂φij

∂F
,

Re Zij − i Im Zij

(Re Zij)2 + (Im Zij)2

{
∂Re Zij

∂F
+ i

∂Im Zij

∂F

}
=

1

|Zij|

∂|Zij|

∂F
+ i

∂φij

∂F
. (F.85)

Applying |Zij| =
√

(Re Zij)2 + (Im Zij)2 and |Zij|
2 = (Re Zij)

2 + (Im Zij)
2 yields

i
∂φij

∂F
=

1

|Zij|

(
Re Zij

|Zij|

∂Re Zij

∂F
− i

Im Zij

|Zij|

∂Re Zij

∂F
+ i

Re Zij

|Zij|

∂Im Zij

∂F
+

Im Zij

|Zij|

∂Im Zij

∂F
−

∂|Zij|

∂F

)
. (F.86)

The derivative of |Zij| is given by

∂

∂F

√
(Re Zij)2 + (Im Zij)2 =

1

2
√

(Re Zij)2 + (Im Zij)2

(
2Re Zij

∂Re Zij

∂F
+

2Im Zij
∂Im Zij

∂F

)

=
Re Zij

|Zij|

∂Re Zij

∂F
+

Im Zij

|Zij|

∂Im Zij

∂F
(F.87)

Substituting Equation F.87 into Equation F.86 yields

i
∂φij

∂F
= −i

Im Zij

|Zij|
2

∂Re Zij

∂F
+ i

Re Zij

|Zij|
2

∂Im Zij

∂F

⇒
∂φij

∂F
=

Re Zij

|Zij|
2

∂Im Zij

∂F
−

Im Zij

|Zij|
2

∂Re Zij

∂F
. (F.88)
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f.3 derivatives of the data with respect to the distortion parameters

This part of the appendix contains the equations required to calculate the derivatives of
the data with respect to the distortion parameters and the comparison of calculated and
brute-force J

c
elements for data values in apparent resistivity and phase. Note that the

tipper vector remains unaffected by distortion, and that by assumption the impedance
tensor Z is only related to the conductivity structure, which is independent of the distortion.
Therefore the data (D), which are affected by galvanic distortion (C), are given by

D = C Z (F.89)

or (
Dxx Dxy

Dyx Dyy

)
=

(
C11 C12

C21 C22

) (
Zxx Zxy

Zyx Zyy

)

=

(
C11Zxx + C12Zyx C11Zxy + C12Zyy

C21Zxx + C22Zyx C21Zxy + C22Zyy

)
, (F.90)

The different components of the distorted data D are given by

Dxx = C11Zxx + C12Zyx ,

Dxy = C11Zxy + C12Zyy ,

Dyx = C21Zxx + C22Zyx and

Dyy = C21Zxy + C22Zyy . (F.91)

As the true impedance tensor is independent of the distortion parameters, the derivatives
of the distorted data with respect to the distortion parameters can be calculated by

∂D

∂Cij
=

∂

∂Cij

(
C Z

)
=

∂C

∂Cij
Z . (F.92)

The derivatives of each datum (where the datum is an impedance value) with respect to
each distortion element are

∂Dxx
∂C11

= Zxx , ∂Dxx
∂C12

= Zyx , ∂Dxx
∂C21

= 0 , ∂Dxx
∂C22

= 0 ,

∂Dxy

∂C11
= Zxy , ∂Dxy

∂C12
= Zyy , ∂Dxy

∂C21
= 0 , ∂Dxy

∂C22
= 0 ,

∂Dyx

∂C11
= 0 , ∂Dyx

∂C12
= 0 , ∂Dyx

∂C21
= Zxx , ∂Dyx

∂C22
= Zyx ,

∂Dyy

∂C11
= 0 , ∂Dyy

∂C12
= 0 , ∂Dyy

∂C21
= Zxy , ∂Dyy

∂C22
= Zyy .

(F.93)

For each datum being a resistivity value the derivative is given by
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∂ρij

∂Cmn
=

2

ωµ

(
Re Dij

∂Re Dij

∂Cmn
+ Im Dij

∂Im Dij

∂Cmn

)
, (F.94)

where i = x, y, j = x, y, m = 1, 2 and n = 1, 2 (see Equation F.90). Therefore the derivatives
with respect to each distortion element are given by

ρxx component:

∂ρxx

∂C11
=

2

ωµ
(Re DxxRe Zxx + Im DxxIm Zxx) , (F.95)

∂ρxx

∂C12
=

2

ωµ
(Re DxxRe Zyx + Im DxxIm Zyx) , (F.96)

∂ρxx

∂C21
= 0 ,

∂ρxx

∂C22
= 0 , (F.97)

ρxy component:

∂ρxy

∂C11
=

2

ωµ
(Re DxyRe Zxy + Im DxyIm Zxy) , (F.98)

∂ρxy

∂C12
=

2

ωµ
(Re DxyRe Zyy + Im DxyIm Zyy) , (F.99)

∂ρxy

∂C21
= 0 ,

∂ρxy

∂C22
= 0 , (F.100)

ρyx component:

∂ρyx

∂C11
= 0 ,

∂ρyx

∂C12
= 0 , (F.101)

∂ρyx

∂C21
=

2

ωµ
(Re DyxRe Zxx + Im DyxIm Zxx) , (F.102)

∂ρyx

∂C22
=

2

ωµ
(Re DyxRe Zyx + Im DyxIm Zyx) , (F.103)

ρyy component:

∂ρyy

∂C11
= 0 ,

∂ρyy

∂C12
= 0 , (F.104)
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∂ρyy

∂C21
=

2

ωµ
(Re DyyRe Zxy + Im DyyIm Zxy) , (F.105)

∂ρyy

∂C22
=

2

ωµ
(Re DyyRe Zyy + Im DyyIm Zyy) . (F.106)

For each datum being a phase value the derivatives are given by

∂Φij

∂Cmn
=

Re Dij

|Dij|
2

∂Im Dij

∂Cmn
+

Im Dij

|Dij|
2

∂Re Dij

∂Cmn
, (F.107)

where i = x, y, j = x, y, m = 1, 2 and n = 1, 2 (see Equation F.90). Therefore the derivatives
with respect to each distortion element are given by

Φxx component:

∂Φxx

∂C11
=

Re Dxx

|Dxx|2
Im Zxx −

Im Dxx

|Dxx|2
Re Zxx , (F.108)

∂Φxx

∂C12
=

Re Dxx

|Dxx|2
Im Zyx −

Im Dxx

|Dxx|2
Re Zyx , (F.109)

∂Φxx

∂C21
= 0 ,

∂Φxx

∂C22
= 0 , (F.110)

Φxy component:

∂Φxy

∂C11
=

Re Dxy

|Dxy|2
Im Zxy −

Im Dxy

|Dxy|2
Re Zxy , (F.111)

∂Φxy

∂C12
=

Re Dxy

|Dxy|2
Im Zyy −

Im Dxy

|Dxy|2
Re Zyy , (F.112)

∂Φxy

∂C21
= 0 ,

∂Φxy

∂C22
= 0 , (F.113)

Φyx component:

∂Φyx

∂C11
= 0 ,

∂Φyx

∂C12
= 0 , (F.114)

∂Φyx

∂C21
=

Re Dyx

|Dyx|2
Im Zxx −

Im Dyx

|Dyx|2
Re Zxx , (F.115)

∂Φyx

∂C22
=

Re Dyx

|Dyx|2
Im Zyx −

Im Dyx

|Dyx|2
Re Zyx , (F.116)
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Φyy component:

∂Φyy

∂C11
= 0 ,

∂Φyy

∂C12
= 0 , (F.117)

∂Φyy

∂C21
=

Re Dyy

|Dyy|2
Im Zxy −

Im Dyy

|Dyy|2
Re Zxy , (F.118)

∂Φyy

∂C22
=

Re Dyy

|Dyy|2
Im Zyy −

Im Dyy

|Dyy|2
Re Zyy , (F.119)

In Section 8.3.2 the brute-force comparison of the Jacobian matrix with respect to the
distortion parameters for impedance data is illustrated. The same comparison using the
same conductivity models (homogeneous halfspace and two blocks in a halfspace, see
Figure 8.5) is shown in Figures F.1 and F.2. Figure F.1 shows the true values of the matrix
elements, whereas the absolute values of the matrix elements are compared in Figure F.2.
Similar to the comparison for data values in impedance the J

c
elements calculated by the

code match the brute-force values well.
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Figure F.1: Figure showing the comparison of the brute-force with the calculated Jacobian matrix, Jc,
values for a homogeneous halfspace model (left) and a 3D model as shown in Figure 8.5
(right). Data values are in apparent resistivity and phase.
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Figure F.2: Figure showing the comparison of the brute-force with the calculated Jacobian matrix, Jc,
absolute values for a homogeneous halfspace model (left) and a 3D model as shown in
Figure 8.5 (right). Data values are in apparent resistivity and phase. (Note white colour
indicate absolute values less than 5.)
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