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Abstract

The aim of this study was to develop a set of tools – algorithms that would be translated
into computer programs at a later stage – to invert anisotropic magnetotelluric data within
a framework that integrates multi-disciplinary information relative to the subsurface.

The initial stages of research was aimed at understanding and summarizeing the avail-
able modeling strategies for the magnetotelluric method, to identify an inversion strategy
that was both accurate and effective, and to explore a method to allow information from
different disciplines to be used in the inversion process. Over a year was spent testing
the suitability of a selected genetic algorithm to be used in solving the inverse problem.
Even though this genetic algorithm was successfully used in different inverse problems
with magnetotelluric data, it was not successful here because of the lack of efficiency in
the framework that was used.

The final part of this study was dedicated to the development, testing and appraisal of
newly-developed codes based on the concept of ”mutual information”, information shared
between two images that can be quantified in a probabilistic sense. Preliminary studies
relating to synthetic tests were performed, and the results analyzed from a numerical
perspective. A real anisotropic one-dimensional dataset from the DIE magnetotelluric
station deployed in Central Germany was inverted. The resulting model was consistent
with the most up-to-date models from independent research, surpassing these models by
effectively constraining the amount of anisotropy needed to fit the data. These results
made the electrical conductivity values obtained in the studied region compatible with
laboratory measurements. The anisotropic two-dimensional approach is demonstrated on
a test model, and shown to be very effective at elucidating conductivity structures.
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Science is a way of trying not to fool yourself. The first principle is that

you must not fool yourself, and you are the easiest person to fool.

– Richard Feynman



1
Introduction

“Our understanding of how the Earth operates, particularly its tectonic history and secular
variation of tectonic processes, is severely limited by both our lack of knowledge, and the
intrinsic bias in knowledge, at depth” [Jones, 2007].

Despite the great improvements in both the quality and the quantity of geophysical data
in the last 20 years, the resolution of these data, due to both noise and the physical limits
of the geophysical methods, limits the level of detail that can be achieved by subsurface
imaging techniques. Recently, several authors have attempted a fusion between different
geophysical techniques, led by the idea that a specific method can improve the resolution
of some aspects where others are weak or lack it. This approach makes us sure that when
different imaging methods are carefully chosen, at least one of the many datasets used has
the resolution appropriate to constrain the subsurface image at the depth required for the
specific study undertaken. An alternative possibility is to increase the amount of measured
data of a certain type and model these data whilst sacrificing some approximations and
simplifications in the modelling schemes. With this strategy the maximum amount of
information is extracted from the data, avoiding artifacts caused by incorrect simplifying
assumptions or imprecise approximations.

In this thesis, a combination of these two strategies is attempted by the development
of an inversion scheme for magnetotelluric (MT) data that is able to link the electrical
conductivity distribution of the subsurface to a given reference model, computed from the
most adequate method available to bound the electromagnetic (EM) retrieved model. More
precisely, the MT data are inverted using the the subsurface as an anisotropic domain. The
study of electrical anisotropy is a key factor to understand the physical – and tectonic –
processes that take place in the upper mantle. Notwithstanding this consideration, many
authors continue to use simplified modeling schemes that are unable to work with data
measured in an anisotropic environment. By aiming to constrain the obtained image of

1



1. Introduction

the subsurface, we test the effectiveness of a mutual information (MI) based constraint.

The goals of this thesis are multiple. Firstly it is firm the intention to develop a com-
puter code to solve the inverse MT problem in an anisotropic domain. Despite the well-
known difficulties that affect inverse problems, we attempt to keep the model domain
characterization as detailed as possible. With this goal in mind, we decided to attempt
the solution of the MT inverse problem in an anisotropic layered half-space and in a more
complex two-dimensional (2D) anisotropic domain. In both cases we reject the commonly
used simplifying assumptions relative to the electrical conductivity tensor, and treat it in
its full, complete form.

Secondly, to make the constraint based on different geophysical models effective, we
attempt to explore a new way to keep the MT model close to the one chosen to “drive”
the inverse process. Despite its popularity in information theory, the MI is rarely – if
ever – used in geophysical inverse problems, but commonly used in many others areas of
science. For example, tomographic and imaging methods based on MI are broadly used
in image registration, computer vision or medical imaging.

We chose to present our research in three parts. The first part presents the theories
and mathematical settings that allow the new approach to the inverse problem, the object
of this thesis, to be assembled. In this part we present the physical approximations to
Maxwell’s equations and the formal methods that allow us to model and solve the MT
equations. We then present the fundamental strategies used to solve the inverse problems,
with special regard to the methods we select to solve the problem treated in this thesis.
Finally we present the basic definitions of information theory, using some examples to
help the reader to appreciate the versatility of the distance function used.

The second part includes results of tests performed using data from synthetic models
and from a real survey. Within this part, we highlight the problems and successes of the
tests themselves.

The third part summarizes our conclusions and outlooks, and includes further material,
such as a bibliography and a list of software used.

2



Part I

Theoretical background

The first step to be taken, is to study carefully the fundamental phenomenon

above described, and to examine all the various circumstances under which

it presents itself.

– Jean-Baptiste Biot



2
The Principles of the Magnetotelluric Method

The MT method is a frequency-domain EM technique that makes use of the natural EM
fields as signal source. Tikhonov [1950] and independently Cagniard [1953] and Rikitake
[1950, 1951a,b,c] were the first that developed the basic theory of MT. In this chapter the
fundamental equations of the MT problem will be obtained from Maxwell’s equations and
discussed in relation to physical Earth properties.

The electric field ~E and magnetic field ~B are vector fields that describe interactions
between electric charges, respectively stationary or moving with velocity ~v. ~E and ~B
values at any position ~r and at any time t are defined through the force ~F that in (~r, t) is
exerted on a point test charge. This is expressed through the Lorentz force

~F = q(~E + ~v × ~B). (2.1)

Defined in this way, ~E and ~B (and the auxiliary fields ~D and ~H used to describe in-
teraction between electromagnetic field and matter) are linked to the Maxwell equations’
sources, that are the starting point of the discussion proposed in this chapter, reported as
follows:

~∇ · ~D = %; (2.2)

~∇ · ~B = 0; (2.3)

~∇ × ~E = −
∂~B
∂t

; (2.4)



2. The Principles of the Magnetotelluric Method

~∇ × ~H = ~J +
∂~D
∂t
. (2.5)

The sources of electromagnetic fields, the charge density % and the current density ~J,
are not fully independent; they are subject to charge conservation formalized through the
continuity equation:

~∇ · ~J +
∂%

∂t
= 0. (2.6)

A number of assumptions are made in order to derive the equations forming the MT
problem:

1. Maxwell’s equations are obeyed. Cases in which this assumption is invalid are
unknown.

2. The Earth does not generate electromagnetic energy, only dissipates or absorbs it.

3. All fields are treated as conservative and analytic away from their sources.

4. For interpretation Magnetotelluric source fields are treated as uniform, plane-polarized
electromagnetic waves striking the Earth on a nearly vertical incidence.

5. Charge is conserved and the Earth is treated as an ohmic conductor, obeying the
Ohm’s law

~J = σ~E. (2.7)

6. Displacement currents ∂~D
∂t are negligible.

7. Linear relationship is assumed between ~D and ~E and between ~H and ~B and changes
in electrical permittivities ε and magnetic permeabilities µ, so

~B = µ0 ~H, (2.8)
~D = ε0 ~E. (2.9)

Situation in which assumptions 1 or 3 are invalid are unknown. Assumption 4 is dis-
cussed in the Section 2.6, while in regard to the assumption 7 it is the classic quasi-static
approximation. All of these assumption have been discussed in several publications (cf.
for example Cagniard [1953], Price [1962]; Price [1973] or Vozoff [1991]) and summa-
rized in Simpson and Bahr [2005]. Under these assumptions, Maxwell’s equations are

5



2. The Principles of the Magnetotelluric Method

approximated as follows

~∇ · ~E =
%

ε0
; (2.10)

~∇ · ~B = 0; (2.11)

~∇ × ~E = −
∂~B
∂t

; (2.12)

~∇ × ~B = µ0σ~E. (2.13)

Moving from the time-domain into a frequency-domain through Fourier transform,
derivatives simplify to multiplications, so

−
∂~B(t)
∂t

F
→ −iω~B(ω) (2.14)

at any angular frequency ω. Applying the divergence to equation 2.13, we obtain

~∇ ·
(
~∇ × ~B

)
= ~∇ ·

(
µ0σ~E

)
(2.15)

= µ0~∇ ·
(
σ~E

)
(2.16)

= µ0

(
σ~∇ · ~E + ~E~∇σ

)
. (2.17)

Using the well-known vectorial relation ~∇ ·
(
~∇ × ~a

)
= 0 for any ~a, it results from equation

2.17 that ~∇ · ~E = −
~E~∇σ
σ

. Replacing the term ~∇ · ~E in equation 2.10, it follows that

%

ε0
= −~E ·

~∇σ

σ
= −~E · ~∇ lnσ. (2.18)

Maxwell’s equations therefore become

~∇ · ~E = −~E · ~∇ lnσ; (2.19)
~∇ · ~B = 0; (2.20)
~∇ × ~E = −iω~B; (2.21)
~∇ × ~B = µ0σ~E. (2.22)

If the curl of equations 2.21 and 2.22 is taken, it is possible to reduce the four Maxwell’s
equations into two, which describe the behavior of the electromagnetic field under the
mentioned assumptions.

6



2. The Principles of the Magnetotelluric Method

~∇ × ~∇ × ~E = −iω~∇ × ~B (2.23)
= −∇2 ~E + ~∇

(
~∇ · ~E

)
. (2.24)

Substituting the term ~∇ · ~E with equation 2.19

∇2 ~E = iωµ0σ~E − ~∇
(
~E~∇ lnσ

)
. (2.25)

Similarly, it is computed from the curl of equation 2.22

∇2~B = iωµ0σ~B + µ0 ~E × ~∇σ. (2.26)

2.1. Homogeneous half-space

In order to derive the basic concepts of MT it is useful to explore the behaviour of equations
2.25 and 2.26 in the most simple environment examinable. In a homogeneous half-space
the conductivity σ inside the Earth is constant and equal to σ0. Equations 2.25 and 2.26
become

∇2 ~F = iωµ0σ~F (2.27)

with ~F = ~E or ~B respectively. Equation 2.27 is a diffusion equation with solutions in the
form

~F = ~F1eiωt−αz + ~F2eiωt+αz (2.28)

where α2 = iωµ0σ and α chosen so that R(α) > 0. In a homogeneous half-space that does
not contain any field source, ~F2 must be identically zero, because waves have to travel to
deepest z and reflections are not possible. It results that the solution to the magnetotelluric
problem in a homogeneous half-space has the form

~E = ~E0eiωt−αz; (2.29)
~B = ~B0eiωt−αz. (2.30)

Taking the second derivative with regard to depth of equation 2.28 yields

∂2 ~F
∂z2 = α2 ~F1eiωt−αz = α2 ~F. (2.31)

In the uniform half-space, assuming a planar wave source, ∂
2 ~F
∂x2 = ∂2 ~F

∂y2 = 0 and it is possible

7



2. The Principles of the Magnetotelluric Method

to relate equation 2.31 with equation 2.27, computing α

α =
√

iωµ0σ = (i + 1)
√
ωµ0σ

2
(2.32)

The inverse of α, C, is called the Schmucker-Weidelt transfer function:

C =
1
α

=
p
2
− i

p
2

(2.33)

where p = 1
Re(α) is the electromagnetic skin depth or penetration depth of an electric field

at the frequency f = 2πω into an half-space of conductivity σ.
The transfer function C links physical properties of the Earth and the measured EM

fields: combining equation 2.31 for the field ~E derived with respect to z

∂~E
∂z

= −α~E (2.34)

and equation 2.21, gives:

∂Ex

∂z
= −iωBy = −αEx. (2.35)

Thus,

C =
1
α

=
Ex

iωBy
= −

Ey

iωBx
. (2.36)

In this way it is possible to compute C from the measured fields ~E and ~B and combining
equation 2.36 and equation 2.32 the conductivity σ of the half-space is finally computed
through

1
σ

=
1∣∣∣α2
∣∣∣µ0ω =

∣∣∣C2
∣∣∣ µ0ω. (2.37)

This result justifies the name of transfer function, giving the idea that the Earth works as
a linear system for which the knowledge of C, computed by the measurement of the elec-
tromagnetic field, is sufficient to determine the physical properties of the Earth, namely
the sole conductivity σ.

In practice, the impedance tensor Ẑ is used in spite of C and is defined, in this one-
dimensional (1D) isotropic case, as

Ẑ =

(
0 Zxy

Zyx 0

)
=

(
0 Zxy

−Zxy 0

)
(2.38)

8



2. The Principles of the Magnetotelluric Method

with

Zxy = −Zyx =
µ0Ex

By
= −

µ0Ey

Bx
= iωµ0C [Ω] (2.39)

or equivalently

Zxy = −Zyx =
Ex

By
= −

Ey

Bx
= iωC

[
m · s−1

]
(2.40)

in which the only difference is the unit of measure: “field-unit” in the first case, “SI-units”
in the second. The SI-units will be used unless not otherwise indicated.

2.2. Layered half-space

Considering an m-layered mono-dimensional Earth model leads to a result that is different
from the elegant solution found for the homogeneous half-space. In a layered Earth,
waves travel both downwards and – due to reflection at inhomogeneous boundaries –
upwards; it is therefore mandatory to consider the complete solution 2.28, in which both
F1 and F2 terms are non zero in all layers except for the bottom-most . The solutions are
then connected at the interfaces using the correct boundary conditions, with the exception
of the lowermost half-space, where waves travel only downwards, leading to a solution
formally identical to 2.31.

In the generic n-th layer

En
x = ane−αnz + bne+αnz, (2.41)

and applying equation 2.21 yields

Bn
x =

αn

iω
(
ane−αnz − bne+αnz) . (2.42)

It follows that the transfer function inside the n-th layer is given by

Cn(z) =
En

x

iωBn
x

=
ane−αnz + bne+αnz

αn (ane−αnz − bne+αnz)
. (2.43)

Specifying the solution for the top of the layer, z = zn, and at the bottom, z = zn+1, gives:

Cn(zn) =
ane−αnzn + bne+αnzn

αn (ane−αnzn − bne+αnzn)
; (2.44)

Cn(zn+1) =
ane−αnzn+1 + bne+αnzn+1

αn (ane−αnzn+1 − bne+αnzn+1)
. (2.45)

9



2. The Principles of the Magnetotelluric Method

Calculating an from 2.45 and replacing it in 2.44, with some algebra, yields,

Cn(z) =
1
αn

αnCn(zn+1) + tanh [αn(zn+1 − zn)]
1 + αnCn(zn+1) tanh [αn(zn+1 − zn)]

, (2.46)

and by applying the boundary conditions required by C in order to be continuous at the
boundaries,

Cn(zn−1) = lim
z→z−n

Cn(z) = lim
z→z+

n

Cn+1(z) = Cn+1(zn) (2.47)

it is possible to directly obtain the Wait’s recursion formula (cf. for example Wait [1954]
or Wait [1981]):

Cn(zn−1) =
1
αn

αnCn+1(zn) + tanh(αnln)
1 + αnCn+1(zn) tanh(αnln)

. (2.48)

Equation 2.48 is useful to compute the response of a layered Earth to an MT source,
imposing the solution of a homogeneous half-space in the lowermost layer and then prop-
agating the solution to the top of the uppermost layer. With C1(z0 = 0) computed, it is
possible to compare the value of the transfer function computed on the Earth surface di-
rectly with field data. In this context the apparent resistivity ρa can be introduced as a
generalization of 2.37.

ρa(ω) = |C(ω)|2 µ0ω =
∣∣∣Ẑ(ω)

∣∣∣2 µ0ω. (2.49)

As the elements of Ẑ ∈ C it is possible to define the impedance phase φ representing the
phase difference between ~E and ~B:

φ = tan−1 Im(Ẑ)
Re(Ẑ)

. (2.50)

Apparent resistivity and phase are often used to represent magnetotelluric data. They do
not add any information to the impedance tensor, but are commonly used to display data
because of their relationship with physical properties. The apparent resistivity is in fact
the average electrical resistively taken on the volume of the half-space that is penetrated.
The phase can be expressed [Weidelt, 1972] as

φ(ω) =
π

4
−
ω

π

∫ +∞

o
log

ρa(x)
ρ0

dx
x2 − ω2 . (2.51)

Equation 2.51 indicates that – in an isotropic 1D domain – the ρa can be predicted by φ if
the scaling factor ρ0 is known.
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2. The Principles of the Magnetotelluric Method

2.3. Vertical Discontinuities: the 2D Case

In a more complex environment, the subsurface is not perfectly stratified, and more de-
tailed modeling has to be undertaken. A two-dimensions domain allows for a more ac-
curate characterization of the subsurface. In a Cartesian reference system with the z axis
directed downward, the electrical conductivity may be written as

σ = σ (y, z) , (2.52)

being independent of the x coordinate, which defines the “strike” direction of the subsur-
face structures. While the fact that the strike direction has a geological or a geodynamic
meaning is a matter of regional considerations, in the modeling problem the independence
of σ from x simplifies the MT equations and their solution. Bearing in mind that in this
configuration the x axis is parallel to the plane defined by the vertical discontinuities, it is
possible to derive the MT equations for this configuration. As the fields are invariant with1

x, from equations 2.12 and 2.13 it results:

~∇ × ~E = ı̂

(
∂Ez

∂y
−
∂Ey

∂z

)
+ ̂

(
∂Ex

∂z
−
∂Ez

∂x

)
+ k̂

(
∂Ey

∂x
−
∂Ex

∂y

)
= −ı̂ (iωBx) − ̂

(
iωBy

)
− k̂ (iωBz)

~∇ × ~B = ı̂

(
∂Bz

∂y
−
∂By

∂z

)
+ ̂

(
∂Bx

∂z
−
∂Bz

∂x

)
+ k̂

(
∂By

∂x
−
∂Bx

∂y

)
= ı̂ (µ0σEx) + ̂

(
µ0σEy

)
+ k̂ (µ0σEz)

where ı̂, ̂, k̂ are the unit vectors of the Cartesian reference system.
In this environment the induced electric and magnetic fields parallel to the y − z plane

are decoupled, so it is possible to define the E-polarization in which the electric field along
the x direction induces a magnetic field in the y − z plane, and a B-polarization in which
the magnetic field along x induces an electric field in y − z. The separated equations are:

E-polarization


∂Ex
∂y = iωBz
∂Ex
∂z = −iωBy

∂Bz
∂y −

∂By

∂z = µ0σEx

(2.53)

B-polarization


∂Bx
∂y = µ0σEz
∂Bx
∂z = −µ0σEy

∂Ez
∂y −

∂Ey

∂z = iωBx

. (2.54)

These two polarizations are also called TE-mode and TM-mode respectively. In this 2D

1that means that ∂~F
∂x = 0 for any ~F
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2. The Principles of the Magnetotelluric Method

scenario, it is fundamental to consider the boundary condition at the contact between the
two media.

Discontinuity Conditions

Consider the flux of ~D exiting from a cylindrical elementary volume τ in which the bases
S 1 and S 2 are parallel to the surface Σ of separation between the two media, as illustrated
in Figure 2.1. Integrating the equation 2.2 on the volume τ

E12
dn dl1

dl2S C

dh
dS1

dS2

E
dE12

Fig. 2.1.: Left panel: elementary volume τ cutter by the boundary between medium 1 and medium 2. Right panel: its section.
The d? quantities are the infinitesimal elements considered from the quantity ?.

∫
τ

(
~∇ · ~D

)
dτ =

∫
τ

%dτ (2.55)

and using the divergence theorem on the integral in the left side returns∫
τ

(
~∇ · ~D

)
dτ =

∫
S

~D · d~S . (2.56)

The limit as dh→ 0 is:

(D1n − D2n) dΣ = σΣdΣ (2.57)

in which D1n and D2n are the components on ~D normal to Σ and σΣ is the charge density
per unit of surface present on Σ itself

(D1n − D2n) = σΣ. (2.58)

Taking into account equation 2.4, it is possible to compute the flux of both sides through
the surface S that has C as boundary:∫

S

(
~∇ × ~E

)
· d~S = −

∫
S

∂~B
∂t

 · d~S , (2.59)
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2. The Principles of the Magnetotelluric Method

and using the Stokes theorem on the left side returns∮
C

~E · d~l = −

∫
S

∂~B
∂t

 · d~S . (2.60)

If the limit dn→ 0 is considered, the result is:

lim
dn→0

∫
S

∂~B
∂t

 · d~S = 0 (2.61)

because
(
∂~B
∂t

)
is finite and S → 0. In the same way it is possible to compute the contact

boundary conditions for the fields ~H and ~B. The contact conditions are so written{
D1n − D2n = σΣ ; B1n − B2n = 0

E1t − E2t = 0 ; H1t − H2t = JS
(2.62)

in which JS is the surface current measured in A · m−1.
The component of the field ~D – and because of the assumptions specified in the begin-

ning of this chapter, of the field ~E – crossing the boundary between the two media then
has to be discontinuous and the magnitude of discontinuity results in σ2

σ1
.

Impedance Tensor

Defined as the tensor linking ~E and ~B, the impedance tensor Ẑ is commonly used in MT
problems: (

Ex

Ey

)
=

(
Zxx Zxy

Zyx Zyy

)  Bx
µ0
By

µ0

 or ~E =
1
µ0

Ẑ~B. (2.63)

In this representation Zi j is defined as the ratio Ei
H j

and it is measured in Ω.
Ẑ contains information about configuration of the domains in which it is computed. In

a 1D domain, the tensor elements Zxx and Zyy are 0. In fact due to the lack of vertical
gradients in conductivity, the horizontal components of ~E can only induce orthogonal
magnetic fields and vice-versa. The relations between tensor elements are summarized in

1D
{

Zxx = Zyy (≡ 0)
Zxy = −Zyx

(2.64)

2D
{

Zxx = −Zyy

Zxy , −Zyx
(2.65)
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2. The Principles of the Magnetotelluric Method

Note that Zxx = −Zyy ≡ 0 if x (or y) are oriented towards the geoelectric strike direction.
In a more complex domain configuration (i.e. three-dimensional (3D) structures, aniso-

tropic media) the elements of the impedance tensor do not follow these simple conditions.

2.4. Anisotropic Forward Problem

Depending on the domain features, equations 2.25 and 2.26 can be solved to predict the
electromagnetic field measured on the Earth’s surface given a known electrical conductiv-
ity distribution σ(x, y, z). In an isotropic conductor the electric current density ~J and the
electric field ~E follow Ohm’s law. In this configuration ~E and ~J are always parallel, whilst
in a more general case the transport properties vary according to the direction. In this last
anisotropic environment the parallelism between electric field and electric current density
is ensured only in three mutually orthogonal directions in which ~E can be decomposed.
Mathematically in an anisotropic environment equation 2.7 is still valid, but in this case
the tensor that links ~E and ~J is a second-rank tensor σ̂ that takes the general form

σ̂ =

 σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 . (2.66)

The conductivity tensor σ̂ is symmetric and positive definite [Onsager, 1931; Yin and
Weidelt, 1999]: these features imply the existence of three mutually orthogonal eigendi-
rections – associated with the three different eigenvalues – in which ~E and ~J are parallel.
It is thus easy to find three angles α, β, γ and three eigenvalues σ1, σ2, σ3 such that

σ̂ = Rz(−γ)Rx(−β)Rz(−α)

 σ1 0 0
0 σ2 0
0 0 σ3

 Rz(α)Rx(β)Rz(γ), (2.67)

where Rn is the elementary rotation matrix around the axis n ∈ [x, y, z]. Explicitly

Rx(θ) =

 1 0 0
0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)

 , (2.68)

Rz(θ) =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 . (2.69)

Using this representation of the electrical conductivity it is possible to derive the solu-
tion to the MT problem in an anisotropic environment. This solution is presented in the
following section.
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2. The Principles of the Magnetotelluric Method

2.4.1. 1D Anisotropic Domain

In a layered 1D medium, Maxwell’s equations have to be simplified considering that in
such a domain, ∂

∂x = ∂
∂y ≡ 0 for both ~E and ~B. In the following, the MT anisotropic 1D so-

lution described by Pek and Santos [2002] is presented. In mono-dimensional anisotropic
conditions, Maxwell equations become (for each frequency ω):

∂Ex

∂z
= iωµ0Hy ,

∂Hy

∂z
= −σxxEx − σxyEy − σxzEz, (2.70)

∂Ey

∂z
= −iωµ0Hx ,

∂Hx

∂z
= σyxEx + σyyEy + σyzEz, (2.71)

Hz = 0 , σzxEx + σzyEy + σzzEz = 0. (2.72)

in each layer. These six equations can be rewritten as a system of second-order differential
equations as

∂2Ex
∂z2 + iωµ0


Axx︷             ︸︸             ︷(

σxx −
σxzσzx

σzz

)
Ex +

Axy︷            ︸︸            ︷(
σxy −

σxzσzy

σzz

)
Ey

 = 0

∂2Ey

∂z2 + iωµ0


Ayx︷             ︸︸             ︷(

σxx −
σxzσzx

σzz

)
Ex +

Ayy︷            ︸︸            ︷(
σxy −

σxzσzy

σzz

)
Ey

 = 0.

(2.73)

Due of the symmetry of σ̂, it is trivial to see that Axy ≡ Ayx, thus the EM field measured on
the surface depends only on the three values Axx, Axy, Ayy. Moreover, if these aggregated
conductivities are arranged in a 2 × 2 matrix A, it can be seen as an effective conductivity
tensor. In fact it is not possible to distinguish changes in σ̂ elements if A elements are
unchanged. A is again symmetric and positive definite, thus it is possible to write it in
terms of its principal components and an effective rotation around the z axis. In matrix
form:(

Axx Axy ≡ Ayx

Ayx ≡ Axy Ayy

)
=

(
cos βs − sin βs

sin βs cos βs

) (
A1 0
0 A2

) (
cos βs sin βs

− sin βs cos βs

)
, (2.74)

therefore, the MT problem in a 1D anisotropic layered medium can be simplified to an
equivalent problem of azimuthal electrical anisotropy in which in each layer two principal
directions are defined – the high- and low-conductive field propagation directions2 – and
are mutually orthogonal. The effective conductivity A1 takes place along the direction
indicated by βs if the matrix A is arrayed so that A1 > A2.

2waves propagate downwards.
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More information about the conductivity tensor would require knowledge of elements
violating the approximations made to derive the MT fundamental equations; i.e. source,
intrinsic Earth magnetism and so forth.

To compute the MT field on the Earth’s surface, system 2.73 must be solved. The
general solution is in the form of e±αz, and two modes relating to two different values of
α can be found:

α2
1,2 = −

iωµ0

2

Axx + Ayy ±

√(
Axx + Ayy

)2
+

2A2
xy︷  ︸︸  ︷

4AxyAyx

 , (2.75)

or, written in terms of A1,2,

α2
1,2 = −

iωµ0

2
(A1 + A2 ± |A1 − A2|) . (2.76)

In the isotropic case, Axx = Ayy = σ and Axy = Ayx ≡ 0, so that α2 = iωµ0σ and the
value of α is thus equivalent to the value just found for α in equation 2.32: in that case
the horizontal components of electric field are completely decoupled. If the α2

1,2 values
do not collapse to a single value, the horizontal components of electric field are linked by
relations 2.73. By substituting Ex = e±αz in one of the equations 2.73, it is easy find that
Ey =

iωµ0Axy

α2
1,2+iωµ0Ayy

Ex. The MT field in a homogeneous anisotropic layer of the 1D domain
can be expressed , at depth z, in matrix form, after some algebra, as follows:

F(z,ω)︷ ︸︸ ︷
Ex

Ey

Hx

Hy

 =

M(z,ω)︷                                                                                     ︸︸                                                                                     ︷
e+α1z e−α1z e+α2z e−α2z

iωµ0Axy

α2
1+iωµ0Ayy

e+α1z iωµ0Axy

α2
1+iωµ0Ayy

e−α1z iωµ0Axy

α2
2+iωµ0Ayy

e+α2z iωµ0Axy

α2
2+iωµ0Ayy

e−α2z

−
α1Axy

α2
1+iωµ0Ayy

e+α1z α1Axy

α2
1+iωµ0Ayy

e−α1z −
α2Axy

α2
2+iωµ0Ayy

e+α2z α2Axy

α2
2+iωµ0Ayy

e−α2z

−
iα1
µ0ω

e+α1z iα1
µ0ω

e−α1z −
iα2
µ0ω

e+α2z iα2
µ0ω

e−α2z



D︷  ︸︸  ︷
D+

1
D−1
D+

2
D−2

 (2.77)

where the vector D contains constraints that scale the amplitude of the downgoing (D−?)
and the upgoing (D+

?) wave modes in the layer. The elements of D have to be fixed to
respect the boundary conditions. In the lowermost layer, only the downgoing wave exists,
thus D+

1,N+1 = D+
2,N+1 ≡ 0. Moreover, at the top of each layer l the longitudinal field
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components must be continuous, so that:

Fl(zl, ω) = Fl+1(zl, ω), (2.78)

therefore

Dl = M−1
l (zl, ω)Ml+1(zl, ω)Dl+1,with l = 0, 1, ...,N. (2.79)

It is easy in this notation to propagate the field value from the the top of the basement to
the l-th layer

Fl(z, ω) = Ml(z, ω)Dl =

Sl(zl−z,ω)︷                  ︸︸                  ︷
Ml(z, ω)M−1

l (zl, ω) Ml+1(zl, ω)Dl+1 = ... =

= Sl(zl − z, ω)
[∏N

n=l+1 Sn(hn, ω)
]

MN+1(zN , ω)DN+1 = SΠl (z, ω)DN+1

(2.80)

in which Sn(hn, ω) = Mn(zn−1, ω)M−1
n (zn, ω), hn = zn − zn−1 and z ∈ (zl−1, zl). The only

two unknowns of equation 2.80 are the two elements of D relative to the upgoing waves
D−?,N+1. These values can be fixed by imposing, for example, the surface boundary condi-
tion. If, for instance, the magnetic field components are known at the surface z0 = 0, the
solution to the system{

Hx(0, ω) = SΠ
1 (z0, ω)3,2D−N+1,1 + SΠ

1 (z0, ω)3,4D−N+1,2
Hy(0, ω) = SΠ

1 (z0, ω)4,2D−N+1,1 + SΠ
1 (z0, ω)4,4D−N+1,2

(2.81)

allows for determination of all the elements of the vector D and thus to completely solve
the problem.

It can be proven [Pek and Santos, 2002; Simpson and Bahr, 2005; Jones, 2012] that the
solution of the one-dimensional anisotropic problem produces an impedance tensor with
the form

Ẑ =

(
Zxx Zxy

Zyx Zyy

)
=

(
Zxx Zxy

Zyx −Zxx

)
. (2.82)

The tensor representation is formally identical to the 2D isotropic case presented in equa-
tion 2.65. The main difference is that while in the 2D isotropic case it is always possible
in principle to find a strike angle θ such that Zxx = Zyy ≡ 0, in the 1D anisotropic case.
This rotation can be found if and only if in the layers exists only one single value for the
effective strike direction βs,i. This condition makes the problem symmetric with respect to
the plane defined by the axis z and the high-conductive (or low-conductive) direction. If
more than one value exists for i.e. βs,i , βs,i+1 for at least a certain i, then it is not possible
find any planar symmetry and no θ exists that reduces the 1D anisotropic impedance tensor
to an equivalent 2D one.
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2.4.2. 2D Anisotropic Domain

The strategy used to derive the equations that describes MT fields in an anisotropic two-
dimensional problem have been analyzed in detail in several classic and recent papers
[Reddy and Rankin, 1975; Pek and Verner, 1997; Li, 2002]. Maxwell’s equations become,
along the strike direction (x axis):

∂2Ex
∂y2 + ∂2Ex

∂z2 + iωµ0

(
σxx +

S zσxy

σyyσzz−σ
2
yz

+
S yσxz

σyyσzz−σ
2
yz

)
Ex+

+iωµ0S y
∂Hx
∂y − iωµ0S z

∂Hx
∂z = 0

(2.83)

∂
∂y

(
σyy

σyyσzz−σ
2
yz

∂Hx
∂y

)
+ ∂

∂z

(
σzz

σyyσzz−σ
2
yz

∂Hx
∂z

)
+ ∂

∂y

(
σyz

σyyσzz−σ
2
yz

∂Hx
∂z

)
+ ∂

∂z

(
σyz

σyyσzz−σ
2
yz

∂Hx
∂y

)
+

−
∂(S yEx)

∂y +
∂(S zEx)
∂z + iωµ0Hx = 0,

(2.84)

where S y = (σyzσyx − σyyσxz), S z = (σxzσyz − σzzσyx).
Given the partial differential equations 2.83 and 2.84, the MT problem is completed

by defining the boundary conditions at infinity and at each of the subdomain disconti-
nuities. The classic solution follows the hypothesis that the discontinuities in electrical
conductivity are bounded in the finite region that defines the model. Far from this re-
gion, the boundary conditions are defined by solutions of 1D sections at the edges of the
model. Inside the domain, across a discontinuity, the relations summarized in equations
2.62 require the continuity of

• Ex

• ∂Ex
∂n

• Hx

•
[
(σyyny+σyznz) ∂Hx

∂y +(σyzny+σzznz) ∂Hx
∂z

]
σyyσzz−σ

2
yz

−
(
S yny − S znz

)
Ex

where n = (0, ny, nz) is the unit vector orthogonal to the discontinuity. Equations 2.83 and
2.84, jointly with the boundary conditions completely define the problem for the electro-
magnetic field’s component along the strike direction Ex,Hx. The other components can
be computed via

Hy = − i
ωµ0

∂Ex
∂z , Ey =

σyz

σyyσzz−σ
2
yz

∂Hx
∂y +

σzz

σyyσzz−σ
2
yz

∂Hx
∂z + S zEx

Hz = i
ωµ0

∂Ex
∂z , Ez =

σyy

σyyσzz−σ
2
yz

∂Hx
∂y −

σyz

σyyσzz−σ
2
yz

∂Hx
∂z + S yEx

. (2.85)

In the two-dimensional anisotropic case the structure of the MT impedance tensor is
identical to the 3D case. Given that the components of the field are coupled via the ele-
ments of σ̂, it is not possible to decouple the two modes because of the lack of symmetry
in the problem.
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The explicit solution of the anisotropic 2D MT problem is performed numerically. In
order to produce a solution, a code from Pek and Santos, described in Pek and Verner
[1997]; Pek et al. [2003] has been used as an engine for the inversion scheme presented in
this thesis. An important point is that, after the projection of the problem on a numerical
mesh, the problem itself can be solved by solving a system of linear equation in the form

Ax = b (2.86)

where A is a banded matrix of coefficients, b contains the problem boundary conditions
and x is the vector containing the field values at each mesh point. The linear form obtained
by the use of finite-difference methods is extremely useful. In fact, the standard method
used to compute the parametric sensitivities with respect to the subdomains conductivi-
ties3 is to differentiate directly the system 2.86 respect to the parameter p, obtaining

A
∂x
∂p
≡ Axp = −

∂A
∂p

x +
∂b
∂p
≡ rp, (2.87)

a system characterized by the same coefficients matrix A that characterizes the finite-
differences system 2.86. If a Gaussian elimination procedure is used to solve 2.86, the
complete elimination procedure for the matrix A needs to be carried only once, storing
the result to be used to solve both systems 2.86 and 2.87, only by changing the right hand
side in the back-substitution process.

2.5. Conductivity in Earth Materials

The interest in knowledge of properties, and specifically in electrical properties of Earth
materials, is driven from the desire to understand the composition, and more in general
the dynamics, that rules the internal part of our planet. In an inverse problem solution it
is important to know the limits of the estimated parameters. Due that the conductivity is
a physical parameter, it is bounded by its physical nature, and in the following the limits
of the electrical conductivity values are explored.

Due that the conductivity is defined by the Ohm’s law

J = σ̂E (2.88)

where σ̂ is the conductivity tensor, E electric field and J density of current. In the next
sections the main ways of conduction of electrons will be presented and results from
laboratories experiments on these mechanisms will be presented. It is important to bear
in mind that J in 2.88 depends on pressure and temperature, as σ̂ is a function of physical
state, then environment conditions are essential to define conductivity σ̂. In other terms, it

3which are needed to solve the 2D MT inverse problem, refer to Chapter 4
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is essential to consider the depth at which we are viewing a certain material and a certain
way of conduction.

These two kinds of information, material properties and conduction mechanisms, can
be gathered to an effective idea on the value on conductivity σ̂ in the different layers and
in the different materials.

2.5.1. Charge Transport in Crustal and Mantle Materials

The mechanisms of conduction in materials derive from the materials’ physical and chem-
ical properties It is possible discriminate different mechanisms of charge conduction, each
one of these mechanisms is predominant with respect to the others in determinate condi-
tions. MT measurements show that the Earth’s crust has zones of different conductivity
variating only with depth coexisting with structures that have laterally heterogeneities in
electrical conductivity. Some of these structures are recognizable in the mantle as well.

In the upper crustal layer, rocks are mainly characterized by pores and fractures. Under
these conditions, the electrolytic process is the dominant mechanism of conduction; in
fact, pores in rocks are easily filled with electrolytic fluids. In the environment of pressure
p and temperature T of the upper crust, salinities of fluids can vary from few grams per
liter to more than 150 g of NaCl per l. In these conditions the electrolytic conduction is
the most important mechanism of conduction [Nover, 2005].

In special geological environments, like fault structures, high electrical conductivity
is assumed to be caused by electronic conduction through interconnected graphite films.
In these cases, it is debated if the high value of electrical conductivity is caused by the
the presence of saline liquid inside the rocks or by the graphite films on the fault edges.
Both these models could justify the high electrical conductivity in faults and the debate
regarding the most important source for conductivity is open.

Increasing in depth, with the increases in p,T in the lower crust and upper mantle,
semi-conduction is the dominant transport mechanism. It is strongly dependent on T
and on oxygen partial pressure, by the importance of oxygen in oxidizing processes that
controls the number of charges available for semi-conduction processes, for example the
quantity of Fe3+ or Fe2+ ions.

In volcanic zones, it may happens that T can be high enough to cause conductivity
anomalies. These can be explained either by the formation of partial melts or by the
presence of saline fluids, in which conductivity is definitely higher than in solid rocks.
These values of T can be anyway considered realistic just for volcanic areas or at deep
depths in the mantle (cf. e.g. Shankland and Waff [1977]).

In the next sections details about this transport mechanisms will be discussed.

2.5.2. Electrolytic Conduction

Electrolytic conduction, also called ionic conduction, occurs when ions under the influ-
ence of an electric field ~E are free to move in a liquid (more rarely in a solid). Micro-
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Fig. 2.2.: logσ versus reciprocal temperature for a tuff sample between 23 and 95oC, for both wetting(a) and drying (b) at varying
saturations. Activation energies range between 0.15 and 0.28eV[Roberts, 2002]
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structures that exist in rocks in the upper crust are assumed to be filled by electrolytic
fluids. The magnitude of the electrolytic conduction is influenced by the following fac-
tors:

concentration of ions: electrolytic conduction increases as the concentration of ions in
the electrolytic solution increases;

pressure: high pressure conditions can modify the geometry of pores and fractures.
In these conditions, the system of pores and electrolytic fluid may be treated as
capacitors;

temperature: temperature influences the solubility of salts in the electrolytic fluid.

Electrolytic liquids can affect the value of electrical conductivity σ as shown in labora-
tory experiments [Roberts, 2002]. In these tests, the electrical resistivity ρ = 1

σ
of densely

welded tuff (Topopah Spring tuff) was measured as a function of saturation by water be-
tween 23o and 145oC. Measurements in the temperature window 23◦C < T < 95◦C at
ambient pressure and measurements up to 145◦C at pressures up to 5.5MPa were tak-
enin an externally heated pressure vessel. Pore and confining pressures were controlled
independently, allowing electrical measurements as the sample was subjected to boiling
conditions. At low saturation ≤ 20% an exponential dependency of resistivity is reported
[Roberts, 2002].

ρ = ρeCS W (2.89)

where C is a constant and S W is the saturation. Results of these measurements are reported
in Figure 2.2

2.5.3. Electronic Conduction

Electronic conduction may increase the electrical conductivity by orders of magnitude if
the medium in which it happens, like ores or graphite, form an interconnected network.
In that cases, from 2.88, σ can be calculated directly as

σ =
|J|
|E|

(2.90)

The origin of carbon at great depths is not clear. Greenschist facies p,T conditions were
found to be sufficient to transform carbon into graphite, but the source of carbon is still
uncertain. These conditions are found at pressure p < 0.6 GPa, T > 500◦C [Nover
et al., 2005]. The electrical properties of graphite depends on the structural arrangement
of the Basis Structural Units (BCU). One of the reasons supposed to explain anisotropy
in electrical conductivity is caused by the bonding forces within the hexagonal carbon
rings [Nover et al., 2005]. Carbon gas, such as CO2 and CH4, are supposed to be source
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Fig. 2.3.: Conductivity model for the upper mantle calculated from laboratory data (black line) with the addiction of low mantle curve
for perovskite+magnesiowustite having bulk iron fraction Fe

Fe+Mg = 0.11. Shaded areas illustrate the effect on the model of a ±100o

temperature variation. Refer to [Xu et al., 1998] for other information.

of graphite at depth, but the causes and mechanisms of their reactions are not completely
clear.

2.5.4. Semi-conduction

Within the mantle, olivine – the principal constituent of the mantle itself – presents a
behaviour of semi-conduction. In these areas, models obtained by MT sounding measure-
ments present discontinuities and jumps in conductivity values up to 1.5 orders of magni-
tude or more4. In figure 2.3 these measurements are shown as reported in Xu et al. [1998].
At higher temperature gradient conditions, the increased thermal energy can permit some
electrons in the crystalline lattice to jump from the valence band into the conduction band
in the solid structure. This leaves a hole in the valence band that acts as another charge
carrier. In this situation the current density J is given by

J = Je + Jh = (−q)neve + qnhvh (2.91)

where q is the electron charge, ne, nh and ve, vh are respectively the densities and velocities
of electron and hole charge carriers. If the mobilities of holes and electrons µh = |vh |

|E| ; µe =

4it depends on the model
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|ve |
|E| are considered, we obtain for the density of current

J = q(neµe + nhµh)E (2.92)

If only the charges provided by semi-conduction are considered – n = nh = ne – the
Equation 2.92 become

J = qn(µe + µh)E = σE. (2.93)

The dependence ofσ on T is then easy to show; in fact the concentration of charge carriers
n depends on temperature as follow

n = C(kBT )
2
3 e

−Eg
2kBT (2.94)

in which C is a constant that depends on the materials, kB is the Boltzmann’s constant and
Eg is the energy band gap.

These equations describe the condition of transport in semiconductors in a minimum
conduction regime. In fact, if other charge carriers are available the value of σ may be
significantly higher, depending directly on the density of charge carriers and indirectly on
temperature.

Olivine-Spinel

From the early seventies, the importance of oxygen fugacity and temperature in processes
of charges transport in olivine was clear [Duba and Nicholls, 1973]. In laboratory ex-
periments with olivine containing 8 − 12% of fayalite, as is supposed to be in typical
mantle olivine, temperature is the main parameter that controls the number and mobility
of charge carriers, while oxygen fugacity dominates the process of oxidation of Fe2+ to
Fe3+. This oxidation makes more charge carriers available in the form of both electrons
and holes [Duba and von der Gönna, 1994]. In figure 2.4 results of these experiment are
summarized.

To obtain these results, the presence of water in the rocks is needed to have oxidation
reactions that allow the presence of holes and electrons.

With regards to the dependance of σ on frequency of the source field, it has been shown
that for olivine and synthetic forsterite and fayalite, in the range between 1 to 100 kHz,
the influence of the grain boundary effects may be neglected if the temperature is above
800oC. For frequency below 100 Hz, electrodes influence the measurements [Nover,
2005]. Fayalite does not show any energy dispersion in range between 100Hz-20kHz and
temperatures up to 1200oC. Measurements of electrical conductivities and thermoelectric
effect S 5 as functions of temperature in the range from 1000o to 1500oC and oxygen

5Seebeck effect is the phenomena of the conversion of temperature differences directly into electricity.
More precisely the potential difference is given from the relation V =

∫ T1

T2
[S B(T ) − S A(T )]dT where
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-

Fig. 2.4.: Arrhenius diagram of the conductivity of fayalite at various oxygen partial pressure in field of olivine. Reducing conditions
are given by buffer mixture FQI-fayalite quartz iron, whereas oxidizing conditions were established using a fayalite quartz magnetite
(FQM) buffer mixture. WM-wustite magnetite; G-Graphite; IW-iron wustite(von der Gonna1997)[Nover, 2005]

partial pressure in the range from 10−10 to 104 Pa were done. The two most striking
observations are strong conductivity anisotropy in forsterite and a sign change in S in
olivine at 1390°C. These results are interpreted to show that both materials have mixed
ionic and extrinsic electronic conduction under these conditions [Schock et al., 1989].
Anyhow Constable and Roberts [1997] published results that show that at least one other
conducting defect species must be invoked to explain the observed magnitude and oxygen
fugacity dependence of thermopower. An electron-polaron model cannot be made to fit
the conductivity and thermopower data well, but a polaron-magnesium vacancy model fits
the data if a constant polaron or magnesium vacancy term is included. Consequently the
transformation from polaron dominance in conduction to magnesium vacancy dominance
at the threshold of about T = 1300oC was inferred [Constable and Roberts, 1997].

On the other hand, recent experiments show that, in the mantle, olivine behavior is
different. In fact recent studies [Takashi Yoshino and Katsura, 2008] show that the main
conduction mechanism in the mantle’s olivine is dominated by electron conduction. In
this way, the presence of water in the mantle is no longer needed. Result of this work are

S A, S B are the Seebeck coefficients of materials A and B and T1,T2 are the temperatures of the two
junctions.
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shown in figure 2.5.

Fig. 2.5.: Electrical conductivity of waldesite and ringwoodite as a function of reciprocal temperature. a, Waldesite; b, ringwoodite.
The symbols indicate raw data for each sample with different water contents. Previous results from [Xiaoge Huang and Karato, 2005]
[Xu et al., 1998] are shown as function of water content. Colored thick dashed lines indicate the electrical conductivity. Numbered
boxes denote the estimate water content. [Takashi Yoshino and Katsura, 2008]

The presence of water is thus required to explain the oxidation reactions that allow the
presence of electrons-holes pairs, but is not required to justify a conductivity value that
can be caused by the electron conduction on its own.
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These results lead to both a different global conductivity model, reported in figure 2.6
and to a debate between authors [Karato and Dai, 2009], [Yoshino and Katsura, 2009]

Fig. 2.6.: [Takashi Yoshino and Katsura, 2008] Electrical conductivity profiles beneath the Pacific, and the estimated water content
in the mantle transition zone.The orange and bluish area represent geophysically observed conductivity profiles in the pacific from
[Kuvshinov et al., 2005] and the continental mantle from [Olsen, 1998], [Tarits et al., 2004] and [Neal et al., 2000], respectively. Light
green solid line denotes previous experimental result of Xu et al.[Xu et al., 1998].

2.5.5. Partial Melts

One hypothesis to explain unusual high conductivities inferred for the zone within lower
crust and upper mantle - and in volcanic areas - is the existence of partially melted mate-
rials. This phenomena can occur in certain [p,T ] conditions, and it depends on chemical
composition of partial melted minerals.

Using the effective medium theory [Shankland and Waff , 1974] high electrical conduc-
tivity anomalies in the upper mantle were explained as caused by partial melting [Shank-
land and Waff , 1977]. It was assumed that the melt fraction forms an interconnected
network along the grain boundaries of the olivine matrix. In the same article [Shankland
and Waff , 1977] a conductivity difference of two order of magnitude was reported if a
network of this kind was present. Melt conductivities present a very low dependence on
chemical composition, and they are totally independent on oxygen fugacity [Shankland,
1979].
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The influence of melt composition was studied for olivine and a tholeiitic mid-ocean
basalt [Roberts, Jeffery J., 1999]. Results suggest that the larger part of variation in elec-
trical conductivity depends on temperature rather then on composition. When the temper-
ature is high enough to start the melting process (> 1120oC) the presence of partial melts
cause an increment in the measured electrical conductivity.

2.6. Field Sources

One of the most restrictive assumptions in modeling MT data is the plane wave approxi-
mation of the source. Commonly the source for MT experiments is from EM interaction
that happens between ionosphere and magnetosphere and solar winds or from lightening
storms.

Actually this approximation is good enough to model data only in certain zones of the
Earth. Complex effects due to current flows in the ionosphere and magnetosphere may
cause an appreciable distortion in data, especially if the station is close enough to latitudes
close to the magnetic equator or the magnetic poles.

In the MT technique, both lightening storms and solar winds are used as primary field
sources to explore the Earth’s interior. In both cases, the perturbation induced in the elec-
tromagnetic field is propagated in the atmosphere. Because of this role of signal propaga-
tion media, it is essential in MT surveys to understand the complex interactions between
the EM field and the atmosphere, especially in the uppermost layer of the atmosphere it-
self. Perturbations in the ionosphere and magnetosphere cause, of course, perturbations
on the fields measured on the Earth’s surface. If these effects are negligible, the plane
wave approximation is convenient to model survey data.

2.6.1. Ionosphere and Magnetosphere

The ionosphere is a shell of electrons and electrically charged atoms and molecules that
surrounds the Earth, stretching from a height of about 50 km to more than 1000 km. It
owes its existence primarily to ultraviolet radiation from the sun.

The lowest part of the Earth’s atmosphere, the troposphere, extends from the surface
to about 10 km. Above 10 km is the stratosphere, followed by the mesosphere. In the
stratosphere incoming solar radiation creates the ozone layer. At heights of above 80 km,
in the thermosphere, the atmosphere is so thin that free electrons can exist for short periods
of time before they are captured by a nearby positive ion.

Solar radiation, acting on the different compositions of the atmosphere with height,
generates layers of ionization:

• The D region is the innermost layer that exists approximately between 50 km and
95 km above the Earth’s surface. In this region the ionization is low and it is caused
mainly by Lyman series hydrogen radiation ionizing nitric oxide (NO).
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Fig. 2.7.: Regions and the main ion constituents of the ionosphere, the typical altitudes of the aurora, as well as a sketch of Hall and
Pedersen conductivity profiles. Illustration by Mikko Syrjäsuo (Finnish Meteorological Institute). [Chave and Jones, 2012]

• The E layer is the middle layer, 90 km to 120 km above the surface of the Earth.
Ionization is due to soft X-ray (1-10 nm) and far ultraviolet (UV) solar radiation
ionization of molecular oxygen (O2).

• The F layer is 120 km to 400 km above the surface of the Earth. It is the top-
most layer of the ionosphere. Here extreme ultraviolet (10-100 nm) solar radiation
ionizes atomic oxygen. The F layer consists of one layer at night, while in the pres-
ence of sunlight it divides into two layers, labeled F1 and F2. These F layers are
responsible for most skywave propagation of EM signal at high radio frequencies.

Other than these layers, a rare situation of intense ionization can exist which can lead
to a propagation environment close to the one caused by the E layer; it is named sporadic
E layer (ES ).

The magnetosphere of Earth is a region in space whose shape is determined by the
extent of Earth’s internal magnetic field, the solar wind plasma, and the interplanetary
magnetic field. In the magnetosphere, a mix of free ions and electrons from both the solar
wind and the Earth’s ionosphere is confined by electromagnetic forces that are much
stronger than gravity.

In spite of its name the magnetosphere it is distinctly non-spherical. All known plan-
etary magnetospheres in the solar system possess more of an oval tear-drop shape due to
the effects of the solar wind. Planets that have an internal magnetic field, caused by core
dynamics, have a protecting magnetosphere, whereas the surface of planets that do not
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Fig. 2.8.: Typical shape of magnetosphere. It is immediately recognizable the conical symmetry around the Sun-Earth axis.

are constantly irradiated by the solar wind.
On the side facing the Sun, the distance to its boundary (which varies with solar wind

intensity) is about 70,000 km (10-12 Earth radii or RE, where 1 RE=6371 km; unless
otherwise noted, all distances here are from the Earth’s centre). The boundary of the
magnetosphere (”magnetopause”) is roughly bullet shaped, about 15 RE abreast of Earth
and on the night side (in the “magnetotail” or “geotail”) approaching a cylinder with a
radius 20-25 RE. The tail region stretches well past 200 RE, and the way it ends is not
well-know.

2.6.2. Electrojets

An electroject is an electric current which travels around the E region of the Earth’s iono-
sphere. There are three electrojets: above the magnetic equator (the equatorial electrojet),
and near the Northern and Southern Polar Circles (the Auroral Electrojets). Electrojets
are currents carried primarily by electrons at altitudes from 100 to 150 km. [Mareschal,
1986]

These currents are particularly interesting in MT because while the MT plane wave crite-
rion is usually satisfied, in areas near the auroral and equatorial electrojets the distortions
in the fields sources (i.e. the violation of plane-wave assumption) may seriously hamper
the interpretation of data [Mareschal, 1986].
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Fig. 2.9.: (A) a schematic representation of various magnetospheric currents, (B) simulation of these currents with a near-Earth model
(figure from Rostoker et al. [1982]).

2.6.3. Modeling Strategies

The most trivial solution in modeling data affected by source distortion is selection of
events to be analyzed in conjunction with robust techniques (cf. e.g. Jones and Spratt
[2002]). While this method is acceptable in theory, there are two big consequences to face.
Primarily, selection of data is done a posteriori and thus a lot of data may result useless
[Viljanen et al., 1999]. Secondly, statistically robust techniques are routinely performed,
introducing a bias in an unpredictable way, so that conductivity image obtained with these
techniques may return a robust result that is inconsistent with respect to the measured data.

The other strategy consists in a complex model of atmospheric electric currents, that are
not laterally constant giving up the plane wave MT classical assumption [Viljanen et al.,
1999; Chave and Jones, 2012]. This technique is rarely implemented, anyway.

2.6.4. Natural EM Source from Ionosphere

In regions where the Earth can be treated as a horizontally stratified conductor, all induced
currents, regardless of the actual geometry of the source, flow in horizontal planes and,
thus, an ionospheric ’equivalent’ current system is sufficient to represent the fields relevant
to the induction process. An exact representation of the equivalent current system is not
often easy to achieve, either in the wave number or space domain, and, at short periods
(T less than a few hours) is only performed satisfactorily at mid-latitudes. Figure 2.9
illustrates the electric currents lying in the ionosphere and magnetosphere.
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2.6.5. Diurnal Variations

Magnetic variations at all latitudes exhibit the effects of diurnal variations. A pure diurnal
variation is, by definition, essentially due to DC magnetospheric currents fixed in inertial
space, and gives rise to apparently oscillating fields at a given geographical position as
the earth rotates within the magnetosphere [Mareschal, 1986].

2.6.6. Mid-Latitude Variations

At latitude below 50o, variations are mainly caused by the solar quiet (Sq) current system.
The major cause of these variation is the effects of atmospheric winds displacing charged
particles across geomagnetic field lines, and thus generating electric fields and currents
where the ionospheric conductivity is large enough.

Most of the current still appears to be concentrated in the ionosphere E-region [Mareschal,
1986].

2.6.7. Low-Latitude Variations

The existence of the daytime equatorial electrojet can essentially be explained by an ex-
tension of the Sq electric field to the equatorial regions, where E is basically parallel to the
equator. In those region, B is virtually horizontal, and thus an effective Cowling channel6

is created along the equator with its characteristic enhanced conductivity and currents.
Note that the equatorial electrojet current displays longitudinal gradients, with regional

and seasonal variations. Such variations are known to be strongly influenced by the asym-
metric way in which the Sq vortices intrude on the equatorial regions in the northern
and southern hemispheres, and must therefore be reproducible by any realistic electrojet
model. A good model must also be able to generate the disturbance fields associated with
the electrojet [Mareschal, 1986].

2.6.8. High-Latitude Variations

The problem of extending the Sq variations to the polar regions is augmented by the ever
present effect of various current flows generated by different physical processes mapping
via field lines to different parts of the magnetosphere.

A simple model of the possible interaction, illustrated by Zanetti et al. [1983], is repro-
duced in Figure 2.10. Within the electrojets themselves, the ionospheric current density J
is given by

J = σPE⊥ + σH
B × E⊥
|B|

6Cowling channel: it is a channel of highly ionized air in which electronic currents develop readily.
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Fig. 2.10.: Possible interaction between field-aligned currents, convection electrojets and cross-polar cap current flow in the sunlit
polar ionosphere [Zanetti et al., 1983].

where E⊥ is the component of the electric field orthogonal to B. The conductivity in the
auroral zone being primarily due to precipitation of electrons energized in the magneto-
sphere, the conductance has a minimum in the morning sector (7-10 S) and a maximum
in the midnight sector (10-20 S). The electric field pattern always reflects the large scale
magnetospheric convection, E⊥ being primarily poleward in the region of the eastward
electro jet (afternoon local time) and equator-ward in the region of the westward electro-
jet (morning sector).

All that probably matters in terms of modeling high-latitude localized sources for in-
duction studies, is to know that most current systems above 55o of geomagnetic latitude
can be represented by various combinations of the two basic current loops shown in Figure
2.11 (Mareshal, 1984).

2.6.9. Effects on MT and GDS

In the last section lateral variations in ionospheric current are presented. All these effects
cause distortion in EM field on the Earth surface. Because of this is important to keep in
mind these effects using EM techniques to obtain a conductivity map.

Figure 2.12 shows an example of the differences between the response of a conductive
Earth to a source of plane wave (dotted line) and a source in which westward traveling
surge (WTS) is modeled (solid line).

The difference and the lack of regularity in EM response is evident [Mareschal, 1986].
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Fig. 2.11.: Models of three-dimensional current loops always present in the high-latitude regions [Kisabeth and Rostoker, 1977]. The
E-W(N-S) loop is basically Hall (Pedersen) current flow.

2.7. Dimensionality and Distortion of Magnetotelluric
Data

Notwithstanding the elegant theory developed in the past decades to solve the MT prob-
lem, the schematizations used to restrict the real world in a mathematical model force to
distinguish between a “good” MT response and a “distortion” effect, the good response
being the part of MT data that follows the superimposed modeling schema and the distor-
tion the deviation of real data from the schema chosen to model the problem. Of course,
the primary step to perform to obtain a reliable model for the subsurface conductivity is
the selection of an appropriate domain in which to solve the problem.

The formal way used to distinguish between MT responses and distortion makes use
of the formal properties of the impedance tensor highlighted in equations 2.64, 2.65 and
2.82. Far away from the goals of this thesis is an exploration of the huge production of
tools developed in the years to discriminate and remove the distortion from MT data. Bear-
ing in mind that the problem exists, we appreciate the relation of theoretical impedance
tensor. A general approach to the problem of distortion recognition and removal can be
found in Simpson and Bahr [2005]. A more detailed analysis is presented by Alan G.
Jones in Chave and Jones [2012] and references therein. As a general rule, before pro-
ceeding to model MT data, the so-called data dimensionality has to be fixed. This process
is largely empirical, due that the condition expressed by the relations 2.64, 2.65 and 2.82
are necessary to model data in respectively 1D, 2D and 1D anisotropic domain, but they
are not sufficient to ensure that the chosen dimensionality is adequate to model the data
themselves. In this thesis, when real data from central Germany are modeled, the distor-
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tion removal procedure developed by Jones [2012] has been used.
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Fig. 2.12.: Absolute values and phases of the apparent resistivities ρxy and ρyx as functions of period in the case of the WTS model.
The plane wave value is plotted as a dotted line.
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From Field Measurements to Impedance Tensors

3.1. Data Processing

So far, the theory supporting MT modeling has been described without any detail rel-
evant to field measurements. This section will describe MT data processing and data
analysis. MT data collected during a typical survey consist of a time record of elec-
tromagnetic field components, particularly a record of S(t) is sampled, with the signal
S ∈ [Ex; Ey; Bx; By; Bz]. In an ideal situation, the treatment of these data is straightfor-
ward.

• Divide the recorded data into segments of equal lengths, the length depends on the
lowest frequency needed;

• multiply each segment by an appropriate tapering function in order to minimize the
spectral leakage (cf. e.g. Harris [1978]);

• (Fourier) transform each segment;

• compute the auto– and cross–spectrum relative to each segment;

• compute the mean and variance relative to each spectral component and

• compute the elements of the impedance tensor with relative errors.

In terms of implementation this procedure can be performed with a number of different
techniques, each developed to solve a particular theoretical or practical request. In the fol-
lowing section the straight–forward basic theory is presented, referring to other authors’
works when needed in order to present solutions to some of the well-known problems
affecting MT data processing. The component relative to each required frequency ωi is
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computed via the mean of the discrete Fourier transform (DFT)s of each segment xl

S(ωi) =

N
L−1∑
k=0

(k+1)·L−1∑
l=k·L

xle−iωil. (3.1)

Due to the fact that the multiplication of the signal with a boxcar function – needed to
produce the segments – in the frequency domain is equivalent to a convolution of the
transformed signal with a sinc1 function that causes spectral leakage, the DFT is computed
by multiplying each segment by an appropriate window function. Usually the standard
window functions used in signal processing, namely the Hann window and the Humming
window [Nuttall, 1981] are sufficient to avoid spectral leakage in the transformation of
EM time-series.

With the field components expressed in the frequency domain, the estimation of the
impedance tensor components is obtained by the solution of

Ex = ZxxHx + ZxyHy (3.2)
Ey = ZyxHx + ZyyHy (3.3)

Since every physical measurement is affected by noise we have to estimate errors for Zi j

(i, j ∈ [x; y]) and there will not be any couple Zii,Zi j that can satisfy exactly 3.2 or 3.3.
In 1971 Sims et al. [1971] suggested the minimization, in a least–squares sense, of all the
points from the plane represented by the Equation 3.2 (or 3.3). In the same paper Sims
et al. [1971] gave the expression of the impedance tensor elements in term of DFT of fields
components, namely

Zxy =
HxH?

x · ExH?
y − HxH?

y · ExH?
x

HxH?
x · HyH?

y − HxH?
y · HyH?

x

, (3.4)

with similar expressions given for the other impedance tensor elements. These compli-
cated expressions are chosen because they are not biased by random noise on the electric
channel, but only by the random noise affecting the magnetic channel. This choice is
made because the magnetic channels are usually less affected by random noise, and the
estimations of Zi j based on the expression 3.4 are considered to be more reliable.

A number of techniques have been developed over the years in order to produce the best
estimation possible of the MT transfer functions [Chave and Jones, 2012], the following
are the most–commonly used:

• In 1979 Gamble et al. [1979a] presented the so-called remote reference method:
when more than one instrument are recording at the same time, it is possible to
obtain improved quality transfer functions. The magnetic field is, in the plane–
wave approximation, either equal at any point on the surface (in a 1D domain) or

1the sinc function is defined as sinc(x) = sin x
x
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changes coherently (in a 2D domain). When the noise of the magnetic field relative
to the remote site is orthogonal to the noise of the magnetic field relative to the local
site it is possible to compute unbiased estimates [Gamble et al., 1979b].

• Jones and Jödicke [1984] proposed a coherence–based method. The weight of each
segment is then given from the coherence between the electric and magnetic fields,
that under ideal circumstances should be ' 1.

• The reduction of the weight of outliers improves the robustness of the described
procedure, i.e. it is less influenced by segments that for whatever reasons fall far
from the mean [Egbert and Booker, 1986; Chave and Thomson, 1989].

• In 2003 Chave and Thomson [2003] introduced the bounded-influence method to
identify and reduce the influence of problematic leverage points that bias the esti-
mated transfer functions.

3.2. The Distortion Problem

As stated in Section 2.7, the term distortion is used to indicate any effect that distorts the
behavior of a dataset with respect to the superimposed modeling scheme and that is not
caused by the field sources approximation. In detail, since the MT fields are related to both
the electric and the magnetic natural fields, it is possible to operate an initial distinction
between galvanic (i.e. electric field) and inductive (i.e. magnetic field) distortion. Both
these effects are, in principle, non-negligible and may lead to major problems in terms of
MT interpretation in different depth ranges. Jiracek [1990] suggested that in fact while
the galvanic distortion effect saturates as the frequency increases, the inductive distortion
effect will increase to saturation as the frequency decreases.

3.2.1. Galvanic Distortion Effects

Let us imagine the existence of a small, finite–dimension, conductive (or resistive) het-
erogeneity embedded in a uniform medium. The exiting electric field – the primary
field – forces a charge accumulation on the discontinuity boundary. This accumulation
of charges is the source of a secondary field that distorts the primary electric field. This
effect is known as galvanic distortion, and depends mainly on the electrical conductivity
of the heterogeneity [Jiracek, 1990].

3.2.2. Inductive Distortion Effects

The currents induced in the embedded body by the primary electromagnetic field are,
as described by the Equation 2.4 (the Faraday-Neumann Law), sources of a secondary
magnetic field that distorts the primary magnetic field.
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3.3. Data Analysis

The process that removes the removable distorting effects takes the name of data analysis.
In the cases in which it is correct to neglect the inductive distortion, the measured

impedance tensor can be described [Groom and Bahr, 1992] as

Ẑmeas = ĈẐund (3.5)

where Ẑmeas is the measured impedance tensor, Ẑund the undistorted impedance tensor, and
Ĉ the telluric distortion tensor. Distorting effects are thus characterized by the rank-two
tensor Ĉ that does not depend on frequency [Groom et al., 1993].

Because the solution of Equation 3.5 is non-unique, it is not possible to solve it au-
tonomously. Groom and Bailey [1989] proposed to decompose the tensor Ĉ into deter-
minable and indeterminable parts, using the Pauli matrices Σn for the spin description as
the tensor base:

Ĉ = gT̂ Ŝ Â (3.6)

in which

• g is a scalar, scale factor, called site gain

• T̂ ∝ [I − i(tΣ2)] is a rotation tensor

• Â ∝ (I+ sΣ3) is a tensor that distorts field elements along the principal axis direction
of the anisotropy

• Ŝ ∝ (I+eΣ1) is a tensor that develops anisotropy on an axis that bisects the regional
inductive principal axis

• e, t are tangents of characteristic angular deformation and s is the parameter that
characterizes the distortion anisotropy.

In this way it is possible to consider all the different factors that influence distortion.
T̂ performs only a rotation of the undistorted induction tensor, orientating the coordi-

nate system of Ẑund to coincide with the coordinate system of Ẑmeas. Figure 3.1 shows the
effect of anisotropy Â, in picture (b), over the vector field shown in picture (a). It is the
same for Figure 3.2 for the Ŝ matrix.

The Groom-Bailey decomposition is characterized by twelve unknowns, namely g, t, e, s,
plus the real and imaginary parts of the four impedance tensor elements, and eight knowns,
the real and imaginary parts of the measured tensor elements. Because the only frequency-
dependent unknowns are the ones relative to the distorted impedance tensor, in the special
cases in which it is possible to reduce the amounts of frequency-dependent unknowns2

2e.g. because of the particular structure of the impedance tensor, cf. for example the Equations 2.64 or
2.65
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3. From Field Measurements to Impedance Tensors

Fig. 3.1.: A effect, s > 0

it is possible, in principle, to solve system 3.5 and determine the undistorted MT fields
except for the gain factor, g.

So far, the simple theory underlying the Groom-Bailey decomposition has been pre-
sented. For the particular problem of 2D structures (a good compromise between real
Earth subsurface description and numerical problems arising in inverse problems with
many parameters), the impedance tensor as presented in Equation 2.65 has been stud-
ied and discussed by several authors (cf. e.g. Mcneice and Jones [2001], Becken and
Burkhardt [2004]). A complete description of the methods used to remove the distortion
from data is available in Chave and Jones [2012] and references therein.
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3. From Field Measurements to Impedance Tensors

Fig. 3.2.: S effect, e > 0
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4
Inverse Problem Theory in the Context of

Geophysics Problems

4.1. Inverse problems

Inverse problems are a class of mathematical problems routinely solved in all physics
and engineering environments, with an incredible number of different techniques. This
kind of problem arises when the real physical world is schematized in a set of parameters
characterizing a model m.

In the following, it will be assumed that a physical theory describing the studied phe-
nomena is properly developed and understood, so, the knowledge of the model parameters
m allows the prediction of a set of data d through the theory represented by the G opera-
tor1, in the formula:

G (m) = d. (4.1)

Of course, in the real world there is no “perfect experiment”, so every measure of a
physical quantity is affected by an amount of uncertainty, sometimes known or estimable,
other times unknown or unestimable. The resulting problem can be cast in a similar way

G (mtrue) = dtrue + η, (4.2)

in which mtrue is the model that predicts the true data dtrue affected by the noise η, assuming
that the forward modeling (G) is exact.

In other terms, the problem of data prediction from a physical model is usually called
the forward problem, whereas the inverse problem arises after the experiment, when
data are collected and a model of the unknown true world is derived from collected data.
The computation of G(m) involves different strategies, depending on the physics theory
that describes the studied process. In MT it usually involves the solution of a partial

1G(?) is known as forward operator.
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4. Inverse Problem Theory in the Context of Geophysics Problems

differential equation (PDE) system derived from Maxwell’s equations 2.2, while in other
cases the relation between the model and data is expressed through an algorithm for which
it is not possible to give an analytical2 formula (an example of this is the solution of the
MT problem in a 1D domain, that can be solved by the Wait’s recursion formula 2.48).

In geophysics – and in tomography problems especially – the model is often a repre-
sentation of the Earth itself, a region of its subsurface in the specific case examined here,
and the parameters that form the model are the values that a certain physical parameter
assumes in the region in which the subsurface is discretized. This subclass of inverse
problems is referred to as discrete inverse problems and is usually cast as

G(m) = d (4.3)

in which m is an n-element column vector of the model parameters, and d the m-element
vector of the data predicted from the model m.

The aim of the theory presented in the next sections is to invert the relation G and find
the model m.

4.1.1. Linear Inverse Problems

A special subset of discrete inverse problems is the set of inverse problems in which the
Equation 4.3 can be written as

Gm = d. (4.4)

In this special case, the G operator can be expressed as a matrix and the solution of
the inverse problem is simplified. If the G operator is sufficiently regular (i.e. the matrix
representing it is a square matrix and det(G) , 0) it is possible compute its inverse directly,
via linear-algebra classic results, and the solution of the inverse problem become

m = G−1d. (4.5)

Otherwise it is often possible invert the matrix G via the generalized inverse and single
value decomposition (SVD) [Moore, 1920; Penrose, 1955].

Due that the MT problem is highly non-linear (cf. Chapter 2) we refer to Aster et al.
[2004] and references therein for a more detailed overview of problems and solutions
arising in the linear inverse problems field.

2in this context the use of the word analytical is rigorous, meaning locally given by a convergent power
series.
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4.1.2. Difficulties in Inverse Problems Solution

While it could be straightforward to invert a simple relation and find the solution of an
inverse problem, there are three main problems that make this process challenging

Existence. A set of parameters m so that G(m) exactly fit the data d does not exist. This
problem might be caused by noise in measurements or because the forward oper-
ator G is wrong or makes use of incorrect approximations to describe the physical
process or even because the model is too simple.

Uniqueness. The sole existence of a solution is not sufficient to warrant that an inverse
problem can be solved. There might be several – even infinite – solutions that
fit d equally well. A classic example is the external electric field generated by
a spherically symmetric charge distribution. The external electric field depends
solely on the total charge and not on its radial distribution.

Instability. The solution of a problems as expressed in Equation 4.1 is often an unstable
process, that means that a small change in the vector d leads to dramatic changes in
the solution m. For instance a small variation in the noise η in equation 4.2 could
result in a total different model. Following the classic nomenclature [Hadamard,
1902], we call an unstable system ill-posed if the Equation 4.1 is in the form of a
PDE system, or ill-conditioned if it represent a discrete linear system. The solution
of instability problems is usually performed via a constraint that biases the solution,
referred to as regularization. Other methods used to stabilize the solution of an
unstable system (for example the procedure of preconditioning an ill-conditioned
system of linear equation or trough a coarse discretization [Engl, H. W. and A.
Neubauer, 1996]) will not be used in this work.

4.2. Optimization Problems

The most common way to handle the problem of the lack of existence of a solution in
inverse problems is to cast the whole problem in another way. In spite of looking for
the true model mtrue that exactly predicts the data dtrue and the noise η, an approximated
solution m is built such that it minimizes a certain measure of the misfit between the
measured data and the predicted data G(m). A common measure of this misfit is the
2-norm of the residual vector, computed as

r = d −G(m). (4.6)

In order to find the model vector m, the inverse problem is then cast as an optimization
problem. So an objective function φ that has to be minimized is defined. Bearing in
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mind the equation 4.6,

φ =

m∑
i=1

[
di −G(m)i

σi

]2

(4.7)

in which σi is the error associated with the i-th measure.
This way of casting an inverse problem has several major advantages:

1. if φ is well-defined (i.e. σi , {0,±∞}∀i ) it always has al least one minimum value,
thus the associated inverse problem admit at least one solution, solving the problem
of solution existence;

2. the quantity minimized is proportional to the χ2, so it gains a statistical meaning3;

3. being well-studied, specific algorithms to solve this problem have been developed,
cf. e.g. Levenberg [1944] and Marquardt [1963] (Levenberg-Marquardt (LM) algo-
rithm) or Wolfe [1959] (simplex method for quadratic programming).

Optimization problems are solved using a large number of algorithms, and an enu-
meration of these will lead far from the goal of this thesis. Nevertheless it is important
to understand advantages and limits of the algorithm used in the solution of an inverse
problem. In the following sections two different approaches are described:

• the LM algorithm, used in the developed code;

• the genetic algorithm (GA), tested but not used, because of slow convergence [Man-
dolesi et al., 2009a].

4.3. Newton-type Optimization Methods

In this section, the equations governing the non-linear optimization algorithm used will be
derived. It is important to understand the limitations and advantages of these approaches,
in particular because we select an algorithm, the LM algorithm, in this class of optimiza-
tion algorithms to solve the 2D MT anisotropic problem.

First of all it is important to understand that the lack of linearity of the forward operator
G governing the MT problem leads to the necessity of using an algorithm specifically
designed to solve nonlinear problems. The theory used to solve linear problems, in which
the inverse problem can be cast as in Equation 4.4 is a classic of linear algebra theory and
will not be discussed here.

3To appreciate the statistical aspects of this choice of objective function, refer to the Section 4.5
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4.3.1. Newton’s Method

Let us define F(x) = 0, a nonlinear system of n equations with n unknowns, the aim of
Newton’s method is to construct a sequence of vectors x0, x1, ..., xn that converge to the
solution x∗. Assuming that F is C∞, it is possible to expand F in a Taylor series about x0:

F(x0 + ∆x) ≈ F(x0) + ∇F(x0)∆x (4.8)

in which ∇F(x0) represents the Jacobian

∇F(x0) =


∂F1(x0)
∂x1

∂F1(x0)
∂x2

. . . ∂F1(x0)
∂xm

∂F2(x0)
∂x1

∂F2(x0)
∂x2

. . . ∂F2(x0)
∂xm

...
...

. . .
...

∂Fm(x0)
∂x1

∂Fm(x0)
∂x2

. . . ∂Fm(x0)
∂xm

 . (4.9)

Computing the difference between x0 and x∗ we obtain

F(x∗) = 0 ≈ F(x0) + ∇F(x0)
x∗−x0︷︸︸︷
∆x . (4.10)

Thus

∇F(x0)∆x ≈ −F(x0) (4.11)

is the relation that allows us to perform Newton’s method: given a guess initial solution
x0, the following steps are repeated until necessary the precision is achieved

• solve ∇F(xk)∆x = −F(xk).

• Let xk+1 = xk + ∆x.

• Let k = k + 1.

Quadratic Convergence of Newton’s Method

The main characteristic concerning Newton’s method is that the sequence of the “errors”

h1 = x∗ − x1, h2 = x∗ − x2, ..., hn = x∗ − xn (4.12)

converge to zero quadratically, in the sense that |hn+1| ≤ µh2
n with a fixed constant µ (cf.

e,g, Courant and John [1989]).
This quadratic convergence means that in the neighborhood of x∗ the number of accu-

rate digits in the solution doubles with each iteration. This quick convergence rate comes
at the price of the request for continuously differentiability of F. If this hypothesis is
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not satisfied, the convergence rate of the Newton’s method is slow and not proved [Aster
et al., 2004].

The damped Newton’s method is a modified version of this algorithm in which the
search direction is updated at each iteration. For f (x), a scalar valued C2 function, we can
expand it as a Taylor series

f (x0 + ∆x) ≈ f (x0) + ∇ f (x0)T ∆x +
1
2

∆xT∇2 f (x0)∆x (4.13)

in which ∇ f (x0) and ∇2 f (x0) are respectively the gradient (Jacobian matrix) and the Hes-
sian of f .
∇ f (x∗) = 0 is a necessary condition for x∗ to be a minimum of f . In the neighborhood

of x0 it is possible to approximate the gradient by

=0︷         ︸︸         ︷
∇ f (x0 + ∆x) ≈ ∇ f (x0) + ∇2 f (x0)∆x (4.14)

thus

∇2 f (x0)∆x = −∇ f (x0). (4.15)

Newton’s method for minimizing f (x) is performed by repeatedly solving equation 4.15:
given an initial guess solution x0. The following steps are repeated until the necessary
precision is achieved

• Solve ∇2 f (xn)∆x = −∇ f (xn).

• Let xn+1 = xn + ∆x.

• Let n = n + 1.

An important method on its own, Newton’s method for minimizing f (x) is needed in
the derivation of the Levenberg-Marquardt method, the algorithm chosen to solve the MT
problem in this thesis.

4.3.2. The Levenberg-Marquardt Algorithm

Consider the non-linear problem of fitting a data vector d, consisting of m measures, by
forward modeling of the model m. A vector of standard deviations σ relative to the data
is also known. The aim of an optimization algorithm in this context is to find a model m
so that the 2-norm of the residuals is minimized. We also suppose that the measurements
errors are normally distributed. Our problem becomes to minimize the objective function

φ(m) =

m∑
i=1

(
G(m)i − di

σi

)2

. (4.16)
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Let us write

φi(m) =
G(m)i − di

σi
, i = 1, 2, ...,m (4.17)

so

Φ(m) =


φ1(m)
φ2(m)
...

φm(m)

 , (4.18)

and

φ(m) =

m∑
i=1

φi(m)2. (4.19)

The gradient ∇φ can be written as the sum of the gradients of the individual terms

∇φ(m) =

m∑
i=1

∇
(
φi(m)2

)
; (4.20)

and the elements of the gradient are

∇φ(m) j =

m∑
i=1

2∇φi(m) jΦ(m) j. (4.21)

In matrix notation it is possible to write

∇φ(m) = 2J(m)T Φ(m) (4.22)

in which J is the Jacobian matrix

J(m) =


∂φ1(m)
∂m1

∂φ1(m)
∂m2

. . . ∂φ1(m)
∂mn

∂φ2(m)
∂m1

∂φ2(m)
∂m2

. . . ∂φ2(m)
∂mn

...
...

. . .
...

∂φm(m)
∂m1

∂φm(m)
∂m2

. . . ∂φm(m)
∂mn

 . (4.23)

In the same way, the Hessian can be expressed as

∇2φ(m) =

m∑
i=1

∇2
(
φi(m)2

)
=

m∑
i=1

Hi(m) (4.24)
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where Hi(m) is the Hessian of φi(m)2. The j-th, k-th element of Hi(m) can be expressed
as

Hi
j,k(m) =

∂2
(
φi(m)2

)
∂m j∂mk

(4.25)

=
∂

∂m j

(
2φi(m)

∂φi(m)
∂mk

)
(4.26)

= 2
(
∂φi(m)
∂m j

∂φi(m)
∂mk

+ φi(m)
∂2φi(m)
∂m j∂mk

)
, (4.27)

thus

∇2φ(m) = 2J(m)T J(m) + 2
m∑

i=1

φi(m)∇2φi(m). (4.28)

Ignoring the term 2
∑m

i=1 φi(m)∇2φi(m) leads to the Gauss-Newton method; the Hessian is
then approximated by

∇2φ(m) ≈ 2J(m)T J(m). (4.29)

Substituting the gradient 4.22 and the Hessian 4.29 into equation 4.15 and dividing both
sides by 2, the equation that leads to the solution of the Gauss-Newton method becomes

J(m)T J(m)∆m = −J(m)T Φ(m). (4.30)

The Levenberg-Marquardt Algorithm is a classic modification of the Gauss-Newton
method [Levenberg, 1944], [Marquardt, 1963] in which the equation to be solved is mod-
ified as follows (

J(mk)T J(mk) + λI
)
∆m = −J(mk)T Φ(mk). (4.31)

in which I is the identity matrix and λ a positive value called damping parameter. For
extreme values of λ it is possible to recognize two limit behaviours for the algorithm

• J(mk)T J(mk) + λI ≈ λI, if λ → +∞. In this case ∆m ≈ − 1
λ
∇φ(m) and a steepest-

descent method is achieved. The algorithm moves toward the direction that reduces
the value of φ(m) most quickly. This kind of algorithm ensures the convergence
to at least a local minimum, but lacks the efficiency in convergence of the Gauss-
Newton method.

• J(mk)T J(mk) + λI ≈ J(mk)T J(mk), if λ → 0+ leads to the original Gauss-Newton
method, taking advantage of its potential fast convergence rate but with the possi-
bility of failure in convergence at all [Aster et al., 2004].
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In our problem we have normalized the system performing the divisions[
J(mk)T J(mk)

]
i, j[

J(mk)T J(mk)
]
i,i

and

[
−J(mk)T Φ(mk)

]
i[

J(mk)T J(mk)
]
i,i
,∀i, j. (4.32)

The resulting system has the same solution as the original one (as proved by the Rouché-
Capelli theorem) but all the diagonal elements are normalized.

In inverse problems solution, the trade-off between fast convergence and certain con-
vergence is usually balanced by performing a line-search along the direction of the step.
A line search requires the computation of solutions for several forward problems, never-
theless it provides an affordable method to find the adequate value for λ. In the implemen-
tation of the LM algorithm used in this thesis, the parameter λ has been chosen iteratively
with the following procedure [Marquardt, 1963]:

1. Fix a value for λ = vn, n ∈ N to be used in the first iteration.

2. Solve the equation 4.31.

a) If Φ(mk) < Φ(mk−1), λk+1 = λk
v , go to 3.

b) else λk = v · λk. Go to 2.

3. Store the value of λk and exit the line search.

The selection of the dumping parameter is largely discretional. We decid to selected
an initial value for λ so that results λ � 1, ensuring an initial convergence toward a local
minimum. Using a scaling factor of v = 2, we decided to fix the initial value of lambda to
the first available integer two order of magnitude larger than 1, resulting in the selection
of 27 as starting value for λ.

Defining λ equal to 128 rather then 1 ensured, in each of the tests performed, that the
steps in the early iterations of the algorithm favor the steepest-descent direction. This
method ensures a good convergence rate with the certainty of achieving a minimum in the
objective function. Beginning the LM algorithm choosing a dumping parameter λ � 1 en-
sures that the minimum reached is really the local one, i.e. the solution found is not too far
from the initial guess. Moreover, the presence of the term λI ensures the non-singularity
of the term

(
J(mk)T J(mk) + λI

)
and thus the possibility of its inverse computation.

4.4. Stochastic Methods

Stochastic optimization methods are optimization methods grounded in the generation of
random variables. Stochastic methods used in geophysics are in the class of metaheuris-
tics: methods that solve a problem by iteratively trying to improve a candidate solution.
Other terms having a similar meaning as metaheuristic are: derivative-free, direct search,
black-box, or indeed just heuristic optimizer. There are several reasons why algorithms
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that search for a solution with a random path were developed. In geophysics, noise in
data make the misfit surface extremely rough, and linearized methods cannot escape a
local minimum when they find one.

A popular stochastic method for the MT problem is the genetic algorithm (GA): several
implementations of GA’s [Everett and Schultz, 1993; Shi et al., 2000; Pérez-Flores and
Schultz, 2002; Moorkamp et al., 2007; Roux et al., 2011] have been used in the last years
to solve different MT inverse problems. We did not use the GA to solve our problem, but
it is interesting to understand its mechanics and why it is not appropriate for the 2D MT
anisotropic problem.

4.4.1. Monte Carlo Methods: Common Features

The search for an optimal solution in a broad model space can be extremely difficult. With
the exception of small problems, a systematic search in the model space is highly inef-
ficient, thus several algorithms that perform a random (or pseudo-random) search were
designed. The name of Monte-Carlo was given to these methods by the team of Los
Alamos and is nowadays generally recognized as a synonym of random search [Taran-
tola, 2005]. The main advantage of this method is the ability to avoid local minima in
the objective function, coming at the cost of an intensive computation requirements. Nev-
ertheless several Monte-Carlo methods other than GA have been used in MT inversion,
including random search [Jones and Hutton, 1979], simulated annealing [Sharma and
Kaikkonen, 1998], Markov chain algorithms [Grandis et al., 1999] and particle swarm
[Shaw and Srivastava, 2007]. There are several advantages to using stochastic methods
in geophysics:

• stochastic methods do not requires the objective functions to be continuous and
derivable;

• stochastic methods naturally fit problems in which the model space is limited;

• stochastic methods have the opportunity to avoid local minima;

• being derivative-free, there is no need to compute or store the Jacobian or Hessian
matrixes.

On the other hand the necessity of an extremely large number of forward computations
makes stochastic methods often inapplicable.

4.4.2. Genetic Algorithm

Genetic algorithms are a class of global search algorithms that mimic biological evolu-
tion strategies in order to find the global minimum of the objective function. One of the
appreciated properties of the GA’s is their ability of exploring the model space, avoiding
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the localized search strategy that characterizes linearized methods. A broad description
of GA’s development and their main properties can be found in Goldberg [1989].

The general work flow for a genetic algorithm is presented in figure 4.1, with the differ-
ent GA’s characterized by different implementations of the steps described in the graph.
The selection of parameterization influences most of the following steps because it influ-
ences the representation of model parameters in the GA. In the oldest implementations of
GA’s, model parameters are coded by concatenated binary strings, while more recent rep-
resentation use real number encoding. The importance of the earliest representation is in
the analogy between the binary string and the genetic DNA chain, making the modifica-
tion operators of crossover and mutation simple and independent from the individual mod-
eled parameters. The technique used to obtain the binary string is straightforward: given
the model vector m, the string is completely defined for each parameter mi by the mini-
mum value mmin

i , the discretization step δi and the number of bits used to encode the pa-
rameter ni. So the relation between the parameter value and its binary representation will
be

Fig. 4.1.: Program flow for genetic algorithm

mi = mmin
i + δi

ni∑
j=1

2 j−1s j (4.33)

in which s j is the part of the genetic string that
codes the i-th parameter. This representation pro-
vides both advantages and disadvantages in the so-
lution of inverse problems. In geophysics problems
it is usually possible to bound values of parameters
in realistic intervals. The values of conductivities of
the rocks spread in the interval4

[
10−8, 106

]
S · m−1.

Representing this range of variability is challenging
and representing the interval could require a large
discretization step or a high number of bits in the
binary representation. Nevertheless having the pos-
sible values of the parameters bounded in the same
range as the “reasonable” values, reduces the size of
model space allowing the exploration of a broader
part of it.

Once the encoding step provides a useful repre-
sentation of the model space, a starting set of ran-
dom modes – the so-called population – is created.
The size of the population is a key factor in the algo-
rithm, and specifically it controls the randomness of

4read Section 2.5 and references therein for a better understanding of these values
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the starting models, completeness of model space exploration and the length of run-time
of the algorithm. Once the starting population has been generated, each member of the
population is unencrypted from the binary form to its real representation and its fitness is
computed. Usually, in inverse problem applications, the fitness is inversely proportional
to some kind of misfit measure (for example, equation 4.6). Nevertheless GA’s do not
require the objective function to be differentiable, so the misfit function can be modified
in a huge number of ways.

From the fitness, each member of the population is assigned a probability to be chosen.
Selected members’ genetic strings are then saved and stored in a set called the mating
pool in which they are randomly selected and mated to generate the next generation. This
probabilistic approach helps the GA in escaping local minima. After the selection of the
“parents”, their genetic code is broken and assembled in pairs, producing a new popu-
lation. This process is usually referred as crossover. Another process helps in keeping
diversity and randomness in the population, the so-called mutation. Each element of a
genetic code is associated with a small – usually less than 0.05 – probability of mutation.
Mutation changes only one bit of the entire genetic string, however it helps again in escap-
ing local minima, especially when these minima are close to the actual global minimum.
In order to ensure that the fitness is not decreasing with the number of iterations, the best
fitting member of the parents population is overwritten to any random member of the
children population. This process is known as elitism.By applying the mutation process
to offspring built from the crossover of fitness parents, this new population is ready to be
used as starting population for a new iteration of the algorithm.

A genetic algorithm has lots of apparent advantages. It can naturally explore a dis-
cretized model space, it can avoid local minima and there is no need to know the deriva-
tives of the objective function with respect to model parameters, saving storage space
in the process. However these advantages come with some risks. The GA’s “implicit”
knowledge of the gradient direction does not allow searching of the model space in a
direct way and moreover, while non divergence of the process is ensured by the elitism,
there is not proof of convergence.

Following the steps of Moorkamp et al. [2007] GA has been tested as an engine for
solving the optimization problem, but the approach was not followed further because of
problems that will be highlighted in section 4.6.

4.5. Confidence Intervals

A classic solution of an inverse problem leads naturally to the necessity of quantifying a
measure of the goodness of the model parameters estimation. Backus and Gilbert [1968],
in their classic paper, introduce the model covariance as a tool to appraise inversion re-
sults. Both resolution and model covariance are developed to appraise the solutions of
linear inverse problems, nevertheless it is possible to compute an approximation to these
quantities useful for appraising the solution of a non-linear inverse problem, at least to a
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first order approximation.
Analyzing the problem as in Aster et al. [2004], if a vector of data d has a multivariate

normal distribution, the product A·d also has a multivariate normal distribution, assuming
that A is a matrix of the appropriate size, and its covariance is

Cov(A · d) = A · Cov(d) · AT . (4.34)

In a linear inverse problem, in which a problem has the form 4.4, if the data errors are
independent and normally distributed, the maximum likelihood principle solution is the
least squares solution, and the probability density for the datum di of d is

fi(di|m) :=
1

√
(2π)σi

e
−(di−(Gm)i)

2

2σ2
i . (4.35)

The likelihood function L for the complete dataset is given by

L(m|d) =
1

√
(2π)m

∏m
i=1 σi

m∏
i=1

e
−(di−(Gm)i)

2

2σ2
i . (4.36)

Looking for the maximum of L, the maximization problem to be solved is

max
m∏

i=1

e
−(di−(Gm)i)

2

2σ2
i , (4.37)

treating the term 1
√

(2π)m ∏m
i=1 σi

in 4.36 constant.
In order to solve the equation 4.37, we can apply the logarithmic function

max
m∏

i=1

e
−(di−(Gm)i)

2

2σ2
i = (4.38)

max log

 m∏
i=1

e
−(di−(Gm)i)

2

2σ2
i

 = (4.39)

max −
m∑

i=1

−(di − (Gm)i)2

2σ2
i

= (4.40)

min
m∑

i=1

−(di − (Gm)i)2

σ2
i

. (4.41)

Equation 4.41 is the solution to the problem 4.4 if each datum in the considered set is
weighted by its error. In matrix notation

W = diag(σ−1
1 , σ

−1
2 , ..., σ

−1
m ). (4.42)
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Equation 4.41 is the solution to the least square problem

Gw ·m = dw (4.43)

where Gw = W ·G and dw = W · d.
The least-square solution to equation 4.43 is

mL2 =
(
Gw

T Gw
)−1

Gw
T dw. (4.44)

The covariance Cov(mL2) can therefor be computed by substituting A =
(
Gw

T Gw
)−1

Gw
T

in equation 4.34.
The data, while weighted, have a covariance matrix equal to Cov(dw) = I and equation

4.34 becomes

Cov(mL2) =
(
Gw

T Gw
)−1

Gw
T I

(
Gw

T Gw
)−1

=
(
Gw

T Gw
)−1

. (4.45)

If the errors are independent and normally distributed, the expected value of the least
squares solution to 4.43 is

E
[
mL2

]
=

(
Gw

T Gw
)−1

Gw
T E [dw] . (4.46)

Substituting E[dw] = dtruew and Gwmtrue = dtrue in 4.46,

E
[
mL2

]
=

(
Gw

T Gw
)−1

Gw
T Gwmtrue = mtrue. (4.47)

It is now easy to compute any specified interval of confidence for the model parameters.
Using the fact that each i-th element of m, mi, has a normal distribution with mean mtrue
and variance given by the [i, i] element of the covariance matrix 4.45, for each specified
interval of confidence C the interval of confidence is given by

mL2 ± pC · diag
(
Cov(mL2)

) 1
2 (4.48)

with pC the solution of the equation

1

σ
√

2π

∫ pCσ

−pCσ
e−

x2

2σ2 dx = C. (4.49)

In classic statistical analysis, it is common to fix C = 95% that returns a value pC ≈ 1.96.
In the context of a non-linear problem, it is possible to consider a linear approximation

as a first-order estimator of the goodness of the inverse problem result. Considering a
linearization of the misfit function 4.18

Φ(m̂ + ∆m) ≈ Φ(m̂) + J(m̂) · ∆m, (4.50)
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a linear relation between variations in Φ and m can be written:

∆Φ ≈ J(m̂)∆m. (4.51)

If the linearization proposed is a good approximation, J(m̂) may approximate G in an
estimation of the model parameters covariance. In the derivation of the LM method the
errors σi have been incorporated in the formula for φ (equation 4.16), thus Cov(d) = I,
leading to the approximate formal for the covariance

Cov(m̂) ≈
(
J(m̂)T J(m̂)

)−1
. (4.52)

In the case that the errors are independent and normally distributed and the standard
deviations unknown, it is possible to estimate the standard deviation s as

s =

√∑m
i=1 r2

i

m − n
(4.53)

where ri is the i − th residual ri = G(m̂)i − di. This approximation leads to the covariance
estimation for the model parameters

Cov(m̂) = s2
(
J(m̂)T J(m̂)

)−1
. (4.54)

Knowing both m̂ and Cov(m̂), it is possible to establish an interval of confidence using
the same method as in equation 4.48. It is essential to bear in mind that this estimation
of interval of confidence – exact in 4.48 – is only approximate in the case of non-linear
inversion. It can be used as a tool to appraise the resulting model, but in the case of
extremely noisy data further investigation may be required to appraise inversion results.

4.6. Linearized and Stochastic Methods Compared.
Efficiency Matters.

Several tests have been performed in order to choose an optimization strategy for the
problem object of this thesis. The two-dimensional anisotropic MT problem is extremely
challenging and the selection of an appropriate algorithm to solve the inverse problem as-
sociated with it is a key topic of this study. In this test results from GA and LM algorithms
applied to a simple non-linear problem will be compared and discussed.
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4.6.1. Test 1

We need to test the efficiency of GA and LM. Dealing with an optimization problem, we
define a test function φ to be minimized. Let be

φ(x) = x + x2 cos(x) + 20, (4.55)

defined on the interval [−2π, 2π], our aim is to compare how many forward evaluations of
the test function are needed in by the two algorithms in order to find the global minimum
of the test function φ, presented in Figure 4.2. While φ maybe not realistic as a misfit
function, it shares two major features with the functional minimized in a realistic inverse
problem: it is positive on the interval on which is defined and it has multiple minima (two
in this case, a local one located in x− < 0 and a global one located in x+ > 0). Being
the LM method dependent on the initial guess, we expect that it is able to find the global
minimum if and only if the initial guess x0 : ‖x0 − x−‖ ≤ ε?, with ε? > 0, whereas the GA
performances do not depend on the initial guess selection.

Since the computing time-consuming part of a realistic problem is in the forward prob-
lem solution, we used a similar number of forward evaluations for both the algorithms.

We run a sample of 1000 LM algorithms using an uniform distributed random variable
as starting guess, drawn in the interval [−2π, 2π]. It results that from a random starting
guess, the LM method converges, averagely and in relation to this particular function,
computing 52 forward evaluations5. An histogram of results occurrences is presented in
Figure 4.3. Leaving the GA running for 52 forward evaluations – using a population of
13 individuals for 4 generations in this case – neither the global nor the local minimum
were retrieved with precision. A comparison between the values retrieved is presented in
Figure 4.2.

Results presented in Figure 4.2 clarify the problem relative to the quickness of con-
vergence. While the use of the LM method could prevent us from retrieving the global
minimum, the convergence to a local one is ensured, whereas the GA’s results are not
defined and not precise. Resolved several time with the GA the same problem, we built an
histogram relative to the density of the solutions, reproduced in Figure 4.4.

A qualitatively similar results are given if the GA parameters are set to consider a
smaller population and a longer evolution, as shown in Figure 4.5.

Clearly, the ability in escaping the local minimum, comes at the cost of a longer compu-
tation. Moreover, it is mandatory to remind to readers that while the LM method converges
to a minimum – possibly local – the GA select a population on the basis of the misfit func-
tion. This difference is conceptually important: the LM algorithm converges, minimizing
a least-square problem and finding a maximum likelihood solution, the GA retrieves a set
of models that fit the problem, minimizing a function in this case, but none of these is
proved to be a solution that satisfies the maximum likelihood principle.

5This number takes account of the forward evaluations needed to compute the misfit, to compute the
Jacobian via finite-differences and to compute the line-search for λ.
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Fig. 4.2.: Results relative to minimization of function φ(x). Minima retrieved with the LM algorithm are marked with red dots, results
produce making use of GA are marked by black circles. Plotted in blue: the objective function minimized in Test 1. The function
is characterized by the presence of two minima, in correspondence of two value of x =

{
x+, x−

}
, a local one, located on the positive

x-axis (x+ > 0), and a global one located on the negative x-axis (x− < 0)

The main result from this simple example is the evidence of a longer computing time –
approximated by the number of forward problems solved – required by the GA respect to
the LM method to converge.
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Fig. 4.3.: Distribution of the solutions to the problem proposed in the Test 1, computed with the LM algorithm using a random starting
guess drawn from the interval [−2π, 2π].
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Fig. 4.4.: Density of solutions relative to the Test 1. In black the density of occurrences relative to the GA, in red the ones relative to
the LM algorithm. Densities are computed on results from a sample of 1000 runs.
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Fig. 4.5.: Density of solutions relative to the Test 1. In red and green marked the densities of occurrences relative to the GA (red bars:
population size = 4, no. of generations = 13. Green bars: population size = 13, no. of generations = 4), in blue the one relative to the
LM algorithm. Densities are computed on results from a sample of 1000 runs.
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4.6.2. Test 2

The first test presented was able to show that an higher number of forward evaluations is
required by the genetic algorithm, respect to the Levenberg-Marquardt method in order
to individuate a minimum, meanwhile for the GA is not proved the convergence strictu
sensu.

In this test a real RMS function is minimized from a synthetic dataset, obtained from
a modified version of the function 4.55. Let us suppose that a certain problem can be
described by the equation

di = m1xi + m1x2
i cos(m2xi), (4.56)

where di is the i-th datum predicted in correspondence of xi, as shown in Figure 4.6, and
~m = [m1,m2] is the model vector and i ∈ N ∩ [1, 41]. Let us fix the model parameters
m1 = 1.0 and m2 = 1.0. An array of synthetic data dnoisy, is then produced, introducing
a gaussian-distributed noise, with σi = 1∀i. The synthetic dataset is presented in Figure
4.6. The effect of gaussian noise is reflected in the objective/misfit function values. Let
us define the misfit function as:

φ(m) =

√√
1

41

41∑
i=1

(dnoisy
i − di)2. (4.57)

The misfit surfaces are presented in Figure 4.7 and their difference φ(dtrue,m)−φ(dnoisy,m)
in Figure 4.8. In Figure 4.9 the final population of the inverse problem proposed, ob-
tained with GA, is presented. It is evident the second limit of this approach: whereas in
the final population the correct solution is present, most of the population’s models are
clustered around a sub-optimum point in the model space. Due that the model that build
the population are interdependent, it is not even possible ti make a statistic relative to the
final population, its mean and variance.

Summarizing the results of the two test presented, the GA performances are good and
its ability in avoiding local minima is powerful, meanwhile there are two major setbacks:

• the requirement of a higher number of forward problem evaluations makes the GA
highly computational-expensive;

• the “implicit” knowledge of the misfit surface allows to solve an optimization prob-
lem, but in the same time it is never endured the convergence to a minimum.

4.6.3. Application of genetic algorithm to magnetotelluric

As stated before, the genetic algorithm have been applied several times as the optimization
engine in magnetotelluric inverse problems. The major disadvantage in using GA is the
computation time required to solve numerous forward problems. Usually this problem is
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Fig. 4.6.: Synthetic data used in Test 2. Data from the true model are marked with red crosses, noisy data are marked with black
circles.

outdone by restricting the model space to a coarse discretization. Seen from this angle, 2D
models presented – for example – in Pérez-Flores and Schultz [2002] are discretized in a
fixed grid of 16 parameters6 to test their recombinant genetic algorithm with synthetic data
and 48 and 72 parameters7 to use the GA with real data. In Moorkamp et al. [2007] a joint
inversion of teleseismic and magnetotellurics data in an isotropic 1D domain was bounded
using 11 layers8 whereas in Roux et al. [2011] the joint inversion surface-waves phase
velocity and MT data in an anisotropic environment – 1D – was undertaken discretizing
the system in 29 parameters.

As examined in the section 2.4, to represent anisotropic conductivity, a tensor with
six independent parameters is needed. For example, in order to allow anisotropy in the
checkerboard synthetic test performed in Pérez-Flores and Schultz [2002] 96 parame-
ters in spite of 16 have to be estimated. In international conferences [Mandolesi et al.,

6arranged in 4 rows and 4 columns
7respectively arranged in 6 rows and 8 columns and 6 raws and 12 columns
833 parameters to describes both the conductivity and the sound velocity models
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Fig. 4.7.: Misfit surfaces relative to the Test 2. On the left panel the misfit surface relative to the noise-free dataset; on the right panel
the misfit surface relative to the noisy dataset. The presence of different minima is highlighted by the presence of multiple closed
contour lines.

2009b,a] the low convergence rate provided by GA in MT have been highlighted. In Fig-
ure 4.10 RMS evolution from a run of GA in a 1D isotropic environment, discretized in
99 parameters, is reported. The expected value for the root mean square (RMS) is 1, and
the reached value for this run was 104 after 12000 iterations considering a population of
1024 individuals. This run required the computation of 12288000 forward evaluations. In
a complex domain, as the 2D anisotropic earth, this number of forward evaluations creates
two major problems, as highlighted before:

• the computation time required by a forward evaluation is longer then the one re-
quired by the simple 1D problem, for example the computation of the forward so-
lution of the test problem solved at page 89 is on average of 0.5 s per period on a
computing node of the Stokes supercomputer9;

• convergence properties for the GA have not been proved, thus it is not ensured that
such number of forward evaluations is sufficient to converge into a misfit minimum.

These two reasons drove us to select a Newton-type algorithm over a stochastic method
for minimizing the objective function.

9for information about the Ireland’s High-Performance Computing Center (ICHEC)’s hardware visit the
webpage www.ichec.ie
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Fig. 4.8.: Misfit surface difference. The position of the global minimum is clearly biased by the presence of noise.

4.7. Tikhonov regularization

As stated before, solution of an inverse problem is often problematic because of the non-
uniqueness of the solution itself. Bearing in mind that data contain noise, there is no
advantage in fitting this noise exactly, thus many solutions can be regarded as adequate as
soon as ‖G(m) − d‖ is small enough.

The Tikhonov regularization (cf. Tikhonov and Goncharsky [1987] and references
therein) is perhaps the most common technique used to reduce non-uniqueness in in-
verse problems [Aster et al., 2004]. This method is based on the intuitive concept that
the “best” model fits the data and has its norm ‖m‖ minimized. The idea is that a model
built respecting these requirements will be zero everywhere except in the regions in which
complexity has to be introduced in order to fit the data. There are several ways to express
this concept in mathematical language, the most useful – solving a least square inverse
problem – is

min ‖G(m) − d‖2 + λ2‖m‖2 (4.58)

where λ is a parameter that balances the trade-off between regularization and data fitting.
Equation 4.58 presents the so-called zero-order Tikhonov regularization. Of course it

is possible to regularize the solution by defining different regularizers. Other functionals
commonly used in as addition to the objective function are the first or the second derivative
of the model, leading to the so-called first- and second-order Tikhonov regularization,
which produce the flattest and the smoothest model, respectively. In the general case, a
regularizer suitable for the LM method can be written as

‖L(m)‖2 (4.59)
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Fig. 4.9.: Final population relative to the inverse problem proposed in the Test 2 solved by GA. The clustering of the solutions around
a sub-optimal point is remarkable.

thus, the objective function becomes

φ(m) = ‖G(m) − d‖2 + λ2‖L(m)‖2. (4.60)

If we consider Tikhonov regularization, the regularization term can be written as ‖L ·m‖2,
and L is given the name roughening matrix. In the 1D problem L will be written as the
matrix that makes the product L ·m proportional to the first or the second derivative of m.
Specifically,

L =


−1 1

−1 1
. . .
−1 1

−1 1

 (4.61)

to implement the first-order Tikhonov regularization and

L =


1 −2 1

1 −2 1
. . .

1 −2 1
1 −2 1

 (4.62)

is the roughening matrix used to implement the second-order Tikhonov regularization. In
an environment more complex, such as a 2D or 3D domain, the roughening matrix used is
often a finite-difference approximation of the Laplacian operator.
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Fig. 4.10.: Convergence curve for a run of GA on a 1D isotropic problem, discretized in 99 layers. Figure form Mandolesi et al.
[2009a].

In this work, when needed, the Tikhonov regularization have been used because of its
easy implementation and in particular because of the ease in computing the derivatives of
the term λ2‖L ·m‖2 needed in the LM algorithm.
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5.1. Information Theory Definitions

In 1948 Claude Elwood Shannon published two papers that are regarded as the seed of
the so-called “information theory” [Shannon, 1948a,b]. Notwithstanding the importance
of this science in its own right, in this chapter we will introduce some basic concepts
from information theory and the features we used in the MT inverse problem. The goal of
this chapter is to make clear the reasons why MI is a good choice if used as a constraint
in a geophysics tomographic problem. In the following the symbol “:=” will denote a
definition.

The self-information I(A) that an event A may happen with probability pA is defined as

I(A) := A→ log
1
pA

= − log pA. (5.1)

I(A) is measured in bin of information if the base of logarithmic function is 2. Other units
of measurement can be introduced by changing the base of the logarithmic function, but
they will be not considered here.

As considered by information theory, the entropy of a random variable X, H(X), is the
average of the self-information I(xi) of its possible values (x1, x2, ..., xn):

H(X) := E[I(xi)] =

n∑
i=1

p(xi) log2
1

p(xi)
. (5.2)

The relation H(X) ≥ 0 ∀ X derives directly by the Definition 5.2.
The relationship between entropy and information can be intuitively understood by

considering that the more uncertain a random variable is, the more information about it is
learned from its measurement.

Dealing with two random variables X and Y , there are other two interesting quantities
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to be considered. The conditional entropy H(X|Y) is the entropy of the variable Y condi-
tioned on X taking a certain value x, and is the result of the average H(Y |X = x) over each
value X can assume.

H(X|Y) :=
n∑

i=1

p(xi)H(Y |X = xi) (5.3)

=

n∑
i=1

p(xi)
m∑

j=1

p(y j|xi) log2
1

p(y j|xi)
, (5.4)

= −

n∑
i=1

m∑
j=1

p(xi, y j) log2 p(y j|xi), (5.5)

=
∑

i, j

p(xi, y j) log2
p(xi)

p(xi, y j)
, (5.6)

where p(x, y) indicates the joint probability distribution and p(x|y) the conditional proba-
bility distribution of X and Y . The joint entropy is defined as

H(X,Y) =
∑

x

∑
y

P(x, y) log2 P(x, y), (5.7)

lim
P(x,y)→0

P(x, y) log2 P(x, y) = 0

being x and y values of X and Y respectively, and P(x, y) the probability that jointly X = x
and Y = y.

It is possible to define the mutual information I(X; Y) as

I(X; Y) :=
∑
y∈Y

∑
x∈X

p(x, y) log2
p(x, y)

p(x)p(y)
, (5.8)

where p(x, y) is the joint probability distribution function of X and Y , and p(x) and p(y)
are the marginal probability distribution functions of X and Y respectively. MI can be
expressed equivalently as

I(X; Y) = H(X) − H(X|Y), (5.9)
= H(Y) − H(Y |X), (5.10)
= H(X) + H(Y) − H(X,Y), (5.11)
= H(X,Y) − H(X|Y) − H(Y |X). (5.12)

Intuitively, MI measures the information that X and Y share. It measures how much the
knowledge of one variable gives information about the other. For example, if X and Y are
independent ,then p(x, y) = p(x)p(y) and MI = 0, while if X=Y then I(X; X) = H(X) and
the information about X given from the knowledge of X itself is exactly its entropy.
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5.2. MI in Tomography Context

Our interest in information theory is led by the opportunity that this theory offers in the
definition of a metric between images. While in several geophysics inversion (and joint
inversion) schemes the concept of similarity is defined by the shape of a model [Haber
and Oldenburg, 1997; Gallardo and Meju, 2003], the definition of a metric in image
space allows an accurate comparison of the model considered in the inversion process.
For example the model considered step-by-step in equation 4.31 with a reference model.

The metric distance between X and Y defined by MI, called variation of information, is
defined as:

D(X,Y) := H(X,Y) − I(X; Y), (5.13)
= H(X) + H(Y) − 2I(X; Y). (5.14)

Variation of information respects all the properties a distance metric is supposed to re-
spect. In particular

• D(X,Y) ≤ D(X,Z) +D(Z,Y);

• D(X,Y) ≥ |D(X,Z) −D(Z,Y)|;

• D(X,Y) ≥ 0 ∀X,Y ;

• D(X,Y) = D(Y, X).

Bearing these relations in mind, it is possible to define a geophysical model as a picture.
In fact if the model is discretized in cells, each cell can be seen as a pixel of an image (or
voxel for an n-dimensional image).

From the definitions given before, the requirement to minimize the distance D(m,R)
is achieved when equation 5.15 is maximized

I(m; R) = H
[
ρ (m)

]
+ H

[
ρ (R)

]
− H

[
ρ (m,R)

]
. (5.15)

The entropies computed on a continuous random variable are defined as an integral ex-
tension of the sum 5.2

H(ρ) := −
∫

ρ(t) log2 ρ(t)dt, (5.16)

where the probability density function ρ(t) takes the place of the discrete probability dis-
tribution P(X).

The great advantage in using a method developed to measure a distance between images
is that it does not depend on the relations between the two images. If two images are
similar, then they are close, and this fact does not depend on what the images represent
or, in other words, which is the nature of the parameters that determine the model.
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5.3. Estimation of Joint Probability Distribution,
Mutual Information and their Derivatives

It is possible to estimate – and this estimation will be used in this thesis – the joint proba-
bility distribution (JPD) of two random variables ρ(m,R) using m and R values. Typically
the estimated JPD depends on the values assumed by the components of the arrays m and
R, other than on the other parameters used in the estimation method. The estimated JPD
is denoted in this text by the symbol ρ∆.

Following Silverman [1986] it is easy to estimate the density functions ρ∆. Between
several methods described in Silverman [1986] the kernel estimator is selected, as this
method is more reliable and having the major advantage that the density functions esti-
mated are differentiable.

If a random variable X has density distribution f , it follows that

f (x) = lim
h→0

1
2h

P(x − h < X < x + h). (5.17)

Given h, it is trivial to estimate fh(x) with the proportion of the sample falling in the
interval (x − h, x + h), in formula

f (x) ≈ fh(x) =
1
2h

nh

n
, (5.18)

where n is the sample size and nh the number of extractions that fall in (x− h, x + h). This
concept can be expressed better by introducing a weight function w(x)

fh(x) =
1
n

n∑
i=1

1
h

w
( x − Xi

h

)
, (5.19)

with

w(x) =

{ 1
2 if |x| < 1
0 otherwise. (5.20)

This “naive” estimator is easy to generalize, in fact, substituting the weight function
w(x) with a kernel function K(x) so that

fh(x) =
1

nh

n∑
i=1

K
( x − Xi

h

)
(5.21)

in which
∫ +∞

−∞
K(x)dx = 1. In this thesis, we chose to follow Haber [2004] and evaluate

the joint density distribution ρ∆ using the kernel function
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K(∆, t) =

{
4

3∆
cos4

(
πt
2∆

)
, if − ∆ < t < ∆

0, otherwise.
(5.22)

In this function ∆ takes the same role h has in equation 5.19 and controls the width of the
kernel function.

This kernel function was chosen because of its properties, in particular:

•
∫ +∞

−∞
K(∆, t)dt = 1 ∀ ∆ > 0;

• limt→±∆∓ K(∆, t) = limt→∓∆± K(∆, t) = 0;

• limt→±∆∓ K′(∆, t) = limt→∓∆± K′(∆, t) = 0;

• K(∆, t) = K(∆,−t);

• K(∆, t) ≥ 0 ∀ t;

• lim∆→0 K(∆, t) ≈ δ(t);

where δ(t) is the Dirac delta function. Looking for a joint probability distribution that
generates the two images m and R the joint probability density estimator is a linear com-
bination of kernel functions, explicitly:

ρ∆(m,R; gm, gR) =
∑
j∈J

K(∆,R(x j) − gR)K(∆,m(x j) − gm) (5.23)

in which g? is the so-called gray value relative to the image ?, or, in density estimation
terminology, represents the axis on which the kernel estimator approximates the histogram
produced via Equation 5.19 and (x j : j ∈ J) is a discretization of the image domain [Haber
and Gazit, 2012]. The derivative of entropy, needed by the LM algorithm described in
4.3.2, is then easily computed, in fact, on a picture composed of n pixels/voxels

ρ∆(m,R; gm, gR) =

n∑
j=1

K(∆,R j − gR)K(∆,m j − gm), (5.24)

∂ρ∆

∂mi
(m,R; gm, gR) = K(∆,Ri − gR)K′(∆,mi − gm), (5.25)

with

K′(∆, t) =

{
8π

3∆2 cos3
(

tπ
2∆

)
sin

(
tπ
2∆

)
if − ∆ < t < ∆,

0, otherwise.
(5.26)

This method is referred to as the histogram method. In order to clarify the concept of
distance measure between images, the following examples are presented.
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5.3.1. MI Distance Measure Examples

Let us consider the images in figures 5.1 and 5.2, respectively figure R and m.
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Fig. 5.1.: A black and white picture consist of a map of pixels in
which in each cell a gray value gR in the interval [0, 1] is given,
with 0 = black and 1 = white
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Fig. 5.2.: This image is obtained by the image displayed in figure
5.1 applying to the value of each cell the non-linear transformation
gm = sin(gR · π)

The transformation that maps 5.2 in 5.1 must be regular enough to maintain the shape,
but is non linear. It is evident that each white pixel of figure 5.1 becomes a black pixel in
figure 5.2, while the inverse relation does not hold. For example, the black “half moon”
shape in the lower right corner of figure 5.1 is black even in figure 5.2.

The estimated joint density function is shown in figure 5.3. The sinusoidal relation that
links the grey values of the two pictures is recovered, and its integral value over the whole
definition space equals 1, and I(R; m) = 0.94.

Let us consider another two pictures, presented in figures 5.4, and 5.5, respectively m1
and m2. m1 is the “negative” of R whereas m2 has been derived from R using a complex
non-linear transformation. Intuition suggests that m1 “informs” us about R more than m2.
The estimated JPD are presented in figures 5.6 and 5.7. Compared to the reference image
R, the closest image, m1, presents a linear JPD. On the contrary, the quasi-random relation
that links R and m2 is not retrieved. Notwithstanding the inability in finding the correct
relation between R and m2, the MI value, reported in table 5.1, continues to suggest a
certain relation between the two images.

As a final example, an image that has nothing to do with R is presented in figure 5.8:
ma. In this case the estimated joint probability distribution ρ∆(R,ma) shows a sparse,
chaotic pattern (figure 5.9). The similar shape of the apple and the smile is in itself
not sufficient to communicate a significant amount of information about the smile. This
evidence is translate in the MI value, I(R; ma) = 0.48.

The error in comparing images R and ma is in the assumption that both come from
the same JPD. It is then nonsense to look for a joint probability distribution that cannot
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Fig. 5.3.: Joint density function ρ∆(m,R, gm, gR). This function has been estimated fixing ∆ = 0.2. The values on the axis correspond
to the discretization –in this case in 32 steps – of the values that compose figures 5.1and 5.2. Thus the probability that a value
R? : n

32 ≤ R? ≤ n+1
32 in figure R correspond to a certain value m? : i

32 ≤ m? ≤ i+1
32 is given by the value of ρ∆(n, i)

exist. What lasts is the distance definition, the proof that notwithstanding the similarity
in shape, the distance between the two pictures is bigger than the ones relative to all the
precedent couples considered.

Table 5.1 summarizes the computed MI values for the different pictures. In agreement
with intuition, the more two images are similar, the greater their MI. This means that
the measure of distance between similar images is small, according with the variation
of information distance definition. This metric concept allows the exact comparison of
“similarity” between images – and geophysical models if seen as images – and hopefully
a correct estimation of their joint probability distribution.

Summarizing: in this scheme the subsurface itself is viewed as the source of signals
regarding its structure. These signals can be detected with different methods, but the
results are supposed to inform us about the structure of the source and thus about the
model detected with all the different methods used to model the subsurface.
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Fig. 5.4.: m1. Image obtained by applying to R the transformation
m1(i, j) = 1 − R(i, j)∀i, j
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Fig. 5.5.: m2. Image obtained by applying to R the transformation
m2(i, j) =

sin[R(i, j)]
sin[100R(i, j)]∀i, j
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Fig. 5.6.: Joint density function ρ∆(m1,R, gm1 , gR). This function
has been estimated fixing ∆ = 0.2.
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Fig. 5.7.: Joint density function ρ∆(m2,R, gm2 , gR). This function
has been estimated fixing ∆ = 0.2.

MI(bits)
I(R; R) 1.0
I(R; m) 0.94
I(R; m1) 0.97
I(R; m2) 0.64
I(R; ma) 0.48

Tab. 5.1.: MI values for the different examples considered. According with the definition 5.13, the more distant the pictures, the
smaller their MI.
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Fig. 5.8.: Joint density function ρ∆(m1,R, gm1 , gR). This function
has been estimated fixing ∆ = 0.2.
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Fig. 5.9.: Joint density function ρ∆(ma,R, gma , gR). This function
has been estimated fixing ∆ = 0.2.
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5.3.2. MI Robustness Examples

A discussion relative to the robustness of MI with respect to the errors in the pixels – or
in the models parameters, in inverse problem terminology – is needed in order to appre-
ciate the stability of the MI constraint with respect to errors in the reference model in an
inverse problem. Robustness of maximization of MI as a distance measure is appreciated
in Unser and Thevenaz [2000]. Without the pretension to prove this stability, in Figure
5.10 the variation of MI with noise in a picture’s pixels – relative to two of the examples
examined in the previous section, specifically m and ma – is presented. It is evident that
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 I(R;m)

I(R;m
a
)

Fig. 5.10.: Variation of mutual information with noise in pixels. To each of the pixel building figures m and ma a random number
drawn from a gaussian distribution characterized by mean zero and variance equal to the error have been added.

random noise improves the similarity in two different pictures and erases the similarities
in two close ones up to a certain threshold, after that threshold value, the noise com-
pletely destroys the information carried by the signal, making the two different pictures
equidistant from the reference R. In Figure 5.11 are presented some of the pictures used
to compute data presented in Figure 5.10.

A better approach to consider numerically the stability of the mutual information with
“errors” in the model parameter mi is to consider the ratio Ii(R;m)

I(R;m) with Ii(R; m) =
∂I(R;m)
∂mi

.
This ratio represents the relative variation of the MI value with the i-th model parameter,
and is a good candidate to represent the stability of the MI. The smaller the ratio, the
more stable MI is with respect to errors in model parameters. In Figure 5.12 the variation
relative to the model parameters is reported relative to the example model m. For most of
the model parameters – the white pixels in Figure 5.12 – the MI value results are extremely
stable in the example examined.
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Fig. 5.11.: Some of the pictures used to compute mutual information values presented in Figure 5.10. Top to bottom: m (left side) and
ma (right side) subject to 15%, 40% and 65% random noise.
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Fig. 5.12.: Relative sensitivity of MI with the variation of model parameters value, relative to the two images m, R.
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Part II

A new approach to MT anisotropic
inverse problem

Fundamental ideas play the most essential role in forming a physical the-

ory. Books on physics are full of complicated mathematical formulae. But

thought and ideas, not formulae, are the beginning of every physical theory.

The ideas must later take the mathematical form of a quantitative theory, to

make possible the comparison with experiment.

– Albert Einstein



6
A New Approach

As there is no general analytical solution available for the inversion of anisotropic MT
data, over the years several computer codes have been developed to solve the problem nu-
merically and to produce electrical conductivity maps of the subsurface from anisotropic
MT datasets.

This chapter presents a new approach to working with anisotropic MT data along with
results from simple synthetic case studies.

6.1. Figure Driven Inversion

Building upon the theoretical background previously discussed, it is possible to construct
the new approach to the inversion of anisotropic MT data that is the subject of this thesis

In Chapter 2 we explored the theory that facilitates the so-called “forward modeling”.
The methods described in the Chapter 2 assume the role of the forward operator G(?),
widely used in the inverse problems theory, as presented and discussed in Chapter 4.

The objective function to be minimized is defined as

φ(m,R) :=
m∑

i=1

[
G (m)i − di

σi

]2

+ λ2
L‖L (m) ‖2 + (6.1)

+ λ2
aP (m) + λ2

MI [I (R; R) − I (m; R)]2 ,

where

m is the n-dimensional model vector in which the model parameters are stored;

R is the reference model. It may be a geological profile, the result of a seismic inverse
problem or any kind of trusted subsurface map of the studied region;

G(?)i is the ith component of the forward operator applied to the ? vector. G(?) operates
on an n-dimensional model vector predicting m data;
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di is the ith component of the m-dimensional data vector;

σi is the ith component of the m-dimensional error vector;

λL is a parameter that controls the trade-off between data-fitting and Tikonhov regular-
ization;

L is the roughening matrix as described in the Section 4.7;

λa is a parameter that controls the trade-off between data-fitting and anisotropy;

P(?) is an operator that penalizes high anisotropy. It takes different shapes in one and
two dimensions, and it will be specified when needed;

λMI is a parameter that controls the trade-off between data-fitting and the MI influence;

I (m; R) is the mutual information between m and R as described in Chapter 5;

λ? ≥ 0.

With the minimization of φ, we aim to achieve the following different objectives simulta-
neously:

• to fit the MT data;

• to retrieve a regular1 model of the subsurface electrical conductivity;

• to retrieve a model that is as close as possible to the reference model selected, in
the MI sense.

The method chosen to minimize φ is the Levenberg-Marquardt algorithm, described
in section 4.3.2. After the definition of an initial guess model m0, the equation 4.31
is iteratively solved until a certain condition ensures that a minimum – possibly a local
one – has been reached.

In this context the reference model, R, is interpreted as an image coming from the same
joint probability distribution that generates m. The requirement that the two must share
information about the source (in this instance, the subsurface) is thus explained. The
power of this method is evident; a direct link between the two images of the subsurface
is not explicitly requested. Moreover, it is possible to use, without modification, any kind
of geophysical results available from the same area to drive the inverse problem.

A short discussion about the term P(?) is necessary. Since in most cases we try to fit
the data within the minimum possible anisotropy, we define

P(?) :=
∫
?

(ln %1, ln %2, ln %3)

 2 −1 −1
−1 2 −1
−1 −1 2


 ln %1

ln %2

ln %3

 , (6.2)

1regular meaning both in a Tikhonov sense and to present the minimum possible amount of anisotropy.
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where %i is the i-th principal conductivity, and ? represents the whole model domain. The
Equation 6.2 represents an “elastic force2” that keeps the principal resistivity values joined
together: as soon as the three principal resistivity values become similar, the conductivity
tensor becomes singular and can be treated as a scalar. This is translated in the physical
domain to an isotropic behavior (isotropic conductivity can be defined as this special case
of degenerate anisotropy).

The condition chosen to stop the iterative process is φ(mi) − φ(mi−1) < ε, meaning we
consider we have reached a minimum when the ith iteration changes the value of φ less
then a given threshold value ε. From a numerical perspective, ε represents the limit that
allows us to discriminate a “flat” area in the objective function hyper-surface. When a flat
area has been reached, the sensitivity of the data with respect to the model parameters is
numerically negligible, thus there is no need to proceed with the next iteration.

6.2. Synthetic Tests

The purpose of this section is to test and analyze results returned from the new approach
discussed above. In order to test the algorithm we compute the MT response for some
hypothetical synthetic models. This response will be used as MT data in the inversion
scheme. Notwithstanding the innovation introduced by the variation of information in the
Levenberg-Marquardt algorithm, the main goal of an inverse problem remains the finding
of a model that statistically fits the data. While the inherent non-uniqueness of the solution
may motivate the rejection of a model that fits data, a model that does not fit the data is to
be rejected for the simple reason that the predictions made on the basis of that model are
wrong.

Thus, the results are supposed to:

• fit the data;

• reproduce the synthetic model;

• be robust to changes in the values of trade-off parameters.

Whilst the data fitting is self-explanatory and the request to retrieve the correct model is
the primary goal of any inverse problem, the concept of robustness with respect to the
changes in the values of trade-off parameters deserves a short discussion.

As the solution of the MT inverse problem is non-unique, features in a model that appear
to be minimizing a particular objective function may be the result of the path followed by
the algorithm to reach the specific minimum retrieved. Adding a regularization term to the
objective function (such as adding a term to keep the anisotropy rate low, or a term that
maximizes the mutual information) can be interpreted in the multi-dimensional space,

2the penalty value relative to two different principal resistivity values is proportional to the square of their
difference, as in the classic Hooke’s law.
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in which φ is defined, as an extension of the space in an extra dimension that allows
the descent of the algorithm towards a local minimum to follow a different path. To
illustrate this concept it is useful to look again at the expression 4.18. It is obvious that
any term added to the objective function results in a new component – a new dimension
in the geometrical interpretation – in the vector 4.18. Thus, any feature in a model can
be an artifact due to the specific path followed because of the major influence of one of
the added dimensions. This influence is controlled by the specific trade-off parameter
used. Therefore, it is important when attempting to ascertain whether a certain physical
feature is present in the subsurface that the results are robust to the variation of trade-off

parameters.

6.2.1. Selection of inversion parameters

Equation 6.1, the estimation of mutual information and the LM algorithm present a num-
ber of parameters that need to be set to run the inversion code effectively. The trade-off

parameters, the initial value for the LM damping parameter, the numerical precision and
the maximum number of forward evaluations are all important factors that affect the re-
sults of the inverse problem. As described in Chapter 4, the Levenberg-Marquardt initial
damping parameter was set to λ = 128. This value represented a good compromise be-
tween convergence speed and accuracy in all tests performed. The maximum number of
forward evaluations, Nmax, is a numerical limit which prevents the algorithm from run-
ning without an effective change in the results. It only affects the inverse problem result if
the local model corresponds to a very flat region of the objective function. Nmax was set
to 400 · n for the 1D tests, whereas the maximum number of iteration Niter was set to 40
for the 2D tests. The other parameter values were adjusted on a trial-and-error basis; this
is described in detail in the test descriptions below.

6.2.2. 1D Preliminary Test

Beginning with noise-free data and understanding the data source, we wish to test whether
the newly developed algorithm can retrieve the input model and find the original JPD. The
influence of MI in the inverse scheme can thus be evaluated. The starting guess m0 was
set as an isotropic half-space with a conductivity value of 0.03 S · m−1. The model was
discretized into nl layers with each layer completely described by its electrical conduc-
tivity tensor – as per the theory presented in the Section 2.4 – and by its fixed thickness.
The half-space was discretized using layer boundaries that were logarithmically spaced
to accommodate the natural exponential decay of the impedance with period. This dis-
cretization corresponds to the grid design suggestions presented in Simpson and Bahr
[2005], and allows numbers of a similar magnitude to be used in the sensitivity matrix.
The first synthetic model tested is shown in figure 6.1. The anisotropic azimuthal strike
angle, β, can be seen in the left panel and the two aggregated conductivity values, A1 and
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Fig. 6.1.: Synthetic model used to test the 1D algorithm. Because of the non unicity in the representation, there is a 90◦ ambiguity in
the anisotropic strike direction, thus whenever the conductivity value in the conductive direction is smaller then the one in the resistive
direction, the twos can exchange their roles with a simple 90◦ rotation (in the specific layer). Left panel: azimuthal anisotropy strike
direction. Right panel: aggregated conductivity values A1 (in red) and A2 (in blue)

A2, can be seen in the right panel. These parameters are all defined in equation 2.74. In
the test we assumed an error floor of 5%.

Avoiding the black-box syndrome

It is, of course, possible to set up the inverse problem using a public computer library that
implements the LM algorithm, setting a random number of layers and checking the results
produced. We tested the MINPACK library, broadly used by the scientific community for
decades. The MINPACK implementation of the LM algorithm was fast, but was unable to
produce acceptable results even for the simple model used in this test. We have identified
the problem. In the line-search procedure to find lambda, MINPACK searches for the
damping parameter that minimizes the objective function, keeping the LM algorithm as
close as possible to the Gauss-Newton method to increase the rate of convergence. The
problem, in this case, was relative to the line-search procedure that selects a step direction
that leads the model obtained by the first iteration too far from the guess model, m0, and
thus ends up in a completely different region of the model domain where the algorithm se-

85



6. A New Approach

lects a different, unsuitable, local minimum of the objective function, which corresponds
to an unsuitable retrieved model.

Following this, we decided to write our own implementation of the Levenberg-Marquardt
method to be able to handle all the parameters we needed to control, considering that the
problem to be solved is relative to a specific forward-solution and minimizes an objective
function specifically tuned to the physics of this problem.

1D Preliminary Test solved

With the synthetic dataset ready, the framework used to invert the data was defined. Since
a comparison of the model parameter values was required (the grey tones in the images)
the number of layers3 required to represent the model had to be fixed. It is important
to note that with few parameters the link with a reference figure results unstable, as in
that case there are very few voxel available to provide a “good” estimation of the JPD.
Too many parameters, directly translated in layers in this scenario will over fit the data.
In order to select the number of layers to adequately solve the problem, the standard
statistical approach and performed an F-test to examine results obtained from an isotropic
inversion have been used. The these was performed in order to checked that, if a model
characterized by a certain number of layers nl fit the data, a second model constituted by
2 · nl layers fits the data significantly better. The null hypothesis tested was that the model
characterized by 2 · nl layers does not provide a significantly better fit than the model
characterized by nl layers (layers are logarithmically spaced as described above). The χ2

was used as estimator, and a significance of 95% was fixed. The results of the test indicate
that an isotropic inversion in a domain discretized in 32 layers improves the data fit by
less than 5% with respect to an isotropic inversion in a domain discretized in 16 layers.
The number of layers – logarithmically spaced – was thus fixed to 164. The model domain
was set so that the most penetrating wavelength’s magnitude becomes negligible inside
the model (cf. Chapter 2).

Once the guess model had been selected, a trial-and-error procedure was used to deter-
mine the optimal trade-off parameters for this inversion. Figure 6.2 shows the L-curve that
was constructed to select the lambda parameter; a zero-order Tikhonov regularization was
used for this. This L-curve method is a commonly-used, empirical method for defining
a trade-off parameter [Hansen and O’Leary, 1993]; the “best” parameter is considered to
be the one situated on the edge of the L-shaped curve of RMS plotted against λL.

With a final RMS ≈ 5.3, it is evident that the data are not fitted, and we have to reject
the model relative to the local minimum retreived.

In order to introduce the MI penalty function and measure the variation of the informa-
tion it is necessary to define a reference model, R. In this test, two different reference

3or equivalently the number of 1D voxels, in the MI vocabulary
4in this scenario that means 48 estimated parameters, 16 high conductivities, 16 low conductivities and 16

anisotropic strike directions
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Fig. 6.2.: Left panel: L-curve computed to estimate the trade-off parameter λL. Right panel: Component of the objective function
φ(m∗), the trade-off parameters wereλL = 50, λMI = 0, λa = 0.

models are adopted; one that is “compatible” with the synthetic model (Figure 6.3) and a
second one that that is “incompatible” with the synthetic model (Figure 6.4). “Compati-
ble” refers to a model that has a relationship with the synthetic model, and “incompatible”
refers to a model that does not share information with the synthetic model. As discussed
in Chapter 5, the numerical values that define the voxels do not influence the MI distance
definition.
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Fig. 6.3.: Compatible R model.
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Fig. 6.4.: Incompatible R model.

The reference model, R, can be defined in a synthetic test so it is obvious that the re-
lationship with the synthetic model, m, will be imposed or negated. Great care must be
taken when selecting a convenient reference model. This effort will influence the selec-
tion of a reference model relative to a parameter that shares information with electrical
conductivity. The retrieved model in Figure 6.5 was produced by using the compatible
reference model in the computation of the mutual information penalty function. Figure
6.6 shows the data fit relative to the inversion performed in Figure 6.5. The algorithm was
able to fit all the data within one error bar with none of the residuals exceeding a value
of 1. Figure 6.7 shows the estimated JPD relative to the resulting model and the compati-
ble reference model. The result from the inversion relative to the incompatible reference
model produces an RMS equal to 5.9. Figure 6.8 shows the estimated joint probability
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Fig. 6.5.: Solution of the inverse problem presented. To obtain this
solution the compatible reference model have been used in the com-
putation of the MI penalty function.
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Fig. 6.6.: Components of the objective function computed in cor-
respondence with the model presented in Figure 6.5. We highlight
that all data have been fit within one error bar.

distribution relative to this inversion. It is evidently not possible from this distribution to
distinguish a relationship between the two models. It is also evident that the incompatible
model is not advantageous in the inversion process, but in this case it does not lead to a
different minimum value to the one retrieved without the use of MI.
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Fig. 6.8.: JPD distribution estimated in the inversion with the in-
compatible reference model. It is evident that there is no relation
between the gray values of R and the ones that compose m.

To explore the influence of the MI penalty function, several inversions were tried. Fig-
ure 6.9 shows a plot of the variation of φ with respect to λMI . It is evident that the mutual
information term becomes dominant with respect to other terms in the objective function
after a certain threshold; thus the absolute value of φ increases, as expected, with λMI .
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6.2.3. 2D Preliminary Test

As seen by the inverse problem description the extension of the physical problem domain,
from 1D to 2D, is merely translated into the introduction of a different forward solver in
the Equation 6.1, thus in the accuracy of the approximation 4.29.

An example of a 2D anisotropic inversion is presented here. This was thought of as a
“school test” to check the accuracy of the code and the simplicity of the design of the test
has been exaggerated. The guess model, m0, was defined as a 1000 Ω · m isotropic half-
space. The conductivity tensor for the 2D model was parameterized in each homogeneous
region of the structure by the following anisotropy parameters:

• the three principal electrical conductivity values;

• the three Euler’s anisotropy angles, illustrated in Figure 6.10.

In this simple case, the model domain was characterized into three regions using the
same boundaries that characterize the synthetic model. Two different grids were used to
solve the inverse problem: an inversion grid that has the same boundaries as the synthetic
model, and a finer grid used to compute the forward solutions.

The synthetic model is presented in Figure 6.11 and the discretization used to compute
the forward problem is presented in Figure 6.12. Data relative to 13 periods were used –
T ∈ [1.0; 2.0; 5.0; 10.0; 20.0; 50.0; 100.0; 200.0; 500.0; 1000.0; 2000.0; 5000.0] s –
along a line of 53 stations located on the vertical grid points, as shown in Figure 6.11.
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Fig. 6.10.: Euler’s rotation used to describe the conductivity tensor. Due to the formal characteristics of the tensor itself, it can be
represented by three principal conductivity – equivalents to the eigenvalues of the tensor – and three consecutive rotations (cf. Equation
2.67 for details; figure courtesy of Dr. Josef Pek).

The problem characteristic dimensions are, therefore, 18 (three regions defined by six
parameters each) parameters and 5512 data. It was not possible to discern any difference
in the inversion results produced with or without the use of the MI penalty function; the
RMS was zero within the numeric precision used.
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Fig. 6.11.: Synthetic model regions and position of stations. the only vertical discontinuity is reported in the figure. The conductivity
values relative to the regions are reported in Table 6.1 (left value).

Table 6.1 contains the resulting model parameters. The results are presented in a physi-
cal coordinate system, with the x-axis aligned with the north-south direction and pointing
north. This method of representation of the tensor was chosen in order to overcome the
problems caused by the non-unique tensor representation in the principal conductivities
coordinate system.

Despite the simplicity of the test, it was successful overall. Of the three aims of the
test, two were obviously satisfied:

• with a final RMS equal to zero within the machine’s precision, the data-fit is perfect;
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Fig. 6.12.: Discretization of the 2D anisotropic domain used to compute the forward response. The area of interest is located approxi-
matively at the center of the y axis. The domain is much larger than the problem to reduce the influence of the boundary condition in
the response.

Region σxx σxy σxz σyy σyz σzz

1 0.001 / 0.001 0.000 / 0.000 0.000 / 0.000 0.001 / 0.001 0.000 / 0.000 0.001 / 0.001
2 0.033 / 0.033 0.000 / 0.000 0.000 / 0.000 0.033 / 0.033 0.000 / 0.000 0.033 / 0.033
3 0.032 / 0.032 0.006 / 0.006 0.000 / 0.000 0.012 / 0.012 0.000 / 0.000 0.323 / 0.324

Tab. 6.1.: True (left value) and retrieved (right value) electrical conductivity values relative to the synthetic test described in Section
6.2.3. The RMS results zero within the machine’s precision. All the conductivities are measured in S · m−1.

• if the real conductivity values and retrieved presented in Table 6.1 are compared, it
is evident that we retrieved the synthetic model.

Evidently, these two results are not achieved easily; the discretization of the inversion
domain, compatible with the true boundaries of the synthetic model, assumes an exact
knowledge of the structure of the subsurface. Furthermore, the dimensions of the problem
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(n � m) is a hypothetical, ideal situation, often unattainable during a “real-world” survey.
The complete insensitivity of this problem to λMI must be noted, and is attributed to the
almost perfect solution retrieved without the MI penalty function. The relatively small
value of n discouraged us from making use of both the anisotropy penalty function and
the Tikhonov regularization.

6.3. Preliminary test conclusions

In this chapter, the objective function has been defined. From a mathematical perspective,
this objective function, in conjunction with the inversion algorithm and the forward solver,
completely defines the inverse problem we aim to solve. We have tested the ability of our
implementation of the Levenberg-Marquardt algorithm to solve the inverse problem in
both 1D and 2D anisotropic domains.

In the 1D case, we have been able to explore some of the properties of the mutual infor-
mation penalty function, in particular its ability to drive the inversion towards a suitable
solution and its affect on the stability of the solution with respect to the trade-off parame-
ters.
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7.1. 1D Anisotropic Inversion of Data from Central
Germany

A more realistic application of the developed method requires the study of a real dataset.
In order to further test the efficiency and the advantages of the MI penalty term, we used
the objective function defined in Equation 6.1 to invert a well-known dataset related to
the Rhenish Shield region (Central Germany).

In this case, a notable improvement in the retrieved model has been achieved, con-
straining the model’s most-conductive direction with an available seismic model relative
to the same region.

In the following section the data used, the reference model and the solution retrieved
will be presented and discussed.

7.1.1. Data

The MT data used in this study were acquired in the Rhenish Shield region, Central Ger-
many, between June and September 1997 and October to December 1998 [Leibecker et al.,
2002]. From these surveys we analyzed the data from station DIE. The location of the sta-
tion and the topography of the surrounding region is shown in Fig. 7.1. Data from other
stations, deployed in the studied area, present the same characteristics, but are of inferior
data quality [Roux et al., 2011]. We considered all the data from the station DIE, rang-
ing in period from 10 s to 4100 s. MT data are affected by distortion caused by small
heterogeneities and local structure [Groom and Bailey, 1989]. Based on prior studies of
this area (e.g. Leibecker et al. [2002], Roux et al. [2011]) we expect a 1D anisotropic
environment, both electrically and seismically. We preprocessed the data, as suggested in
Jones [2012], to remove the determinable effects of galvanic charges on the electric field
from local, small-scale, distorters. After removing distortion, we obtained a set of 18
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Fig. 7.1.: Topographic map of the studied area. The black star indicate the location of DIE station.

complex impedance tensors Ẑ(T ), one per period, all with tr(Ẑ) = 0; this formal property
is required in 1D anisotropic environments (cf. Section 2.4).

7.1.2. The Reference Model

Approximate agreement between geo-electric strike and seismic fast-axis direction in sev-
eral regions, e.g., southern part of the Slave province [Eaton et al., 2004], central Australia
[Simpson, 2001], central Germany [Gatzemeier and Moorkamp, 2005], the Kaapvaal cra-
ton [Hamilton et al., 2006] and the São Francisco craton [Padilha et al., 2006], suggests
that a common origin may contribute to both electrical and seismic anisotropy. Usually,
lattice-preferred orientation of olivine crystals is considered to be the source of seismic
anisotropy in the upper mantle [Savage, 1999], but laboratory measurements prove that
electrical anisotropy caused by the orientation of olivine crystals cannot be the only source
of the anisotropy observed in the field [Gatzemeier and Tommasi, 2006]. While the source
of upper mantle electric anisotropy is still debated, its effect is clear in MT data. The qual-
itative agreement in azimuthal anisotropic directions, as detailed above, suggests that the
seismic azimuthal anisotropy can effectively constrain the anisotropic strike direction of
a concurrent MT model, eventually reducing the non-uniqueness inherent the solution of
a one-dimensional anisotropic MT inverse problem..

The selection of a reference model, especially in the proposed inversion scheme, is not
a trivial choice. In this case study, the MI distance of the direction of the most electrically
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conductive direction was minimized with respect to the seismic fast-axis direction1. For
the reference model, we chose one of the seismic models obtained by Roux et al. [2011],
presented in Figure 7.2. In that work, Roux et al. [2011] implemented a genetic algorithm
(NAGA-II) as their optimization engine, and inverted for a set of suitable seismic and
resistivity models. Our reference model is the model A indicated with the continuous
black line in the figure. Data fitting relative to the selected seismic model is shown in
Figure 7.3. For information regarding the inversion technique used for the seismic data,
see Roux et al. [2011] and references therein.

[27] On the other hand, such a high maximum value of
resistivity in the asthenosphere (Figure 2a) is not required.
For an asthenospheric anisotropic direction of 72°, we show
that the minimum amount of electrical anisotropy required
between 84 km and 145 km depth to fit our data is about
one order of magnitude (160 W.m/8 W.m).
[28] The well‐fitting seismic models put strong azimuthal

anisotropy between either 10 and 22 km depth or 22 and
35 km depth (Figures 2b and 3b). Such a strong seismic
anisotropy coefficient is unusual but we can fit the data
equally well by applying a smaller anisotropy coefficient in
both layers. These best solutions thus indicate the presence
of azimuthal anisotropy at lower‐crustal/upper‐lithospheric

depths with a NE/SW fast axis direction (30°) and another
layer of seismic anisotropy below 80 km depth, in the
asthenosphere, with the fast axis turning east‐westwards
(Figure 2b).

4. Discussions and Conclusions

[29] Our anisotropic joint inversion of MT and SW mea-
surements has enabled us to resolve a LAB lying between
75 and 91 km depth with a fast/resistive layer overlying a
slow/conductive layer. This depth is shallower than that
found by Gatzemeier and Moorkamp [2005] of 100 km, but,
as noted above, the depth of this interface is mostly resolved

Figure 3. (a) Map view of the phase tensor ellipses at different periods for the input data (site DIE) and inversion result
(Model A). The length of the ellipse’s main axes are proportional to the principal axes of the tensor. Color of ellipses indicates
the value of the skew (measures the asymmetry of the tensor). (b) Dispersion curves extracted from the anisotropic phase‐
velocity maps and showing phase velocities of Rayleigh wave at different azimuths (black dots) with their error bars. Red solid
lines are the phase velocities computed for model A. In grey, dispersion curves computed for the set of solutions shown on
Figure 2b.

Figure 2. Joint MT and seismic models. (a) In black, minimum (solid lines) and maximum (dashed lines) values of resis-
tivity on a logarithmic scale for our best model A. In grey, MT structure for all the solutions fitting the datasets within error
bars. (b) Best solution (model A with black lines) and the best‐fitting solutions given by the GA (grey lines). We plot the
mean value of shear‐wave velocity, the amount of azimuthal anisotropy and the fast‐propagation azimuth. Also shown in
Figure 2, a histogram that represents, for a certain depth, the number of models within a given interval for each inversion
parameter. This plot takes into account all the performed GA runs.

ROUX ET AL.: JOINT INVERSION OF MT AND SW DATA L05304L05304

4 of 5

Fig. 7.2.: Final population relative to the seismic fast-axis direction
obtained with GA based inversion in [Roux et al., 2011]. The black
continuous line is relative to the model that best fit the seismic data
(model “A” in Roux et al. [2011].
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Fig. 7.3.: Seismic data fit from the reference model [Roux et al.,
2011].

7.1.3. Inversion details

The objective function minimized was formally identical to Equation 6.1:

φ(m,R) = λRφR(m) + λAφA(m) + λMIφMI(m,R) +

n∑
i=1

(
G(m)i − di

σi

)2

, (7.1)

where m is the model vector, in which the values of aggregated electrical conductivities
(σHIi and σLOi and the strike directions (βsi) are stored, R is the reference model vector,
that stores the seismic fast-axis directions, φ? is the penalty function associated to the
relative quantity, G is the 1D anisotropic forward operator, di is the component of data

1The azimuthal direction along which the pressure waves travel with higher velocity
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vector relative to the i-th component, and σi is its statistical error. Non-uniqueness of
solutions in MT inverse problems is well-known and documented (e.g. Parker [1980]).
In 1D, this non-uniqueness is not inherent in the MT method, as there exists a uniqueness
theorem [Bailey, 1970], but is a consequence of inaccurate, insufficient and inconsistent
data. Assessing this non-uniqueness requires the use of a Tikhonov regularization term
in the objective function, in order to penalize models that are too rough (e.g. Constable
et al. [1987]). We added a quadratic term2, that penalizes the differences between the
high and low conductivities,

∑
i(logσHIi − logσLOi)2, to penalize models that present

high anisotropy, and a term to introduce a first-order Tikhonov regularization between the
layer-to-layer conductivities, λRφR(m) = λRL2m2 where L is the roughening matrix

L =


−1 1

−1 1
· · ·

−1 1
−1 1

 , (7.2)

and the product L ·m is a finite-difference approximation that is proportional to the first
derivative of m (this is an example of first-order Tikhonov regularization, as presented
in Section 4.7). Trade-off between data-fitting, regularization and distance from the ref-
erence model is controlled via the appropriate coefficients, selected ad-hoc during the
inversion process. Specifically, any time we changed the trade-off parameters, we either
divided them by 2 to reduce them, or multiplied them by 2 to increase them. The influence
of anisotropy and regularization are controlled in the inversion process by the trade-off pa-
rameters λA and λR respectively. The influence of the MI in our inversion is controlled
in the same way by the trade-off coefficient λMI . The term relative to the MI distance
measure is φMI(m,R) = I(R; R) − I(m; R).

∑n
i=1

(
G(m)i−di

σi

)2
is the term that minimizes the

misfit measure.
The meaning of the three λ? values is not absolute, as remarked in Chapter 6. Regular-

ization functions serve to smooth the RMS hyper-surface. This process introduces a bias
in the solution, while simultaneously improving the efficiency of the LM algorithm that is
not able otherwise to avoid local minima. Values used in the inversion have been selected
via a trial-and-error procedure.

In detail, we followed a stepwise strategy in order to introduce complexity in the model
progressively. This ensures we begin from simplicity, and introduce more complexity
only when required.

1. Inversion of the MT data only starting with an initial guess m0 to recover an isotropic
model mIS O. In this step the coefficient that controls anisotropy, λA, is set to 1012

(ideally +∞) to prevent any anisotropy in the model. The coefficient that controls

2despite the formal way in which this term is cast, it is identical to the P(?) operator described by Equa-
tion 6.2.
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the MI, λMI , is set to 0, i.e., there is no influence from the reference model. λR = 2
was selected from a set of initial inversions via a simple L-curve method [Hansen
and O’Leary, 1993].

2. Using mIS O as starting model, we progressively introduced anisotropy into the
model by reducing λA. For the data herein, in this step we reduced λR to the range
[1.0 − 2.0]. Again, λMI is 0.

3. We progressively reduced the λR value whilst simultaneously increasing the value
of λMI up to 8. We tested higher values for λMI but we did not notice further im-
provements: neither a reduction in RMS value nor an increase in the MI value.

In order to select the number of layers, we performed an F-test on results from the first
step of our scheme to validate the hypothesis that a certain number, n layers, is adequate
to fit the data. Starting from n = 2 logarithmically-spaced layers, we try to fit data
progressively better by doubling the number of layers at each iteration. We accepted
the hypothesis that n = 32 layers are adequate to fit DIE data with a significance level
of 0.05. This test ensures that a finer discretization of the subsurface domain, using 64
logarithmically spaced layers instead of 32, does not improve the χ2 statistic more than
5%.

The errors relative to the model parameters were estimated via the linearized formulæ
presented in Section 4.5.

7.1.4. Results

In the previous studies of this area, taken without the constraint of MI, problems relating
to constrain the minimum value of the horizontal electrical conductivity ratio σHI

σLO
needed

to fit the data have been highlighted. In particular, it is important to define the minimum
acceptable electrical anisotropy in the asthenosphere to compare with petrological and
seismological studies. Constrained by the reference model, our resulting model, shown in
Figure 7.4, presents three anisotropic regions, similar to the reference model itself. Inside
the 95% confidence interval3, a difference of more than one order of magnitude between
the high conductivity and low conductivity is never required.

Interpreting the anisotropy as an indicator of physical and chemical property changes,
it is possible to guess physical or chemical boundaries in the areas in which it arises. With
this in mind, we can set the Moho interface between 24 km and 29 km depth, within the
layer that present the highest anisotropy, and the LAB, the next important boundary, is set
between 85 km and 99 km in depth, again in a highly anisotropic region. Both of these
are in good agreement with the values found in independent seismic and MT studies of
the area (cf. Bischoff [2006] and Gatzemeier and Moorkamp [2005]). In Figure 7.5 the

3computed as shown in section 4.5
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Fig. 7.4.: Electrical conductivity model from DIE station in Central Germany, relative to the complete discretization of the domain.
The left panel present the logarithm of conductivities ± the computed error. Blue and red are relative to the two different aggregate
conductivities. The right panel present the anisotropic strike direction ± the direction error. A detail of the upper 50 km of this model
is presented in fugure 7.5.
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Fig. 7.5.: Electrical conductivity model from DIE station in Central Germany, relative to the top 50 km. The left panel present the
logarithm of conductivities ± the computed error. Blue and red are relative to the two different aggregate conductivities.The right
panel present the anisotropic strike direction ± the direction error.
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Fig. 7.6.: Maximum anisotropy rate σHI +var(σHI )
σLO−var(σHI ) computed from the model in figure 7.4.

retrieved model for to the top 50 km, where the Mohorovičić discontinuity is located, is
reported. The penetration depth computed from the final model is approximate by

δ ≈ 0.5
√
ρaT km ≈ 120 km, (7.3)

with ρa = µ0ω|Z|2 (cf. Jones [1999] or Chapter 2 for details).
Anisotropy direction is resolved in the interval of (50 ± 2)◦ in the crust – in good

agreement with the absolute plate motion direction of [50◦ − 55◦] for Central Europe
determined by Gripp [1990] – and (78 ± 2)◦ at the depth of about 100 km, which is
oddly at a high angle to absolute plate motion (APM). These anisotropy directions roughly
correspond to direction of NE-SW in the crust and E-W in the upper mantle. Interpretation
of these directions is beyond the goal of this thesis.

The strongest anisotropy in the model is approximately at a depth of 70 km < z <
150 km, and the maximum anisotropy rate, estimated by ratio σHI+varσHI

σLO−varσLO
, in which var is

the variance of the considered model parameters, reported in Figure 7.6. Overall, our re-
sults from station DIE are in good agreement with models obtained by past studies in this
area (e.g. Leibecker et al. [2002], Roux et al. [2011]), with the significant improvement
that our modeling vastly improves the constraint on acceptable maximum electrical aniso-
tropy. In detail, the maximum electrical anisotropy predicted by our model – in the 95%
confidence interval – is never higher then 4. This value is in agreement with the values
derived from laboratory data for olivine [Gatzemeier and Tommasi, 2006]. In Figure 7.7
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Fig. 7.7.: Retrieved model (yellow and red) compared with results from Roux et al. [2011] model A (black solid and dashed line). It
is evident the constraint on resistivity in resistive direction.

the retrieved model is compared with results from Roux et al. [2011], with the constraint
on resistivity in resistive direction results evident.

The data fit is illustrated in Figure 7.8. We highlight the optimum agreement between
measured and predicted data along all the periods considered and relative to all the ele-
ments of the impedance tensor.

The chosen discretization of the domain prevents optimum fitting of high frequency
impedances, where data relative to the longest periods are precisely predicted by the
model. The process of removing distortion from the raw data produces non-negligible
errors in the resulting impedances [Jones, 2012]. Therefore, propagation of errors via the
usual linearized formula is not allowed for these impedances, preventing us from mod-
eling apparent resistivities and phases, more commonly displayed in the MT community.
The achieved RMS = 0.24 in combination with its expected value E[RMS] = 1 highlights
that the parametric errors relative to the impedances are probably overestimated (see, e.g.,
Chave and Jones [1997] for a comparison of parametric and jackknife error estimates).

Lastly, we examine the estimated joint probability distribution of seismic Vs fast-axis
azimuth angle and high electrical conductivity anisotropic strike angle shown in Fig-
ure 7.9. The estimated joint probability distribution shows a pattern that suggests that
overall similar values of seismic fast-axis direction correspond to the high conductivity
directions. In more detail, the three high probability areas are approximately aligned,
suggesting a constant offset between the considered directions.

These considerations reinforce the hypothesis that the most conductive electric direc-
tion and the fast-axis seismic direction have causes that are, at least partially, in common.
Given that the pattern appears non-continuous, we cannot confirm the hypothesis of a
direct relation between seismic and electrical anisotropy, while the clear trend suggests
a possible relation between the sources of the anisotropy. Clustering in joint probability
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Fig. 7.8.: Measured and predicted data for DIE station. Red circles represent the real parts, blue diamonds represent imaginary parts,
black circles and diamonds are the relative predicted data. The top left panel is relative to Zxx, the top right to Zxy, the bottom left to
Zyx and the bottom right to Zyy. Y axis are scaled by the factor 1

2·π·T to highlight the long period data fit.
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7. Application of the new approach

Fig. 7.9.: Computed joint probability distribution of anisotropic electric strike direction (x-axis) and azimuthal seismic fast-axis direc-
tion (y-axis).This function have been estimated fixing s = 1.0. The values on the axis correspond to the discretization – in this case in
128 values – of the values that define the MT strike directions and the ones that depicts the reference model R shown in Figure 7.3 .
Thus the probability that a value R? : π·n

128 ≤ R? ≤ π·(n+1)
128 in figure R correspond to a certain value m? : π·i

128 ≤ m? ≤
π·(i+1)

128 is given
by the value of ps(n, i)

distribution is due to the use of a layered reference model.

7.2. Complex 2D Anisotropic Synthetic Test

The forward solver used to predict data from a two-dimensional domain allows us to build
the model using up to 20 different homogeneous anisotropic subdomains. In this test we
build a complex domain, thus we mixed together these subdomains, drawing the model
geometry presented in Figure 7.10. We used the preview discretization – the one presented
in Figure 6.12 – to compute an accurate forward response. The synthetic model is the
same examined in Section 6.2.3, and the synthetic data are relative to the same stations
and the same periods. The number of data is thus, as in the preview test, m = 5512, with
which we estimate n = 60 parameters that constitute the model m.

7.2.1. Results

As in the preview test, we begin this test by defining an initial guess model m0, and we
define it as an homogeneous isotropic half-space characterized by its electrical resistivity
ρ = 1000 Ω · m.

We performed this test twice: once using noise free synthetic data and once adding 7%
random noise. In both cases we retrieved the same final model.
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7. Application of the new approach

In recent years several authors have proposed in which m is the model, G the forward operator, d 
algorithms to perform magnetotelluric (MT) the data vector, L  the regularization matrix and l 

* *
inversion in a 3D environment.  The development the trade-off parameter for anisotropy and structure 
of high performance computer (hpc) machines respectively.
allow the solution of these inverse problems in a 
reasonable time.   Nevertheless, at present, the Usually the LM method is used for medium size 
solution of a 3D problem remains  extremely problems, mainly because it requires the explicit 
challenging.  Moreover it is proved that any computation and storage of the Jacobian matrix J 

Tmagnitude of anisotropy possibly present in the and the explicit knowledge of the product J  J.  To 
subsurface conductivity can be modeled by a compute the Jacobian it has been proven that the 
sufficient dense discretization of a 3D isotropic electrical reciprocity theorem is a valuable tool, 
domain, keeping the recognition of intrinsically allowing computation of the full Jacobian with the 
anisotropic bulks (virtually impossible for a 3D evaluation of one forward problem per station as 
code).  These arguments convinced us to develop a opposed to one forward problem per parameter as is 
2D inverse code capable of assessing anisotropy usually done with the finite-difference method.  
and running in an affordable time, testing several Moreover the computation of the forward response 
scenarios for the same dataset in the same time in can be easily performed in parallel, due the mutual 
which a 3D inversion code produces its first model.  independency of the different spectral components, 
In this work we present results from synthetic tests storing the Jacobian in a distributed memory 
we performed. machine and solving at the same time the problem 

of the huge memory requirements used to store the 
TThe MT inverse problem is challenging for several product J  J thus, speeding up the whole process.

reasons.  It is  highly non-linear, ill-conditioned and 
suffers from a severe non-uniqueness of the We performed tests on the simple synthetic model 
solution. Therefore, we developed an inversion released with the code from Pek and Santos [2004]:  
algorithm based on the classic Levenberg- an 84 x100 cell grid, grouped in 3 up to 20 blocks all 
Marquardt (LM) strategy, minimizing the objective sharing the same conductivities.  Results prove the 
function capacity of the algorithm in recovering the 

subsurface structure with good precision without 
the use of regularization (reaching an RMS of the 

-5magnitude 10  for the 20 block case).
f(m) =                        + lL  + lLa a s ss SG(m) -d( (2
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Region s
xx

 s
xy

 s
xz

 s
yy

 s
yz

 s
zz

1  0.001  0.000  0.000  0.001  0.000  0.001

2  0.033  0.000  0.000  0.033  0.000  0.033

3  0.032  0.006  0.000  0.012  0.000  0.324

4  0.033  0.000  0.000  0.033  0.000  0.033

5  0.033  0.000  0.000  0.033  0.000  0.033

6  0.033  0.000  0.000  0.033  0.000  0.033

7  0.033  0.000  0.000  0.033  0.000  0.033

8  0.033  0.000  0.000  0.033  0.000  0.033

9  0.001  0.000  0.000  0.001  0.000  0.001

10  0.032  0.006  0.000  0.012  0.000  0.324

11  0.032  0.006  0.000  0.012  0.000  0.324

12  0.032  0.006  0.000  0.012  0.000  0.324

13  0.032  0.006  0.000  0.012  0.000  0.324

14  0.032  0.006  0.000  0.012  0.000  0.324

15  0.032  0.006  0.000  0.012  0.000  0.324

16  0.032  0.006  0.000  0.012  0.000  0.324

17  0.032  0.006  0.000  0.012  0.000  0.324

18  0.032  0.006  0.000  0.012  0.000  0.324

19  0.032  0.006  0.000  0.012  0.000  0.324

20  0.032  0.006  0.000  0.012  0.000  0.324

True Conductivities

Region s
xx

 s
xy

 s
xz

 s
yy

 s
yz

 s
zz

1  0.001  0.000  0.000  0.001  0.000  0.001

2  0.033  0.000  0.000  0.033  0.000  0.033

3  0.032  0.006  0.000  0.012  0.000  0.001

4  0.033  0.000  0.000  0.033  0.000  0.035

5  0.033  0.000  0.000  0.033  0.000  0.037

6  0.033  0.000  0.000  0.033  0.000  0.027

7  0.033  0.000  0.000  0.033  0.000  0.033

8  0.033  0.000  0.000  0.033  0.000  0.012

9  0.001  0.000  0.000  0.001  0.000  0.001

10  0.032  0.006  0.000  0.016  0.000  0.067

11  0.032  0.006  0.000  0.012  0.000  0.454

12  0.032  0.006  0.000  0.012  0.000  0.333

13  0.032  0.006  0.000  0.012  0.000  0.097

14  0.032  0.006  0.000  0.012  0.000  0.027

15  0.032  0.006  0.000  0.012  0.000  0.121

16  0.032  0.006  0.000  0.012  0.000  0.324

17  0.032  0.006  0.000  0.012  0.000  0.029

18  0.032  0.006  0.000  0.012  0.000  0.294

19  0.032  0.006  0.000  0.012  0.000  0.335

20  0.032  0.006  0.000  0.012  0.000  0.337

Measured Conductivities

Table 1:   Conductivity tensor elements computed from synthetic data ( .  The initial guess 
-5is a 1000W . m isotropic halfspace.  RMS relative to this model is RMS  = 1.4 x 1020

20 block test)
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Figure 1:  Data fit relative to stations along the profile is presented, as well as the discretization of the profile itself.  In each region of the domain, 
the full conductivity tensor has been computed.  Results presented in table 1 are relative to this 20 block test, while results presented in table 2 are 
relative to a simpler test, in which only 3 regions have been used.
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Conclusions

We developed a MT inverse code able to handle data 
from a 2D anisotropic domain.  The lack of sensitivity 
of data with respect to the s is mapped in the zz

impossibility for the algorithm in computing the correct 
conductivity tensor element even in simplest tests (as in 
the ones undertaken). Nevertheless in both tests using 
synthetic data we retrived a suitable model differing 
substantially from the real one only in s.  The RMS zz

reached is much smaller than its expected value 
(E(RMS) = 1) in both tests.  We found that the use of the 
LM algorithm is a good option for solving the MT 
inverse problem.  While it is routinely used for smaller 
problems, it performs better than pure Newton’s 
methods and quicker than stochastic algorithms.

Improvements and more tests have to be performed.  In 
both the 3 block and 20 block tests the algorithm was 
able to reach an RMS value smaller than 1 which is the 
typical goal for the LM algorithm. Moreover results 
from several runs of the code using synthetic data 
affected by different errors produce similar results, 
confirming the robustness of this approach in the 
presented scenario.

Table 2:   Conductivity tensor elements computed from synthetic data (
block test).  The initial guess is a 1000 m isotropic halfspace.  RMS 

-6relative to this model is RMS  < 10 .3

3 W . 

Region  s
xx

 s
xy

 s
xz

 s
yy

 s
yz

 s
zz

1  0.001  0.000  0.000  0.001  0.000  0.001

2  0.033  0.000  0.000  0.033  0.000  0.033

3  0.032  0.006  0.000  0.012  0.000  0.323

Measured Conductivities

True Conductivities

Region  s
xx

 s
xy

 s
xz

 s
yy

 s
yz

 s
zz

1  0.001  0.000  0.000  0.001  0.000  0.001

2  0.033  0.000  0.000  0.033  0.000  0.033

3  0.032  0.006  0.000  0.012  0.000  0.324
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Fig. 7.10.: Discretization of the inversion grid used in the second 2D synthetic test.

The final model parameters are presented in Table 7.3.
The computed model is characterized by a good agreement with the synthetic one rel-

ative to all the conductivity tensor elements but σzz. This in a known result, in fact the
MT method is not particularly sensitive to vertical conductivity (in 1D, as seen, MT is
completely insensitive to σzz). This is confirmed by the value of the misfit term of the
objective function computed in correspondence to the retrieved model, value reported in
Table 7.2.

Notwithstanding the incorrect values of σzz computed, the data fit results were excellent
in the noise free test, and acceptable – RMS = 1.17; E[RMS ] = 1.00 – for the inverse
problem relative to the noise dataset.

7.2.2. Results obtained via mutual information constraint

Due to the scarce sensitivity of the 2D anisotropic inverse problem with respect to the σzz

parameter, we try to constrain σzz with a compatible reference model, obtained by

Ri = sin(σtrue
zz i ). (7.4)

The calculated model parameters relative to the inversion with the MI constraint are
reported in Table 7.3. The final misfit value, relative to both the noise free dataset and the
noise dataset, was slightly improved, as reported in Table 7.4,.
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7. Application of the new approach

Region σxx σxy σxz σyy σyz σzz

1 0.001 / 0.001 0.000 / 0.000 0.000 / 0.000 0.001 / 0.001 0.000 / 0.000 0.001 / 0.001
2 0.033 / 0.033 0.000 / 0.000 0.000 / 0.000 0.033 / 0.033 0.000 / 0.000 0.033 / 0.033
3 0.032 / 0.032 0.006 / 0.006 0.000 / 0.000 0.012 / 0.012 0.000 / 0.000 0.323 / 0.001
4 0.033 / 0.033 0.000 / 0.000 0.000 / 0.000 0.033 / 0.033 0.000 / 0.000 0.033 / 0.035
5 0.033 / 0.033 0.000 / 0.000 0.000 / 0.000 0.033 / 0.033 0.000 / 0.000 0.033 / 0.037
6 0.033 / 0.033 0.000 / 0.000 0.000 / 0.000 0.033 / 0.033 0.000 / 0.000 0.033 / 0.027
7 0.033 / 0.033 0.000 / 0.000 0.000 / 0.000 0.033 / 0.033 0.000 / 0.000 0.033 / 0.033
8 0.033 / 0.033 0.000 / 0.000 0.000 / 0.000 0.033 / 0.033 0.000 / 0.000 0.033 / 0.012
9 0.001 / 0.001 0.000 / 0.000 0.000 / 0.000 0.001 / 0.001 0.000 / 0.000 0.001 / 0.001
10 0.032 / 0.032 0.006 / 0.006 0.000 / 0.000 0.012 / 0.016 0.000 / 0.000 0.323 / 0.067
11 0.032 / 0.032 0.006 / 0.006 0.000 / 0.000 0.012 / 0.012 0.000 / 0.000 0.323 / 0.454
12 0.032 / 0.032 0.006 / 0.006 0.000 / 0.000 0.012 / 0.012 0.000 / 0.000 0.323 / 0.333
13 0.032 / 0.032 0.006 / 0.006 0.000 / 0.000 0.012 / 0.012 0.000 / 0.000 0.323 / 0.097
14 0.032 / 0.032 0.006 / 0.006 0.000 / 0.000 0.012 / 0.012 0.000 / 0.000 0.323 / 0.027
15 0.032 / 0.032 0.006 / 0.006 0.000 / 0.000 0.012 / 0.012 0.000 / 0.000 0.323 / 0.121
16 0.032 / 0.032 0.006 / 0.006 0.000 / 0.000 0.012 / 0.012 0.000 / 0.000 0.323 / 0.324
17 0.032 / 0.032 0.006 / 0.006 0.000 / 0.000 0.012 / 0.012 0.000 / 0.000 0.323 / 0.029
18 0.032 / 0.032 0.006 / 0.006 0.000 / 0.000 0.012 / 0.012 0.000 / 0.000 0.323 / 0.294
19 0.032 / 0.032 0.006 / 0.006 0.000 / 0.000 0.012 / 0.012 0.000 / 0.000 0.323 / 0.335
20 0.032 / 0.032 0.006 / 0.006 0.000 / 0.000 0.012 / 0.012 0.000 / 0.000 0.323 / 0.337

Tab. 7.1.: True (left value) and computed (right value) electrical conductivity values relative to the synthetic test described in Section
7.2.1.

7.2.3. Discussion

With this synthetic test, we used the developed code to invert 2D anisotropic data. Whereas
the synthetic model represents a simple configuration of the subsurface, the model param-
eters retrieved were substantially similar to the synthetic ones.

In Figure 7.12, 7.13 and 7.14 the data fit relative to some sample stations is reported.
The data fit relative to the stations 2, 22 and 42 is computed by the model retrieved in
Section 7.2.1, while the data fit relative to the stations 12, 32 and 52 is computed by the
model retrieved in Section 7.2.2. In both cases we present the noise dataset. The position
of the stations is reported in Figure 7.11.

According to the misfit value, we do not find important differences in the quality of the
data fit. This agreement in the data fit quality suggests that the refinement in the model
parameters is due to the introduction in the objective function of the term λ2

MI [I (mzz; R)],
in which mzz represents the model elements storing the parameters relative to σzz.

This means that, despite the lack of sensitivity of the solution with respect to the σzz

parameters, the compatible reference model was able to “drive” the inversion closer to the
real solution.
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7. Application of the new approach

random noise %
∑m

i=1

[G(m)i−di
σi

]2

0 1.41 · 10−5

7 1.17

Tab. 7.2.: Misfit term in the objective function relative to the test presented in Section 7.2.1.

Region σxx σxy σxz σyy σyz σzz

1 0.001 / 0.001 0.000 / 0.000 0.000 / 0.000 0.001 / 0.001 0.000 / 0.000 0.001 / 0.001
2 0.033 / 0.033 0.000 / 0.000 0.000 / 0.000 0.033 / 0.033 0.000 / 0.000 0.033 / 0.033
3 0.032 / 0.032 0.006 / 0.006 0.000 / 0.000 0.012 / 0.012 0.000 / 0.000 0.323 / 0.330
4 0.033 / 0.033 0.000 / 0.000 0.000 / 0.000 0.033 / 0.033 0.000 / 0.000 0.033 / 0.033
5 0.033 / 0.033 0.000 / 0.000 0.000 / 0.000 0.033 / 0.033 0.000 / 0.000 0.033 / 0.033
6 0.033 / 0.033 0.000 / 0.000 0.000 / 0.000 0.033 / 0.033 0.000 / 0.000 0.033 / 0.033
7 0.033 / 0.033 0.000 / 0.000 0.000 / 0.000 0.033 / 0.033 0.000 / 0.000 0.033 / 0.033
8 0.033 / 0.033 0.000 / 0.000 0.000 / 0.000 0.033 / 0.033 0.000 / 0.000 0.033 / 0.033
9 0.001 / 0.001 0.000 / 0.000 0.000 / 0.000 0.001 / 0.001 0.000 / 0.000 0.001 / 0.001
10 0.032 / 0.032 0.006 / 0.006 0.000 / 0.000 0.012 / 0.016 0.000 / 0.000 0.323 / 0.291
11 0.032 / 0.032 0.006 / 0.006 0.000 / 0.000 0.012 / 0.012 0.000 / 0.000 0.323 / 0.287
12 0.032 / 0.032 0.006 / 0.006 0.000 / 0.000 0.012 / 0.012 0.000 / 0.000 0.323 / 0.341
13 0.032 / 0.032 0.006 / 0.006 0.000 / 0.000 0.012 / 0.012 0.000 / 0.000 0.323 / 0.321
14 0.032 / 0.032 0.006 / 0.006 0.000 / 0.000 0.012 / 0.012 0.000 / 0.000 0.323 / 0.330
15 0.032 / 0.032 0.006 / 0.006 0.000 / 0.000 0.012 / 0.012 0.000 / 0.000 0.323 / 0.327
16 0.032 / 0.032 0.006 / 0.006 0.000 / 0.000 0.012 / 0.012 0.000 / 0.000 0.323 / 0.324
17 0.032 / 0.032 0.006 / 0.006 0.000 / 0.000 0.012 / 0.012 0.000 / 0.000 0.323 / 0.333
18 0.032 / 0.032 0.006 / 0.006 0.000 / 0.000 0.012 / 0.012 0.000 / 0.000 0.323 / 0.324
19 0.032 / 0.032 0.006 / 0.006 0.000 / 0.000 0.012 / 0.012 0.000 / 0.000 0.323 / 0.324
20 0.032 / 0.032 0.006 / 0.006 0.000 / 0.000 0.012 / 0.012 0.000 / 0.000 0.323 / 0.324

Tab. 7.3.: True (left value) and computed (right value) electrical conductivity values relative to the synthetic test described in Sec-
tion 7.2.2.

This effect is due to the non-uniqueness of the solution, summarized by Parker [1983]
in the remark “for practical data the matter of uniqueness of solution is trivial: infinitely
many profiles can fit the data if one can”. The improvements in the model retrieved in
Section 7.2.2, with respect to the one calculated in Section 7.2.1, are thus obtained via the
MI based penalty function.

As the last step of this test we present – in Figure 7.15 – the JPD relative to both the
retrieved models with the reference model. The comparison of the two JPD is relatively
simple: if the MI penalty function is minimized in the inversion, the joint probability distri-
bution, estimated from values of the final result and the reference model, is characterized
by a regular clustering, whereas if the MI penalty function is not taken in account, the es-
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7. Application of the new approach

random noise %
∑m

i=1

[G(m)i−di
σi

]2

0 2.21 · 10−7

7 1.03

Tab. 7.4.: Misfit term in the objective function relative to the test presented in Section 7.2.2.

In recent years several authors have proposed in which m is the model, G the forward operator, d 
algorithms to perform magnetotelluric (MT) the data vector, L  the regularization matrix and l 

* *
inversion in a 3D environment.  The development the trade-off parameter for anisotropy and structure 
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12  0.032  0.006  0.000  0.012  0.000  0.333

13  0.032  0.006  0.000  0.012  0.000  0.097
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16  0.032  0.006  0.000  0.012  0.000  0.324

17  0.032  0.006  0.000  0.012  0.000  0.029

18  0.032  0.006  0.000  0.012  0.000  0.294

19  0.032  0.006  0.000  0.012  0.000  0.335

20  0.032  0.006  0.000  0.012  0.000  0.337

Measured Conductivities

Table 1:   Conductivity tensor elements computed from synthetic data ( .  The initial guess 
-5is a 1000W . m isotropic halfspace.  RMS relative to this model is RMS  = 1.4 x 1020
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Figure 1:  Data fit relative to stations along the profile is presented, as well as the discretization of the profile itself.  In each region of the domain, 
the full conductivity tensor has been computed.  Results presented in table 1 are relative to this 20 block test, while results presented in table 2 are 
relative to a simpler test, in which only 3 regions have been used.
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Conclusions

We developed a MT inverse code able to handle data 
from a 2D anisotropic domain.  The lack of sensitivity 
of data with respect to the s is mapped in the zz

impossibility for the algorithm in computing the correct 
conductivity tensor element even in simplest tests (as in 
the ones undertaken). Nevertheless in both tests using 
synthetic data we retrived a suitable model differing 
substantially from the real one only in s.  The RMS zz

reached is much smaller than its expected value 
(E(RMS) = 1) in both tests.  We found that the use of the 
LM algorithm is a good option for solving the MT 
inverse problem.  While it is routinely used for smaller 
problems, it performs better than pure Newton’s 
methods and quicker than stochastic algorithms.

Improvements and more tests have to be performed.  In 
both the 3 block and 20 block tests the algorithm was 
able to reach an RMS value smaller than 1 which is the 
typical goal for the LM algorithm. Moreover results 
from several runs of the code using synthetic data 
affected by different errors produce similar results, 
confirming the robustness of this approach in the 
presented scenario.

Table 2:   Conductivity tensor elements computed from synthetic data (
block test).  The initial guess is a 1000 m isotropic halfspace.  RMS 

-6relative to this model is RMS  < 10 .3

3 W . 

Region  s
xx

 s
xy

 s
xz

 s
yy

 s
yz

 s
zz

1  0.001  0.000  0.000  0.001  0.000  0.001

2  0.033  0.000  0.000  0.033  0.000  0.033

3  0.032  0.006  0.000  0.012  0.000  0.323

Measured Conductivities

True Conductivities

Region  s
xx

 s
xy

 s
xz

 s
yy

 s
yz

 s
zz

1  0.001  0.000  0.000  0.001  0.000  0.001

2  0.033  0.000  0.000  0.033  0.000  0.033

3  0.032  0.006  0.000  0.012  0.000  0.324
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Figure 1:  Data fit relative to stations along the profile is presented, as well as the discretization of the profile itself.  In each region of the domain, 
the full conductivity tensor has been computed.  Results presented in table 1 are relative to this 20 block test, while results presented in table 2 are 
relative to a simpler test, in which only 3 regions have been used.
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Conclusions

We developed a MT inverse code able to handle data 
from a 2D anisotropic domain.  The lack of sensitivity 
of data with respect to the s is mapped in the zz

impossibility for the algorithm in computing the correct 
conductivity tensor element even in simplest tests (as in 
the ones undertaken). Nevertheless in both tests using 
synthetic data we retrived a suitable model differing 
substantially from the real one only in s.  The RMS zz

reached is much smaller than its expected value 
(E(RMS) = 1) in both tests.  We found that the use of the 
LM algorithm is a good option for solving the MT 
inverse problem.  While it is routinely used for smaller 
problems, it performs better than pure Newton’s 
methods and quicker than stochastic algorithms.

Improvements and more tests have to be performed.  In 
both the 3 block and 20 block tests the algorithm was 
able to reach an RMS value smaller than 1 which is the 
typical goal for the LM algorithm. Moreover results 
from several runs of the code using synthetic data 
affected by different errors produce similar results, 
confirming the robustness of this approach in the 
presented scenario.

Table 2:   Conductivity tensor elements computed from synthetic data (
block test).  The initial guess is a 1000 m isotropic halfspace.  RMS 

-6relative to this model is RMS  < 10 .3

3 W . 

Region  s
xx

 s
xy

 s
xz

 s
yy

 s
yz

 s
zz

1  0.001  0.000  0.000  0.001  0.000  0.001

2  0.033  0.000  0.000  0.033  0.000  0.033

3  0.032  0.006  0.000  0.012  0.000  0.323

Measured Conductivities

True Conductivities

Region  s
xx

 s
xy

 s
xz

 s
yy

 s
yz

 s
zz

1  0.001  0.000  0.000  0.001  0.000  0.001

2  0.033  0.000  0.000  0.033  0.000  0.033

3  0.032  0.006  0.000  0.012  0.000  0.324
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Fig. 7.11.: Position, along the synthetic profile, of the sample stations.

timated JPD clustering results more sparse. This sparsity is a clear index of an incoherent
shared information between the final model and the reference one.
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Fig. 7.12.: Upper panel: data fit relative to the station 2. This data fit was obtained without the MI penalty function. Bottom panel:
data fit relative to the station 52. This data fit was obtained with the MI penalty function.
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Fig. 7.13.: Upper panel: data fit relative to the station 12. This data fit was obtained without the MI penalty function. Bottom panel:
data fit relative to the station 42. This data fit was obtained with the MI penalty function.
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Fig. 7.14.: Upper panel: data fit relative to the station 22. This data fit was obtained without the MI penalty function. Bottom panel:
data fit relative to the station 32. This data fit was obtained with the MI penalty function.
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Fig. 7.15.: Left panel: JPD estimated from the MI non-constrained model and R . Right panel: JPD estimated from the MI constrained
model and R
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7. Application of the new approach

7.2.4. Synthetic Test with Vertical Anisotropy

As specified before, one of the main problems with general4 anisotropic direction is the
sensitivity to the vertical anisotropy. To test possible improvements achievable with the
use of MI constraint term, a test that considers the same underlying geometry as before,
with different anisotropic directions, was tried. In table 7.5 results obtained without the
use of MI are presented.

Region σxx σxy σxz σyy σyz σzz

1 0.001 / 0.001 0.000 / 0.000 0.000 / 0.000 0.001 / 0.001 0.000 / 0.000 0.001 / 0.001
2 0.003 / 0.003 0.000 / 0.000 0.000 / 0.000 0.003 / 0.004 0.000 / 0.000 0.003 / 0.004
3 0.098 / 0.137 0.008 / 0.039 -0.012 / 0.008 0.070 / 0.018 0.045 / 0.003 0.034 / 0.001
4 0.003 / 0.002 0.000 / 0.000 0.001 / 0.000 0.003 / 0.002 0.000 /-0.001 0.003 / 0.002
5 0.003 / 0.002 0.000 / 0.000 0.000 / 0.000 0.003 / 0.004 0.000 / 0.000 0.003 / 0.002
6 0.003 / 0.012 0.000 / 0.000 0.000 / 0.002 0.003 / 0.001 0.000 / 0.001 0.003 / 0.004
7 0.003 / 0.003 0.000 /-0.001 0.000 /-0.006 0.003 / 0.008 0.000 / 0.005 0.003 / 0.012
8 0.003 / 0.003 0.000 / 0.004 0.000 / 0.002 0.003 / 0.007 0.000 / 0.002 0.003 / 0.001
9 0.001 / 0.011 0.000 /-0.009 0.000 / 0.000 0.001 / 0.002 0.000 /-0.017 0.001 / 0.034
10 0.098 / 0.109 0.008 / 0.096 -0.012 /-0.028 0.070 / 0.323 0.045 /-0.124 0.034 / 0.050
11 0.098 / 0.095 0.008 / 0.017 -0.012 / 0.014 0.070 / 0.032 0.045 /-0.064 0.034 / 0.156
12 0.098 / 0.097 0.008 / 0.016 -0.012 /-0.002 0.070 / 0.039 0.045 / 0.008 0.034 / 0.002
13 0.098 / 0.095 0.008 / 0.017 -0.012 /-0.002 0.070 / 0.024 0.045 / 0.005 0.034 / 0.001
14 0.098 / 0.095 0.008 / 0.025 -0.012 / 0.000 0.070 / 0.007 0.045 / 0.000 0.034 / 0.000
15 0.098 / 0.097 0.008 / 0.025 -0.012 /-0.001 0.070 /0.008 0.045 / 0.000 0.034 / 0.000
16 0.098 / 0.097 0.008 / 0.025 -0.012 /-0.001 0.070 / 0.007 0.045 / 0.000 0.034 / 0.000
17 0.098 / 0.097 0.008 / 0.025 -0.012 /-0.001 0.070 / 0.007 0.045 / 0.000 0.034 / 0.000
18 0.098 / 0.094 0.008 / 0.025 -0.012 / 0.000 0.070 / 0.017 0.045 /-0.004 0.034 / 0.003
19 0.098 / 0.095 0.008 / 0.032 -0.012 /-0.004 0.070 / 0.039 0.045 /-0.014 0.034 / 0.009
20 0.098 / 0.096 0.008 / 0.067 -0.012 /-0.019 0.070 / 0.377 0.045 /-0.162 0.034 / 0.072

Tab. 7.5.: True (left value) and computed (right value) electrical conductivity values relative to the synthetic test described in Sec-
tion 7.2.4. These results are obtained without the use of the MI based constraint.

Clearly, the original “true” model was not retrieved. The initial RMS was 1.3 · 1031 and
the final – obtained after 115 iterations – was 9.7. The final RMS itself allows to state
that the retrieved model is incorrect. The examination of retrieved values for conductivity
confirms that the poor resolution of vertical conductivity prevent the algorithm to retrieve
the correct model parameters.

In table 7.7 results obtained using the MI constraint are reported. Apparently the intro-
duction of MI based term in the objective function leads, in this test as in the one presented

4meaning using the full electrical conductivity tensor
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7. Application of the new approach

in Section 7.2, toward a result closer to the real one. In Table 7.6 the final RMS relative to
the test presented is reported.

RMS
without MI term 9.7

with MI term 2.9

Tab. 7.6.: RMS relative to the test described in Section 7.2.4. The test was done assuming an error floor equal to 7%.

Region σxx σxy σxz σyy σyz σzz

1 0.001 / 0.001 0.000 / 0.000 0.000 / 0.000 0.001 / 0.001 0.000 / 0.000 0.001 / 0.001
2 0.003 / 0.003 0.000 / 0.000 0.001 / 0.001 0.003 / 0.003 0.000 /0.000 0.003 / 0.003
3 0.098 / 0.098 0.008 / 0.008 -0.012 /-0.010 0.070 / 0.072 0.045 / 0.041 0.034 / 0.032
4 0.003 / 0.003 0.000 / 0.000 0.001 / 0.001 0.003 / 0.003 0.000 /0.000 0.003 / 0.004
5 0.003 / 0.003 0.000 / 0.000 0.001 / 0.001 0.003 / 0.003 0.000 /0.000 0.003 / 0.003
6 0.003 / 0.003 0.000 / 0.000 0.001 / 0.001 0.003 / 0.003 0.000 /-0.001 0.003 / 0.002
7 0.003 / 0.003 0.000 / 0.000 0.001 / 0.001 0.003 / 0.003 0.000 /0.000 0.003 / 0.003
8 0.003 / 0.003 0.000 / 0.000 0.001 / 0.001 0.003 / 0.003 0.000 /0.000 0.003 / 0.005
9 0.001 / 0.001 0.000 /0.000 0.000 / 0.000 0.000 / 0.000 0.000 /0.000 0.001 / 0.001
10 0.098 / 0.097 0.008 / 0.007 -0.012 /-0.011 0.070 / 0.071 0.045 / 0.048 0.034 / 0.037
11 0.098 / 0.099 0.008 / 0.012 -0.012 /-0.019 0.070 / 0.074 0.045 / 0.045 0.034 / 0.036
12 0.098 / 0.099 0.008 / 0.011 -0.012 /-0.016 0.070 / 0.072 0.045 / 0.044 0.034 / 0.039
13 0.098 / 0.093 0.008 / 0.004 -0.012 /-0.021 0.070 / 0.055 0.045 / 0.054 0.034 / 0.041
14 0.098 / 0.095 0.008 / 0.016 -0.012 /-0.009 0.070 / 0.058 0.045 / 0.036 0.034 / 0.022
15 0.098 / 0.095 0.008 / 0.006 -0.012 /-0.012 0.070 / 0.074 0.045 / 0.034 0.034 / 0.019
16 0.098 / 0.097 0.008 / 0.010 -0.012 /-0.013 0.070 / 0.070 0.045 / 0.037 0.034 / 0.011
17 0.098 / 0.096 0.008 / 0.009 -0.012 /-0.016 0.070 / 0.072 0.045 / 0.055 0.034 / 0.012
18 0.098 / 0.096 0.008 / 0.006 -0.012 /-0.015 0.070 / 0.076 0.045 / 0.042 0.034 / 0.044
19 0.098 / 0.096 0.008 / 0.005 -0.012 /-0.022 0.070 / 0.066 0.045 / 0.042 0.034 / 0.045
20 0.098 / 0.096 0.008 / 0.014 -0.012 /-0.015 0.070 / 0.069 0.045 / 0.044 0.034 / 0.033

Tab. 7.7.: True (left value) and computed (right value) electrical conductivity values relative to the synthetic test described in Sec-
tion 7.2.4. These results are obtained using the MI based constraint.

Finally, the JPD relative to both inversions are reported in Figure 7.16. Again, the JPD
with minimum entropy presents a more regular pattern. Even in this case the improve-
ments achieved by the use of MI penalty function come at a cost: in fact, without the
knowledge of the underlying geometry and the correct reference model, the term intro-
duced in the objective function does not carry itself particular meanings (while e.g. a
regularization term does).
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Fig. 7.16.: Left panel: JPD estimated from the MI non-constrained model and R . Right panel: JPD estimated from the MI constrained
model and R Both these figures are relative to the synthetic test presented in Section 7.2.4
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8
Summary and conclusions

The main object of this thesis has been the development of a set of tools that, at least nu-
merically, solve the inverse problem relative to application of the MT method in an aniso-
tropic environment. This goal has been achieved using a classic approach, the Levenberg-
Marquardt algorithm, co-operated by the penalty function dependent on mutual informa-
tion introduced in this work.

Prior work documented the effectiveness of MI as distance measure, and MI has been
used extensively in inverse problems, especially in medical tomography (cf. for example,
Collignon et al. [1995] or Viola and W.M. Wells [1995] to name but two examples of
many tens). Similarly the LM algorithm is a classic tool in the inverse problem solution,
and the forward 1D and 2D anisotropic MT problem can be numerically solved using the
algorithms developed by Pek and Santos [2002] and Pek and Verner [1997] respectively.

The very existence of these methods does not though ensure their mutual compatibility.
For example, as examined, the genetic algorithm can be an efficient tool in certain envi-
ronments (i.e. Moorkamp et al. [2007]), while it is computationally too expensive if used
in a 2D anisotropic domain.

We have partially examined the causes that could make the electrical conductivitypa-
rameter compatible with temperature, pressure or bulk composition. Notwithstanding the
highlighted relations, we did not attempt to develop a joint inversion scheme because of
two principal motivations: first of all a joint inversion algorithm requires the development
of a suitable forward solver, a topic for a separate thesis on its own. Secondly the possi-
bility of “switching off” the MI penalty function and using a classic LM algorithm to solve
the 1D or 2D anisotropic MT problem allows tests not performed yet in the EM community,
possibly highlighting unknown properties of these particular problems.

With some preliminary results ready, it is possible to design tests and experiments rela-
tive to different parameters that can be “close” to the electrical conductivity in a MI sense.
Probably the 1D anisotropic domain should be preferred under this optic, for computing-
cheapness and the possibility of computing the response of a whole range of geophysics
problems in a 1D domain.
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8. Summary and conclusions

A remaining open problem is the selection of an appropriate reference model. Again,
the existence of a trusted model ensures the minimization of the MI distance from that
particular set of parameters. Interesting would be the inclusion of geological profiles in
the developed scheme, in order to take advantage of geological informations available
about a region in the EM data inversion process.

A further interesting topic of discussion, not treated in this thesis, is the effect of bound-
ary conditions on the two-dimensional MT forward solutions computed. In Pek and Verner
[1997], 1D anisotropic models are created and solved on both the left and right boundary
of the domain. Of course different conditions can be imposed on the domain’s boundaries,
changing the forward operator and, with it, the solution of the inverse problem.

The natural extension of this work is the extension of the model domain to the third
dimension. With an adequate forward solver, the same MI based penalty function can be
applied to 3D isotropic or anisotropic EM inverse problems.

The complexity of these domains is naturally transferred to the forward solvers, and
the updated 3D solvers make extensive use of parallel clusters, whereas we are unaware
of a general 3D anisotropic forward solver. Notwithstanding the considerations relative
to the efficiency of a computer program, the study of anisotropic electrical conductivities
in the Earth’s materials may highlight tectonic structures and geodynamic processes ig-
nored by other geophysical methods. Therefore, electrical anisotropy measurements and
recognition requires the development of tools able to handle anisotropic data.

As shown from the case-study relative to the Rhenish Shield region, the constraint
introduced is capable of refining a model sharply, allowing both a statistical comparison
with the reference model and a strong constraint on the maximum anisotropy rate. The
computation of a minimum entropy JPD, that can be interpreted as a statistical relation that
maps the retrieved model in the reference one, allows, in fact, the visualization of possible
mutual relations between parameters. In the Central Germany dataset, we highlighted
the alignment of clusters, in the JPD, relative to the electrical anisotropic strike direction
and the seismical azimuthal fast-axis direction, suggesting a trend of constant declination
between the two.

The constraint on the maximum anisotropy rate, proves the effectiveness of the devel-
oped method in finding a final model compatible with the reference one. This compatibil-
ity ensured, in the studied case, a good constraint relative to the resistivity in the resistive
direction, a parameter unconstrained by the MT measurements on their own.

In the 2D synthetic tests examined, we observe, similarly, that the introduction of MI
distance function is capable to refine the retrieved model and to constrain effectively an
unconstrained parameter, namely σzz.

The computer code developed relative to the 2D problem, in its current form, is able
to handle a two-dimensional fully anisotropic domain, discretized in up to twenty blocks
of arbitrary shape on a continental flat1 crust. Some efforts were taken to extend the
limit of twenty blocks to a broader diversity of the domain, but errors in the program

1not considering the regional topography.
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8. Summary and conclusions

output highlight a mistake in the arrangement of the elements of the Jacobian, computed
to implement this “advanced” version of the code.

As an extra effort to make the code more efficient, a computer parallelization strategy
was developed, taking advantage of the structure of the Stokes supercomputer, available
at the ICHEC facilities. This strategy – presented in Appendix A – was not implemented
because the forward solver is presently written making use of the old FORTRAN standard,
but its implementation is straightforward as soon as a “modern” implementation of the
solver will be available.
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A
Parallelization Issues: Efficiency Strikes Back

In the early stages of the development of this thesis, the GA was enthusiastically tested.
At that stage, due to the ease of development of a parallel strategy to implement the GA,
some efforts were taken to explore the available tools allowing the implementation of a
code that makes use of the parallel supercomputer available at the ICHEC.

The rejection of the GA was not a sufficient reason to avoid studying of a strategy
directed to the parallelization of the computer code developed relative to the 2D problem1.
In Figure A.1, a simple scheme of the developed strategy is presented.

The Levenberg-Marquardt method requires the computation of several quantities, in
order to set up the system[

J(m)T J(m) + λI
]
∆m = −J(m)T F(m). (A.1)

A.1. Computation of F(m)

As stated in Chapter 2, the solution of the finite-differences system has to be performed
once per each considered period (or frequency), thus the most natural parallelization strat-
egy begins sending a forward problem relative to a certain frequency i to the computing
node nodei. In each computing node there are eight CPUs available sharing the same
RAM, and the particular structure of the cluster allows two threads per CPU.

The problem relative to the i-th frequency is then solved, in parallel2, and the A matrix
is stored in the node memory in its eliminated form. The solution of the forward problem
F(m) is now available, distributed among the different nodes used.

1the 1D problem can be promptly solved by a serial machine
2this parallelization does not comport a substantial save in time computation, because the the Gaussian

elimination algorithm used by the solver cannot be efficiently parallelized. For more information relative
to the parallelization of the Gaussian elimination algorithm cf. for example McGinn and Shaw [2002].
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Shared memory
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sufficient memory

not sufficient memory

Fig. A.1.: Scheme relative to the computer parallelization strategy developed.

A.2. Computation of J(m)

The Jacobian matrix can be computed by making use of the reciprocity theorem [Pek et al.,
2003]. Each one of pseudo-forward problems required to compute J(m) is characterized
by the same A matrix, that is available in its eliminated form in the node RAM.

The right hand side (RHS) relative to each station S ? considered is then computed
and the relative systems are solved simultaneously by the up-to-sixteen threads using the
OPENMP application programming interface. In this way, in the memory of the i-th node,
the forward solution relative to the i-th frequency, and the derivatives of this solution with
respect to all the model parameters are stored.
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A.3. Levenberg-Marquardt system solution

The remaining step of the LM algorithm involve the computation of J(m)T J(m) and
−J(m)T F(m). The data needed are stored in different nodes: this is the first stage in
which nodes communication – potentially time-consuming – is required.

The communication between the nodes at this stage is performed via the MPI, and the
matrix-vector and matrix-matrix multiplications are handled by the appropriate scaLA-
PACK library subroutine.

Depending on the system dimensions (i.e., on the number of model parameters) the
parallel solution of the system A.1, may be or may be not more efficient than the serial
one.

In our experience the serial solution is more efficient, especially because it saves com-
munication time in the line-search procedure undertaken to determine λ. Anyway, if the
dimension of m does not allow the line-search using only one node, it is possible to pro-
ceed in the algorithm solving the system in a parallel scheme.
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B
Software Used

“Reddite quae sunt Caesaris, Caesari”. Following this Biblical motto, we wish to give
credit to every piece of software we have used more than sparsely. With this we want to
thanks those authors that releasing the products of their efforts let us to benefit from their
work.

aquamacs: we enjoyed emacs, why stop using it?
http://aquamacs.org

beamer: we do not like this presentation package for its simplicity, but for the simplicity
of translate through it a sparse heap of notes into a nice looking presentation.
https://bitbucket.org/rivanvx/beamer/wiki/Home

GMT: despite the theoretical nature of this thesis, we used the Generic Mapping Tool to
produce Figure 7.1. Excellent documentation and examples can be found every-
where around the web, but in particular at http://gmt.soest.hawaii.edu.

GNU Emacs: “the” text editor, and much more. It can be extended to perform any action
performable by a computer. Available in source or binary at
http://www.gnu.org/software/emacs/

GNU Make: the tool that makes a Makefile essential. https://www.gnu.org/software/make/

GNU Octave: if you are addicted to MATLAB and cannot find your license file, this is
the methadone you can have for free from the usual pusher at
http://www.gnu.org/software/octave/

gnuplot: no one of the figures of this thesis were produced using gnuplot, but most of
the ones decorating the posters from our work were.
http://www.gnuplot.info/download.html
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ifort: the Intel Fortran compiler. Computing time is expensive, and this compiler helps
us to save it. http://software.intel.com/en-us/intel-sdp-products

iWork Keynote: if you think that you can build any presentation easily with beamer,
you need to have a look on this piece of software. It struggles with formulæ, but for
everything else is quick and easy to use. http://www.apple.com/iwork/keynote/

LAPACK: without LAPACK the solution of any of the many linear equations systems
solved in this thesis would have taken ages. http://www.netlib.org/lapack/

latex: “LaTeX is a document preparation system for high-quality typesetting. It is most
often used for medium-to-large technical or scientific documents but it can be used
for almost any form of publishing.” And it saves you from using MSW***.
http://www.latex-project.org

MATLAB: yes, eventually I bought a license. Easy to use, easy to install, highly addict-
ing. http://www.mathworks.co.uk/products/matlab/

Maxima: a computer algebra system. It make our algebraic chewing an enjoyable expe-
rience. http://maxima.sourceforge.net

Minpack: we used this numerical library to test the numerical solutions of out own im-
plementation of the Levenberg-Marquardt algorithm.
Available at http://www.math.utah.edu/software/minpack.html

wxMaxima: we enjoyed the Maxima symbolic computation capabilities, but we are not
freak enough to use it without a GUI. It really helps, and is free at
http://andrejv.github.com/wxmaxima/
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Padilha, A. L., ´Í. Vitorello, M. B. Pádua, and M. S. Bologna (2006), Lithospheric and
sublithospheric anisotropy beneath central-southeastern Brazil constrained by long pe-
riod magnetotelluric data, Physics of the Earth and Planetary Interiors, 158, 190–209,
doi:10.1016/j.pepi.2006.05.006.

Parker, R. L. (1980), The inverse problem of electromagnetic induction - Existence and
construction of solutions based on incomplete data, Journal of Geophysical Research,
85, 4421–4428, doi:10.1029/JB085iB08p04421.

Parker, R. L. (1983), The magnetotelluric inverse problem, Geophysical Surveys, 6, 5–25,
doi:10.1007/BF01453993.

Pek, J., and F. A. M. Santos (2002), Magnetotelluric impedances and parametric sensitiv-
ities for 1-D anisotropic layered media, Computers & Geosciences, 28, 939–950.

Pek, J., and T. Verner (1997), Finite-difference modelling of magnetotelluric fields in two-
dimensional anisotropic media, Geophysical Journal International, 128(3), 505–521,
doi:10.1111/j.1365-246X.1997.tb05314.x.

Pek, J., A. M. Santos, and Y. Li (2003), Parametric Sensitivities for 2-D Aniso-
tropic Magnetotelluric Models, 20. Kolloquium Elektromagnetische Tiefenforschung,
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